Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 ////////////////////////////////////////////// << 26 // $Id: G4AdjointBremsstrahlungModel.hh 74727 2013-10-21 08:43:49Z gcosmo $ 27 // Class: G4AdjointBremsstrahlungModel << 28 // Author: L. Desorgher << 29 // Organisation: SpaceIT GmbH << 30 ////////////////////////////////////////////// << 31 // 27 // 32 // Adjoint Model for e- Bremsstrahlung.Adapte << 28 ///////////////////////////////////////////////////////////////////////////////// 33 // Use of a simple biased differential cross << 29 // Class: G4AdjointBremsstrahlungModel 34 // rapid computation of adjoint CS and rapid << 30 // Author: L. Desorgher 35 // In this way cross section matrices are not << 31 // Organisation: SpaceIT GmbH 36 // computation of adjoint brem cross section << 32 // Contract: ESA contract 21435/08/NL/AT 37 // at initialisation. This mode can be switch << 33 // Customer: ESA/ESTEC 38 // SetUseMatrix(false)/ SetUseMatrix(true) in << 34 ///////////////////////////////////////////////////////////////////////////////// >> 35 // >> 36 // CHANGE HISTORY >> 37 // -------------- >> 38 // ChangeHistory: >> 39 // 15 June 2007 creation by L. Desorgher. Adapted from G4eBremsstrahlungModel >> 40 // 20-10-2009 Remove all the screening effect that are not considered in the direct models blow 10 GeV. L.Desorgher >> 41 // 4-11-2009 Implement the use of a simple biased differential cross section (C(Z)/Egamma) allowing a rapid computation of adjoint CS >> 42 // and rapid sampling of adjoint secondaries. By this way cross section matrices are not used anymore, avoiding a rather >> 43 // time consuming computation of adjoint brem cross section matrices for each material at initialisation. This mode is switch on/off >> 44 // by selecting SetUseMatrix(false)/ SetUseMatrix(true) in the constructor. L.Desorgher >> 45 // 39 // 46 // 40 //-------------------------------------------- 47 //------------------------------------------------------------- >> 48 // Documentation: >> 49 // Adjoint Model for e- Bremsstrahlung >> 50 // >> 51 >> 52 41 53 42 #ifndef G4AdjointBremsstrahlungModel_h 54 #ifndef G4AdjointBremsstrahlungModel_h 43 #define G4AdjointBremsstrahlungModel_h 1 55 #define G4AdjointBremsstrahlungModel_h 1 44 << 45 #include "globals.hh" 56 #include "globals.hh" 46 #include "G4VEmAdjointModel.hh" 57 #include "G4VEmAdjointModel.hh" >> 58 #include "G4PhysicsTable.hh" >> 59 #include "G4EmModelManager.hh" >> 60 class G4Timer; >> 61 class G4AdjointBremsstrahlungModel: public G4VEmAdjointModel 47 62 48 class G4AdjointCSManager; << 49 class G4EmModelManager; << 50 class G4ParticleDefinition; << 51 << 52 class G4AdjointBremsstrahlungModel : public G4 << 53 { 63 { 54 public: << 64 public: 55 explicit G4AdjointBremsstrahlungModel(G4VEmM << 56 65 >> 66 G4AdjointBremsstrahlungModel(G4VEmModel* aModel); 57 G4AdjointBremsstrahlungModel(); 67 G4AdjointBremsstrahlungModel(); 58 << 68 ~G4AdjointBremsstrahlungModel(); 59 ~G4AdjointBremsstrahlungModel() override; << 69 virtual void SampleSecondaries(const G4Track& aTrack, 60 << 70 G4bool IsScatProjToProjCase, 61 void SampleSecondaries(const G4Track& aTrack << 71 G4ParticleChange* fParticleChange); 62 G4ParticleChange* fPa << 72 void RapidSampleSecondaries(const G4Track& aTrack, 63 << 73 G4bool IsScatProjToProjCase, 64 void RapidSampleSecondaries(const G4Track& a << 74 G4ParticleChange* fParticleChange); 65 G4ParticleChange << 75 virtual G4double DiffCrossSectionPerVolumePrimToSecond( 66 << 76 const G4Material* aMaterial, 67 G4double DiffCrossSectionPerVolumePrimToSeco << 77 G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction 68 const G4Material* aMaterial, << 78 G4double kinEnergyProd // kinetic energy of the secondary particle 69 G4double kinEnergyProj, // kinetic energy << 79 ); 70 // the interactio << 80 G4double DiffCrossSectionPerVolumePrimToSecondApproximated1( 71 G4double kinEnergyProd // kinetic energy << 81 const G4Material* aMaterial, 72 ) override; << 82 G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction 73 << 83 G4double kinEnergyProd // kinetic energy of the secondary particle 74 G4double AdjointCrossSection(const G4Materia << 84 ); 75 G4double primEn << 85 G4double DiffCrossSectionPerVolumePrimToSecondApproximated2( 76 G4bool isScatPr << 86 const G4Material* aMaterial, 77 << 87 G4double kinEnergyProj, // kinetic energy of the primary particle before the interaction 78 G4AdjointBremsstrahlungModel(G4AdjointBremss << 88 G4double kinEnergyProd // kinetic energy of the secondary particle 79 G4AdjointBremsstrahlungModel& operator=( << 89 ); 80 const G4AdjointBremsstrahlungModel& right) << 90 virtual G4double AdjointCrossSection(const G4MaterialCutsCouple* aCouple, 81 << 91 G4double primEnergy, 82 private: << 92 G4bool IsScatProjToProjCase); 83 void Initialize(); << 93 virtual G4double GetAdjointCrossSection(const G4MaterialCutsCouple* aCouple, 84 << 94 G4double primEnergy, 85 G4EmModelManager* fEmModelManagerForFwdModel << 95 G4bool IsScatProjToProjCase); 86 G4AdjointCSManager* fCSManager; << 96 87 G4ParticleDefinition* fElectron; << 97 88 G4ParticleDefinition* fGamma; << 98 // private void InitialiseFwdModels(); 89 << 99 90 G4double fLastCZ = 0.; << 100 91 << 101 private: 92 G4bool fIsDirectModelInitialised = false; << 102 G4VEmModel* theDirectStdBremModel; >> 103 G4EmModelManager* theEmModelManagerForFwdModels; >> 104 G4bool isDirectModelInitialised ; >> 105 >> 106 G4double highKinEnergy; >> 107 G4double lowKinEnergy, lastCZ; >> 108 std::vector<G4DataVector*> partialSumSigma; >> 109 std::vector<float> SigmaPerAtom; >> 110 93 }; 111 }; >> 112 94 113 95 #endif 114 #endif 96 115