Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// << 26 // $Id: G4AdjointCSManager.hh,v 1.5 2010-11-11 11:51:56 ldesorgh Exp $ 27 // Class: G4AdjointCSManager << 27 // GEANT4 tag $Name: not supported by cvs2svn $ 28 // Author: L. Desorgher << 29 // Organisation: SpaceIT GmbH << 30 // 28 // 31 // Class is responsible for the management of << 29 ///////////////////////////////////////////////////////////////////////////////// 32 // matrices, and for the computation of the to << 30 // Class: G4AdjointCSManager 33 // sections. Total adjoint and forward cross s << 31 // Author: L. Desorgher 34 // weight of a particle after a tracking step << 32 // Organisation: SpaceIT GmbH 35 // reverse reaction. It is also used to sample << 33 // Contract: ESA contract 21435/08/NL/AT 36 // given adjoint cross section matrix. << 34 // Customer: ESA/ESTEC >> 35 ///////////////////////////////////////////////////////////////////////////////// >> 36 // >> 37 // CHANGE HISTORY >> 38 // -------------- >> 39 // ChangeHistory: >> 40 // 1st April 2007 creation by L. Desorgher >> 41 // >> 42 // September-October 2009. Implementation of the mode where the adjoint cross sections are scaled such that the total used adjoint cross sections is in >> 43 // most of the cases equal to the total forward cross section. L.Desorgher >> 44 // >> 45 //------------------------------------------------------------- >> 46 // Documentation: >> 47 // Is responsible for the management of all adjoint cross sections matrices, and for the computation of the total forward and adjoint cross sections. >> 48 // Total adjoint and forward cross sections are needed to correct the weight of a particle after a tracking step or after the occurence of a reverse reaction. >> 49 // It is also used to sample an adjoint secondary from a given adjoint cross section matrix. 37 // 50 // 38 ////////////////////////////////////////////// << 39 << 40 #ifndef G4AdjointCSManager_h 51 #ifndef G4AdjointCSManager_h 41 #define G4AdjointCSManager_h 1 52 #define G4AdjointCSManager_h 1 42 53 43 #include "globals.hh" << 54 #include"globals.hh" 44 #include "G4AdjointCSMatrix.hh" << 55 #include<vector> 45 #include "G4ThreadLocalSingleton.hh" << 56 #include"G4AdjointCSMatrix.hh" 46 57 47 #include <vector> << 48 58 49 class G4Element; << 59 class G4VEmAdjointModel; 50 class G4Material; << 51 class G4MaterialCutsCouple; 60 class G4MaterialCutsCouple; >> 61 class G4Material; 52 class G4ParticleDefinition; 62 class G4ParticleDefinition; 53 class G4PhysicsTable; << 63 class G4Element; 54 class G4VEmProcess; 64 class G4VEmProcess; 55 class G4VEmAdjointModel; << 56 class G4VEnergyLossProcess; 65 class G4VEnergyLossProcess; >> 66 class G4PhysicsTable; 57 67 >> 68 //////////////////////////////////////////////////////////////////////////////// >> 69 // 58 class G4AdjointCSManager 70 class G4AdjointCSManager 59 { 71 { 60 friend class G4ThreadLocalSingleton<G4Adjoin << 72 61 << 73 public: 62 public: << 74 ~G4AdjointCSManager(); 63 ~G4AdjointCSManager(); << 75 static G4AdjointCSManager* GetAdjointCSManager(); 64 static G4AdjointCSManager* GetAdjointCSManag << 76 65 << 77 public: 66 G4int GetNbProcesses(); << 78 G4int GetNbProcesses(); 67 << 79 68 // Registration of the different models and << 80 //Registration of the different models and processes 69 << 81 70 std::size_t RegisterEmAdjointModel(G4VEmAdjo << 82 size_t RegisterEmAdjointModel(G4VEmAdjointModel*); 71 << 83 72 void RegisterEmProcess(G4VEmProcess* aProces << 84 void RegisterEmProcess(G4VEmProcess* aProcess, G4ParticleDefinition* aPartDef); 73 G4ParticleDefinition* << 85 74 << 86 void RegisterEnergyLossProcess(G4VEnergyLossProcess* aProcess, G4ParticleDefinition* aPartDef); 75 void RegisterEnergyLossProcess(G4VEnergyLoss << 87 76 G4ParticleDef << 88 void RegisterAdjointParticle(G4ParticleDefinition* aPartDef); 77 << 89 78 void RegisterAdjointParticle(G4ParticleDefin << 90 //Building of the CS Matrices and Total Forward and Adjoint LambdaTables 79 << 91 //---------------------------------------------------------------------- 80 // Building of the CS Matrices and Total For << 92 81 void BuildCrossSectionMatrices(); << 93 void BuildCrossSectionMatrices(); 82 << 94 void BuildTotalSigmaTables(); 83 void BuildTotalSigmaTables(); << 95 84 << 96 85 // Get TotalCrossSections form Total Lambda << 97 //Get TotalCrossSections form Total Lambda Tables, Needed for Weight correction and scaling of the 86 // correction and scaling of the << 98 //------------------------------------------------- 87 G4double GetTotalAdjointCS(G4ParticleDefinit << 99 G4double GetTotalAdjointCS(G4ParticleDefinition* aPartDef, G4double Ekin, 88 const G4MaterialC << 100 const G4MaterialCutsCouple* aCouple); 89 << 101 G4double GetTotalForwardCS(G4ParticleDefinition* aPartDef, G4double Ekin, 90 G4double GetTotalForwardCS(G4ParticleDefinit << 102 const G4MaterialCutsCouple* aCouple); 91 const G4MaterialC << 103 92 << 104 G4double GetAdjointSigma(G4double Ekin_nuc, size_t index_model,G4bool is_scat_proj_to_proj, 93 G4double GetAdjointSigma(G4double Ekin_nuc, << 105 const G4MaterialCutsCouple* aCouple); 94 G4bool is_scat_proj << 106 95 const G4MaterialCut << 107 void GetEminForTotalCS(G4ParticleDefinition* aPartDef, 96 << 108 const G4MaterialCutsCouple* aCouple, G4double& emin_adj, G4double& emin_fwd); 97 void GetEminForTotalCS(G4ParticleDefinition* << 109 void GetMaxFwdTotalCS(G4ParticleDefinition* aPartDef, 98 const G4MaterialCutsC << 110 const G4MaterialCutsCouple* aCouple, G4double& e_sigma_max, G4double& sigma_max); 99 G4double& emin_adj, G << 111 void GetMaxAdjTotalCS(G4ParticleDefinition* aPartDef, 100 << 112 const G4MaterialCutsCouple* aCouple, G4double& e_sigma_max, G4double& sigma_max); 101 void GetMaxFwdTotalCS(G4ParticleDefinition* << 113 102 const G4MaterialCutsCo << 114 103 G4double& e_sigma_max, << 115 104 << 116 //CrossSection Correction 1 or FwdCS/AdjCS following the G4boolean value of forward_CS_is_used and forward_CS_mode 105 void GetMaxAdjTotalCS(G4ParticleDefinition* << 117 //------------------------------------------------- 106 const G4MaterialCutsCo << 118 G4double GetCrossSectionCorrection(G4ParticleDefinition* aPartDef,G4double PreStepEkin,const G4MaterialCutsCouple* aCouple, G4bool& fwd_is_used, G4double& fwd_TotCS); 107 G4double& e_sigma_max, << 119 108 << 120 109 // CrossSection Correction 1 or FwdCS/AdjCS << 121 //Cross section mode 110 // forward_CS_is_used and forward_CS_mode << 122 //------------------ 111 G4double GetCrossSectionCorrection(G4Particl << 123 inline void SetFwdCrossSectionMode(G4bool aBool){forward_CS_mode=aBool;} 112 G4double << 124 113 const G4M << 125 114 G4bool& f << 126 //Weight correction 115 << 127 //------------------ 116 // Cross section