Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 << 26 // $Id$ >> 27 // 27 #include "G4VAdjointReverseReaction.hh" 28 #include "G4VAdjointReverseReaction.hh" 28 << 29 #include "G4SystemOfUnits.hh" 29 #include "G4AdjointCSManager.hh" 30 #include "G4AdjointCSManager.hh" 30 #include "G4ParticleChange.hh" << 31 #include "G4AdjointCSMatrix.hh" >> 32 #include "G4AdjointInterpolator.hh" >> 33 #include "G4AdjointCSMatrix.hh" 31 #include "G4VEmAdjointModel.hh" 34 #include "G4VEmAdjointModel.hh" >> 35 #include "G4ElementTable.hh" >> 36 #include "G4Element.hh" >> 37 #include "G4Material.hh" >> 38 #include "G4MaterialCutsCouple.hh" >> 39 #include "G4AdjointCSManager.hh" >> 40 #include "G4ParticleChange.hh" >> 41 #include "G4AdjointElectron.hh" 32 42 33 G4VAdjointReverseReaction::G4VAdjointReverseRe << 34 << 35 : G4VDiscreteProcess(process_name) << 36 { << 37 fCSManager = G4AdjointCSManager::GetA << 38 fIsScatProjToProj = whichScatCase; << 39 fParticleChange = new G4ParticleChange(); << 40 } << 41 43 >> 44 G4VAdjointReverseReaction:: >> 45 G4VAdjointReverseReaction(G4String process_name, G4bool whichScatCase): >> 46 G4VDiscreteProcess(process_name) >> 47 {theAdjointCSManager = G4AdjointCSManager::GetAdjointCSManager(); >> 48 IsScatProjToProjCase=whichScatCase; >> 49 fParticleChange=new G4ParticleChange(); >> 50 IsFwdCSUsed=false; >> 51 IsIntegralModeUsed=false; >> 52 lastCS=0.; >> 53 trackid = nstep = 0; >> 54 } 42 ////////////////////////////////////////////// 55 ////////////////////////////////////////////////////////////////////////////// 43 G4VAdjointReverseReaction::~G4VAdjointReverseR << 56 // 44 { << 57 G4VAdjointReverseReaction:: 45 if(fParticleChange) << 58 ~G4VAdjointReverseReaction() 46 delete fParticleChange; << 59 { if (fParticleChange) delete fParticleChange; >> 60 } >> 61 ////////////////////////////////////////////////////////////////////////////// >> 62 // >> 63 void G4VAdjointReverseReaction::PreparePhysicsTable(const G4ParticleDefinition&) >> 64 {; 47 } 65 } 48 << 49 ////////////////////////////////////////////// 66 ////////////////////////////////////////////////////////////////////////////// >> 67 // 50 void G4VAdjointReverseReaction::BuildPhysicsTa 68 void G4VAdjointReverseReaction::BuildPhysicsTable(const G4ParticleDefinition&) 51 { 69 { 52 fCSManager->BuildCrossSectionMatrices(); // << 53 fCSManager->BuildTotalSigmaTables(); << 54 } << 55 70 >> 71 theAdjointCSManager->BuildCrossSectionMatrices(); //do not worry it will be done just once >> 72 theAdjointCSManager->BuildTotalSigmaTables(); >> 73 >> 74 } 56 ////////////////////////////////////////////// 75 ////////////////////////////////////////////////////////////////////////////// 57 G4VParticleChange* G4VAdjointReverseReaction:: << 76 // 58 << 77 G4VParticleChange* G4VAdjointReverseReaction::PostStepDoIt(const G4Track& track, const G4Step& ) 59 { << 78 { >> 79 60 fParticleChange->Initialize(track); 80 fParticleChange->Initialize(track); 61 fAdjointModel->SampleSecondaries(track, fIsS << 81 62 << 82 /* if (IsFwdCSUsed && IsIntegralModeUsed){ //INtegral mode still unstable >> 83 G4double Tkin = step.GetPostStepPoint()->GetKineticEnergy(); >> 84 G4double fwdCS = theAdjointCSManager->GetTotalForwardCS(track.GetDefinition(), Tkin, track.GetMaterialCutsCouple()); >> 85 //G4cout<<"lastCS "<<lastCS<<G4endl; >> 86 if (fwdCS<lastCS*G4UniformRand()) { // the