Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/cuts/src/G4VRangeToEnergyConverter.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/cuts/src/G4VRangeToEnergyConverter.cc (Version 11.3.0) and /processes/cuts/src/G4VRangeToEnergyConverter.cc (Version 6.2.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // G4VRangeToEnergyConverter class implementat << 
 27 //                                                 23 //
 28 // Author: H.Kurashige, 05 October 2002 - Firs <<  24 // $Id: G4VRangeToEnergyConverter.cc,v 1.2 2003/11/08 06:10:48 kurasige Exp $
 29 // ------------------------------------------- <<  25 // GEANT4 tag $Name: geant4-06-00-patch-01 $
                                                   >>  26 //
                                                   >>  27 //
                                                   >>  28 // --------------------------------------------------------------
                                                   >>  29 //      GEANT 4 class implementation file/  History:
                                                   >>  30 //    5 Oct. 2002, H.Kuirashige : Structure created based on object model
                                                   >>  31 // --------------------------------------------------------------
 30                                                    32 
 31 #include "G4VRangeToEnergyConverter.hh"            33 #include "G4VRangeToEnergyConverter.hh"
 32 #include "G4ParticleTable.hh"                      34 #include "G4ParticleTable.hh"
 33 #include "G4Element.hh"                        <<  35 #include "G4Material.hh"
 34 #include "G4SystemOfUnits.hh"                  <<  36 #include "G4PhysicsLogVector.hh"
 35 #include "G4Log.hh"                            << 
 36 #include "G4Exp.hh"                            << 
 37 #include "G4AutoLock.hh"                       << 
 38                                                    37 
 39 namespace                                      <<  38 #include "G4ios.hh"
 40 {                                              <<  39 #include <iomanip>
 41   G4Mutex theREMutex = G4MUTEX_INITIALIZER;    <<  40 #include <strstream>
 42 }                                              << 
 43                                                    41 
 44 G4double G4VRangeToEnergyConverter::sEmin = CL <<  42 // energy range
 45 G4double G4VRangeToEnergyConverter::sEmax = 10 <<  43 G4double  G4VRangeToEnergyConverter::LowestEnergy = 0.99e-3*MeV;
                                                   >>  44 G4double  G4VRangeToEnergyConverter::HighestEnergy = 100.0e6*MeV;
 46                                                    45 
 47 std::vector<G4double>* G4VRangeToEnergyConvert <<  46 G4VRangeToEnergyConverter::G4VRangeToEnergyConverter():
                                                   >>  47   theParticle(0), theLossTable(0), NumberOfElements(0), TotBin(200),
                                                   >>  48   verboseLevel(1)
                                                   >>  49 {
                                                   >>  50 }
 48                                                    51 
 49 G4int G4VRangeToEnergyConverter::sNbinPerDecad <<  52 G4VRangeToEnergyConverter::G4VRangeToEnergyConverter(const G4VRangeToEnergyConverter& right)
 50 G4int G4VRangeToEnergyConverter::sNbin = 350;  <<  53 {
                                                   >>  54   *this = right;
                                                   >>  55 }
 51                                                    56 
 52 // ------------------------------------------- <<  57 G4VRangeToEnergyConverter & G4VRangeToEnergyConverter::operator=(const G4VRangeToEnergyConverter &right)
 53 G4VRangeToEnergyConverter::G4VRangeToEnergyCon << 
 54 {                                                  58 {
 55   if(nullptr == sEnergy)                       <<  59   if (this == &right) return *this;
 56   {                                            <<  60   if (theLossTable) delete theLossTable;
 57     G4AutoLock l(&theREMutex);                 <<  61 
 58     if(nullptr == sEnergy)                     <<  62   NumberOfElements = right.NumberOfElements;
 59     {                                          <<  63   TotBin = right.TotBin;
 60       isFirstInstance = true;                  <<  64   theParticle = right.theParticle;
                                                   >>  65   verboseLevel = right.verboseLevel;
                                                   >>  66   
                                                   >>  67   // create the loss table
                                                   >>  68   theLossTable = new G4LossTable();
                                                   >>  69   theLossTable->reserve(G4Element::GetNumberOfElements());  
                                                   >>  70   // fill the loss table
                                                   >>  71   for (size_t j=0; j<size_t(NumberOfElements); j++){
                                                   >>  72     G4LossVector* aVector= new
                                                   >>  73             G4LossVector(LowestEnergy, HighestEnergy, TotBin);
                                                   >>  74     for (size_t i=0; i<size_t(TotBin); i++) {
                                                   >>  75       G4double Value = (*((*right.theLossTable)[j]))[i];
                                                   >>  76       aVector->PutValue(i,Value);
