Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ProductionCutsTable << 27 // 26 // 28 // Class description: << 27 // $Id: G4ProductionCutsTable.hh,v 1.8 2007/03/15 04:06:40 kurasige Exp $ >> 28 // GEANT4 tag $Name: geant4-08-03-patch-01 $ 29 // 29 // 30 // G4ProductionCutsTable is a singleton class << 30 // 31 // G4ProductionCuts objects. This class manage << 31 // ------------------------------------------------------------ 32 // cuts and energy cuts for each particle type << 32 // GEANT 4 class header file 33 << 33 // 34 // Author: M.Asai, 5 October 2002 - First impl << 34 // Class Description 35 // Modifications: H.Kurashige, 2004-2008 << 35 // G4ProductionCutsTable is a static singleton class of a table of 36 // ------------------------------------------- << 36 // G4ProductionCuts objects. This class also manages tables of 37 #ifndef G4ProductionCutsTable_hh << 37 // production cut and energy cut for each particle type. 38 #define G4ProductionCutsTable_hh 1 << 38 // >> 39 // ------------------------------------------------------------ >> 40 // First Implementation 05 Oct. 2002 M.Asai >> 41 // >> 42 // Modified 03 Feb 2004 H.Kurashige >> 43 // Modify RetrieveCutsTable to allow ordering of materials and >> 44 // couples can be different from one in file (i.e. at storing) >> 45 // Modified 20 Aug. 2004 H.Kurashige >> 46 // Modify RetrieveCutsTable to allow materials and >> 47 // couples can be different from one in file (i.e. at storing) >> 48 // >> 49 // ------------------------------------------------------------ 39 50 40 #include <cmath> << 51 #ifndef G4ProductionCutsTable_h 41 #include <vector> << 52 #define G4ProductionCutsTable_h 1 >> 53 >> 54 class G4RegionStore; >> 55 class G4VRangeToEnergyConverter; >> 56 class G4LogicalVolume; >> 57 class G4VPhysicalVolume; >> 58 class G4ProductionCuts; 42 59 43 #include "globals.hh" 60 #include "globals.hh" >> 61 #include <cmath> 44 #include "G4ios.hh" 62 #include "G4ios.hh" >> 63 #include <vector> 45 #include "G4MaterialCutsCouple.hh" 64 #include "G4MaterialCutsCouple.hh" 46 #include "G4MCCIndexConversionTable.hh" 65 #include "G4MCCIndexConversionTable.hh" 47 #include "G4Region.hh" 66 #include "G4Region.hh" 48 67 49 class G4RegionStore; << 50 class G4VRangeToEnergyConverter; << 51 class G4LogicalVolume; << 52 class G4VPhysicalVolume; << 53 class G4ProductionCuts; << 54 class G4ProductionCutsTableMessenger; << 55 68 56 class G4ProductionCutsTable 69 class G4ProductionCutsTable 57 { 70 { 58 public: << 71 public: // with description 59 << 60 static G4ProductionCutsTable* GetProductio 72 static G4ProductionCutsTable* GetProductionCutsTable(); 61 // This static method returns the single << 73 // This static method returns the singleton pointer of this class object. 62 // At first invocation, the singleton ob << 74 // At the first invokation of this method, the singleton object is instantiated. 63 75 64 G4ProductionCutsTable(const G4ProductionCu << 76 protected: 65 G4ProductionCutsTable& operator=(const G4P << 77 G4ProductionCutsTable(); >> 78 private: >> 79 G4ProductionCutsTable(const G4ProductionCutsTable& right); 66 80 >> 81 public: 67 virtual ~G4ProductionCutsTable(); 82 virtual ~G4ProductionCutsTable(); 68 83 69 void CreateCoupleTables(); << 84 public: // with description 70 // Creates material cuts couples table a << 71 << 72 void UpdateCoupleTable(G4VPhysicalVolume* 85 void UpdateCoupleTable(G4VPhysicalVolume* currentWorld); 73 // Triggers an update of the table of G4 << 86 // This method triggers an update of the table of G4ProductionCuts objects. 74 87 75 void SetEnergyRange(G4double lowedge, G4do 88 void SetEnergyRange(G4double lowedge, G4double highedge); 76 // Sets the limits of energy cuts for al << 89 // This method sets the limits of energy cuts for all particles. 77 90 78 G4double GetLowEdgeEnergy() const; 91 G4double GetLowEdgeEnergy() const; 79 G4double GetHighEdgeEnergy() const; 92 G4double GetHighEdgeEnergy() const; 80 // Get the limits of energy cuts for all << 93 // These methods get the limits of energy cuts for all particles. 