Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 27 28 #include "G4DNADingfelderChargeIncreaseModel.h 28 #include "G4DNADingfelderChargeIncreaseModel.hh" 29 #include "G4PhysicalConstants.hh" 29 #include "G4PhysicalConstants.hh" 30 #include "G4SystemOfUnits.hh" 30 #include "G4SystemOfUnits.hh" 31 #include "G4DNAMolecularMaterial.hh" 31 #include "G4DNAMolecularMaterial.hh" 32 #include "G4Log.hh" << 33 #include "G4Pow.hh" << 34 #include "G4Alpha.hh" << 35 << 36 static G4Pow * gpow = G4Pow::GetInstance(); << 37 32 38 //....oooOO0OOooo........oooOO0OOooo........oo 33 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 39 34 40 using namespace std; 35 using namespace std; 41 36 42 //....oooOO0OOooo........oooOO0OOooo........oo 37 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 43 38 44 G4DNADingfelderChargeIncreaseModel::G4DNADingf 39 G4DNADingfelderChargeIncreaseModel::G4DNADingfelderChargeIncreaseModel(const G4ParticleDefinition*, 45 40 const G4String& nam) : 46 G4VEmModel(nam) << 41 G4VEmModel(nam), isInitialised(false) 47 { 42 { >> 43 fpMolWaterDensity = 0; >> 44 >> 45 numberOfPartialCrossSections[0] = 0; >> 46 numberOfPartialCrossSections[1] = 0; >> 47 >> 48 verboseLevel = 0; >> 49 // Verbosity scale: >> 50 // 0 = nothing >> 51 // 1 = warning for energy non-conservation >> 52 // 2 = details of energy budget >> 53 // 3 = calculation of cross sections, file openings, sampling of atoms >> 54 // 4 = entering in methods >> 55 48 if (verboseLevel > 0) 56 if (verboseLevel > 0) 49 { 57 { 50 G4cout << "Dingfelder charge increase mode 58 G4cout << "Dingfelder charge increase model is constructed " << G4endl; 51 } 59 } >> 60 fParticleChangeForGamma = 0; >> 61 >> 62 // Selection of stationary mode >> 63 >> 64 statCode = false; 52 } 65 } 53 66 54 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 55 68 >> 69 G4DNADingfelderChargeIncreaseModel::~G4DNADingfelderChargeIncreaseModel() >> 70 {} >> 71 >> 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 73 56 void G4DNADingfelderChargeIncreaseModel::Initi 74 void G4DNADingfelderChargeIncreaseModel::Initialise(const G4ParticleDefinition* particle, 57 75 const G4DataVector& /*cuts*/) 58 { 76 { 59 77 60 if (verboseLevel > 3) 78 if (verboseLevel > 3) 61 { 79 { 62 G4cout << "Calling G4DNADingfelderChargeIn 80 G4cout << "Calling G4DNADingfelderChargeIncreaseModel::Initialise()" 63 << G4endl; 81 << G4endl; 64 } 82 } 65 83 66 // Energy limits 84 // Energy limits 67 85 68 G4DNAGenericIonsManager *instance; 86 G4DNAGenericIonsManager *instance; 69 instance = G4DNAGenericIonsManager::Instance 87 instance = G4DNAGenericIonsManager::Instance(); 70 hydrogenDef = instance->GetIon("hydrogen"); << 88 G4ParticleDefinition* hydrogenDef = instance->GetIon("hydrogen"); 71 alphaPlusPlusDef = G4Alpha::Alpha(); << 89 G4ParticleDefinition* alphaPlusDef = instance->GetIon("alpha+"); 72 alphaPlusDef = instance->GetIon("alpha+"); << 90 G4ParticleDefinition* heliumDef = instance->GetIon("helium"); 73 heliumDef = instance->GetIon("helium"); << 74 91 75 G4String hydrogen; 92 G4String hydrogen; 76 G4String alphaPlus; 93 G4String alphaPlus; 77 G4String helium; 94 G4String helium; 78 95 79 // Limits 96 // Limits 80 97 81 hydrogen = hydrogenDef->GetParticleName(); 98 hydrogen = hydrogenDef->GetParticleName(); 82 lowEnergyLimit[hydrogen] = 100. * eV; 99 lowEnergyLimit[hydrogen] = 100. * eV; 83 highEnergyLimit[hydrogen] = 100. * MeV; 100 highEnergyLimit[hydrogen] = 