mode << 128 117 inline void SetFwdCrossSectionMode(G4bool aB << 129 G4double GetContinuousWeightCorrection(G4ParticleDefinition* aPartDef, G4double PreStepEkin,G4double AfterStepEkin, 118 << 130 const G4MaterialCutsCouple* aCouple, G4double step_length); 119 // Weight correction << 131 G4double GetPostStepWeightCorrection(); 120 G4double GetContinuousWeightCorrection(G4Par << 132 121 G4dou << 133 122 G4dou << 134 123 const << 135 124 G4dou << 136 //Method Called by the adjoint model to get there CS, if not precised otherwise 125 << 137 //------------------------------- 126 G4double GetPostStepWeightCorrection(); << 138 127 << 139 G4double ComputeAdjointCS(G4Material* aMaterial, 128 // called by the adjoint model to get the CS << 140 G4VEmAdjointModel* aModel, 129 G4double ComputeAdjointCS(G4Material* aMater << 141 G4double PrimEnergy, 130 G4double PrimEnerg << 142 G4double Tcut, 131 G4bool isScatProjT << 143 G4bool IsScatProjToProjCase, 132 std::vector<G4doub << 144 std::vector<G4double>& 133 << 145 AdjointCS_for_each_element); 134 // called by the adjoint model to sample sec << 146 135 G4Element* SampleElementFromCSMatrices(G4Mat << 147 //Method Called by the adjoint model to sample the secondary energy form the CS matrix 136 G4VEm << 148 //-------------------------------------------------------------------------------- 137 G4dou << 149 G4Element* SampleElementFromCSMatrices(G4Material* aMaterial, 138 G4boo << 150 G4VEmAdjointModel* aModel, 139 << 151 G4double PrimEnergy, 140 // Total Adjoint CS is computed at initialis << 152 G4double Tcut, 141 G4double ComputeTotalAdjointCS(const G4Mater << 153 G4bool IsScatProjToProjCase); 142 G4ParticleDef << 154 143 G4double Prim << 155 144 << 156 //Total Adjoint CS is computed at initialisation phase 145 G4ParticleDefinition* GetAdjointParticleEqui << 157 //----------------------------------------------------- 146 G4ParticleDefinition* theFwdPartDef); << 158 G4double ComputeTotalAdjointCS(const G4MaterialCutsCouple* aMatCutCouple,G4ParticleDefinition* aPart,G4double PrimEnergy); 147 << 159 148 G4ParticleDefinition* GetForwardParticleEqui << 160 149 G4ParticleDefinition* theAdjPartDef); << 161 150 << 162 151 // inline << 163 G4ParticleDefinition* GetAdjointParticleEquivalent(G4ParticleDefinition* theFwdPartDef); 152 inline void SetIon(G4ParticleDefinition* adj << 164 G4ParticleDefinition* GetForwardParticleEquivalent(G4ParticleDefinition* theAdjPartDef); 153 { << 165 154 fAdjIon = adjIon; << 166 //inline 155 fFwdIon = fwdIon; << 167 inline void SetTmin(G4double aVal){Tmin=aVal;} 156 } << 168 inline void SetTmax(G4double aVal){Tmax=aVal;} 157 << 169 inline void SetNbins(G4int aInt){nbins=aInt;} 158 private: << 170 inline void SetIon(G4ParticleDefinition* adjIon, 159 G4AdjointCSManager(); << 171 G4ParticleDefinition* fwdIon) {theAdjIon=adjIon; theFwdIon =fwdIon;} 160 << 172 161 void DefineCurrentMaterial(const G4MaterialC << 173 162 << 174 private: 163 void DefineCurrentParticle(const G4ParticleD << 175 static G4AdjointCSManager* theInstance; 164 << 176 std::vector< std::vector<G4AdjointCSMatrix*> > theAdjointCSMatricesForScatProjToProj; //x dim is for G4VAdjointEM* while y dim is for elements 165 G4double ComputeAdjointCS(G4double aPrimEner << 177 std::vector< std::vector<G4AdjointCSMatrix*> > theAdjointCSMatricesForProdToProj; 166 G4AdjointCSMatrix* << 178 