reaction does not take place, same integral method as the one used for forward ionisation in G4 >> 87 ClearNumberOfInteractionLengthLeft(); >> 88 return fParticleChange; >> 89 } >> 90 >> 91 } >> 92 */ >> 93 >> 94 theAdjointEMModel->SampleSecondaries(track, >> 95 IsScatProjToProjCase, >> 96 fParticleChange); >> 97 63 ClearNumberOfInteractionLengthLeft(); 98 ClearNumberOfInteractionLengthLeft(); 64 return fParticleChange; 99 return fParticleChange; >> 100 >> 101 >> 102 65 } 103 } 66 << 67 ////////////////////////////////////////////// 104 ////////////////////////////////////////////////////////////////////////////// >> 105 // 68 G4double G4VAdjointReverseReaction::GetMeanFre 106 G4double G4VAdjointReverseReaction::GetMeanFreePath(const G4Track& track, 69 << 107 G4double , 70 << 108 G4ForceCondition* condition) 71 { << 109 { *condition = NotForced; 72 *condition = NotForced; << 73 G4double preStepKinEnergy = track.GetKinetic 110 G4double preStepKinEnergy = track.GetKineticEnergy(); 74 111 75 if(track.GetTrackID() != fTrackId) << 112 if(track.GetTrackID() != trackid) { 76 { << 113 trackid = track.GetTrackID(); 77 fTrackId = track.GetTrackID(); << 114 nstep = 0; 78 } 115 } 79 G4double sigma = fAdjointModel->AdjointCross << 116 ++nstep; 80 track.GetMaterialCutsCouple(), preStepKinE << 81 117 82 G4double corr = fCSManager->GetCrossSectionC << 118 83 track.GetDefinition(), preStepKinEnergy, t << 119 84 fIsFwdCSUsed); << 120 /*G4double Sigma = 85 << 121 theAdjointEMModel->AdjointCrossSection(track.GetMaterialCutsCouple(),preStepKinEnergy,IsScatProjToProjCase);*/ 86 if(std::fabs(corr) > 100.) << 122 87 { << 123 G4double Sigma = 88 sigma = 0.0; << 124 theAdjointEMModel->GetAdjointCrossSection(track.GetMaterialCutsCouple(),preStepKinEnergy,IsScatProjToProjCase); 89 } << 125 90 else << 126 //G4double sig = Sigma; 91 { << 127 92 sigma *= corr; << 128 G4double fwd_TotCS; >> 129 G4double corr = theAdjointCSManager->GetCrossSectionCorrection(track.GetDefinition(),preStepKinEnergy,track.GetMaterialCutsCouple(),IsFwdCSUsed, fwd_TotCS); >> 130 >> 131 if(std::fabs(corr) > 100.) { Sigma = 0.0; } >> 132 else { Sigma *= corr; } >> 133 >> 134 //G4cout<<fwd_TotCS<<G4endl; >> 135 /*if (IsFwdCSUsed && IsIntegralModeUsed){ //take the maximum cross section only for charged particle >> 136 G4double e_sigma_max, sigma_max; >> 137 theAdjointCSManager->GetMaxFwdTotalCS(track.GetDefinition(), >> 138 track.GetMaterialCutsCouple(), e_sigma_max, sigma_max); >> 139 if (e_sigma_max > preStepKinEnergy){ >> 140 Sigma*=sigma_max/fwd_TotCS; >> 141 } 93 } 142 } >> 143 */ 94 144 95 G4double mean_free_path = 1.e60; << 145 G4double mean_free_path = 1.e60 *mm; 96 if(sigma > 0.) << 146 if (Sigma>0) mean_free_path = 1./Sigma; 97 mean_free_path = 1. / sigma; << 147 lastCS=Sigma; >> 148 /* >> 149 if(nstep > 100) { >> 150 >> 151 G4cout << "#* " << track.GetDefinition()->GetParticleName() >> 152 << " " << GetProcessName() >> 153 << " Nstep " << nstep >> 154 << " E(MeV)= " << preStepKinEnergy << " Sig0= " << sig >> 155 << " sig1= " << Sigma << " mfp= " << mean_free_path << G4endl; >> 156 >> 157 } >> 158 if (nstep > 20000) { >> 159 exit(1); >> 160 } >> 161 */ >> 162 /*G4cout<<"Sigma "<<Sigma<<G4endl; >> 163 G4cout<<"mean_free_path [mm] "<<mean_free_path/mm<<G4endl; >> 164 */ >> 165 98 166 99 return mean_free_path; 167 return mean_free_path; 100 } << 168 } 101 169