100. * MeV; 84 101 85 alphaPlus = alphaPlusDef->GetParticleName(); 102 alphaPlus = alphaPlusDef->GetParticleName(); 86 lowEnergyLimit[alphaPlus] = 1. * keV; 103 lowEnergyLimit[alphaPlus] = 1. * keV; 87 highEnergyLimit[alphaPlus] = 400. * MeV; 104 highEnergyLimit[alphaPlus] = 400. * MeV; 88 105 89 helium = heliumDef->GetParticleName(); 106 helium = heliumDef->GetParticleName(); 90 lowEnergyLimit[helium] = 1. * keV; 107 lowEnergyLimit[helium] = 1. * keV; 91 highEnergyLimit[helium] = 400. * MeV; 108 highEnergyLimit[helium] = 400. * MeV; 92 109 93 // 110 // 94 111 95 if (particle==hydrogenDef) 112 if (particle==hydrogenDef) 96 { 113 { 97 SetLowEnergyLimit(lowEnergyLimit[hydrogen] 114 SetLowEnergyLimit(lowEnergyLimit[hydrogen]); 98 SetHighEnergyLimit(highEnergyLimit[hydroge 115 SetHighEnergyLimit(highEnergyLimit[hydrogen]); 99 } 116 } 100 117 101 if (particle==alphaPlusDef) 118 if (particle==alphaPlusDef) 102 { 119 { 103 SetLowEnergyLimit(lowEnergyLimit[alphaPlus 120 SetLowEnergyLimit(lowEnergyLimit[alphaPlus]); 104 SetHighEnergyLimit(highEnergyLimit[alphaPl 121 SetHighEnergyLimit(highEnergyLimit[alphaPlus]); 105 } 122 } 106 123 107 if (particle==heliumDef) 124 if (particle==heliumDef) 108 { 125 { 109 SetLowEnergyLimit(lowEnergyLimit[helium]); 126 SetLowEnergyLimit(lowEnergyLimit[helium]); 110 SetHighEnergyLimit(highEnergyLimit[helium] 127 SetHighEnergyLimit(highEnergyLimit[helium]); 111 } 128 } 112 129 113 // Final state 130 // Final state 114 131 115 //ALPHA+ 132 //ALPHA+ 116 133 117 f0[0][0]=1.; 134 f0[0][0]=1.; 118 a0[0][0]=2.25; 135 a0[0][0]=2.25; 119 a1[0][0]=-0.75; 136 a1[0][0]=-0.75; 120 b0[0][0]=-32.10; 137 b0[0][0]=-32.10; 121 c0[0][0]=0.600; 138 c0[0][0]=0.600; 122 d0[0][0]=2.40; 139 d0[0][0]=2.40; 123 x0[0][0]=4.60; 140 x0[0][0]=4.60; 124 141 125 x1[0][0]=-1.; 142 x1[0][0]=-1.; 126 b1[0][0]=-1.; 143 b1[0][0]=-1.; 127 144 128 numberOfPartialCrossSections[0]=1; 145 numberOfPartialCrossSections[0]=1; 129 146 130 //HELIUM 147 //HELIUM 131 148 132 f0[0][1]=1.; 149 f0[0][1]=1.; 133 a0[0][1]=2.25; 150 a0[0][1]=2.25; 134 a1[0][1]=-0.75; 151 a1[0][1]=-0.75; 135 b0[0][1]=-30.93; 152 b0[0][1]=-30.93; 136 c0[0][1]=0.590; 153 c0[0][1]=0.590; 137 d0[0][1]=2.35; 154 d0[0][1]=2.35; 138 x0[0][1]=4.29; 155 x0[0][1]=4.29; 139 156 140 f0[1][1]=1.; 157 f0[1][1]=1.; 141 a0[1][1]=2.25; 158 a0[1][1]=2.25; 142 a1[1][1]=-0.75; 159 a1[1][1]=-0.75; 143 b0[1][1]=-32.61; 160 b0[1][1]=-32.61; 144 c0[1][1]=0.435; 161 c0[1][1]=0.435; 145 d0[1][1]=2.70; 162 d0[1][1]=2.70; 146 x0[1][1]=4.45; 163 x0[1][1]=4.45; 147 164 148 x1[0][1]=-1.; 165 x1[0][1]=-1.; 149 b1[0][1]=-1.; 166 b1[0][1]=-1.; 150 167 151 x1[1][1]=-1.; 168 x1[1][1]=-1.; 152 b1[1][1]=-1.; 169 b1[1][1]=-1.; 153 170 154 numberOfPartialCrossSections[1]=2; 171 numberOfPartialCrossSections[1]=2; 155 172 156 // 173 // 157 174 158 if( verboseLevel>0 ) 175 if( verboseLevel>0 ) 159 { 176 { 160 G4cout << "Dingfelder charge increase mode 177 G4cout << "Dingfelder charge increase model is initialized " << G4endl 161 << "Energy range: " 178 << "Energy range: " 162 << LowEnergyLimit() / keV << " keV - " 179 << LowEnergyLimit() / keV << " keV - " 163 << HighEnergyLimit() / MeV << " MeV for " 180 << HighEnergyLimit() / MeV << " MeV for " 164 << particle->GetParticleName() 181 << particle->GetParticleName() 165 << G4endl; 182 << G4endl; 166 } 183 } 167 184 168 // Initialize water density pointer 185 // Initialize water density pointer 169 