Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/cuts/src/G4VRangeToEnergyConverter.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/cuts/src/G4VRangeToEnergyConverter.cc (Version 11.3.0) and /processes/cuts/src/G4VRangeToEnergyConverter.cc (Version 10.3.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4VRangeToEnergyConverter class implementat << 
 27 //                                                 26 //
 28 // Author: H.Kurashige, 05 October 2002 - Firs <<  27 // $Id: G4VRangeToEnergyConverter.cc 93090 2015-10-05 13:14:43Z gcosmo $
 29 // ------------------------------------------- <<  28 //
                                                   >>  29 //
                                                   >>  30 // --------------------------------------------------------------
                                                   >>  31 //      GEANT 4 class implementation file/  History:
                                                   >>  32 //    5 Oct. 2002, H.Kuirashige : Structure created based on object model
                                                   >>  33 // --------------------------------------------------------------
 30                                                    34 
 31 #include "G4VRangeToEnergyConverter.hh"            35 #include "G4VRangeToEnergyConverter.hh"
 32 #include "G4ParticleTable.hh"                      36 #include "G4ParticleTable.hh"
 33 #include "G4Element.hh"                        <<  37 #include "G4Material.hh"
                                                   >>  38 #include "G4MaterialTable.hh"
                                                   >>  39 #include "G4PhysicsLogVector.hh"
                                                   >>  40 
                                                   >>  41 #include "G4ios.hh"
 34 #include "G4SystemOfUnits.hh"                      42 #include "G4SystemOfUnits.hh"
 35 #include "G4Log.hh"                            << 
 36 #include "G4Exp.hh"                            << 
 37 #include "G4AutoLock.hh"                       << 
 38                                                    43 
 39 namespace                                      <<  44 G4double  G4VRangeToEnergyConverter::LowestEnergy = 0.99e-3*MeV;
                                                   >>  45 G4double  G4VRangeToEnergyConverter::HighestEnergy = 100.0e6*MeV;
                                                   >>  46 G4double  G4VRangeToEnergyConverter::MaxEnergyCut = 10.0*GeV;
                                                   >>  47 
                                                   >>  48 G4VRangeToEnergyConverter::G4VRangeToEnergyConverter():
                                                   >>  49   theParticle(0), theLossTable(0), NumberOfElements(0), TotBin(300),
                                                   >>  50   verboseLevel(1)
 40 {                                                  51 {
 41   G4Mutex theREMutex = G4MUTEX_INITIALIZER;    <<  52   fMaxEnergyCut = 0.;
 42 }                                                  53 }
 43                                                    54 
 44 G4double G4VRangeToEnergyConverter::sEmin = CL <<  55 G4VRangeToEnergyConverter::G4VRangeToEnergyConverter(const G4VRangeToEnergyConverter& right) :  theParticle(right.theParticle), theLossTable(0), TotBin(right.TotBin)
 45 G4double G4VRangeToEnergyConverter::sEmax = 10 <<  56 {
 46                                                <<  57   fMaxEnergyCut = 0.;
 47 std::vector<G4double>* G4VRangeToEnergyConvert <<  58   if (theLossTable) {
 48                                                <<  59     theLossTable->clearAndDestroy();
 49 G4int G4VRangeToEnergyConverter::sNbinPerDecad <<  60     delete theLossTable;
 50 G4int G4VRangeToEnergyConverter::sNbin = 350;  <<  61     theLossTable=0;
                                                   >>  62   }
                                                   >>  63   *this = right;
                                                   >>  64 }
 51                                                    65 
 52 // ------------------------------------------- <<  66 G4VRangeToEnergyConverter & G4VRangeToEnergyConverter::operator=(const G4VRangeToEnergyConverter &right)
 53 G4VRangeToEnergyConverter::G4VRangeToEnergyCon << 
 54 {                                                  67 {
 55   if(nullptr == sEnergy)                       <<  68   if (this == &right) return *this;
 56   {                                            <<  69   if (theLossTable) {
 57     G4AutoLock l(&theREMutex);                 <<  70     theLossTable->clearAndDestroy();
 58     if(nullptr == sEnergy)                     <<  71     delete theLossTable;
 59     {                                          <<  72     theLossTable=0;
 60       isFirstInstance = true;                  <<  73  }
                                                   >>  74 
                                                   >>  75   fMaxEnergyCut = right.fMaxEnergyCut;
                                                   >>  76   NumberOfElements = right.NumberOfElements;
                                                   >>  77   theParticle = right.theParticle;
                                                   >>  78   verboseLevel = right.verboseLevel;
                                                   >>  79   
                                                   >>  80   // create the loss table
                                                   >>  81   theLossTable = new G4LossTable();
                                                   >>  82   theLossTable->reserve(G4Element::GetNumberOfElements());  
                                                   >>  83   // fill the loss table
                                                   >>  84   for (size_t j=0; j<size_t(NumberOfElements); j++){
