Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/cuts/src/G4VRangeToEnergyConverter.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/cuts/src/G4VRangeToEnergyConverter.cc (Version 11.3.0) and /processes/cuts/src/G4VRangeToEnergyConverter.cc (Version 9.5)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4VRangeToEnergyConverter class implementat << 
 27 //                                                 26 //
 28 // Author: H.Kurashige, 05 October 2002 - Firs <<  27 // $Id: G4VRangeToEnergyConverter.cc,v 1.16 2010-12-23 06:00:42 kurasige Exp $
 29 // ------------------------------------------- <<  28 // GEANT4 tag $Name: not supported by cvs2svn $
                                                   >>  29 //
                                                   >>  30 //
                                                   >>  31 // --------------------------------------------------------------
                                                   >>  32 //      GEANT 4 class implementation file/  History:
                                                   >>  33 //    5 Oct. 2002, H.Kuirashige : Structure created based on object model
                                                   >>  34 // --------------------------------------------------------------
 30                                                    35 
 31 #include "G4VRangeToEnergyConverter.hh"            36 #include "G4VRangeToEnergyConverter.hh"
 32 #include "G4ParticleTable.hh"                      37 #include "G4ParticleTable.hh"
 33 #include "G4Element.hh"                        <<  38 #include "G4Material.hh"
 34 #include "G4SystemOfUnits.hh"                  <<  39 #include "G4MaterialTable.hh"
 35 #include "G4Log.hh"                            <<  40 #include "G4PhysicsLogVector.hh"
 36 #include "G4Exp.hh"                            <<  41 
 37 #include "G4AutoLock.hh"                       <<  42 #include "G4ios.hh"
                                                   >>  43 
                                                   >>  44 // energy range
                                                   >>  45 G4double  G4VRangeToEnergyConverter::LowestEnergy = 0.99e-3*MeV;
                                                   >>  46 G4double  G4VRangeToEnergyConverter::HighestEnergy = 100.0e6*MeV;
                                                   >>  47 
                                                   >>  48 // max energy cut
                                                   >>  49 G4double  G4VRangeToEnergyConverter::MaxEnergyCut = 10.0*GeV;
                                                   >>  50 
                                                   >>  51 G4VRangeToEnergyConverter::G4VRangeToEnergyConverter():
                                                   >>  52   theParticle(0), theLossTable(0), NumberOfElements(0), TotBin(300),
                                                   >>  53   verboseLevel(1)
                                                   >>  54 {
                                                   >>  55   fMaxEnergyCut = 0.;
                                                   >>  56 }
                                                   >>  57 
                                                   >>  58 G4VRangeToEnergyConverter::G4VRangeToEnergyConverter(const G4VRangeToEnergyConverter& right) :  theParticle(right.theParticle), theLossTable(0), TotBin(right.TotBin)
                                                   >>  59 {
                                                   >>  60   fMaxEnergyCut = 0.;
                                                   >>  61   *this = right;
                                                   >>  62 }
                                                   >>  63 
                                                   >>  64 G4VRangeToEnergyConverter & G4VRangeToEnergyConverter::operator=(const G4VRangeToEnergyConverter &right)
                                                   >>  65 {
                                                   >>  66   if (this == &right) return *this;
                                                   >>  67   if (theLossTable) {
                                                   >>  68     theLossTable->clearAndDestroy();
                                                   >>  69     delete theLossTable;
                                                   >>  70     theLossTable=0;
                                                   >>  71  }
                                                   >>  72 
                                                   >>  73   NumberOfElements = right.NumberOfElements;
                                                   >>  74   theParticle = right.theParticle;
                                                   >>  75   verboseLevel = right.verboseLevel;
                                                   >>  76   
                                                   >>  77   // create the loss table
                                                   >>  78   theLossTable = new G4LossTable();
                                                   >>  79   theLossTable->reserve(G4Element::GetNumberOfElements());  
                                                   >>  80   // fill the loss table
                                                   >>  81   for (size_t j=0; j<size_t(NumberOfElements); j++){
                                                   >>  82     G4LossVector* aVector= new
                                                   >>  83             G4LossVector(LowestEnergy, MaxEnergyCut, TotBin);
                                                   >>  84     for (size_t i=0; i<size_t(TotBin); i++) {