fpMolWaterDensity = G4DNAMolecularMaterial:: 186 fpMolWaterDensity = G4DNAMolecularMaterial::Instance()->GetNumMolPerVolTableFor(G4Material::GetMaterial("G4_WATER")); 170 187 171 if (isInitialised) return; 188 if (isInitialised) return; 172 189 173 fParticleChangeForGamma = GetParticleChangeF 190 fParticleChangeForGamma = GetParticleChangeForGamma(); 174 isInitialised = true; 191 isInitialised = true; 175 } 192 } 176 193 177 //....oooOO0OOooo........oooOO0OOooo........oo 194 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 195 179 G4double G4DNADingfelderChargeIncreaseModel::C 196 G4double G4DNADingfelderChargeIncreaseModel::CrossSectionPerVolume(const G4Material* material, 180 197 const G4ParticleDefinition* particleDefinition, 181 198 G4double k, 182 199 G4double, 183 200 G4double) 184 { 201 { 185 if (verboseLevel > 3) 202 if (verboseLevel > 3) 186 { 203 { 187 G4cout 204 G4cout 188 << "Calling CrossSectionPerVolume() of 205 << "Calling CrossSectionPerVolume() of G4DNADingfelderChargeIncreaseModel" 189 << G4endl; 206 << G4endl; 190 } 207 } 191 208 192 // Calculate total cross section for model 209 // Calculate total cross section for model 193 210 >> 211 G4DNAGenericIonsManager *instance; >> 212 instance = G4DNAGenericIonsManager::Instance(); >> 213 194 if ( 214 if ( 195 particleDefinition != hydrogenDef << 215 particleDefinition != instance->GetIon("hydrogen") 196 && 216 && 197 particleDefinition != alphaPlusDef << 217 particleDefinition != instance->GetIon("alpha+") 198 && 218 && 199 particleDefinition != heliumDef << 219 particleDefinition != instance->GetIon("helium") 200 ) 220 ) 201 221 202 return 0; 222 return 0; 203 223 204 G4double lowLim = 0; 224 G4double lowLim = 0; 205 G4double highLim = 0; 225 G4double highLim = 0; 206 G4double totalCrossSection = 0.; 226 G4double totalCrossSection = 0.; 207 227 208 G4double waterDensity = (*fpMolWaterDensity) 228 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()]; 209 229 210 const G4String& particleName = particleDefin 230 const G4String& particleName = particleDefinition->GetParticleName(); 211 231 212 std::map< G4String,G4double,std::less<G4Stri 232 std::map< G4String,G4double,std::less<G4String> >::iterator pos1; 213 pos1 = lowEnergyLimit.find(particleName); 233 pos1 = lowEnergyLimit.find(particleName); 214 234 215 if (pos1 != lowEnergyLimit.end()) 235 if (pos1 != lowEnergyLimit.end()) 216 { 236 { 217 lowLim = pos1->second; 237 lowLim = pos1->second; 218 } 238 } 219 239 220 std::map< G4String,G4double,std::less<G4Stri 240 std::map< G4String,G4double,std::less<G4String> >::iterator pos2; 221 pos2 = highEnergyLimit.find(particleName); 241 pos2 = highEnergyLimit.find(particleName); 222 242 223 if (pos2 != highEnergyLimit.end()) 243 if (pos2 != highEnergyLimit.end()) 224 { 244 { 225 highLim = pos2->second; 245 highLim = pos2->second; 226 } 246 } 227 247 228 if (k >= lowLim && k <= highLim) 248 if (k >= lowLim && k <= highLim) 229 { 249 { 230 //HYDROGEN 250 //HYDROGEN 231 if (particleDefinition == hydrogenDef) << 251 if (particleDefinition == instance->GetIon("hydrogen")) 232 { 252 { 233 const G4double aa = 2.835; 253 const G4double aa = 2.835; 234 const G4double bb = 0.310; 254 const G4double bb = 0.310; 235 const G4double cc = 2.100; 255 const G4double cc = 2.100; 236 const G4double dd = 0.760; 256 const G4double dd = 0.760; 237 const G4double fac = 1.0e-18; 257 const G4double fac = 1.0e-18; 238 const G4double