                                                   >>  85     G4LossVector* aVector = new G4LossVector(LowestEnergy, MaxEnergyCut, TotBin);
                                                   >>  86     for (size_t i=0; i<=size_t(TotBin); i++) {
                                                   >>  87       G4double Value = (*((*right.theLossTable)[j]))[i];
                                                   >>  88       aVector->PutValue(i,Value);
 61     }                                              89     }
 62     l.unlock();                                <<  90     theLossTable->insert(aVector);
 63   }                                                91   }
 64   // this method defines lock itself           <<  92 
 65   if(isFirstInstance)                          <<  93   // clean up range vector store
 66   {                                            <<  94   for (size_t idx=0; idx<fRangeVectorStore.size(); idx++){
 67     FillEnergyVector(CLHEP::keV, 10.0*CLHEP::G <<  95     delete fRangeVectorStore.at(idx);
                                                   >>  96   }
                                                   >>  97   fRangeVectorStore.clear();
                                                   >>  98 
                                                   >>  99   // copy range vector store
                                                   >> 100   for (size_t j=0; j<((right.fRangeVectorStore).size()); j++){
                                                   >> 101     G4RangeVector* vector = (right.fRangeVectorStore).at(j);
                                                   >> 102     G4RangeVector* rangeVector = 0; 
                                                   >> 103     if (vector !=0 ) {
                                                   >> 104       rangeVector = new G4RangeVector(LowestEnergy, MaxEnergyCut, TotBin);
                                                   >> 105       fMaxEnergyCut = MaxEnergyCut;   
                                                   >> 106       for (size_t i=0; i<=size_t(TotBin); i++) {
                                                   >> 107   G4double Value = (*vector)[i];
                                                   >> 108   rangeVector->PutValue(i,Value);
                                                   >> 109       }
                                                   >> 110     }
                                                   >> 111     fRangeVectorStore.push_back(rangeVector);
 68   }                                               112   }
                                                   >> 113   return *this;
 69 }                                                 114 }
 70                                                   115 
 71 // ------------------------------------------- << 116 
 72 G4VRangeToEnergyConverter::~G4VRangeToEnergyCo    117 G4VRangeToEnergyConverter::~G4VRangeToEnergyConverter()
                                                   >> 118 { 
                                                   >> 119   Reset();
                                                   >> 120   // Comment out Reset() for MT application  
                                                   >> 121 
                                                   >> 122 /////MA  // delete loss table without deleteing vectors  
                                                   >> 123 /////MA  if (theLossTable) {  
                                                   >> 124 /////MA    delete theLossTable;
                                                   >> 125 /////MA  }
                                                   >> 126 /////MA  theLossTable=0;
                                                   >> 127 /////MA  NumberOfElements=0;
                                                   >> 128 /////MA  
                                                   >> 129 /////MA  //clear RangeVectorStore without deleteing vectors
                                                   >> 130 /////MA  fRangeVectorStore.clear();
                                                   >> 131 
                                                   >> 132 }
                                                   >> 133 
                                                   >> 134 G4int G4VRangeToEnergyConverter::operator==(const G4VRangeToEnergyConverter &right) const
 73 {                                                 135 {
 74   if(isFirstInstance)                          << 136   return this == &right;
 75   {                                            << 137 }
 76     delete sEnergy;                            << 138 
 77     sEnergy = nullptr;                         << 139 G4int G4VRangeToEnergyConverter::operator!=(const G4VRangeToEnergyConverter &right) const
 78     sEmin = CLHEP::keV;                        << 140 {
 79     sEmax = 10.*CLHEP::GeV;                    << 141   return this != &right;
 80   }                                            << 
 81 }                                                 142 }
 82                                                   143 
 83 // ------------------------------------------- << 144 
 84 G4double G4VRangeToEnergyConverter::Convert(co << 145 // **********************************************************************
 85                                             co << 146 // ************************* Convert  ***********************************
                                                   >> 147 // **********************************************************************
                                                   >> 148 G4double G4VRangeToEnergyConverter::Convert(G4double rangeCut, 
                                                   >> 149               const G4Material* material) 