                                                   >>  85       G4double Value = (*((*right.theLossTable)[j]))[i];
                                                   >>  86       aVector->PutValue(i,Value);
                                                   >>  87     }
                                                   >>  88     theLossTable->insert(aVector);
                                                   >>  89   }
 38                                                    90 
 39 namespace                                      <<  91   // clean up range vector store
 40 {                                              <<  92   for (size_t idx=0; idx<fRangeVectorStore.size(); idx++){
 41   G4Mutex theREMutex = G4MUTEX_INITIALIZER;    <<  93     delete fRangeVectorStore.at(idx);
 42 }                                              <<  94   }
                                                   >>  95   fRangeVectorStore.clear();
 43                                                    96 
 44 G4double G4VRangeToEnergyConverter::sEmin = CL <<  97   // copy range vector store
 45 G4double G4VRangeToEnergyConverter::sEmax = 10 <<  98   for (size_t j=0; j<((right.fRangeVectorStore).size()); j++){
                                                   >>  99     G4RangeVector* vector = (right.fRangeVectorStore).at(j);
                                                   >> 100     G4RangeVector* rangeVector = 0; 
                                                   >> 101     if (vector !=0 ) {
                                                   >> 102       rangeVector = new G4RangeVector(LowestEnergy, MaxEnergyCut, TotBin);
                                                   >> 103       fMaxEnergyCut = MaxEnergyCut;   
                                                   >> 104       for (size_t i=0; i<size_t(TotBin); i++) {
                                                   >> 105   G4double Value = (*vector)[i];
                                                   >> 106   rangeVector->PutValue(i,Value);
                                                   >> 107       }
                                                   >> 108     }
                                                   >> 109     fRangeVectorStore.push_back(rangeVector);
                                                   >> 110   }
                                                   >> 111   return *this;
                                                   >> 112 }
 46                                                   113 
 47 std::vector<G4double>* G4VRangeToEnergyConvert << 
 48                                                   114 
 49 G4int G4VRangeToEnergyConverter::sNbinPerDecad << 115 G4VRangeToEnergyConverter::~G4VRangeToEnergyConverter()
 50 G4int G4VRangeToEnergyConverter::sNbin = 350;  << 116 { 
                                                   >> 117   Reset(); 
                                                   >> 118 }
 51                                                   119 
 52 // ------------------------------------------- << 120 G4int G4VRangeToEnergyConverter::operator==(const G4VRangeToEnergyConverter &right) const
 53 G4VRangeToEnergyConverter::G4VRangeToEnergyCon << 
 54 {                                                 121 {
 55   if(nullptr == sEnergy)                       << 122   return this == &right;
 56   {                                            << 
 57     G4AutoLock l(&theREMutex);                 << 
 58     if(nullptr == sEnergy)                     << 
 59     {                                          << 
 60       isFirstInstance = true;                  << 
 61     }                                          << 
 62     l.unlock();                                << 
 63   }                                            << 
 64   // this method defines lock itself           << 
 65   if(isFirstInstance)                          << 
 66   {                                            << 
 67     FillEnergyVector(CLHEP::keV, 10.0*CLHEP::G << 
 68   }                                            << 
 69 }                                                 123 }
 70                                                   124 
 71 // ------------------------------------------- << 125 G4int G4VRangeToEnergyConverter::operator!=(const G4VRangeToEnergyConverter &right) const
 72 G4VRangeToEnergyConverter::~G4VRangeToEnergyCo << 
 73 {                                                 126 {
 74   if(isFirstInstance)                          << 127   return this != &right;
 75   {                                            << 
 76     delete sEnergy;                            << 
 77     sEnergy = nullptr;                         << 
 78     sEmin = CLHEP::keV;                        << 
 79     sEmax = 10.*CLHEP::GeV;                    << 
 80   }                                            << 
 81 }                                                 128 }
 82                                                   129 
 83 // ------------------------------------------- << 130 
 84 G4double G4VRangeToEnergyConverter::Convert(co << 131 // **********************************************************************
 85                                             co << 132 // ************************* Convert  ***********************************
                                                   >> 133 // **********************************************************************
                                                   >> 134 G4double G4VRangeToEnergyConverter::Convert(G4double rangeCut, 
                                                   >> 135               const G4Material* material) 
