Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// << 26 // $Id$ 27 // Class: G4AdjointPhotoElectricModel << 28 // Author: L. Desorgher << 29 // Organisation: SpaceIT GmbH << 30 // 27 // 31 // Model for the adjoint photo electric proce << 28 ///////////////////////////////////////////////////////////////////////////////// 32 // Put a higher limit on the CS to avoid a hi << 29 // Module: G4AdjointPhotoElectricModel 33 // at low energy. The very high adjoint CS of << 30 // Author: L. Desorgher 34 // reaction produce a high rate of reverse ph << 31 // Organisation: SpaceIT GmbH 35 // side of a shielding for eaxmple, the corre << 32 // Contract: ESA contract 21435/08/NL/AT 36 // correction in the StepDoIt method is not s << 33 // Customer: ESA/ESTEC 37 // energy. The problem is partially solved by << 34 ///////////////////////////////////////////////////////////////////////////////// 38 // compensating it by an extra weight correct << 35 // 39 // it with other reverse processes the revers << 36 // CHANGE HISTORY 40 // source of very occasional high weights tha << 37 // -------------- 41 // computation. A way to solve this problemn << 38 // ChangeHistory: 42 // to find as it happens in rare cases but do << 39 // -1 September 2007 creation by L. Desorgher 43 // the normal distribution. (Very Tricky!) << 40 // >> 41 // -January 2009. L. Desorgher >> 42 // Put a higher limit on the CS to avoid a high rate of Inverse Photo e- effect at low energy. The very high adjoint CS of the reverse >> 43 // photo electric reaction produce a high rate of reverse photo electric reaction in the inner side of a shielding for eaxmple, the correction of this occurence >> 44 // by weight correction in the StepDoIt method is not statistically sufficient at small energy. The problem is partially solved by setting an higher CS limit >> 45 // and compensating it by an extra weight correction factor. However when coupling it with other reverse processes the reverse photo-electric is still >> 46 // the source of very occasional high weight that decrease the efficiency of the computation. A way to solve this problemn is still needed but is difficult >> 47 // to find as it happens in rarea case but does give a weighrt that is outside the noemal distribution. (Very Tricky!) >> 48 // >> 49 // -October 2009 Correction of Element sampling. L. Desorgher >> 50 // >> 51 //------------------------------------------------------------- >> 52 // Documentation: >> 53 // Model for the adjoint photo electric process 44 // 54 // 45 ////////////////////////////////////////////// << 46 << 47 #ifndef G4AdjointPhotoElectricModel_h 55 #ifndef G4AdjointPhotoElectricModel_h 48 #define G4AdjointPhotoElectricModel_h 1 56 #define G4AdjointPhotoElectricModel_h 1 49 57 >> 58 50 #include "globals.hh" 59 #include "globals.hh" 51 #include "G4VEmAdjointModel.hh" 60 #include "G4VEmAdjointModel.hh" >> 61 #include "G4PEEffectModel.hh" >> 62 class G4AdjointPhotoElectricModel: public G4VEmAdjointModel 52 63 53 class G4AdjointPhotoElectricModel : public G4V << 54 { 64 { 55 public: << 65 public: 56 G4AdjointPhotoElectricModel(); << 57 ~G4AdjointPhotoElectricModel() override; << 58 << 59 void SampleSecondaries(const G4Track& aTrack << 60 G4ParticleChange* fPa << 61 << 62 G4double AdjointCrossSection(const G4Materia << 63 G4double primEn << 64 G4bool isScatPr << 65 66 66 G4double AdjointCrossSectionPerAtom(const G4 << 67 G4AdjointPhotoElectricModel(); 67 G4double << 68 ~G4AdjointPhotoElectricModel(); 68 << 69 69 G4AdjointPhotoElectricModel(G4AdjointPhotoEl << 70 70 G4AdjointPhotoElectricModel& operator=( << 71 71 const G4AdjointPhotoElectricModel& right) << 72 virtual void SampleSecondaries(const G4Track& aTrack, 72 << 73 G4bool IsScatProjToProjCase, 73 protected: << 74 G4ParticleChange* fParticleChange); 74 void CorrectPostStepWeight(G4ParticleChange* << 75 virtual G4double AdjointCrossSection(const G4MaterialCutsCouple* aCouple, 75 G4double old_weig << 76 G4double primEnergy, 76 G4double projecti << 77 G4bool IsScatProjToProjCase); 77 G4bool isScatProj << 78 virtual G4double GetAdjointCrossSection(const G4MaterialCutsCouple* aCouple, 78 << 79 G4double primEnergy, 79 private: << 80 G4bool IsScatProjToProjCase); 80 void DefineCurrentMaterialAndElectronEnergy( << 81 81 const G4MaterialCutsCouple* aCouple, G4dou << 82 G4double AdjointCrossSectionPerAtom(const G4Element* anElement,G4double electronEnergy); 82 << 83 83 G4double fShellProb[40][40]; << 84 84 G4double fXsec[40]; << 85 85 G4double fTotAdjointCS = 0.; << 86 inline void SetTheDirectPEEffectModel(G4PEEffectModel* aModel){theDirectPEEffectModel = aModel; 86 G4double fFactorCSBiasing = 1.; << 87 DefineDirectEMModel(aModel);} 87 G4double fPreStepAdjointCS = 0.; << 88 88 G4double fPostStepAdjointCS = 0.; << 89 virtual void CorrectPostStepWeight(G4ParticleChange* fParticleChange, 89 G4double fCurrenteEnergy = 0.; << 90 G4double old_weight, 90 << 91 G4double adjointPrimKinEnergy, 91 size_t fIndexElement = 0; << 92 G4double projectileKinEnergy, >> 93 G4bool IsScatProjToProjCase); >> 94 >> 95 >> 96 private: >> 97 G4double xsec[40]; >> 98 G4double totAdjointCS; >> 99 G4double totBiasedAdjointCS; >> 100 G4double factorCSBiasing; >> 101 G4double pre_step_AdjointCS; >> 102 G4double post_step_AdjointCS; >> 103 >> 104 >> 105 G4double shell_prob[40][40]; >> 106 >> 107 >> 108 G4PEEffectModel* theDirectPEEffectModel; >> 109 size_t index_element; >> 110 G4double current_eEnergy; >> 111 >> 112 >> 113 private: >> 114 void DefineCurrentMaterialAndElectronEnergy(const G4MaterialCutsCouple* aCouple, >> 115 G4double eEnergy); >> 116 92 }; 117 }; 93 118 94 #endif 119 #endif 95 120