Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ProductionCutsTable << 27 // 26 // 28 // Class description: << 27 // $Id: G4ProductionCutsTable.hh,v 1.9.2.1 2010/01/26 13:56:43 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02-patch-03 $ 29 // 29 // 30 // G4ProductionCutsTable is a singleton class << 30 // 31 // G4ProductionCuts objects. This class manage << 31 // ------------------------------------------------------------ 32 // cuts and energy cuts for each particle type << 32 // GEANT 4 class header file 33 << 33 // 34 // Author: M.Asai, 5 October 2002 - First impl << 34 // Class Description 35 // Modifications: H.Kurashige, 2004-2008 << 35 // G4ProductionCutsTable is a static singleton class of a table of 36 // ------------------------------------------- << 36 // G4ProductionCuts objects. This class also manages tables of 37 #ifndef G4ProductionCutsTable_hh << 37 // production cut and energy cut for each particle type. 38 #define G4ProductionCutsTable_hh 1 << 38 // >> 39 // ------------------------------------------------------------ >> 40 // First Implementation 05 Oct. 2002 M.Asai >> 41 // >> 42 // Modified 03 Feb 2004 H.Kurashige >> 43 // Modify RetrieveCutsTable to allow ordering of materials and >> 44 // couples can be different from one in file (i.e. at storing) >> 45 // Modified 20 Aug. 2004 H.Kurashige >> 46 // Modify RetrieveCutsTable to allow materials and >> 47 // couples can be different from one in file (i.e. at storing) >> 48 // Modified 2 Mar. 2008 H.Kurashige >> 49 // add messenger >> 50 // ------------------------------------------------------------ 39 51 40 #include <cmath> << 52 #ifndef G4ProductionCutsTable_h 41 #include <vector> << 53 #define G4ProductionCutsTable_h 1 42 << 43 #include "globals.hh" << 44 #include "G4ios.hh" << 45 #include "G4MaterialCutsCouple.hh" << 46 #include "G4MCCIndexConversionTable.hh" << 47 #include "G4Region.hh" << 48 54 49 class G4RegionStore; 55 class G4RegionStore; 50 class G4VRangeToEnergyConverter; 56 class G4VRangeToEnergyConverter; 51 class G4LogicalVolume; 57 class G4LogicalVolume; 52 class G4VPhysicalVolume; 58 class G4VPhysicalVolume; 53 class G4ProductionCuts; 59 class G4ProductionCuts; >> 60 54 class G4ProductionCutsTableMessenger; 61 class G4ProductionCutsTableMessenger; 55 62 >> 63 #include "globals.hh" >> 64 #include <cmath> >> 65 #include "G4ios.hh" >> 66 #include <vector> >> 67 #include "G4MaterialCutsCouple.hh" >> 68 #include "G4MCCIndexConversionTable.hh" >> 69 #include "G4Region.hh" >> 70 >> 71 56 class G4ProductionCutsTable 72 class G4ProductionCutsTable 57 { 73 { 58 public: << 74 public: // with description 59 << 60 static G4ProductionCutsTable* GetProductio 75 static G4ProductionCutsTable* GetProductionCutsTable(); 61 // This static method returns the single << 76 // This static method returns the singleton pointer of this class object. 62 // At first invocation, the singleton ob << 77 // At the first invokation of this method, the singleton object is instantiated. 63 78 64 G4ProductionCutsTable(const G4ProductionCu << 79 protected: 65 G4ProductionCutsTable& operator=(const G4P << 80 G4ProductionCutsTable(); >> 81 private: >> 82 G4ProductionCutsTable(const G4ProductionCutsTable& right); 66 83 >> 84 public: 67 virtual ~G4ProductionCutsTable(); 85 virtual ~G4ProductionCutsTable(); 68 86 69 void CreateCoupleTables(); << 87 public: // with description 70 // Creates material cuts couples table a << 71 << 72 void UpdateCoupleTable(G4VPhysicalVolume* 88 void UpdateCoupleTable(G4VPhysicalVolume* currentWorld); 73 // Triggers an update of the table of G4 << 89 // This method triggers an update of the table of G4ProductionCuts objects. 