 61     }                                              77     }
 62     l.unlock();                                <<  78     theLossTable->insert(aVector);
 63   }                                            << 
 64   // this method defines lock itself           << 
 65   if(isFirstInstance)                          << 
 66   {                                            << 
 67     FillEnergyVector(CLHEP::keV, 10.0*CLHEP::G << 
 68   }                                                79   }
                                                   >>  80   return *this;
 69 }                                                  81 }
 70                                                    82 
 71 // ------------------------------------------- <<  83 
 72 G4VRangeToEnergyConverter::~G4VRangeToEnergyCo     84 G4VRangeToEnergyConverter::~G4VRangeToEnergyConverter()
                                                   >>  85 { 
                                                   >>  86   if (theLossTable) delete  theLossTable;
                                                   >>  87 }
                                                   >>  88 
                                                   >>  89 G4int G4VRangeToEnergyConverter::operator==(const G4VRangeToEnergyConverter &right) const
 73 {                                                  90 {
 74   if(isFirstInstance)                          <<  91   return this == &right;
 75   {                                            << 
 76     delete sEnergy;                            << 
 77     sEnergy = nullptr;                         << 
 78     sEmin = CLHEP::keV;                        << 
 79     sEmax = 10.*CLHEP::GeV;                    << 
 80   }                                            << 
 81 }                                                  92 }
 82                                                    93 
 83 // ------------------------------------------- <<  94 G4int G4VRangeToEnergyConverter::operator!=(const G4VRangeToEnergyConverter &right) const
 84 G4double G4VRangeToEnergyConverter::Convert(co << 
 85                                             co << 
 86 {                                                  95 {
 87 #ifdef G4VERBOSE                               <<  96   return this != &right;
 88   if (GetVerboseLevel()>3)                     <<  97 }
 89   {                                            << 
 90     G4cout << "G4VRangeToEnergyConverter::Conv << 
 91     G4cout << "Convert for " << material->GetN << 
 92      << " with Range Cut " << rangeCut/mm << " << 
 93   }                                            << 
 94 #endif                                         << 
 95                                                    98 
 96   G4double cut = 0.0;                          << 
 97   if(fPDG == 22)                               << 
 98   {                                            << 
 99     cut = ConvertForGamma(rangeCut, material); << 
100   }                                            << 
101   else                                         << 
102   {                                            << 
103     cut = ConvertForElectron(rangeCut, materia << 
104                                                    99 
105     const G4double tune = 0.025*CLHEP::mm*CLHE << 100 // **********************************************************************
106     const G4double lowen = 30.*CLHEP::keV;     << 101 // ************************* Convert  ***********************************
107     if(cut < lowen)                            << 102 // **********************************************************************
108     {                                          << 103 G4double G4VRangeToEnergyConverter::Convert(G4double rangeCut, 
109       //  corr. should be switched on smoothly << 104               const G4Material* material) 
110       cut /= (1.+(1.-cut/lowen)*tune/(rangeCut << 105 {
                                                   >> 106   //???????????? G4double Charge = theParticle->GetPDGCharge();
                                                   >> 107   G4double Mass   = theParticle->GetPDGMass();
                                                   >> 108   G4double theKineticEnergyCuts = 0.;
                                                   >> 109  
                                                   >> 110   // Build the energy loss table
                                                   >> 111   if (theLossTable ==0) BuildLossTable();
                                                   >> 112   
                                                   >> 113   // Build range vector for every material, convert cut into energy-cut,
                                                   >> 114   // fill theKineticEnergyCuts and delete the range vector
                                                   >> 115   G4double tune = 0.025*mm*g/cm3 ,lowen = 30.*keV ; 
                                                   >> 116 
                                                   >> 117   G4int idx = material->GetIndex(); 
                                                   >> 118   G4double density = material->GetDensity() ;
                                                   >> 119   if(density > 0.) {
                                                   >> 120     G4RangeVector* rangeVector = new G4RangeVector(LowestEnergy, HighestEnergy, TotBin);
                                                   >> 121     BuildRangeVector(material, HighestEnergy, Mass, rangeVector);