 86 {                                                 150 {
 87 #ifdef G4VERBOSE                                  151 #ifdef G4VERBOSE
 88   if (GetVerboseLevel()>3)                     << 152     if (GetVerboseLevel()>3) {
 89   {                                            << 153       G4cout << "G4VRangeToEnergyConverter::Convert() ";
 90     G4cout << "G4VRangeToEnergyConverter::Conv << 154       G4cout << "Convert for " << material->GetName() 
 91     G4cout << "Convert for " << material->GetN << 155        << " with Range Cut " << rangeCut/mm << "[mm]" << G4endl;
 92      << " with Range Cut " << rangeCut/mm << " << 156     }
 93   }                                            << 
 94 #endif                                            157 #endif
 95                                                   158 
 96   G4double cut = 0.0;                          << 159   G4double theKineticEnergyCuts = 0.;
 97   if(fPDG == 22)                               << 
 98   {                                            << 
 99     cut = ConvertForGamma(rangeCut, material); << 
100   }                                            << 
101   else                                         << 
102   {                                            << 
103     cut = ConvertForElectron(rangeCut, materia << 
104                                                   160 
105     const G4double tune = 0.025*CLHEP::mm*CLHE << 161   if (fMaxEnergyCut != MaxEnergyCut) {
106     const G4double lowen = 30.*CLHEP::keV;     << 162     fMaxEnergyCut = MaxEnergyCut;      
107     if(cut < lowen)                            << 163     // clear loss table and renge vectors
108     {                                          << 164     Reset();
109       //  corr. should be switched on smoothly << 165   }
110       cut /= (1.+(1.-cut/lowen)*tune/(rangeCut << 166  
                                                   >> 167   // Build the energy loss table
                                                   >> 168   BuildLossTable();
                                                   >> 169   
                                                   >> 170   // Build range vector for every material, convert cut into energy-cut,
                                                   >> 171   // fill theKineticEnergyCuts and delete the range vector
                                                   >> 172   static const G4double tune = 0.025*mm*g/cm3 ,lowen = 30.*keV ; 
                                                   >> 173 
                                                   >> 174   // check density
                                                   >> 175   G4double density = material->GetDensity() ;
                                                   >> 176   if(density <= 0.) {
                                                   >> 177 #ifdef G4VERBOSE
                                                   >> 178     if (GetVerboseLevel()>0) {
                                                   >> 179       G4cout << "G4VRangeToEnergyConverter::Convert() ";
                                                   >> 180       G4cout << material->GetName() << "has zero density "
                                                   >> 181        << "( " << density << ")" << G4endl;
111     }                                             182     }
                                                   >> 183 #endif
                                                   >> 184     return 0.;
                                                   >> 185   }
                                                   >> 186  
                                                   >> 187    // initialize RangeVectorStore
                                                   >> 188   const G4MaterialTable* table = G4Material::GetMaterialTable();
                                                   >> 189   G4int ext_size = table->size() - fRangeVectorStore.size();
                                                   >> 190   for (int i=0; i<ext_size; i++) fRangeVectorStore.push_back(0);
                                                   >> 191   
                                                   >> 192   // Build Range Vector
                                                   >> 193   G4int idx = material->GetIndex(); 
                                                   >> 194   G4RangeVector* rangeVector = fRangeVectorStore.at(idx);
                                                   >> 195   if (rangeVector == 0) {
                                                   >> 196     rangeVector = new G4RangeVector(LowestEnergy, MaxEnergyCut, TotBin); 
                                                   >> 197     BuildRangeVector(material, rangeVector);
                                                   >> 198     fRangeVectorStore.at(idx) = rangeVector;
112   }                                               199   }
113                                                   200 
114   cut = std::max(sEmin, std::min(cut, sEmax)); << 201   // Convert Range Cut ro Kinetic Energy Cut 
115   return cut;                                  << 202   theKineticEnergyCuts = ConvertCutToKineticEnergy(rangeVector, rangeCut, idx);
                                                   >> 203   
                                                   >> 204   if( ((theParticle->GetParticleName()=="e-")||(theParticle->GetParticleName()=="e+"))
                                                   >> 205       && (theKineticEnergyCuts < lowen) ) {
                                                   >> 206     //  corr. should be switched on smoothly   
                                                   >> 207     theKineticEnergyCuts /= (1.+(1.-theKineticEnergyCuts/lowen)*
                                                   >> 208            tune/(rangeCut*density)); 