81 94 82 G4double GetMaxEnergyCut(); << 83 void SetMaxEnergyCut(G4double value); << 84 // Get/set max cut energy of RangeToEner << 85 // for all particle types << 86 95 87 void DumpCouples() const; 96 void DumpCouples() const; 88 // Displays a list of registered couples << 97 // Display a list of registored couples 89 98 90 const G4MCCIndexConversionTable* GetMCCInd 99 const G4MCCIndexConversionTable* GetMCCIndexConversionTable() const; 91 // Gives the pointer to the MCCIndexConv << 100 // gives the pointer to the MCCIndexConversionTable 92 101 93 const std::vector<G4double>* GetRangeCutsV << 102 private: 94 const std::vector<G4double>* GetEnergyCuts << 95 << 96 std::size_t GetTableSize() const; << 97 // Returns the size of the couple table << 98 103 99 const G4MaterialCutsCouple* GetMaterialCut << 104 static G4ProductionCutsTable* fG4ProductionCutsTable; 100 // Returns the pointer to the couple << 101 105 102 const G4MaterialCutsCouple* GetMaterialCut << 106 typedef std::vector<G4MaterialCutsCouple*> G4CoupleTable; 103 co << 107 typedef std::vector<G4MaterialCutsCouple*>::const_iterator CoupleTableIterator; 104 // Returns the pointer to the couple << 108 typedef std::vector<G4double> G4CutVectorForAParticle; 105 << 109 typedef std::vector<G4CutVectorForAParticle*> G4CutTable; 106 G4int GetCoupleIndex(const G4MaterialCutsC << 110 G4CoupleTable coupleTable; 107 G4int GetCoupleIndex(const G4Material* aMa << 111 G4CutTable rangeCutTable; 108 const G4ProductionCut << 112 G4CutTable energyCutTable; 109 // Return the index of the couple. << 113 110 // -1 is returned if index is not found << 114 G4RegionStore* fG4RegionStore; >> 115 G4VRangeToEnergyConverter* converters[NumberOfG4CutIndex]; >> 116 >> 117 G4ProductionCuts* defaultProductionCuts; >> 118 >> 119 G4MCCIndexConversionTable mccConversionTable; >> 120 >> 121 // These two vectors are for the backward comparibility >> 122 G4double* rangeDoubleVector[NumberOfG4CutIndex]; >> 123 G4double* energyDoubleVector[NumberOfG4CutIndex]; >> 124 >> 125 public: >> 126 const std::vector<G4double>* GetRangeCutsVector(size_t pcIdx) const; >> 127 const std::vector<G4double>* GetEnergyCutsVector(size_t pcIdx) const; >> 128 >> 129 // These two vectors are for the backward comparibility >> 130 G4double* GetRangeCutsDoubleVector(size_t pcIdx) const; >> 131 G4double* GetEnergyCutsDoubleVector(size_t pcIdx) const; >> 132 >> 133 public: // with description >> 134 size_t GetTableSize() const; >> 135 // This method returns the size of the couple table. >> 136 >> 137 const G4MaterialCutsCouple* GetMaterialCutsCouple(G4int i) const; >> 138 // This method returns the pointer to the couple. >> 139 >> 140 const G4MaterialCutsCouple* >> 141 GetMaterialCutsCouple(const G4Material* aMat, >> 142 const G4ProductionCuts* aCut) const; >> 143 // This method returns the pointer to the couple. >> 144 >> 145 G4int GetCoupleIndex(const G4MaterialCutsCouple* aCouple) const; >> 146 G4int GetCoupleIndex(const G4Material* aMat, >> 147 const G4ProductionCuts* aCut) const; >> 148 // These methods return the index of the couple. >> 149 // -1 is returned if index is not found. 111 150 112 G4bool IsModified() const; << 151 G4bool IsModified() const; 113 // Returns TRUE if at least one producti << 152 // This method returns TRUE if at least one production cut value is modified. 114 153 115 void PhysicsTableUpdated(); << 154 void PhysicsTableUpdated(); 116 // Resets the status of IsModified(). Th << 155 // This method resets the status of IsModified(). This method must 117 // used by the RunManager when physics t << 156 // be exclusively used by RunManager when physics tables are built. 