                                                   >> 122     theKineticEnergyCuts = ConvertCutToKineticEnergy(rangeVector, rangeCut, idx);
                                                   >> 123 
                                                   >> 124     if( ((theParticle->GetParticleName()=="e-")||(theParticle->GetParticleName()=="e+"))
                                                   >> 125            && (theKineticEnergyCuts < lowen) ) 
                                                   >> 126     { theKineticEnergyCuts /= (1.+tune/(rangeCut*density)); }
                                                   >> 127     if(theKineticEnergyCuts < LowestEnergy) {
                                                   >> 128       theKineticEnergyCuts = LowestEnergy ;
111     }                                             129     }
                                                   >> 130     delete rangeVector;
112   }                                               131   }
113                                                << 132   return theKineticEnergyCuts;
114   cut = std::max(sEmin, std::min(cut, sEmax)); << 
115   return cut;                                  << 
116 }                                                 133 }
117                                                   134 
118 // ------------------------------------------- << 135 // **********************************************************************
119 void G4VRangeToEnergyConverter::SetEnergyRange << 136 // ************************ SetEnergyRange  *****************************
120                                                << 137 // **********************************************************************
121 {                                              << 138 void G4VRangeToEnergyConverter::SetEnergyRange(G4double lowedge, 
122   G4double ehigh = std::min(10.*CLHEP::GeV, hi << 139                  G4double highedge)
123   if(ehigh > lowedge)                          << 140 {
124   {                                            << 141   // check LowestEnergy/ HighestEnergy 
125     FillEnergyVector(lowedge, ehigh);          << 142   if ( (lowedge<0.0)||(highedge<=lowedge) ){
126   }                                            << 143     G4cerr << "Error in G4VRangeToEnergyConverter::SetEnergyRange";
                                                   >> 144     G4cerr << " :  illegal energy range" << "(" << lowedge/GeV;
                                                   >> 145     G4cerr << "," << highedge/GeV << ") [GeV]" << G4endl;
                                                   >> 146   } else {
                                                   >> 147     LowestEnergy = lowedge;
                                                   >> 148     HighestEnergy = highedge;
                                                   >> 149   }
127 }                                                 150 }
128                                                   151 
129 // ------------------------------------------- << 152 
130 G4double G4VRangeToEnergyConverter::GetLowEdge    153 G4double G4VRangeToEnergyConverter::GetLowEdgeEnergy()
131 {                                                 154 {
132   return sEmin;                                << 155   return LowestEnergy;
133 }                                                 156 }
134                                                   157     
135 // ------------------------------------------- << 158 
136 G4double G4VRangeToEnergyConverter::GetHighEdg    159 G4double G4VRangeToEnergyConverter::GetHighEdgeEnergy()
137 {                                                 160 {
138   return sEmax;                                << 161   return HighestEnergy;
139 }                                                 162 }
140                                                   163 
141 // ------------------------------------------- << 164 // **********************************************************************
                                                   >> 165 // ************************ RangeLinSimpson *****************************
                                                   >> 166 // **********************************************************************
                                                   >> 167 G4double G4VRangeToEnergyConverter::RangeLinSimpson(
                                                   >> 168              G4int numberOfElement,
                                                   >> 169                                      const G4ElementVector* elementVector,
                                                   >> 170                                      const G4double* atomicNumDensityVector,
                                                   >> 171                                      G4double aMass,   
                                                   >> 172                                      G4double taulow, G4double tauhigh, G4int nbin)
                                                   >> 173 {
                                                   >> 174   // Simpson numerical integration, linear binning
                                                   >> 175   G4double dtau = (tauhigh-taulow)/nbin;
                                                   >> 176   G4double Value=0.;
                                                   >> 177   for (size_t i=0; i<=size_t(nbin); i++){
                                                   >> 178     G4double taui=taulow+dtau*i;
                                                   >> 179     G4double ti=aMass*taui;