 86 {                                                 136 {
 87 #ifdef G4VERBOSE                                  137 #ifdef G4VERBOSE
 88   if (GetVerboseLevel()>3)                     << 138     if (GetVerboseLevel()>3) {
 89   {                                            << 139       G4cout << "G4VRangeToEnergyConverter::Convert() ";
 90     G4cout << "G4VRangeToEnergyConverter::Conv << 140       G4cout << "Convert for " << material->GetName() 
 91     G4cout << "Convert for " << material->GetN << 141        << " with Range Cut " << rangeCut/mm << "[mm]" << G4endl;
 92      << " with Range Cut " << rangeCut/mm << " << 142     }
 93   }                                            << 
 94 #endif                                            143 #endif
 95                                                   144 
 96   G4double cut = 0.0;                          << 145   G4double theKineticEnergyCuts = 0.;
 97   if(fPDG == 22)                               << 
 98   {                                            << 
 99     cut = ConvertForGamma(rangeCut, material); << 
100   }                                            << 
101   else                                         << 
102   {                                            << 
103     cut = ConvertForElectron(rangeCut, materia << 
104                                                   146 
105     const G4double tune = 0.025*CLHEP::mm*CLHE << 147   if (fMaxEnergyCut != MaxEnergyCut) {
106     const G4double lowen = 30.*CLHEP::keV;     << 148     fMaxEnergyCut = MaxEnergyCut;      
107     if(cut < lowen)                            << 149     // clear loss table and renge vectors
108     {                                          << 150     Reset();
109       //  corr. should be switched on smoothly << 151   }
110       cut /= (1.+(1.-cut/lowen)*tune/(rangeCut << 152  
                                                   >> 153   // Build the energy loss table
                                                   >> 154   BuildLossTable();
                                                   >> 155   
                                                   >> 156   // Build range vector for every material, convert cut into energy-cut,
                                                   >> 157   // fill theKineticEnergyCuts and delete the range vector
                                                   >> 158   G4double tune = 0.025*mm*g/cm3 ,lowen = 30.*keV ; 
                                                   >> 159 
                                                   >> 160   // check density
                                                   >> 161   G4double density = material->GetDensity() ;
                                                   >> 162   if(density <= 0.) {
                                                   >> 163  #ifdef G4VERBOSE
                                                   >> 164     if (GetVerboseLevel()>0) {
                                                   >> 165       G4cout << "G4VRangeToEnergyConverter::Convert() ";
                                                   >> 166       G4cout << material->GetName() << "has zero density "
                                                   >> 167        << "( " << density << ")" << G4endl;
111     }                                             168     }
                                                   >> 169 #endif
                                                   >> 170     return 0.;
                                                   >> 171   }
                                                   >> 172  
                                                   >> 173    // initialize RangeVectorStore
                                                   >> 174   const G4MaterialTable* table = G4Material::GetMaterialTable();
                                                   >> 175   G4int ext_size = table->size() - fRangeVectorStore.size();
                                                   >> 176   for (int i=0; i<ext_size; i++) fRangeVectorStore.push_back(0);
                                                   >> 177   
                                                   >> 178   // Build Range Vector
                                                   >> 179   G4int idx = material->GetIndex(); 
                                                   >> 180   G4RangeVector* rangeVector = fRangeVectorStore.at(idx);
                                                   >> 181   if (rangeVector == 0) {
                                                   >> 182     rangeVector = new G4RangeVector(LowestEnergy, MaxEnergyCut, TotBin); 
                                                   >> 183     BuildRangeVector(material, rangeVector);
                                                   >> 184     fRangeVectorStore.at(idx) = rangeVector;
112   }                                               185   }
113                                                   186 
114   cut = std::max(sEmin, std::min(cut, sEmax)); << 187   // Convert Range Cut ro Kinetic Energy Cut 
115   return cut;                                  << 188   theKineticEnergyCuts = ConvertCutToKineticEnergy(rangeVector, rangeCut, idx);
                                                   >> 189   
                                                   >> 190   if( ((theParticle->GetParticleName()=="e-")||(theParticle->GetParticleName()=="e+"))
                                                   >> 191       && (theKineticEnergyCuts < lowen) ) {
                                                   >> 192     //  corr. should be switched on smoothly   