rr = 13.606 * eV; 258 const G4double rr = 13.606 * eV; 239 259 240 G4double t = k / (proton_mass_c2/electro 260 G4double t = k / (proton_mass_c2/electron_mass_c2); 241 G4double x = t / rr; 261 G4double x = t / rr; 242 G4double temp = 4.0 * pi * Bohr_radius/n 262 G4double temp = 4.0 * pi * Bohr_radius/nm * Bohr_radius/nm * fac; 243 G4double sigmal = temp * cc * (gpow->pow << 263 G4double sigmal = temp * cc * (std::pow(x,dd)); 244 G4double sigmah = temp * (aa * G4Log(1.0 << 264 G4double sigmah = temp * (aa * std::log(1.0 + x) + bb) / x; 245 totalCrossSection = 1.0/(1.0/sigmal + 1. 265 totalCrossSection = 1.0/(1.0/sigmal + 1.0/sigmah) *m*m; 246 } 266 } 247 else 267 else 248 { 268 { 249 totalCrossSection = Sum(k,particleDefini 269 totalCrossSection = Sum(k,particleDefinition); 250 } 270 } 251 } 271 } 252 272 253 if (verboseLevel > 2) 273 if (verboseLevel > 2) 254 { 274 { 255 G4cout << "_______________________________ 275 G4cout << "__________________________________" << G4endl; 256 G4cout << "G4DNADingfelderChargeIncreaseMo 276 G4cout << "G4DNADingfelderChargeIncreaseModel - XS INFO START" << G4endl; 257 G4cout << "Kinetic energy(eV)=" << k/eV << 277 G4cout << "Kinetic energy(eV)=" << k/eV << " particle : " << particleName << G4endl; 258 G4cout << "Cross section per water molecul 278 G4cout << "Cross section per water molecule (cm^2)=" << totalCrossSection/cm/cm << G4endl; 259 G4cout << "Cross section per water molecul 279 G4cout << "Cross section per water molecule (cm^-1)=" << totalCrossSection*waterDensity/(1./cm) << G4endl; 260 // G4cout << " - Cross section per water 280 // G4cout << " - Cross section per water molecule (cm^-1)=" 261 // << sigma*material->GetAtomicNumDensity 281 // << sigma*material->GetAtomicNumDensityVector()[1]/(1./cm) << G4endl; 262 G4cout << "G4DNADingfelderChargeIncreaseMo 282 G4cout << "G4DNADingfelderChargeIncreaseModel - XS INFO END" << G4endl; 263 } 283 } 264 284 265 return totalCrossSection*waterDensity; 285 return totalCrossSection*waterDensity; 266 // return totalCrossSection*material->GetAto 286 // return totalCrossSection*material->GetAtomicNumDensityVector()[1]; 267 287 268 } 288 } 269 289 270 //....oooOO0OOooo........oooOO0OOooo........oo 290 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 271 291 272 void G4DNADingfelderChargeIncreaseModel::Sampl 292 void G4DNADingfelderChargeIncreaseModel::SampleSecondaries(std::vector< 273 293 G4DynamicParticle*>* fvect, 274 294 const G4MaterialCutsCouple* /*couple*/, 275 295 const G4DynamicParticle* aDynamicParticle, 276 296 G4double, 277 297 G4double) 278 { 298 { 279 if (verboseLevel > 3) 299 if (verboseLevel > 3) 280 { 300 { 281 G4cout 301 G4cout 282 << "Calling SampleSecondaries() of G4D 302 << "Calling SampleSecondaries() of G4DNADingfelderChargeIncreaseModel" 283 << G4endl; 303 << G4endl; 284 } 304 } 285 305 286 if (!statCode) fParticleChangeForGamma->Prop 306 if (!statCode) fParticleChangeForGamma->ProposeLocalEnergyDeposit(0.); 287 307 288 G4ParticleDefinition* definition = aDynamicP 308 G4ParticleDefinition* definition = aDynamicParticle->GetDefinition(); 289 309 290 G4double particleMass = definition->GetPDGMa 310 G4double particleMass = definition->GetPDGMass(); 291 311 292 G4double inK = aDynamicParticle->GetKineticE 312 G4double inK = aDynamicParticle->GetKineticEnergy(); 293 313 294 G4int finalStateIndex = RandomSelect(inK,def 314 G4int finalStateIndex = RandomSelect(inK,definition); 