                                                   >> 180     G4double lossi=0.;
                                                   >> 181     size_t nEl = (size_t)(numberOfElement);
                                                   >> 182     for (size_t j=0; j<nEl; j++) {
                                                   >> 183       G4bool isOut;
                                                   >> 184       G4int IndEl = (*elementVector)[j]->GetIndex();
                                                   >> 185       lossi += atomicNumDensityVector[j]*
                                                   >> 186               (*theLossTable)[IndEl]->GetValue(ti,isOut);
                                                   >> 187    }
                                                   >> 188     if ( i==0 ) {
                                                   >> 189       Value += 0.5/lossi;
                                                   >> 190     } else {
                                                   >> 191       if ( i<size_t(nbin) ) Value += 1./lossi;
                                                   >> 192       else            Value += 0.5/lossi;
                                                   >> 193     }
                                                   >> 194   }
                                                   >> 195   Value *= aMass*dtau;
142                                                   196 
143 G4double G4VRangeToEnergyConverter::GetMaxEner << 197   return Value;
144 {                                              << 
145   return sEmax;                                << 
146 }                                                 198 }
147                                                   199 
148 // ------------------------------------------- << 200 
149 void G4VRangeToEnergyConverter::SetMaxEnergyCu << 201 // **********************************************************************
150 {                                              << 202 // ************************ RangeLogSimpson *****************************
151   G4double ehigh = std::min(10.*CLHEP::GeV, va << 203 // **********************************************************************
152   if(ehigh > sEmin)                            << 204 G4double G4VRangeToEnergyConverter::RangeLogSimpson(
153   {                                            << 205              G4int numberOfElement,
154     FillEnergyVector(sEmin, ehigh);            << 206                                      const G4ElementVector* elementVector,
                                                   >> 207                                      const G4double* atomicNumDensityVector,
                                                   >> 208                                      G4double aMass,   
                                                   >> 209                                      G4double ltaulow, G4double ltauhigh,
                                                   >> 210                                      G4int nbin)
                                                   >> 211 {
                                                   >> 212   // Simpson numerical integration, logarithmic binning
                                                   >> 213   if(nbin<0) nbin = TotBin;
                                                   >> 214   G4double ltt = ltauhigh-ltaulow;
                                                   >> 215   G4double dltau = ltt/nbin;
                                                   >> 216   G4double Value = 0.;
                                                   >> 217   for (size_t i=0; i<=size_t(nbin); i++){
                                                   >> 218     G4double ui = ltaulow+dltau*i;
                                                   >> 219     G4double taui = exp(ui);
                                                   >> 220     G4double ti = aMass*taui;
                                                   >> 221     G4double lossi = 0.;
                                                   >> 222     size_t nEl = (size_t)(numberOfElement);
                                                   >> 223 
                                                   >> 224     for (size_t j=0; j<nEl; j++) {
                                                   >> 225       G4bool isOut;
                                                   >> 226       G4int IndEl = (*elementVector)[j]->GetIndex();
                                                   >> 227       lossi += atomicNumDensityVector[j]*
                                                   >> 228               (*theLossTable)[IndEl]->GetValue(ti,isOut);
                                                   >> 229     }
                                                   >> 230     if ( i==0 ) {
                                                   >> 231       Value +=  0.5*taui/lossi;
                                                   >> 232     } else {
                                                   >> 233       if ( i<size_t(nbin) ) Value += taui/lossi;
                                                   >> 234       else Value +=  0.5*taui/lossi;
                                                   >> 235     }
155   }                                               236   }
                                                   >> 237   Value *= aMass*dltau;
                                                   >> 238 
                                                   >> 239   return Value;