                                                   >> 209   }
                                                   >> 210   
                                                   >> 211   if(theKineticEnergyCuts < LowestEnergy) {
                                                   >> 212     theKineticEnergyCuts = LowestEnergy ;
                                                   >> 213   } else if(theKineticEnergyCuts > MaxEnergyCut) {
                                                   >> 214     theKineticEnergyCuts = MaxEnergyCut;
                                                   >> 215   }
                                                   >> 216   
                                                   >> 217   return theKineticEnergyCuts;
116 }                                                 218 }
117                                                   219 
118 // ------------------------------------------- << 220 // **********************************************************************
119 void G4VRangeToEnergyConverter::SetEnergyRange << 221 // ************************ SetEnergyRange  *****************************
120                                                << 222 // **********************************************************************
                                                   >> 223 void G4VRangeToEnergyConverter::SetEnergyRange(G4double lowedge, 
                                                   >> 224                  G4double highedge)
121 {                                                 225 {
122   G4double ehigh = std::min(10.*CLHEP::GeV, hi << 226   // check LowestEnergy/ HighestEnergy 
123   if(ehigh > lowedge)                          << 227   if ( (lowedge<0.0)||(highedge<=lowedge) ){
124   {                                            << 228 #ifdef G4VERBOSE
125     FillEnergyVector(lowedge, ehigh);          << 229     G4cerr << "Error in G4VRangeToEnergyConverter::SetEnergyRange";
126   }                                            << 230     G4cerr << " :  illegal energy range" << "(" << lowedge/GeV;
                                                   >> 231     G4cerr << "," << highedge/GeV << ") [GeV]" << G4endl;
                                                   >> 232 #endif
                                                   >> 233     G4Exception( "G4VRangeToEnergyConverter::SetEnergyRange()",
                                                   >> 234      "ProcCuts101",
                                                   >> 235      JustWarning, "Illegal energy range ");
                                                   >> 236   } else {
                                                   >> 237     LowestEnergy = lowedge;
                                                   >> 238     HighestEnergy = highedge;
                                                   >> 239   }
127 }                                                 240 }
128                                                   241 
129 // ------------------------------------------- << 242 
130 G4double G4VRangeToEnergyConverter::GetLowEdge    243 G4double G4VRangeToEnergyConverter::GetLowEdgeEnergy()
131 {                                                 244 {
132   return sEmin;                                << 245   return LowestEnergy;
133 }                                                 246 }
134                                                   247     
135 // ------------------------------------------- << 248 
136 G4double G4VRangeToEnergyConverter::GetHighEdg    249 G4double G4VRangeToEnergyConverter::GetHighEdgeEnergy()
137 {                                                 250 {
138   return sEmax;                                << 251   return HighestEnergy;
139 }                                                 252 }
140                                                   253 
141 // ------------------------------------------- << 254 // **********************************************************************
142                                                << 255 // ******************* Get/SetMaxEnergyCut  *****************************
                                                   >> 256 // **********************************************************************
143 G4double G4VRangeToEnergyConverter::GetMaxEner    257 G4double G4VRangeToEnergyConverter::GetMaxEnergyCut()
144 {                                                 258 {
145   return sEmax;                                << 259   return MaxEnergyCut;
146 }                                                 260 }
147                                                   261 
148 // ------------------------------------------- << 262 void G4VRangeToEnergyConverter::SetMaxEnergyCut(G4double value)
149 void G4VRangeToEnergyConverter::SetMaxEnergyCu << 
150 {                                                 263 {
151   G4double ehigh = std::min(10.*CLHEP::GeV, va << 264   MaxEnergyCut = value;
152   if(ehigh > sEmin)                            << 
153   {                                            << 
154     FillEnergyVector(sEmin, ehigh);            << 
155   }                                            << 
156 }                                                 265 }
157                                                   266 
158 // ------------------------------------------- << 267 // **********************************************************************
159 void G4VRangeToEnergyConverter::FillEnergyVect << 268 // ************************ Reset  **************************************
160                                                << 269 // **********************************************************************
161 {                                              << 270 void G4VRangeToEnergyConverter::Reset()