74 90 75 void SetEnergyRange(G4double lowedge, G4do 91 void SetEnergyRange(G4double lowedge, G4double highedge); 76 // Sets the limits of energy cuts for al << 92 // This method sets the limits of energy cuts for all particles. 77 93 78 G4double GetLowEdgeEnergy() const; 94 G4double GetLowEdgeEnergy() const; 79 G4double GetHighEdgeEnergy() const; 95 G4double GetHighEdgeEnergy() const; 80 // Get the limits of energy cuts for all << 96 // These methods get the limits of energy cuts for all particles. 81 97 82 G4double GetMaxEnergyCut(); << 83 void SetMaxEnergyCut(G4double value); << 84 // Get/set max cut energy of RangeToEner << 85 // for all particle types << 86 98 87 void DumpCouples() const; 99 void DumpCouples() const; 88 // Displays a list of registered couples << 100 // Display a list of registored couples 89 101 90 const G4MCCIndexConversionTable* GetMCCInd 102 const G4MCCIndexConversionTable* GetMCCIndexConversionTable() const; 91 // Gives the pointer to the MCCIndexConv << 103 // gives the pointer to the MCCIndexConversionTable 92 104 93 const std::vector<G4double>* GetRangeCutsV << 105 private: 94 const std::vector<G4double>* GetEnergyCuts << 95 << 96 std::size_t GetTableSize() const; << 97 // Returns the size of the couple table << 98 106 99 const G4MaterialCutsCouple* GetMaterialCut << 107 static G4ProductionCutsTable* fG4ProductionCutsTable; 100 // Returns the pointer to the couple << 101 108 102 const G4MaterialCutsCouple* GetMaterialCut << 109 typedef std::vector<G4MaterialCutsCouple*> G4CoupleTable; 103 co << 110 typedef std::vector<G4MaterialCutsCouple*>::const_iterator CoupleTableIterator; 104 // Returns the pointer to the couple << 111 typedef std::vector<G4double> G4CutVectorForAParticle; 105 << 112 typedef std::vector<G4CutVectorForAParticle*> G4CutTable; 106 G4int GetCoupleIndex(const G4MaterialCutsC << 113 G4CoupleTable coupleTable; 107 G4int GetCoupleIndex(const G4Material* aMa << 114 G4CutTable rangeCutTable; 108 const G4ProductionCut << 115 G4CutTable energyCutTable; 109 // Return the index of the couple. << 116 110 // -1 is returned if index is not found << 117 G4RegionStore* fG4RegionStore; >> 118 G4VRangeToEnergyConverter* converters[NumberOfG4CutIndex]; >> 119 >> 120 G4ProductionCuts* defaultProductionCuts; >> 121 >> 122 G4MCCIndexConversionTable mccConversionTable; >> 123 >> 124 // These two vectors are for the backward comparibility >> 125 G4double* rangeDoubleVector[NumberOfG4CutIndex]; >> 126 G4double* energyDoubleVector[NumberOfG4CutIndex]; >> 127 >> 128 public: >> 129 const std::vector<G4double>* GetRangeCutsVector(size_t pcIdx) const; >> 130 const std::vector<G4double>* GetEnergyCutsVector(size_t pcIdx) const; >> 131 >> 132 // These two vectors are for the backward comparibility >> 133 G4double* GetRangeCutsDoubleVector(size_t pcIdx) const; >> 134 G4double* GetEnergyCutsDoubleVector(size_t pcIdx) const; >> 135 >> 136 public: // with description >> 137 size_t GetTableSize() const; >> 138 // This method returns the size of the couple table. >> 139 >> 140 const G4MaterialCutsCouple* GetMaterialCutsCouple(G4int