156 }                                                 240 }
157                                                   241 
158 // ------------------------------------------- << 242 // **********************************************************************
159 void G4VRangeToEnergyConverter::FillEnergyVect << 243 // ************************ BuildLossTable ******************************
160                                                << 244 // **********************************************************************
161 {                                              << 245 //   create Energy Loss Table for charged particles 
162   if(emin != sEmin || emax != sEmax || nullptr << 246 //   (cross section tabel for neutral )
163   {                                            << 247 void G4VRangeToEnergyConverter::BuildLossTable()
164     sEmin = emin;                              << 248 {
165     sEmax = emax;                              << 249    //  Build dE/dx tables for elements
166     sNbin = sNbinPerDecade*G4lrint(std::log10( << 250   if (size_t(NumberOfElements) != G4Element::GetNumberOfElements()) {
167     if(nullptr == sEnergy) { sEnergy = new std << 251     if (theLossTable!=0) delete theLossTable;
168     sEnergy->resize(sNbin + 1);                << 252     theLossTable =0; 
169     (*sEnergy)[0] = emin;                      << 253     NumberOfElements = 0;
170     (*sEnergy)[sNbin] = emax;                  << 254   }
171     G4double fact = G4Log(emax/emin)/sNbin;    << 255 
172     for(G4int i=1; i<sNbin; ++i) { (*sEnergy)[ << 256   if (NumberOfElements ==0) {
                                                   >> 257     NumberOfElements = G4Element::GetNumberOfElements();
                                                   >> 258     theLossTable = new G4LossTable();
                                                   >> 259     theLossTable->reserve(G4Element::GetNumberOfElements());
                                                   >> 260 #ifdef G4VERBOSE
                                                   >> 261     if (GetVerboseLevel()>2) {
                                                   >> 262       G4cout << "G4VRangeToEnergyConverter::BuildLossTable() ";
                                                   >> 263       G4cout << "Create theLossTable[" << theLossTable << "]";
                                                   >> 264       G4cout << " NumberOfElements=" << NumberOfElements <<G4endl;
                                                   >> 265     }
                                                   >> 266 #endif
                                                   >> 267   }
                                                   >> 268 
                                                   >> 269   // fill the loss table
                                                   >> 270   for (size_t j=0; j<size_t(NumberOfElements); j++){
                                                   >> 271     G4double Value;
                                                   >> 272     G4LossVector* aVector= new
                                                   >> 273             G4LossVector(LowestEnergy, HighestEnergy, TotBin);
                                                   >> 274     for (size_t i=0; i<size_t(TotBin); i++) {
                                                   >> 275       Value = ComputeLoss(  (*G4Element::GetElementTable())[j]->GetZ(),
                                                   >> 276                             aVector->GetLowEdgeEnergy(i)
                                                   >> 277                           );
                                                   >> 278       aVector->PutValue(i,Value);
                                                   >> 279     }
                                                   >> 280     theLossTable->insert(aVector);
173   }                                               281   }
174 }                                                 282 }
175                                                   283 
176 // ------------------------------------------- << 284 // **********************************************************************
177 G4double                                       << 285 // ************************** ComputeLoss *******************************
178 G4VRangeToEnergyConverter::ConvertForGamma(con << 286 // **********************************************************************
179                                            con << 287 G4double G4VRangeToEnergyConverter::ComputeLoss(G4double AtomicNumber,
180 {                                              << 288             G4double KineticEnergy) const
181   const G4ElementVector* elm = material->GetEl << 289 {
182   const G4double* dens = material->GetAtomicNu << 290   //  calculate dE/dx
183                                                << 291 
184   // fill absorption length vector             << 292   static G4double Z;  
185   G4int nelm = (G4int)material->GetNumberOfEle << 293   static G4double ionpot, tau0, taum, taul, ca, cba, cc;
186   G4double range1 = 0.0;                       << 294 
187   G4double range2 = 0.0;                       << 295   G4double  z2Particle = theParticle->GetPDGCharge()/eplus;
188   G4double e1 = 0.0;                           << 296   z2Particle *=  z2Particle;
189   G4double e2 = 0.0;                           << 297   if (z2Particle < 0.1) return 0.0;
190   for (G4int i=0; i<sNbin; ++i)                << 298 
191   {                                            << 299   if( abs(AtomicNumber-Z)>0.1 ){
