Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 << 26 // 27 #include "G4VAdjointReverseReaction.hh" 27 #include "G4VAdjointReverseReaction.hh" 28 << 28 #include "G4SystemOfUnits.hh" 29 #include "G4AdjointCSManager.hh" 29 #include "G4AdjointCSManager.hh" 30 #include "G4ParticleChange.hh" << 30 #include "G4AdjointCSMatrix.hh" >> 31 #include "G4AdjointInterpolator.hh" >> 32 #include "G4AdjointCSMatrix.hh" 31 #include "G4VEmAdjointModel.hh" 33 #include "G4VEmAdjointModel.hh" >> 34 #include "G4ElementTable.hh" >> 35 #include "G4Element.hh" >> 36 #include "G4Material.hh" >> 37 #include "G4MaterialCutsCouple.hh" >> 38 #include "G4AdjointCSManager.hh" >> 39 #include "G4ParticleChange.hh" >> 40 #include "G4AdjointElectron.hh" 32 41 33 G4VAdjointReverseReaction::G4VAdjointReverseRe << 34 << 35 : G4VDiscreteProcess(process_name) << 36 { << 37 fCSManager = G4AdjointCSManager::GetA << 38 fIsScatProjToProj = whichScatCase; << 39 fParticleChange = new G4ParticleChange(); << 40 } << 41 42 >> 43 G4VAdjointReverseReaction:: >> 44 G4VAdjointReverseReaction(G4String process_name, G4bool whichScatCase): >> 45 G4VDiscreteProcess(process_name) >> 46 {theAdjointCSManager = G4AdjointCSManager::GetAdjointCSManager(); >> 47 IsScatProjToProjCase=whichScatCase; >> 48 fParticleChange=new G4ParticleChange(); >> 49 IsFwdCSUsed=false; >> 50 IsIntegralModeUsed=false; >> 51 lastCS=0.; >> 52 trackid = nstep = 0; >> 53 } 42 ////////////////////////////////////////////// 54 ////////////////////////////////////////////////////////////////////////////// 43 G4VAdjointReverseReaction::~G4VAdjointReverseR << 55 // 44 { << 56 G4VAdjointReverseReaction:: 45 if(fParticleChange) << 57 ~G4VAdjointReverseReaction() 46 delete fParticleChange; << 58 { if (fParticleChange) delete fParticleChange; >> 59 } >> 60 ////////////////////////////////////////////////////////////////////////////// >> 61 // >> 62 void G4VAdjointReverseReaction::PreparePhysicsTable(const G4ParticleDefinition&) >> 63 {; 47 } 64 } 48 << 49 ////////////////////////////////////////////// 65 ////////////////////////////////////////////////////////////////////////////// >> 66 // 50 void G4VAdjointReverseReaction::BuildPhysicsTa 67 void G4VAdjointReverseReaction::BuildPhysicsTable(const G4ParticleDefinition&) 51 { 68 { 52 fCSManager->BuildCrossSectionMatrices(); // << 53 fCSManager->BuildTotalSigmaTables(); << 54 } << 55 69 >> 70 theAdjointCSManager->BuildCrossSectionMatrices(); //do not worry it will be done just once >> 71 theAdjointCSManager->BuildTotalSigmaTables(); >> 72 >> 73 } 56 ////////////////////////////////////////////// 74 ////////////////////////////////////////////////////////////////////////////// 57 G4VParticleChange* G4VAdjointReverseReaction:: << 75 // 58 << 76 G4VParticleChange* G4VAdjointReverseReaction::PostStepDoIt(const G4Track& track, const G4Step& ) 59 { << 77 { >> 78 60 fParticleChange->Initialize(track); 79 fParticleChange->Initialize(track); 61 fAdjointModel->SampleSecondaries(track, fIsS << 80 62 << 81 /* if (IsFwdCSUsed && IsIntegralModeUsed){ //INtegral mode still unstable >> 82 G4double Tkin = step.GetPostStepPoint()->GetKineticEnergy(); >> 83 G4double fwdCS = theAdjointCSManager->GetTotalForwardCS(track.GetDefinition(), Tkin, track.GetMaterialCutsCouple()); >> 84 //G4cout<<"lastCS "<<lastCS<<G4endl; >> 85 if (fwdCS<lastCS*G4UniformRand()) { // the