i) const; >> 141 // This method returns the pointer to the couple. >> 142 >> 143 const G4MaterialCutsCouple* >> 144 GetMaterialCutsCouple(const G4Material* aMat, >> 145 const G4ProductionCuts* aCut) const; >> 146 // This method returns the pointer to the couple. >> 147 >> 148 G4int GetCoupleIndex(const G4MaterialCutsCouple* aCouple) const; >> 149 G4int GetCoupleIndex(const G4Material* aMat, >> 150 const G4ProductionCuts* aCut) const; >> 151 // These methods return the index of the couple. >> 152 // -1 is returned if index is not found. 111 153 112 G4bool IsModified() const; << 154 G4bool IsModified() const; 113 // Returns TRUE if at least one producti << 155 // This method returns TRUE if at least one production cut value is modified. 114 156 115 void PhysicsTableUpdated(); << 157 void PhysicsTableUpdated(); 116 // Resets the status of IsModified(). Th << 158 // This method resets the status of IsModified(). This method must 117 // used by the RunManager when physics t << 159 // be exclusively used by RunManager when physics tables are built. 118 160 119 G4ProductionCuts* GetDefaultProductionCuts << 161 G4ProductionCuts* GetDefaultProductionCuts() const; 120 // Returns the default production cuts << 162 // This method returns the default production cuts. 121 163 122 G4double ConvertRangeToEnergy(const G4Part << 164 G4double ConvertRangeToEnergy(const G4ParticleDefinition* particle, 123 const G4Mate << 165 const G4Material* material, 124 G4doub << 166 G4double range ); 125 // Gives energy corresponding to range v << 167 // This method gives energy corresponding to range value 126 // -1 is returned if particle or materia << 168 // >> 169 // -1 is returned if particle or material is not found. 127 170 128 void ResetConverters(); 171 void ResetConverters(); 129 // Resets all range to energy converters << 172 // reset all Range To Energy Converters 130 << 173 131 G4bool StoreCutsTable(const G4String& dire << 132 G4bool ascii = false << 133 // Stores cuts and material information << 134 // the specified directory << 135 << 136 G4bool RetrieveCutsTable(const G4String& d << 137 G4bool ascii = fa << 138 // Retrieve material cut couple informat << 139 // in files under the specified director << 140 << 141 G4bool CheckForRetrieveCutsTable(const G4S << 142 G4bool as << 143 // Checks stored material and cut values << 144 // with the current detector setup << 145 << 146 G4double* GetRangeCutsDoubleVector(std::si << 147 G4double* GetEnergyCutsDoubleVector(std::s << 148 // Methods for backward compatibility << 149 << 150 void SetEnergyCutVector(const std::vector< << 151 // User defined cut vectors (idx < 4) ra << 152 // to avoid inconsistency in physics << 153 << 154 void SetVerboseLevel(G4int value); << 155 G4int GetVerboseLevel() const; << 156 // Control flag for output message << 157 // 0: Silent << 158 // 1: Warning message << 159 // 2: More << 160 << 161 protected: << 162 << 163 G4ProductionCutsTable(); << 164 << 165 virtual G4bool StoreMaterialInfo(const G4S << 166 G4bool as << 167 // Stores material information in files << 168 << 169 virtual G4bool CheckMaterialInfo(const G4S << 170 G4bool as << 171 // Checks stored material is consistent << 172 << 173 virtual G4bool StoreMaterialCutsCoupleInfo << 174 << 175 // Stores materialCutsCouple information << 176 // specified directory << 177 << 178 virtual G4bool CheckMaterialCutsCoupleInfo << 179 << 180 // Checks stored materialCutsCouple is c << 181 // the current detector setup << 182 << 183 virtual G4bool StoreCutsInfo(const G4Strin << 184 G4bool ascii << 185 // Stores cut values information in file << 186 << 187 virtual G4bool RetrieveCutsInfo(const G4S << 188 G4bool as << 189 // Retrieves cut values information in f << 190 // specified directory << 191 << 192 private: 174 private: 193 << 194 void ScanAndSetCouple(G4LogicalVolume* aLV 175 void ScanAndSetCouple(G4LogicalVolume* aLV, 195 G4MaterialCutsCouple << 176 G4MaterialCutsCouple* aCouple, 196 G4Region* aRegion); << 177 G4Region* aRegion); 197 << 198 G4bool IsCoupleUsedInTheRegion(const G4Mat << 199 const G4Reg << 200 178 >> 179 bool IsCoupleUsedInTheRegion(const G4MaterialCutsCouple* aCouple, >> 180 const G4Region* aRegion) const; 201 181 202 private: << 182 public: // with description 203 << 183 // Store cuts and material information in files under the specified directory. 204 static G4ProductionCutsTable* fProductionC << 184 G4bool StoreCutsTable(const G4String& directory, 205 << 185 G4bool ascii = false); 206 std::vector<G4MaterialCutsCouple*> coupleT << 186 207 std::vector<std::vector<G4double>*> rangeC << 187 // Retrieve material cut couple information 208 std::vector<std::vector<G4double>*> energy << 188 // in files under the specified directory. 209 << 189 G4bool RetrieveCutsTable(const G4String& directory, 210 std::vector<G4double>* userEnergyCuts[4] = << 190 G4bool ascii = false); >> 191 >> 192 // check stored material and cut values are consistent with the current detector setup. >> 193 G4bool CheckForRetrieveCutsTable(const G4String& directory, >> 194 G4bool ascii = false); 211 195 212 G4RegionStore* fG4RegionStore = nullptr; << 196 protected: 213 G4VRangeToEnergyConverter* converters[Numb << 214 197 215 G4ProductionCuts* defaultProductionCuts = << 198 // Store material information in files under the specified directory. >> 199 virtual G4bool StoreMaterialInfo(const G4String& directory, >> 200 G4bool ascii = false); >> 201 >> 202 // check stored material is consistent with the current detector setup. >> 203 virtual G4bool CheckMaterialInfo(const G4String& directory, >> 204 G4bool ascii = false); >> 205 >> 206 // Store materialCutsCouple information in files under the specified directory. >> 207 virtual G4bool StoreMaterialCutsCoupleInfo(const G4String& directory, >> 208 G4bool ascii = false); >> 209 >> 210 // check stored materialCutsCouple is consistent with the current detector setup. >> 211 virtual G4bool CheckMaterialCutsCoupleInfo(const G4String& directory, >> 212 G4bool ascii = false); >> 213 >> 214 // Store cut values information in files under the specified directory. >> 215 virtual G4bool StoreCutsInfo(const G4String& directory, >> 216 G4bool ascii = false); >> 217 >> 218 // Retrieve cut values information in files under the specified directory. >> 219 virtual G4bool RetrieveCutsInfo(const G4String& directory, >> 220 G4bool ascii = false); 216 221 217 G4MCCIndexConversionTable mccConversionTab << 222 private: >> 223 G4bool firstUse; >> 224 enum { FixedStringLengthForStore = 32 }; 218 225 219 // These two vectors are for backward comp << 226 public: // with description 220 G4double* rangeDoubleVector[NumberOfG4CutI << 227 void SetVerboseLevel(G4int value); 221 G4double* energyDoubleVector[NumberOfG4Cut << 228 G4int