                                                   >> 193     theKineticEnergyCuts /= (1.+(1.-theKineticEnergyCuts/lowen)*
                                                   >> 194            tune/(rangeCut*density)); 
                                                   >> 195   }
                                                   >> 196   
                                                   >> 197   if(theKineticEnergyCuts < LowestEnergy) {
                                                   >> 198     theKineticEnergyCuts = LowestEnergy ;
                                                   >> 199   } else if(theKineticEnergyCuts > MaxEnergyCut) {
                                                   >> 200     theKineticEnergyCuts = MaxEnergyCut;
                                                   >> 201   }
                                                   >> 202   
                                                   >> 203   return theKineticEnergyCuts;
116 }                                                 204 }
117                                                   205 
118 // ------------------------------------------- << 206 // **********************************************************************
119 void G4VRangeToEnergyConverter::SetEnergyRange << 207 // ************************ SetEnergyRange  *****************************
120                                                << 208 // **********************************************************************
                                                   >> 209 void G4VRangeToEnergyConverter::SetEnergyRange(G4double lowedge, 
                                                   >> 210                  G4double highedge)
121 {                                                 211 {
122   G4double ehigh = std::min(10.*CLHEP::GeV, hi << 212   // check LowestEnergy/ HighestEnergy 
123   if(ehigh > lowedge)                          << 213   if ( (lowedge<0.0)||(highedge<=lowedge) ){
124   {                                            << 214 #ifdef G4VERBOSE
125     FillEnergyVector(lowedge, ehigh);          << 215     G4cerr << "Error in G4VRangeToEnergyConverter::SetEnergyRange";
126   }                                            << 216     G4cerr << " :  illegal energy range" << "(" << lowedge/GeV;
                                                   >> 217     G4cerr << "," << highedge/GeV << ") [GeV]" << G4endl;
                                                   >> 218 #endif
                                                   >> 219     G4Exception( "G4VRangeToEnergyConverter::SetEnergyRange()",
                                                   >> 220      "ProcCuts101",
                                                   >> 221      JustWarning, "Illegal energy range ");
                                                   >> 222   } else {
                                                   >> 223     LowestEnergy = lowedge;
                                                   >> 224     HighestEnergy = highedge;
                                                   >> 225   }
127 }                                                 226 }
128                                                   227 
129 // ------------------------------------------- << 228 
130 G4double G4VRangeToEnergyConverter::GetLowEdge    229 G4double G4VRangeToEnergyConverter::GetLowEdgeEnergy()
131 {                                                 230 {
132   return sEmin;                                << 231   return LowestEnergy;
133 }                                                 232 }
134                                                   233     
135 // ------------------------------------------- << 234 
136 G4double G4VRangeToEnergyConverter::GetHighEdg    235 G4double G4VRangeToEnergyConverter::GetHighEdgeEnergy()
137 {                                                 236 {
138   return sEmax;                                << 237   return HighestEnergy;
139 }                                                 238 }
140                                                   239 
141 // ------------------------------------------- << 240 // **********************************************************************
142                                                << 241 // ******************* Get/SetMaxEnergyCut  *****************************
                                                   >> 242 // **********************************************************************
143 G4double G4VRangeToEnergyConverter::GetMaxEner    243 G4double G4VRangeToEnergyConverter::GetMaxEnergyCut()
144 {                                                 244 {
145   return sEmax;                                << 245   return MaxEnergyCut;
146 }                                                 246 }
147                                                   247 
148 // ------------------------------------------- << 248 void G4VRangeToEnergyConverter::SetMaxEnergyCut(G4double value)
149 void G4VRangeToEnergyConverter::SetMaxEnergyCu << 
150 {                                                 249 {
151   G4double ehigh = std::min(10.*CLHEP::GeV, va << 250   MaxEnergyCut = value;
152   if(ehigh > sEmin)                            << 
153   {                                            << 
154     FillEnergyVector(sEmin, ehigh);            << 
155   }                                            << 
156 }                                                 251 }
157                                                   252 
158 // ------------------------------------------- << 253 // **********************************************************************
159 void G4VRangeToEnergyConverter::FillEnergyVect << 254 // ************************ Reset  **************************************