162   if(emin != sEmin || emax != sEmax || nullptr << 271 {
163   {                                            << 272   // delete loss table
164     sEmin = emin;                              << 273   if (theLossTable) {  
165     sEmax = emax;                              << 274     theLossTable->clearAndDestroy();
166     sNbin = sNbinPerDecade*G4lrint(std::log10( << 275     delete theLossTable;
167     if(nullptr == sEnergy) { sEnergy = new std << 276   }
168     sEnergy->resize(sNbin + 1);                << 277   theLossTable=0;
169     (*sEnergy)[0] = emin;                      << 278   NumberOfElements=0;
170     (*sEnergy)[sNbin] = emax;                  << 279   
171     G4double fact = G4Log(emax/emin)/sNbin;    << 280   //clear RangeVectorStore
172     for(G4int i=1; i<sNbin; ++i) { (*sEnergy)[ << 281   for (size_t idx=0; idx<fRangeVectorStore.size(); idx++){
                                                   >> 282     delete fRangeVectorStore.at(idx);
                                                   >> 283   }
                                                   >> 284   fRangeVectorStore.clear();
                                                   >> 285 } 
                                                   >> 286 
                                                   >> 287 
                                                   >> 288 // **********************************************************************
                                                   >> 289 // ************************ BuildLossTable ******************************
                                                   >> 290 // **********************************************************************
                                                   >> 291 //   create Energy Loss Table for charged particles 
                                                   >> 292 //   (cross section tabel for neutral )
                                                   >> 293 void G4VRangeToEnergyConverter::BuildLossTable()
                                                   >> 294 {
                                                   >> 295   if (size_t(NumberOfElements) == G4Element::GetNumberOfElements()) return;
                                                   >> 296   
                                                   >> 297   // clear Loss table and Range vectors
                                                   >> 298   Reset();
                                                   >> 299 
                                                   >> 300   //  Build dE/dx tables for elements
                                                   >> 301   NumberOfElements = G4Element::GetNumberOfElements();
                                                   >> 302   theLossTable = new G4LossTable();
                                                   >> 303   theLossTable->reserve(G4Element::GetNumberOfElements());
                                                   >> 304 #ifdef G4VERBOSE
                                                   >> 305   if (GetVerboseLevel()>3) {
                                                   >> 306     G4cout << "G4VRangeToEnergyConverter::BuildLossTable() ";
                                                   >> 307     G4cout << "Create theLossTable[" << theLossTable << "]";
                                                   >> 308     G4cout << " NumberOfElements=" << NumberOfElements <<G4endl;
                                                   >> 309   }
                                                   >> 310 #endif
                                                   >> 311   
                                                   >> 312   
                                                   >> 313   // fill the loss table
                                                   >> 314   for (size_t j=0; j<size_t(NumberOfElements); j++){
                                                   >> 315     G4double Value;
                                                   >> 316     G4LossVector* aVector= 0;
                                                   >> 317     aVector= new G4LossVector(LowestEnergy, MaxEnergyCut, TotBin);
                                                   >> 318     for (size_t i=0; i<=size_t(TotBin); i++) {
                                                   >> 319       Value = ComputeLoss(  (*G4Element::GetElementTable())[j]->GetZ(),
                                                   >> 320           aVector->Energy(i)
                                                   >> 321           );
                                                   >> 322       aVector->PutValue(i,Value);
                                                   >> 323     }
                                                   >> 324     theLossTable->insert(aVector);
173   }                                               325   }
174 }                                                 326 }
175                                                   327 
176 // ------------------------------------------- << 328 // **********************************************************************
177 G4double                                       << 329 // ************************ BuildRangeVector ****************************
178 G4VRangeToEnergyConverter::ConvertForGamma(con << 330 // **********************************************************************
179                                            con << 331 void G4VRangeToEnergyConverter::BuildRangeVector(const G4Material* aMaterial,
180 {                                              << 332                G4PhysicsLogVector* rangeVector)
181   const G4ElementVector* elm = material->GetEl << 333 {
182   const G4double* dens = material->GetAtomicNu << 334   //  create range vector for a material