192     e2 = (*sEnergy)[i];                        << 300     // recalculate constants
193     G4double sig = 0.;                         << 301     Z = AtomicNumber;
194                                                << 302     G4double Z13 = exp(log(Z)/3.);
195     for (G4int j=0; j<nelm; ++j)               << 303     tau0 = 0.1*Z13*MeV/proton_mass_c2;
196     {                                          << 304     taum = 0.035*Z13*MeV/proton_mass_c2;
197       sig += dens[j]*ComputeValue((*elm)[j]->G << 305     taul = 2.*MeV/proton_mass_c2;
198     }                                          << 306     ionpot = 1.6e-5*MeV*exp(0.9*log(Z));
199     range2 = (sig > 0.0) ? 5./sig : DBL_MAX;   << 307     cc = (taul+1.)*(taul+1.)*log(2.*electron_mass_c2*taul*(taul+2.)/ionpot)/(taul*(taul+2.))-1.;
200     if(i == 0 || range2 < rangeCut)            << 308     cc = 2.*twopi_mc2_rcl2*Z*cc*sqrt(taul);
201     {                                          << 309     ca = cc/((1.-0.5*sqrt(tau0/taum))*tau0);
202       e1 = e2;                                 << 310     cba = -0.5/sqrt(taum);
203       range1 = range2;                         << 311   }
204     }                                          << 312 
205     else                                       << 313   G4double tau = KineticEnergy/theParticle->GetPDGMass();
206     {                                          << 314   G4double dEdx;
207       break;                                   << 315   if ( tau <= tau0 ) {
208     }                                          << 316     dEdx = ca*(sqrt(tau)+cba*tau);
209   }                                            << 317   } else {
210   return LiniearInterpolation(e1, e2, range1,  << 318     if( tau <= taul ) {
211 }                                              << 319       dEdx = cc/sqrt(tau);
212                                                << 320     } else {
213 // ------------------------------------------- << 321       dEdx = (tau+1.)*(tau+1.)*
214 G4double                                       << 322        log(2.*electron_mass_c2*tau*(tau+2.)/ionpot)/(tau*(tau+2.))-1.;
215 G4VRangeToEnergyConverter::ConvertForElectron( << 323       dEdx = 2.*twopi_mc2_rcl2*Z*dEdx;
216                                                << 
217 {                                              << 
218   const G4ElementVector* elm = material->GetEl << 
219   const G4double* dens = material->GetAtomicNu << 
220                                                << 
221   // fill absorption length vector             << 
222   G4int nelm = (G4int)material->GetNumberOfEle << 
223   G4double dedx1 = 0.0;                        << 
224   G4double dedx2 = 0.0;                        << 
225   G4double range1 = 0.0;                       << 
226   G4double range2 = 0.0;                       << 
227   G4double e1 = 0.0;                           << 
228   G4double e2 = 0.0;                           << 
229   G4double range = 0.;                         << 
230   for (G4int i=0; i<sNbin; ++i)                << 
231   {                                            << 
232     e2 = (*sEnergy)[i];                        << 
233     dedx2 = 0.0;                               << 
234     for (G4int j=0; j<nelm; ++j)               << 
235     {                                          << 
236       dedx2 += dens[j]*ComputeValue((*elm)[j]- << 
237     }                                             324     }
238     range += (dedx1 + dedx2 > 0.0) ? 2*(e2 - e << 325   }
239     range2 = range;                            << 326   return dEdx*z2Particle ;
240     if(range2 < rangeCut)                      << 327 }
241     {                                          << 328 
242       e1 = e2;                                 << 329 // **********************************************************************
243       dedx1 = dedx2;                           << 330 // ************************ BuildRangeVector ****************************
244       range1 = range2;                         << 331 // **********************************************************************
                                                   >> 332 void G4VRangeToEnergyConverter::BuildRangeVector(
                                                   >> 333                                   const G4Material* aMaterial,
                                                   >> 334                                   G4double       maxEnergy,
                                                   >> 335                                   G4double       aMass,
                                                   >> 336                                   G4RangeVector* rangeVector)
                                                   >> 337 {
                                                   >> 338   //  create range vector for a material
                                                   >> 339   const G4double tlim=2.*MeV, t1=0.1*MeV, t2=0.025*MeV; 
                                                   >> 340   const G4int  maxnbint=100;
                                                   >> 341  
                                                   >> 342   const G4ElementVector* elementVector = aMaterial->GetElementVector();
                                                   >> 343   const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector();
                                                   >> 344 
                                                   >> 345   G4int NumEl = aMaterial->GetNumberOfElements();