GetVerboseLevel() const; >> 229 // controle flag for output message >> 230 // 0: Silent >> 231 // 1: Warning message >> 232 // 2: More 222 233 223 enum { FixedStringLengthForStore = 32 }; << 234 private: >> 235 G4int verboseLevel; >> 236 G4ProductionCutsTableMessenger* fMessenger; 224 237 225 G4ProductionCutsTableMessenger* fMessenger << 226 G4int verboseLevel = 1; << 227 G4bool firstUse = true; << 228 }; 238 }; 229 239 230 // ------------------ << 231 // Inline methods << 232 // ------------------ << 233 << 234 inline 240 inline 235 const std::vector<G4double>* << 241 const std::vector<G4double>* G4ProductionCutsTable::GetRangeCutsVector(size_t pcIdx) const 236 G4ProductionCutsTable::GetRangeCutsVector(std: << 237 { 242 { 238 return rangeCutTable[pcIdx]; 243 return rangeCutTable[pcIdx]; 239 } 244 } 240 245 241 inline 246 inline 242 const std::vector<G4double>* << 247 const std::vector<G4double>* G4ProductionCutsTable::GetEnergyCutsVector(size_t pcIdx) const 243 G4ProductionCutsTable::GetEnergyCutsVector(std << 244 { 248 { 245 return energyCutTable[pcIdx]; << 249 return energyCutTable[pcIdx]; 246 } 250 } 247 251 248 inline 252 inline 249 std::size_t G4ProductionCutsTable::GetTableSiz << 253 size_t G4ProductionCutsTable::GetTableSize() const 250 { 254 { 251 return coupleTable.size(); 255 return coupleTable.size(); 252 } 256 } 253 257 254 inline 258 inline 255 const G4MaterialCutsCouple* << 259 const G4MaterialCutsCouple* G4ProductionCutsTable::GetMaterialCutsCouple(G4int i) const 256 G4ProductionCutsTable::GetMaterialCutsCouple(G << 257 { 260 { 258 return coupleTable[std::size_t(i)]; << 261 return coupleTable[size_t(i)]; 259 } 262 } 260 263 261 inline 264 inline 262 G4bool G4ProductionCutsTable::IsModified() con << 265 G4bool G4ProductionCutsTable::IsModified() const 263 { 266 { 264 if(firstUse) return true; 267 if(firstUse) return true; 265 for(auto itr=coupleTable.cbegin(); itr!=coup << 268 for(G4ProductionCutsTable::CoupleTableIterator itr=coupleTable.begin(); 266 { << 269 itr!=coupleTable.end();itr++){ 267 if((*itr)->IsRecalcNeeded()) 270 if((*itr)->IsRecalcNeeded()) 268 { 271 { 269 return true; 272 return true; 270 } 273 } 271 } 274 } 272 return false; 275 return false; 273 } 276 } 274 277 275 inline 278 inline 276 void G4ProductionCutsTable::PhysicsTableUpdate << 279 void G4ProductionCutsTable::PhysicsTableUpdated() 277 { 280 { 278 for(auto itr=coupleTable.cbegin(); itr!=coup << 281 for(G4ProductionCutsTable::CoupleTableIterator itr=coupleTable.begin();itr!=coupleTable.end();itr++){ 279 { << 280 (*itr)->PhysicsTableUpdated(); 282 (*itr)->PhysicsTableUpdated(); 281 } 283 } 282 } 284 } 283 285 284 inline 286 inline 285 G4double* << 287 G4double* G4ProductionCutsTable::GetRangeCutsDoubleVector(size_t pcIdx) const 286 G4ProductionCutsTable::GetRangeCutsDoubleVecto << 288 { return rangeDoubleVector[pcIdx]; } 287 { << 288 return rangeDoubleVector[pcIdx]; << 289 } << 290 289 291 inline 290 inline 292 G4double* << 291 G4double* G4ProductionCutsTable::GetEnergyCutsDoubleVector(size_t pcIdx) const 293 G4ProductionCutsTable::GetEnergyCutsDoubleVect << 292 { return energyDoubleVector[pcIdx]; } 294 { << 295 return energyDoubleVector[pcIdx]; << 296 } << 297 293 298 inline 294 inline 299 G4ProductionCuts* G4ProductionCutsTable::GetDe << 295 G4ProductionCuts* G4ProductionCutsTable::GetDefaultProductionCuts() const 300 { << 296 { return