183                                                << 335   const G4ElementVector* elementVector = aMaterial->GetElementVector();
184   // fill absorption length vector             << 336   const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector();
185   G4int nelm = (G4int)material->GetNumberOfEle << 337   G4int NumEl = aMaterial->GetNumberOfElements();
186   G4double range1 = 0.0;                       << 338 
187   G4double range2 = 0.0;                       << 339   // calculate parameters of the low energy part first
188   G4double e1 = 0.0;                           << 340   size_t i;
189   G4double e2 = 0.0;                           << 341   std::vector<G4double> lossV;
190   for (G4int i=0; i<sNbin; ++i)                << 342   for ( size_t ib=0; ib<=size_t(TotBin); ib++) {
191   {                                            << 343     G4double loss=0.;
192     e2 = (*sEnergy)[i];                        << 344     for (i=0; i<size_t(NumEl); i++) {
193     G4double sig = 0.;                         << 345       G4int IndEl = (*elementVector)[i]->GetIndex();
                                                   >> 346       loss += atomicNumDensityVector[i]*
                                                   >> 347           (*((*theLossTable)[IndEl]))[ib];
                                                   >> 348     }
                                                   >> 349     lossV.push_back(loss);
                                                   >> 350   }
                                                   >> 351    
                                                   >> 352   // Integrate with Simpson formula with logarithmic binning
                                                   >> 353   G4double dltau = 1.0;
                                                   >> 354   if (LowestEnergy>0.) {
                                                   >> 355       G4double ltt =std::log(MaxEnergyCut/LowestEnergy);
                                                   >> 356       dltau = ltt/TotBin;
                                                   >> 357   }
                                                   >> 358 
                                                   >> 359   G4double s0 = 0.;
                                                   >> 360   G4double Value;
                                                   >> 361   for ( i=0; i<=size_t(TotBin); i++) {
                                                   >> 362     G4double t = rangeVector->GetLowEdgeEnergy(i);
                                                   >> 363     G4double q = t/lossV[i];
                                                   >> 364     if (i==0) s0 += 0.5*q;
                                                   >> 365     else s0 += q;
194                                                   366     
195     for (G4int j=0; j<nelm; ++j)               << 367     if (i==0) {
196     {                                          << 368        Value = (s0 + 0.5*q)*dltau ;
197       sig += dens[j]*ComputeValue((*elm)[j]->G << 369     } else {
198     }                                          << 370       Value = (s0 - 0.5*q)*dltau ;
199     range2 = (sig > 0.0) ? 5./sig : DBL_MAX;   << 
200     if(i == 0 || range2 < rangeCut)            << 
201     {                                          << 
202       e1 = e2;                                 << 
203       range1 = range2;                         << 
204     }                                             371     }
205     else                                       << 372     rangeVector->PutValue(i,Value);
206     {                                          << 373   }
                                                   >> 374 } 
                                                   >> 375 
                                                   >> 376 // **********************************************************************
                                                   >> 377 // ****************** ConvertCutToKineticEnergy *************************
                                                   >> 378 // **********************************************************************
                                                   >> 379 G4double G4VRangeToEnergyConverter::ConvertCutToKineticEnergy(
                                                   >> 380             G4RangeVector* rangeVector,
                                                   >> 381             G4double       theCutInLength, 
                                                   >> 382 #ifdef G4VERBOSE
                                                   >> 383             size_t         materialIndex
                                                   >> 384 #else
                                                   >> 385                                     size_t
                                                   >> 386 #endif
                                                   >> 387                                       ) const
                                                   >> 388 {
                                                   >> 389   const G4double epsilon=0.01;
                                                   >> 390 
                                                   >> 391   //  find max. range and the corresponding energy (rmax,Tmax)
                                                   >> 392   G4double rmax= -1.e10*mm;
                                                   >> 393 
                                                   >> 394   G4double T1 = LowestEnergy;
                                                   >> 395   G4double r1 =(*rangeVector)[0] ;
                                                   >> 396 
                                                   >> 397   G4double T2 = MaxEnergyCut;
                                                   >> 398 