std::vector< G4VEmAdjointModel*> listOfAdjointEMModel; 167 G4double Tcut); << 179 168 << 180 std::vector<G4AdjointCSMatrix*> 169 std::vector<G4AdjointCSMatrix*> BuildCrossSe << 181 BuildCrossSectionsMatricesForAGivenModelAndElement(G4VEmAdjointModel* aModel, 170 G4VEmAdjointModel* aModel, G4int Z, G4int << 182 G4int Z, 171 << 183 G4int A, 172 std::vector<G4AdjointCSMatrix*> BuildCrossSe << 184 G4int nbin_pro_decade); 173 G4VEmAdjointModel* aModel, G4Material* aMa << 185 174 << 186 std::vector<G4AdjointCSMatrix*> 175 static constexpr G4double fTmin = 0.1 * CLHE << 187 BuildCrossSectionsMatricesForAGivenModelAndMaterial(G4VEmAdjointModel* aModel, 176 static constexpr G4double fTmax = 100. * CLH << 188 G4Material* aMaterial, 177 // fNbins chosen to avoid error << 189 G4int nbin_pro_decade); 178 // in the CS value close to CS jump. (For ex << 190 179 static constexpr G4int fNbins = 320; << 191 180 << 192 G4Material* lastMaterial; 181 static G4ThreadLocal G4AdjointCSManager* fIn << 193 G4double lastPrimaryEnergy; 182 << 194 G4double lastTcut; 183 // only one ion can be considered by simulat << 195 std::vector< size_t> listOfIndexOfAdjointEMModelInAction; 184 G4ParticleDefinition* fAdjIon = nullptr; << 196 std::vector< G4bool> listOfIsScatProjToProjCase; 185 G4ParticleDefinition* fFwdIon = nullptr; << 197 std::vector< std::vector<G4double> > lastAdjointCSVsModelsAndElements; 186 << 198 G4bool CrossSectionMatrixesAreBuilt; 187 G4MaterialCutsCouple* fCurrentCouple = nullp << 199 size_t currentParticleIndex; 188 G4Material* fCurrentMaterial = nullp << 200 G4ParticleDefinition* currentParticleDef; 189 << 201 190 // x dim is for G4VAdjointEM*, y dim is for << 202 //total adjoint and total forward cross section table in function of material and in function of adjoint particle type 191 std::vector<std::vector<G4AdjointCSMatrix*>> << 203 //-------------------------------------------------------------------------------------------------------------------- 192 fAdjointCSMatricesForScatProjToProj; << 204 std::vector<G4PhysicsTable*> theTotalForwardSigmaTableVector; 193 << 205 std::vector<G4PhysicsTable*> theTotalAdjointSigmaTableVector; 194 std::vector<std::vector<G4AdjointCSMatrix*>> << 206 std::vector< std::vector<G4double> > EminForFwdSigmaTables; 195 << 207 std::vector< std::vector<G4double> > EminForAdjSigmaTables; 196 std::vector<G4VEmAdjointModel*> fAdjointMode << 208 std::vector< std::vector<G4double> > EkinofFwdSigmaMax; 197 << 209 std::vector< std::vector<G4double> > EkinofAdjSigmaMax; 198 std::vector<std::size_t> fIndexOfAdjointEMMo << 210 G4bool TotalSigmaTableAreBuilt; 199 std::vector<G4bool> fIsScatProjToProj; << 211 200 std::vector<std::vector<G4double>> fLastAdjo << 212 //Sigma tavle for each G4VAdjointEMModel 201 << 213 std::vector<G4PhysicsTable*> listSigmaTableForAdjointModelScatProjToProj; 202 // total adjoint and total forward cross sec << 214 std::vector<G4PhysicsTable*> listSigmaTableForAdjointModelProdToProj; 203 // and in function of adjoint particle type << 215 204 std::vector<G4PhysicsTable*> fTotalFwdSigmaT << 216 205 std::vector<G4PhysicsTable*> fTotalAdjSigmaT << 217 206 << 218 207 // Sigma table for each G4VAdjointEMModel << 219 //list of forward G4VEMLossProcess and of G4VEMProcess for the different adjoint particle 208 std::vector<G4PhysicsTable*> fSigmaTableForA << 220 //-------------------------------------------------------------- 209 std::vector<G4PhysicsTable*> fSigmaTableForA << 221 std::vector< std::vector<G4VEmProcess*>* > listOfForwardEmProcess; 210 << 222 std::vector< std::vector<G4VEnergyLossProcess*>* > listOfForwardEnergyLossProcess; 211 std::vector<std::vector<G4double>> fEminForF << 223 212 std::vector<std::vector<G4double>> fEminForA << 224 //list of adjoint particles considered 213 std::vector<std::vector<G4double>> fEkinofFw << 225 //-------------------------------------------------------------- 214 std::vector<std::vector<G4double>> fEkinofAd << 226 std::vector< G4ParticleDefinition*> theListOfAdjointParticlesInAction; 215 << 227 216 // list of forward G4VEmProcess and of G4VEn << 228 217 // adjoint particle << 229 G4double Tmin,Tmax; 218 std::vector<std::vector<G4VEmProcess*>*> fFo << 230 G4int nbins; 219 std::vector<std::vector<G4VEnergyLossProcess << 231 220 << 232 221 // list of adjoint particles considered << 233 //Current material 222 std::vector<G4ParticleDefinition*> fAdjointP << 234 //---------------- 223 << 235 G4MaterialCutsCouple* currentCouple; 224 G4double fMassRatio = 1.; // i << 236 G4Material* currentMaterial; 225 G4double fLastCSCorrectionFactor = 1.; << 237 size_t currentMatIndex; 226 << 238 227 G4ParticleDefinition* fCurrentParticleDef = << 239 G4int verbose; 228 std::size_t fCurrentParticleIndex = 0; << 240 229 std::size_t fCurrentMatIndex = 0; << 241 >> 242 >> 243 >> 244 //Two CS mode are possible :forward_CS_mode = false the Adjoint CS are used as it is implying a AlongStep Weight Correction. >> 245 // :forward_CS_mode = true the Adjoint CS are scaled to have the total adjoint CS eual to the fwd one implying a PostStep Weight Correction. >> 246 // For energy range where the total FwdCS or the total adjoint CS are null, the scaling is not possble and >> 247 // forward_CS_is_used is set to false >> 248 //-------------------------------------------- >> 249 G4bool forward_CS_is_used; >> 250 G4bool forward_CS_mode; >> 251 >> 252 //Adj and Fwd CS values for re-use >> 253 //------------------------ >> 254 >> 255 G4double PreadjCS,PostadjCS; >> 256 G4double PrefwdCS,PostfwdCS; >> 257 G4double LastEkinForCS; >> 258 G4double LastCSCorrectionFactor; >> 259 G4ParticleDefinition* lastPartDefForCS; >> 260 >> 261 //Ion >> 262 //---------------- >> 263 G4ParticleDefinition* theAdjIon; //at the moment Only one ion can be considered by simulation >> 264 G4ParticleDefinition* theFwdIon; >> 265 G4double massRatio; >> 266 >> 267 >> 268 >> 269 >> 270 private: >> 271 G4AdjointCSManager(); >> 272 void DefineCurrentMaterial(const G4MaterialCutsCouple* couple); >> 273 void DefineCurrentParticle(const G4ParticleDefinition* aPartDef); >> 274 G4double ComputeAdjointCS(G4double aPrimEnergy, G4AdjointCSMatrix* anAdjointCSMatrix, G4double Tcut); >> 275 size_t eindex; 230 276 231 G4bool fCSMatricesBuilt = false; << 232 G4bool fSigmaTableBuilt = false; << 233 G4bool fForwardCSUsed = true; << 234 G4bool fForwardCSMode = true; << 235 // Two CS mode are possible: << 236 // 1) fForwardCSMode = false, the Adjoint CS << 237 // an AlongStep Weight Correction. << 238 // 2) fForwardCSMode = true, the Adjoint CS << 239 // adjoint CS equal to the fwd one implyi << 240 // For energies where the total Fwd CS or th << 241 // the scaling is not possible and fForwardC << 242 }; 277 }; 243 #endif 278 #endif 244 279