160                                                << 255 // **********************************************************************
161 {                                              << 256 void G4VRangeToEnergyConverter::Reset()
162   if(emin != sEmin || emax != sEmax || nullptr << 257 {
163   {                                            << 258   // delete loss table
164     sEmin = emin;                              << 259   if (theLossTable) {  
165     sEmax = emax;                              << 260     theLossTable->clearAndDestroy();
166     sNbin = sNbinPerDecade*G4lrint(std::log10( << 261     delete theLossTable;
167     if(nullptr == sEnergy) { sEnergy = new std << 262   }
168     sEnergy->resize(sNbin + 1);                << 263   theLossTable=0;
169     (*sEnergy)[0] = emin;                      << 264   NumberOfElements=0;
170     (*sEnergy)[sNbin] = emax;                  << 265   
171     G4double fact = G4Log(emax/emin)/sNbin;    << 266   //clear RangeVectorStore
172     for(G4int i=1; i<sNbin; ++i) { (*sEnergy)[ << 267   for (size_t idx=0; idx<fRangeVectorStore.size(); idx++){
                                                   >> 268     delete fRangeVectorStore.at(idx);
                                                   >> 269   }
                                                   >> 270   fRangeVectorStore.clear();
                                                   >> 271 } 
                                                   >> 272 
                                                   >> 273 
                                                   >> 274 // **********************************************************************
                                                   >> 275 // ************************ BuildLossTable ******************************
                                                   >> 276 // **********************************************************************
                                                   >> 277 //   create Energy Loss Table for charged particles 
                                                   >> 278 //   (cross section tabel for neutral )
                                                   >> 279 void G4VRangeToEnergyConverter::BuildLossTable()
                                                   >> 280 {
                                                   >> 281   if (size_t(NumberOfElements) == G4Element::GetNumberOfElements()) return;
                                                   >> 282   
                                                   >> 283   // clear Loss table and Range vectors
                                                   >> 284   Reset();
                                                   >> 285 
                                                   >> 286   //  Build dE/dx tables for elements
                                                   >> 287   NumberOfElements = G4Element::GetNumberOfElements();
                                                   >> 288   theLossTable = new G4LossTable();
                                                   >> 289   theLossTable->reserve(G4Element::GetNumberOfElements());
                                                   >> 290 #ifdef G4VERBOSE
                                                   >> 291   if (GetVerboseLevel()>3) {
                                                   >> 292     G4cout << "G4VRangeToEnergyConverter::BuildLossTable() ";
                                                   >> 293     G4cout << "Create theLossTable[" << theLossTable << "]";
                                                   >> 294     G4cout << " NumberOfElements=" << NumberOfElements <<G4endl;
                                                   >> 295   }
                                                   >> 296 #endif
                                                   >> 297   
                                                   >> 298   
                                                   >> 299   // fill the loss table
                                                   >> 300   for (size_t j=0; j<size_t(NumberOfElements); j++){
                                                   >> 301     G4double Value;
                                                   >> 302     G4LossVector* aVector= 0;
                                                   >> 303     aVector= new G4LossVector(LowestEnergy, MaxEnergyCut, TotBin);
                                                   >> 304     for (size_t i=0; i<size_t(TotBin); i++) {
                                                   >> 305       Value = ComputeLoss(  (*G4Element::GetElementTable())[j]->GetZ(),
                                                   >> 306           aVector->GetLowEdgeEnergy(i)
                                                   >> 307           );
                                                   >> 308       aVector->PutValue(i,Value);
                                                   >> 309     }
                                                   >> 310     theLossTable->insert(aVector);
173   }                                               311   }
174 }                                                 312 }
175                                                   313 
176 // ------------------------------------------- << 314 // **********************************************************************
177 G4double                                       << 315 // ************************ BuildRangeVector ****************************
178 G4VRangeToEnergyConverter::ConvertForGamma(con << 316 // **********************************************************************