295 315 296 G4int n = NumberOfFinalStates(definition,fin 316 G4int n = NumberOfFinalStates(definition,finalStateIndex); 297 317 298 G4double outK = 0.; 318 G4double outK = 0.; 299 319 300 if (!statCode) outK = inK - IncomingParticle 320 if (!statCode) outK = inK - IncomingParticleBindingEnergyConstant(definition,finalStateIndex); 301 321 302 else outK = inK; 322 else outK = inK; 303 323 304 if (statCode) 324 if (statCode) 305 fParticleChangeForGamma-> 325 fParticleChangeForGamma-> 306 ProposeLocalEnergyDeposit(IncomingPartic 326 ProposeLocalEnergyDeposit(IncomingParticleBindingEnergyConstant(definition,finalStateIndex)); 307 327 308 fParticleChangeForGamma->ProposeTrackStatus( 328 fParticleChangeForGamma->ProposeTrackStatus(fStopAndKill); 309 329 >> 330 G4DNAGenericIonsManager* instance; >> 331 instance = G4DNAGenericIonsManager::Instance(); >> 332 310 G4double electronK; 333 G4double electronK; 311 if (definition == hydrogenDef) electronK = i << 334 if (definition == instance->GetIon("hydrogen")) electronK = inK*electron_mass_c2/proton_mass_c2; 312 else electronK = inK*electron_mass_c2/(parti 335 else electronK = inK*electron_mass_c2/(particleMass); 313 336 314 if (outK<0) 337 if (outK<0) 315 { 338 { 316 G4Exception("G4DNADingfelderChargeIncrease 339 G4Exception("G4DNADingfelderChargeIncreaseModel::SampleSecondaries","em0004", 317 FatalException,"Final kinetic energy i 340 FatalException,"Final kinetic energy is negative."); 318 } 341 } 319 342 320 auto dp = new G4DynamicParticle(OutgoingPart << 343 G4DynamicParticle* dp = new G4DynamicParticle(OutgoingParticleDefinition(definition,finalStateIndex), 321 aDynamicParticle->GetMomentumDirection() 344 aDynamicParticle->GetMomentumDirection(), 322 outK); 345 outK); 323 346 324 fvect->push_back(dp); 347 fvect->push_back(dp); 325 348 326 n = n - 1; 349 n = n - 1; 327 350 328 while (n>0) 351 while (n>0) 329 { 352 { 330 n--; 353 n--; 331 fvect->push_back(new G4DynamicParticle 354 fvect->push_back(new G4DynamicParticle 332 (G4Electron::Electron(), aDynamicParti 355 (G4Electron::Electron(), aDynamicParticle->GetMomentumDirection(), electronK) ); 333 } 356 } 334 } 357 } 335 358 336 //....oooOO0OOooo........oooOO0OOooo........oo 359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 337 360 338 G4int G4DNADingfelderChargeIncreaseModel::Numb 361 G4int G4DNADingfelderChargeIncreaseModel::NumberOfFinalStates(G4ParticleDefinition* particleDefinition, 339 362 G4int finalStateIndex) 340 363 341 { 364 { >> 365 G4DNAGenericIonsManager* instance; >> 366 instance = G4DNAGenericIonsManager::Instance(); 342 367 343 if (particleDefinition == hydrogenDef) << 368 if (particleDefinition == instance->GetIon("hydrogen")) 344 return 2; 369 return 2; 345 370 346 if (particleDefinition == alphaPlusDef) << 371 if (particleDefinition == instance->GetIon("alpha+")) 347 return 2; 372 return 2; 348 373 349 if (particleDefinition == heliumDef) << 374 if (particleDefinition == instance->GetIon("helium")) 350 { 375 { 351 if (finalStateIndex == 0) 376 if (finalStateIndex == 0) 352 return 2; 377 return 2; 353 return 3; 378 return 3; 354 } 379 } 355 380 356 return 0; 381 return 0; 357 } 382 } 358 383 359 //....oooOO0OOooo........oooOO0OOooo........oo 384 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 360 385 361 G4ParticleDefinition* G4DNADingfelderChargeInc 386 G4ParticleDefinition* G4DNADingfelderChargeIncreaseModel::OutgoingParticleDefinition(G4ParticleDefinition* particleDefinition, 