reaction does not take place, same integral method as the one used for forward ionisation in G4 >> 86 ClearNumberOfInteractionLengthLeft(); >> 87 return fParticleChange; >> 88 } >> 89 >> 90 } >> 91 */ >> 92 >> 93 theAdjointEMModel->SampleSecondaries(track, >> 94 IsScatProjToProjCase, >> 95 fParticleChange); >> 96 63 ClearNumberOfInteractionLengthLeft(); 97 ClearNumberOfInteractionLengthLeft(); 64 return fParticleChange; 98 return fParticleChange; >> 99 >> 100 >> 101 65 } 102 } 66 << 67 ////////////////////////////////////////////// 103 ////////////////////////////////////////////////////////////////////////////// >> 104 // 68 G4double G4VAdjointReverseReaction::GetMeanFre 105 G4double G4VAdjointReverseReaction::GetMeanFreePath(const G4Track& track, 69 << 106 G4double , 70 << 107 G4ForceCondition* condition) 71 { << 108 { *condition = NotForced; 72 *condition = NotForced; << 73 G4double preStepKinEnergy = track.GetKinetic 109 G4double preStepKinEnergy = track.GetKineticEnergy(); 74 110 75 if(track.GetTrackID() != fTrackId) << 111 if(track.GetTrackID() != trackid) { 76 { << 112 trackid = track.GetTrackID(); 77 fTrackId = track.GetTrackID(); << 113 nstep = 0; 78 } 114 } 79 G4double sigma = fAdjointModel->AdjointCross << 115 ++nstep; 80 track.GetMaterialCutsCouple(), preStepKinE << 81 116 82 G4double corr = fCSManager->GetCrossSectionC << 117 83 track.GetDefinition(), preStepKinEnergy, t << 118 84 fIsFwdCSUsed); << 119 /*G4double Sigma = 85 << 120 theAdjointEMModel->AdjointCrossSection(track.GetMaterialCutsCouple(),preStepKinEnergy,IsScatProjToProjCase);*/ 86 if(std::fabs(corr) > 100.) << 121 87 { << 122 G4double Sigma = 88 sigma = 0.0; << 123 theAdjointEMModel->GetAdjointCrossSection(track.GetMaterialCutsCouple(),preStepKinEnergy,IsScatProjToProjCase); 89 } << 124 90 else << 125 //G4double sig = Sigma; 91 { << 126 92 sigma *= corr; << 127 G4double fwd_TotCS; >> 128 G4double corr = theAdjointCSManager->GetCrossSectionCorrection(track.GetDefinition(),preStepKinEnergy,track.GetMaterialCutsCouple(),IsFwdCSUsed, fwd_TotCS); >> 129 >> 130 if(std::fabs(corr) > 100.) { Sigma = 0.0; } >> 131 else { Sigma *= corr; } >> 132 >> 133 //G4cout<<fwd_TotCS<<G4endl; >> 134 /*if (IsFwdCSUsed && IsIntegralModeUsed){ //take the maximum cross section only for charged particle >> 135 G4double e_sigma_max, sigma_max; >> 136 theAdjointCSManager->GetMaxFwdTotalCS(track.GetDefinition(), >> 137 track.GetMaterialCutsCouple(), e_sigma_max, sigma_max); >> 138 if (e_sigma_max > preStepKinEnergy){ >> 139 Sigma*=sigma_max/fwd_TotCS; >> 140 } 93 } 141 } >> 142 */ 94 143 95 G4double mean_free_path = 1.e60; << 144 G4double mean_free_path = 1.e60 *mm; 96 if(sigma > 0.) << 145 if (Sigma>0) mean_free_path = 1./Sigma; 97 mean_free_path = 1. / sigma; << 146 lastCS=Sigma; >> 147 /* >> 148 if(nstep > 100) { >> 149 >> 150 G4cout << "#* " << track.GetDefinition()->GetParticleName() >> 151 << " " << GetProcessName() >> 152 << " Nstep " << nstep >> 153 << " E(MeV)= " << preStepKinEnergy << " Sig0= " << sig >> 154 << " sig1= " << Sigma << " mfp= " << mean_free_path << G4endl; >> 155 >> 156 } >> 157 if (nstep > 20000) { >> 158 exit(1); >> 159 } >> 160 */ >> 161 /*G4cout<<"Sigma "<<Sigma<<G4endl; >> 162 G4cout<<"mean_free_path [mm] "<<mean_free_path/mm<<G4endl; >> 163 */ >> 164 98 165 99 return mean_free_path; 166 return mean_free_path; 100 } << 167 } 101 168