179                                            con << 317 void G4VRangeToEnergyConverter::BuildRangeVector(const G4Material* aMaterial,
180 {                                              << 318                G4PhysicsLogVector* rangeVector)
181   const G4ElementVector* elm = material->GetEl << 319 {
182   const G4double* dens = material->GetAtomicNu << 320   //  create range vector for a material
183                                                << 321   const G4ElementVector* elementVector = aMaterial->GetElementVector();
184   // fill absorption length vector             << 322   const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector();
185   G4int nelm = (G4int)material->GetNumberOfEle << 323   G4int NumEl = aMaterial->GetNumberOfElements();
186   G4double range1 = 0.0;                       << 324 
187   G4double range2 = 0.0;                       << 325   // calculate parameters of the low energy part first
188   G4double e1 = 0.0;                           << 326   size_t i;
189   G4double e2 = 0.0;                           << 327   std::vector<G4double> lossV;
190   for (G4int i=0; i<sNbin; ++i)                << 328   for ( size_t ib=0; ib<size_t(TotBin); ib++) {
191   {                                            << 329     G4double loss=0.;
192     e2 = (*sEnergy)[i];                        << 330     for (i=0; i<size_t(NumEl); i++) {
193     G4double sig = 0.;                         << 331       G4int IndEl = (*elementVector)[i]->GetIndex();
                                                   >> 332       loss += atomicNumDensityVector[i]*
                                                   >> 333           (*((*theLossTable)[IndEl]))[ib];
                                                   >> 334     }
                                                   >> 335     lossV.push_back(loss);
                                                   >> 336   }
                                                   >> 337    
                                                   >> 338   // Integrate with Simpson formula with logarithmic binning
                                                   >> 339   G4double ltt = std::log(MaxEnergyCut/LowestEnergy);
                                                   >> 340   G4double dltau = ltt/TotBin;
                                                   >> 341 
                                                   >> 342   G4double s0 = 0.;
                                                   >> 343   G4double Value;
                                                   >> 344   for ( i=0; i<size_t(TotBin); i++) {
                                                   >> 345     G4double t = rangeVector->GetLowEdgeEnergy(i);
                                                   >> 346     G4double s = t/lossV[i];
                                                   >> 347     if (i==0) s0 += 0.5*s;
                                                   >> 348     else s0 += s;
194                                                   349     
195     for (G4int j=0; j<nelm; ++j)               << 350     if (i==0) {
196     {                                          << 351        Value = (s0 + 0.5*s)*dltau ;
197       sig += dens[j]*ComputeValue((*elm)[j]->G << 352     } else {
198     }                                          << 353       Value = (s0 - 0.5*s)*dltau ;
199     range2 = (sig > 0.0) ? 5./sig : DBL_MAX;   << 
200     if(i == 0 || range2 < rangeCut)            << 
201     {                                          << 
202       e1 = e2;                                 << 
203       range1 = range2;                         << 
204     }                                             354     }
205     else                                       << 355     rangeVector->PutValue(i,Value);
206     {                                          << 356   }
                                                   >> 357 } 
                                                   >> 358 
                                                   >> 359 // **********************************************************************
                                                   >> 360 // ****************** ConvertCutToKineticEnergy *************************
                                                   >> 361 // **********************************************************************
                                                   >> 362 G4double G4VRangeToEnergyConverter::ConvertCutToKineticEnergy(
                                                   >> 363             G4RangeVector* rangeVector,
                                                   >> 364             G4double       theCutInLength, 
                                                   >> 365             size_t         materialIndex
                                                   >> 366                                       ) const
                                                   >> 367 {
                                                   >> 368   const G4double epsilon=0.01;
                                                   >> 369 
                                                   >> 370   //  find max. range and the corresponding energy (rmax,Tmax)
                                                   >> 371   G4double rmax= -1.e10*mm;
                                                   >> 372 
                                                   >> 373   G4double T1 = LowestEnergy;
                                                   >> 374   G4double r1 =(*rangeVector)[0] ;
                                                   >> 375 
                                                   >> 376   G4double T2 = MaxEnergyCut;