362 387 G4int finalStateIndex) 363 { 388 { >> 389 G4DNAGenericIonsManager * instance(G4DNAGenericIonsManager::Instance()); 364 390 365 if (particleDefinition == hydrogenDef) << 391 if (particleDefinition == instance->GetIon("hydrogen")) 366 return G4Proton::Proton(); 392 return G4Proton::Proton(); 367 393 368 if (particleDefinition == alphaPlusDef) << 394 if (particleDefinition == instance->GetIon("alpha+")) 369 return alphaPlusPlusDef; << 395 return instance->GetIon("alpha++"); 370 396 371 if (particleDefinition == heliumDef) << 397 if (particleDefinition == instance->GetIon("helium")) 372 { 398 { 373 if (finalStateIndex == 0) 399 if (finalStateIndex == 0) 374 return alphaPlusDef; << 400 return instance->GetIon("alpha+"); 375 return alphaPlusPlusDef; << 401 return instance->GetIon("alpha++"); 376 } 402 } 377 403 378 return nullptr; << 404 return 0; 379 } 405 } 380 406 381 //....oooOO0OOooo........oooOO0OOooo........oo 407 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 382 408 383 G4double G4DNADingfelderChargeIncreaseModel::I 409 G4double G4DNADingfelderChargeIncreaseModel::IncomingParticleBindingEnergyConstant(G4ParticleDefinition* particleDefinition, 384 410 G4int finalStateIndex) 385 { 411 { >> 412 G4DNAGenericIonsManager * instance(G4DNAGenericIonsManager::Instance()); 386 413 387 if (particleDefinition == hydrogenDef) << 414 if (particleDefinition == instance->GetIon("hydrogen")) 388 return 13.6 * eV; 415 return 13.6 * eV; 389 416 390 if (particleDefinition == alphaPlusDef) << 417 if (particleDefinition == instance->GetIon("alpha+")) 391 { 418 { 392 // Binding energy for He+ -> He++ + e- 419 // Binding energy for He+ -> He++ + e- 54.509 eV 393 // Binding energy for He -> He+ + e- 420 // Binding energy for He -> He+ + e- 24.587 eV 394 return 54.509 * eV; 421 return 54.509 * eV; 395 } 422 } 396 423 397 if (particleDefinition == heliumDef) << 424 if (particleDefinition == instance->GetIon("helium")) 398 { 425 { 399 // Binding energy for He+ -> He++ + e- 426 // Binding energy for He+ -> He++ + e- 54.509 eV 400 // Binding energy for He -> He+ + e- 427 // Binding energy for He -> He+ + e- 24.587 eV 401 428 402 if (finalStateIndex == 0) 429 if (finalStateIndex == 0) 403 return 24.587 * eV; 430 return 24.587 * eV; 404 return (54.509 + 24.587) * eV; 431 return (54.509 + 24.587) * eV; 405 } 432 } 406 433 407 return 0; 434 return 0; 408 } 435 } 409 436 410 //....oooOO0OOooo........oooOO0OOooo........oo 437 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 411 438 412 G4double G4DNADingfelderChargeIncreaseModel::P << 439 G4double G4DNADingfelderChargeIncreaseModel::PartialCrossSection(G4double k, 413 << 440 G4int index, 414 441 const G4ParticleDefinition* particleDefinition) 415 { 442 { 416 G4int particleTypeIndex = 0; 443 G4int particleTypeIndex = 0; >> 444 G4DNAGenericIonsManager *instance; >> 445 instance = G4DNAGenericIonsManager::Instance(); 417 446 418 if (particleDefinition == alphaPlusDef) << 447 if (particleDefinition == instance->GetIon("alpha+")) 419 particleTypeIndex = 0; 448 particleTypeIndex = 0; 420 449 421 if (particleDefinition == heliumDef) << 450 if (particleDefinition == instance->GetIon("helium")) 422 particleTypeIndex = 1; 451 particleTypeIndex = 1; 423 452 424 // 453 // 425 // sigma(T) = f0 10 ^ y(log10(T/eV)) 454 // sigma(T) = f0 10 ^ y(log10(T/eV)) 426 // 455 // 427 // / a0 x + b0 x 456 // / a0 x + b0 