                                                   >> 399   // check theCutInLength < r1 
                                                   >> 400   if ( theCutInLength <= r1 ) {  return T1; }
                                                   >> 401 
                                                   >> 402   // scan range vector to find nearest bin 
                                                   >> 403   // ( suppose that r(Ti) > r(Tj) if Ti >Tj )
                                                   >> 404   for (size_t ibin=0; ibin<=size_t(TotBin); ibin++) {
                                                   >> 405     G4double T=rangeVector->GetLowEdgeEnergy(ibin);
                                                   >> 406     G4double r=(*rangeVector)[ibin];
                                                   >> 407     if ( r>rmax )   rmax=r;
                                                   >> 408     if (r <theCutInLength ) {
                                                   >> 409       T1 = T;
                                                   >> 410       r1 = r;
                                                   >> 411     } else if (r >theCutInLength ) {
                                                   >> 412       T2 = T;
207       break;                                      413       break;
208     }                                             414     }
209   }                                               415   }
210   return LiniearInterpolation(e1, e2, range1,  << 
211 }                                              << 
212                                                   416 
213 // ------------------------------------------- << 417   // check cut in length is smaller than range max
214 G4double                                       << 418   if ( theCutInLength >= rmax )  {
215 G4VRangeToEnergyConverter::ConvertForElectron( << 419 #ifdef G4VERBOSE
216                                                << 420     if (GetVerboseLevel()>2) {
217 {                                              << 421       G4cout << "G4VRangeToEnergyConverter::ConvertCutToKineticEnergy ";
218   const G4ElementVector* elm = material->GetEl << 422       G4cout << "  for " << theParticle->GetParticleName() << G4endl;
219   const G4double* dens = material->GetAtomicNu << 423       G4cout << "The cut in range [" << theCutInLength/mm << " (mm)]  ";
220                                                << 424       G4cout << " is too big  " ;
221   // fill absorption length vector             << 425       G4cout << " for material  idx=" << materialIndex <<G4endl; 
222   G4int nelm = (G4int)material->GetNumberOfEle << 
223   G4double dedx1 = 0.0;                        << 
224   G4double dedx2 = 0.0;                        << 
225   G4double range1 = 0.0;                       << 
226   G4double range2 = 0.0;                       << 
227   G4double e1 = 0.0;                           << 
228   G4double e2 = 0.0;                           << 
229   G4double range = 0.;                         << 
230   for (G4int i=0; i<sNbin; ++i)                << 
231   {                                            << 
232     e2 = (*sEnergy)[i];                        << 
233     dedx2 = 0.0;                               << 
234     for (G4int j=0; j<nelm; ++j)               << 
235     {                                          << 
236       dedx2 += dens[j]*ComputeValue((*elm)[j]- << 
237     }                                          << 
238     range += (dedx1 + dedx2 > 0.0) ? 2*(e2 - e << 
239     range2 = range;                            << 
240     if(range2 < rangeCut)                      << 
241     {                                          << 
242       e1 = e2;                                 << 
243       dedx1 = dedx2;                           << 
244       range1 = range2;                         << 
245     }                                             426     }
246     else                                       << 427 #endif
247     {                                          << 428     return  MaxEnergyCut;
248       break;                                   << 429   }
                                                   >> 430   
                                                   >> 431   // convert range to energy
                                                   >> 432   G4double T3 = std::sqrt(T1*T2);
                                                   >> 433   G4double r3 = rangeVector->Value(T3);
                                                   >> 434   const size_t MAX_LOOP = 1000; 
                                                   >> 435   for (size_t loop_count=0; loop_count<MAX_LOOP; ++loop_count){
                                                   >> 436     if (std::fabs(1.-r3/theCutInLength)<epsilon ) break;
                                                   >> 437     if ( theCutInLength <= r3 ) {
                                                   >> 438       T2 = T3;
                                                   >> 439     } else {
                                                   >> 440       T1 = T3;
249     }                                             441     }
                                                   >> 442     T3 = std::sqrt(T1*T2);
                                                   >> 443     r3 = rangeVector->Value(T3);
250   }                                               444   }
251   return LiniearInterpolation(e1, e2, range1,  << 445 
                                                   >> 446   return T3;
252 }                                                 447 }
253                                                   448 
254 // ------------------------------------------- << 
255                                                   449