                                                   >> 377 
                                                   >> 378   // check theCutInLength < r1 
                                                   >> 379   if ( theCutInLength <= r1 ) {  return T1; }
                                                   >> 380 
                                                   >> 381   // scan range vector to find nearest bin 
                                                   >> 382   // ( suppose that r(Ti) > r(Tj) if Ti >Tj )
                                                   >> 383   for (size_t ibin=0; ibin<size_t(TotBin); ibin++) {
                                                   >> 384     G4double T=rangeVector->GetLowEdgeEnergy(ibin);
                                                   >> 385     G4double r=(*rangeVector)[ibin];
                                                   >> 386     if ( r>rmax )   rmax=r;
                                                   >> 387     if (r <theCutInLength ) {
                                                   >> 388       T1 = T;
                                                   >> 389       r1 = r;
                                                   >> 390     } else if (r >theCutInLength ) {
                                                   >> 391       T2 = T;
207       break;                                      392       break;
208     }                                             393     }
209   }                                               394   }
210   return LiniearInterpolation(e1, e2, range1,  << 
211 }                                              << 
212                                                   395 
213 // ------------------------------------------- << 396   // check cut in length is smaller than range max
214 G4double                                       << 397   if ( theCutInLength >= rmax )  {
215 G4VRangeToEnergyConverter::ConvertForElectron( << 398 #ifdef G4VERBOSE
216                                                << 399     if (GetVerboseLevel()>2) {
217 {                                              << 400       G4cout << "G4VRangeToEnergyConverter::ConvertCutToKineticEnergy ";
218   const G4ElementVector* elm = material->GetEl << 401       G4cout << "  for " << theParticle->GetParticleName() << G4endl;
219   const G4double* dens = material->GetAtomicNu << 402       G4cout << "The cut in range [" << theCutInLength/mm << " (mm)]  ";
220                                                << 403       G4cout << " is too big  " ;
221   // fill absorption length vector             << 404       G4cout << " for material  idx=" << materialIndex <<G4endl; 
222   G4int nelm = (G4int)material->GetNumberOfEle << 
223   G4double dedx1 = 0.0;                        << 
224   G4double dedx2 = 0.0;                        << 
225   G4double range1 = 0.0;                       << 
226   G4double range2 = 0.0;                       << 
227   G4double e1 = 0.0;                           << 
228   G4double e2 = 0.0;                           << 
229   G4double range = 0.;                         << 
230   for (G4int i=0; i<sNbin; ++i)                << 
231   {                                            << 
232     e2 = (*sEnergy)[i];                        << 
233     dedx2 = 0.0;                               << 
234     for (G4int j=0; j<nelm; ++j)               << 
235     {                                          << 
236       dedx2 += dens[j]*ComputeValue((*elm)[j]- << 
237     }                                          << 
238     range += (dedx1 + dedx2 > 0.0) ? 2*(e2 - e << 
239     range2 = range;                            << 
240     if(range2 < rangeCut)                      << 
241     {                                          << 
242       e1 = e2;                                 << 
243       dedx1 = dedx2;                           << 
244       range1 = range2;                         << 
245     }                                             405     }
246     else                                       << 406 #endif
247     {                                          << 407     return  MaxEnergyCut;
248       break;                                   << 408   }
                                                   >> 409   
                                                   >> 410   // convert range to energy
                                                   >> 411   G4double T3 = std::sqrt(T1*T2);
                                                   >> 412   G4double r3 = rangeVector->Value(T3);
                                                   >> 413   while ( std::fabs(1.-r3/theCutInLength)>epsilon ) {
                                                   >> 414     if ( theCutInLength <= r3 ) {
                                                   >> 415       T2 = T3;
                                                   >> 416     } else {
                                                   >> 417       T1 = T3;
249     }                                             418     }
                                                   >> 419     T3 = std::sqrt(T1*T2);
                                                   >> 420     r3 = rangeVector->Value(T3);
250   }                                               421   }
251   return LiniearInterpolation(e1, e2, range1,  << 422 
                                                   >> 423   return T3;
252 }                                                 424 }
253                                                   425 
254 // ------------------------------------------- << 
255                                                   426