x < x0 428 // | 457 // | 429 // y(x) = < a0 x + b0 - c0 (x - x0)^d0 x 458 // y(x) = < a0 x + b0 - c0 (x - x0)^d0 x0 <= x < x1 430 // | 459 // | 431 // \ a1 x + b1 x 460 // \ a1 x + b1 x >= x1 432 // 461 // 433 // 462 // 434 // f0, a0, a1, b0, b1, c0, d0, x0, x1 are pa 463 // f0, a0, a1, b0, b1, c0, d0, x0, x1 are parameters that change for protons and helium (0, +, ++) 435 // 464 // 436 // f0 has been added to the code in order to 465 // f0 has been added to the code in order to manage partial (shell-dependent) cross sections 437 // (if no shell dependence is present. f0=1. 466 // (if no shell dependence is present. f0=1. Sum of f0 over the considered shells should give 1) 438 // 467 // 439 // From Rad. Phys. and Chem. 59 (2000) 255-2 468 // From Rad. Phys. and Chem. 59 (2000) 255-275, M. Dingfelder et al. 440 // Inelastic-collision cross sections of liq 469 // Inelastic-collision cross sections of liquid water for interactions of energetic proton 441 // 470 // 442 471 443 if (x1[index][particleTypeIndex] < x0[index] 472 if (x1[index][particleTypeIndex] < x0[index][particleTypeIndex]) 444 { 473 { 445 // 474 // 446 // if x1 < x0 means that x1 and b1 will be 475 // if x1 < x0 means that x1 and b1 will be calculated with the following formula 447 // (this piece of code is run on all alpha 476 // (this piece of code is run on all alphas and not on protons) 448 // 477 // 449 // x1 = x0 + ((a0 - a1)/(c0 * d0)) ^ (1 / 478 // x1 = x0 + ((a0 - a1)/(c0 * d0)) ^ (1 / (d0 - 1)) 450 // 479 // 451 // b1 = (a0 - a1) * x1 + b0 - c0 * (x1 - x 480 // b1 = (a0 - a1) * x1 + b0 - c0 * (x1 - x0) ^ d0 452 // 481 // 453 482 454 x1[index][particleTypeIndex] = x0[index][p 483 x1[index][particleTypeIndex] = x0[index][particleTypeIndex] 455 + gpow->powA((a0[index][particleTypeIn << 484 + std::pow((a0[index][particleTypeIndex] - a1[index][particleTypeIndex]) 456 / (c0[index][particleTy 485 / (c0[index][particleTypeIndex] 457 * d0[index][particl 486 * d0[index][particleTypeIndex]), 458 1. / (d0[index][particleTyp 487 1. / (d0[index][particleTypeIndex] - 1.)); 459 b1[index][particleTypeIndex] = (a0[index][ 488 b1[index][particleTypeIndex] = (a0[index][particleTypeIndex] 460 - a1[index][particleTypeIndex]) * x1[i 489 - a1[index][particleTypeIndex]) * x1[index][particleTypeIndex] 461 + b0[index][particleTypeIndex] 490 + b0[index][particleTypeIndex] 462 - c0[index][particleTypeIndex] 491 - c0[index][particleTypeIndex] 463 * gpow->powA(x1[index][particleTyp << 492 * std::pow(x1[index][particleTypeIndex] 464 - x0[index][particl 493 - x0[index][particleTypeIndex], 465 d0[index][particleTypeI 494 d0[index][particleTypeIndex]); 466 } 495 } 467 496 468 G4double x(G4Log(k / eV)/gpow->logZ(10)); << 497 G4double x(std::log10(k / eV)); 469 G4double y; 498 G4double y; 470 499 471 if (x < x0[index][particleTypeIndex]) 500 if (x < x0[index][particleTypeIndex]) 472 y = a0[index][particleTypeIndex] * x + b0[ 501 y = a0[index][particleTypeIndex] * x + b0[index][particleTypeIndex]; 473 else if (x < x1[index][particleTypeIndex]) 502 else if (x < x1[index][particleTypeIndex]) 474 y = a0[index][particleTypeIndex] * x + b0[ 503 y = a0[index][particleTypeIndex] * x + b0[index][particleTypeIndex] 475 - c0[index][particleTypeIndex] 504 - c0[index][particleTypeIndex] 476 * gpow->powA(x - x0[index][particl << 505 * std::pow(x - x0[index][particleTypeIndex], 477 d0[index][particleTypeI 506 d0[index][particleTypeIndex]); 478 