                                                   >> 346 
                                                   >> 347   // calculate parameters of the low energy part first
                                                   >> 348   G4double loss1=0.;
                                                   >> 349   G4double loss2=0.;
                                                   >> 350   size_t i;
                                                   >> 351   for (i=0; i<size_t(NumEl); i++) {
                                                   >> 352     G4bool isOut;
                                                   >> 353     G4int IndEl = (*elementVector)[i]->GetIndex();
                                                   >> 354     loss1 += atomicNumDensityVector[i]*
                                                   >> 355             (*theLossTable)[IndEl]->GetValue(t1,isOut);
                                                   >> 356     loss2 += atomicNumDensityVector[i]*
                                                   >> 357             (*theLossTable)[IndEl]->GetValue(t2,isOut);
                                                   >> 358   }
                                                   >> 359   G4double tau1 = t1/proton_mass_c2;
                                                   >> 360   G4double sqtau1 = sqrt(tau1);
                                                   >> 361   G4double ca = (4.*loss2-loss1)/sqtau1;
                                                   >> 362   G4double cb = (2.*loss1-4.*loss2)/tau1;
                                                   >> 363   G4double cba = cb/ca;
                                                   >> 364   G4double taulim = tlim/proton_mass_c2;
                                                   >> 365   G4double taumax = maxEnergy/aMass;
                                                   >> 366   G4double ltaumax = log(taumax);
                                                   >> 367 
                                                   >> 368   // now we can fill the range vector....
                                                   >> 369   G4double  rmax = 0.0;
                                                   >> 370   for (i=0; i<size_t(TotBin); i++) {
                                                   >> 371     G4double  LowEdgeEnergy = rangeVector->GetLowEdgeEnergy(i);
                                                   >> 372     G4double  tau = LowEdgeEnergy/aMass;
                                                   >> 373     G4double  Value;
                                                   >> 374  
                                                   >> 375     if ( tau <= tau1 ){
                                                   >> 376       Value =2.*aMass*log(1.+cba*sqrt(tau))/cb;
                                                   >> 377     } else {
                                                   >> 378       Value = 2.*aMass*log(1.+cba*sqtau1)/cb;
                                                   >> 379       if ( tau <= taulim ) {
                                                   >> 380         G4int nbin = (G4int)(maxnbint*(tau-tau1)/(taulim-tau1));
                                                   >> 381         if ( nbin<1 ) nbin = 1;
                                                   >> 382         Value += RangeLinSimpson( NumEl, elementVector,
                                                   >> 383           atomicNumDensityVector, aMass,
                                                   >> 384                                   tau1, tau, nbin);
                                                   >> 385       } else {
                                                   >> 386         Value += RangeLinSimpson( NumEl, elementVector,
                                                   >> 387           atomicNumDensityVector, aMass,
                                                   >> 388           tau1, taulim, maxnbint);
                                                   >> 389         G4double ltaulow  = log(taulim);
                                                   >> 390         G4double ltauhigh = log(tau);
                                                   >> 391         G4int nbin = (G4int)(maxnbint*(ltauhigh-ltaulow)/(ltaumax-ltaulow));
                                                   >> 392         if ( nbin<1 ) nbin = 1;
                                                   >> 393         Value += RangeLogSimpson(NumEl, elementVector,
                                                   >> 394          atomicNumDensityVector, aMass,
                                                   >> 395          ltaulow, ltauhigh, nbin);
                                                   >> 396       }
                                                   >> 397     }
                                                   >> 398     rangeVector->PutValue(i,Value); 
                                                   >> 399     if (rmax < Value) rmax = Value;
                                                   >> 400   }
                                                   >> 401 }
                                                   >> 402 
                                                   >> 403 // **********************************************************************
                                                   >> 404 // ****************** ConvertCutToKineticEnergy *************************
                                                   >> 405 // **********************************************************************