defaultProductionCuts; } 301 return defaultProductionCuts; << 302 } << 303 297 304 inline 298 inline 305 G4bool G4ProductionCutsTable::IsCoupleUsedInTh << 299 bool G4ProductionCutsTable::IsCoupleUsedInTheRegion( 306 const G4Mater 300 const G4MaterialCutsCouple* aCouple, 307 const G4Regio 301 const G4Region* aRegion) const 308 { 302 { 309 G4ProductionCuts* fProductionCut = aRegion-> 303 G4ProductionCuts* fProductionCut = aRegion->GetProductionCuts(); 310 auto mItr = aRegion->GetMaterialIterator(); << 304 std::vector<G4Material*>::const_iterator mItr = aRegion->GetMaterialIterator(); 311 std::size_t nMaterial = aRegion->GetNumberOf << 305 size_t nMaterial = aRegion->GetNumberOfMaterials(); 312 for(std::size_t iMate=0;iMate<nMaterial; ++i << 306 for(size_t iMate=0;iMate<nMaterial;iMate++, mItr++){ 313 { << 314 if(aCouple->GetMaterial()==(*mItr) && 307 if(aCouple->GetMaterial()==(*mItr) && 315 aCouple->GetProductionCuts()==fProducti << 308 aCouple->GetProductionCuts()==fProductionCut){ 316 { << 317 return true; 309 return true; 318 } 310 } 319 } 311 } 320 return false; 312 return false; 321 } 313 } 322 314 323 inline 315 inline 324 const G4MaterialCutsCouple* 316 const G4MaterialCutsCouple* 325 G4ProductionCutsTable::GetMaterialCutsCouple(c << 317 G4ProductionCutsTable::GetMaterialCutsCouple(const G4Material* aMat, 326 c << 318 const G4ProductionCuts* aCut) const 327 { << 319 { 328 for(auto cItr=coupleTable.cbegin(); cItr!=co << 320 for(CoupleTableIterator cItr=coupleTable.begin();cItr!=coupleTable.end();cItr++) 329 { 321 { 330 if((*cItr)->GetMaterial()!=aMat) continue; 322 if((*cItr)->GetMaterial()!=aMat) continue; 331 if((*cItr)->GetProductionCuts()==aCut) ret 323 if((*cItr)->GetProductionCuts()==aCut) return (*cItr); 332 } 324 } 333 return nullptr; << 325 return 0; 334 } 326 } 335 327 336 inline 328 inline 337 G4int << 329 G4int G4ProductionCutsTable::GetCoupleIndex(const G4MaterialCutsCouple* aCouple) const 338 G4ProductionCutsTable::GetCoupleIndex(const G4 << 339 { 330 { 340 G4int idx = 0; 331 G4int idx = 0; 341 for(auto cItr=coupleTable.cbegin(); cItr!=co << 332 for(CoupleTableIterator cItr=coupleTable.begin();cItr!=coupleTable.end();cItr++) 342 { 333 { 343 if((*cItr)==aCouple) return idx; 334 if((*cItr)==aCouple) return idx; 344 ++idx; << 335 idx++; 345 } 336 } 346 return -1; 337 return -1; 347 } 338 } 348 339 349 inline 340 inline 350 G4int G4ProductionCutsTable::GetCoupleIndex(co << 341 G4int G4ProductionCutsTable:: GetCoupleIndex(const G4Material* aMat, 351 co << 342 const G4ProductionCuts* aCut) const 352 { 343 { 353 const G4MaterialCutsCouple* aCouple = GetMat 344 const G4MaterialCutsCouple* aCouple = GetMaterialCutsCouple(aMat,aCut); 354 return GetCoupleIndex(aCouple); 345 return GetCoupleIndex(aCouple); 355 } 346 } 356 347 357 inline 348 inline 358 G4int G4ProductionCutsTable::GetVerboseLevel() << 349 G4int G4ProductionCutsTable::GetVerboseLevel() const 359 { 350 { 360 return verboseLevel; << 351 return verboseLevel; 361 } 352 } 362 353 363 inline 354 inline 364 const G4MCCIndexConversionTable* << 355 const G4MCCIndexConversionTable* 365 G4ProductionCutsTable::GetMCCIndexConversionTa << 356 G4ProductionCutsTable::GetMCCIndexConversionTable() const 366 { 357 { 367 return &mccConversionTable; 358 return &mccConversionTable; 368 } 359 } 369 360 370 #endif 361 #endif >> 362 >> 363 >> 364 >> 365 >> 366 >> 367 371 368