else 507 else 479 y = a1[index][particleTypeIndex] * x + b1[ 508 y = a1[index][particleTypeIndex] * x + b1[index][particleTypeIndex]; 480 509 481 return f0[index][particleTypeIndex] * gpow-> << 510 return f0[index][particleTypeIndex] * std::pow(10., y) * m * m; 482 511 483 } 512 } 484 513 485 //....oooOO0OOooo........oooOO0OOooo........oo 514 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 486 515 487 G4int G4DNADingfelderChargeIncreaseModel::Rand << 516 G4int G4DNADingfelderChargeIncreaseModel::RandomSelect(G4double k, 488 517 const G4ParticleDefinition* particleDefinition) 489 { 518 { 490 G4int particleTypeIndex = 0; 519 G4int particleTypeIndex = 0; >> 520 G4DNAGenericIonsManager *instance; >> 521 instance = G4DNAGenericIonsManager::Instance(); 491 522 492 if (particleDefinition == hydrogenDef) << 523 if (particleDefinition == instance->GetIon("hydrogen")) 493 return 0; 524 return 0; 494 525 495 if (particleDefinition == alphaPlusDef) << 526 if (particleDefinition == instance->GetIon("alpha+")) 496 particleTypeIndex = 0; 527 particleTypeIndex = 0; 497 528 498 if (particleDefinition == heliumDef) << 529 if (particleDefinition == instance->GetIon("helium")) 499 particleTypeIndex = 1; 530 particleTypeIndex = 1; 500 531 501 const G4int n = numberOfPartialCrossSections 532 const G4int n = numberOfPartialCrossSections[particleTypeIndex]; 502 auto values(new G4double[n]); << 533 G4double* values(new G4double[n]); 503 G4double value = 0; 534 G4double value = 0; 504 G4int i = n; 535 G4int i = n; 505 536 506 while (i > 0) 537 while (i > 0) 507 { 538 { 508 i--; 539 i--; 509 values[i] = PartialCrossSection(k, i, part 540 values[i] = PartialCrossSection(k, i, particleDefinition); 510 value += values[i]; 541 value += values[i]; 511 } 542 } 512 543 513 value *= G4UniformRand(); 544 value *= G4UniformRand(); 514 545 515 i = n; 546 i = n; 516 while (i > 0) 547 while (i > 0) 517 { 548 { 518 i--; 549 i--; 519 550 520 if (values[i] > value) 551 if (values[i] > value) 521 break; 552 break; 522 553 523 value -= values[i]; 554 value -= values[i]; 524 } 555 } 525 556 526 delete[] values; 557 delete[] values; 527 558 528 return i; 559 return i; 529 } 560 } 530 561 531 //....oooOO0OOooo........oooOO0OOooo........oo 562 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 532 563 533 G4double G4DNADingfelderChargeIncreaseModel::S << 564 G4double G4DNADingfelderChargeIncreaseModel::Sum(G4double k, 534 565 const G4ParticleDefinition* particleDefinition) 535 { 566 { 536 G4int particleTypeIndex = 0; 567 G4int particleTypeIndex = 0; >> 568 G4DNAGenericIonsManager *instance; >> 569 instance = G4DNAGenericIonsManager::Instance(); 537 570 538 if (particleDefinition == alphaPlusDef) << 571 if (particleDefinition == instance->GetIon("alpha+")) 539 particleTypeIndex = 0; 572 particleTypeIndex = 0; 540 573 541 if (particleDefinition == heliumDef) << 574 if (particleDefinition == instance->GetIon("helium")) 542 particleTypeIndex = 1; 575 particleTypeIndex = 1; 543 576 544 G4double totalCrossSection = 0.; 577 G4double totalCrossSection = 0.; 545 578 546 for (G4int i = 0; i < numberOfPartialCrossSe 579 for (G4int i = 0; i < numberOfPartialCrossSections[particleTypeIndex]; i++) 547 { 580 { 548 totalCrossSection += PartialCrossSection(k 581 totalCrossSection += PartialCrossSection(k, i, particleDefinition); 549 } 582 } 550 583 551 return totalCrossSection; 584 return totalCrossSection; 552 } 585 } 553 586