                                                   >> 406 G4double G4VRangeToEnergyConverter::ConvertCutToKineticEnergy(
                                                   >> 407             G4RangeVector* rangeVector,
                                                   >> 408             G4double       theCutInLength, 
                                                   >> 409             size_t         materialIndex
                                                   >> 410                                       ) const
                                                   >> 411 {
                                                   >> 412   const G4double epsilon=0.01;
                                                   >> 413 
                                                   >> 414   //  find max. range and the corresponding energy (rmax,Tmax)
                                                   >> 415   G4double rmax= -1.e10*mm;
                                                   >> 416   G4double Tmax= HighestEnergy;
                                                   >> 417   G4double fac = exp( log(HighestEnergy/LowestEnergy)/TotBin );
                                                   >> 418   G4double T=LowestEnergy/fac;
                                                   >> 419   G4bool isOut;
                                                   >> 420 
                                                   >> 421   for (size_t ibin=0; ibin<size_t(TotBin); ibin++) {
                                                   >> 422     T *= fac;
                                                   >> 423     G4double r=rangeVector->GetValue(T,isOut);
                                                   >> 424     if ( r>rmax )    {
                                                   >> 425        Tmax=T;
                                                   >> 426        rmax=r;
                                                   >> 427     }
                                                   >> 428   }
                                                   >> 429 
                                                   >> 430   // check cut in length is smaller than range max
                                                   >> 431   if ( theCutInLength >= rmax )  {
                                                   >> 432 #ifdef G4VERBOSE
                                                   >> 433     if (GetVerboseLevel()>0) {
                                                   >> 434       G4cout << "G4VRangeToEnergyConverter::ConvertCutToKineticEnergy ";
                                                   >> 435       G4cout << "  for " << theParticle->GetParticleName() << G4endl;
                                                   >> 436       G4cout << "The cut in range [" << theCutInLength/mm << " (mm)]  ";
                                                   >> 437       G4cout << " is too big  " ;
                                                   >> 438       G4cout << " for material  idx=" << materialIndex <<G4endl; 
                                                   >> 439       G4cout << "The cut in energy is set" << DBL_MAX/GeV << "GeV " <<G4endl; 
245     }                                             440     }
246     else                                       << 441 #endif
247     {                                          << 442     return  DBL_MAX;
248       break;                                   << 443   }
                                                   >> 444   
                                                   >> 445   // convert range to energy
                                                   >> 446   G4double T1 = LowestEnergy;
                                                   >> 447   G4double r1 = rangeVector->GetValue(T1,isOut);
                                                   >> 448   if ( theCutInLength <= r1 )
                                                   >> 449   {
                                                   >> 450     return T1;
                                                   >> 451   }
                                                   >> 452 
                                                   >> 453   G4double T2 = Tmax ;
                                                   >> 454   G4double T3 = sqrt(T1*T2);
                                                   >> 455   G4double r3 = rangeVector->GetValue(T3,isOut);
                                                   >> 456   while ( abs(1.-r3/theCutInLength)>epsilon ) {
                                                   >> 457     if ( theCutInLength <= r3 ) {
                                                   >> 458       T2 = T3;
                                                   >> 459     } else {
                                                   >> 460       T1 = T3;
249     }                                             461     }
                                                   >> 462     T3 = sqrt(T1*T2);
                                                   >> 463     r3 = rangeVector->GetValue(T3,isOut);
250   }                                               464   }
251   return LiniearInterpolation(e1, e2, range1,  << 465 
                                                   >> 466   return T3;
252 }                                                 467 }
253                                                   468 
254 // ------------------------------------------- << 
255                                                   469