118 157 119 G4ProductionCuts* GetDefaultProductionCuts << 158 G4ProductionCuts* GetDefaultProductionCuts() const; 120 // Returns the default production cuts << 159 // This method returns the default production cuts. 121 160 122 G4double ConvertRangeToEnergy(const G4Part << 161 G4double ConvertRangeToEnergy(const G4ParticleDefinition* particle, 123 const G4Mate << 162 const G4Material* material, 124 G4doub << 163 G4double range ); 125 // Gives energy corresponding to range v << 164 // This method gives energy corresponding to range value 126 // -1 is returned if particle or materia << 165 // 127 << 166 // -1 is returned if particle or material is not found. 128 void ResetConverters(); << 167 129 // Resets all range to energy converters << 130 << 131 G4bool StoreCutsTable(const G4String& dire << 132 G4bool ascii = false << 133 // Stores cuts and material information << 134 // the specified directory << 135 << 136 G4bool RetrieveCutsTable(const G4String& d << 137 G4bool ascii = fa << 138 // Retrieve material cut couple informat << 139 // in files under the specified director << 140 << 141 G4bool CheckForRetrieveCutsTable(const G4S << 142 G4bool as << 143 // Checks stored material and cut values << 144 // with the current detector setup << 145 << 146 G4double* GetRangeCutsDoubleVector(std::si << 147 G4double* GetEnergyCutsDoubleVector(std::s << 148 // Methods for backward compatibility << 149 << 150 void SetEnergyCutVector(const std::vector< << 151 // User defined cut vectors (idx < 4) ra << 152 // to avoid inconsistency in physics << 153 << 154 void SetVerboseLevel(G4int value); << 155 G4int GetVerboseLevel() const; << 156 // Control flag for output message << 157 // 0: Silent << 158 // 1: Warning message << 159 // 2: More << 160 << 161 protected: << 162 << 163 G4ProductionCutsTable(); << 164 << 165 virtual G4bool StoreMaterialInfo(const G4S << 166 G4bool as << 167 // Stores material information in files << 168 << 169 virtual G4bool CheckMaterialInfo(const G4S << 170 G4bool as << 171 // Checks stored material is consistent << 172 << 173 virtual G4bool StoreMaterialCutsCoupleInfo << 174 << 175 // Stores materialCutsCouple information << 176 // specified directory << 177 << 178 virtual G4bool CheckMaterialCutsCoupleInfo << 179 << 180 // Checks stored materialCutsCouple is c << 181 // the current detector setup << 182 << 183 virtual G4bool StoreCutsInfo(const G4Strin << 184 G4bool ascii << 185 // Stores cut values information in file << 186 << 187 virtual G4bool RetrieveCutsInfo(const G4S << 188 G4bool as << 189 // Retrieves cut values information in f << 190 // specified directory << 191 << 192 private: 168 private: 193 << 194 void ScanAndSetCouple(G4LogicalVolume* aLV 169 void ScanAndSetCouple(G4LogicalVolume* aLV, 195 G4MaterialCutsCouple << 170 G4MaterialCutsCouple* aCouple, 196 G4Region* aRegion); << 171 G4Region* aRegion); 197 172 198 G4bool IsCoupleUsedInTheRegion(const G4Mat << 173 bool IsCoupleUsedInTheRegion(const G4MaterialCutsCouple* aCouple, 199 const G4Reg << 174 const G4Region* aRegion) const; 200 175 >> 176 public: // with description >> 177 // Store cuts and material information in files under the specified directory. >> 178 G4bool StoreCutsTable(const G4String& directory, >> 179 G4bool ascii = false); >> 180 >> 181 // Retrieve material cut couple information >> 182 // in files under the specified directory. >> 183 G4bool RetrieveCutsTable(const G4String& directory, >> 184 G4bool ascii = false); >> 185 >> 186 // check stored material and cut values are consistent with the current detector setup. >> 187 G4bool CheckForRetrieveCutsTable(const G4String& directory, >> 188 G4bool ascii = false); 201 189 202 private: << 190 protected: 203 << 204 static G4ProductionCutsTable* fProductionC << 205 << 206 std::vector<G4MaterialCutsCouple*> coupleT << 207 std::vector<std::vector<G4double>*> rangeC << 208 std::vector<std::vector<G4double>*> energy << 209 << 210 std::vector<G4double>* userEnergyCuts[4] = << 211 << 212 G4RegionStore* fG4RegionStore = nullptr; << 213 G4VRangeToEnergyConverter* converters[Numb << 214 191 215 G4ProductionCuts* defaultProductionCuts = << 192 // Store material information in files under the specified directory. >> 193 virtual G4bool StoreMaterialInfo(const G4String& directory, >> 194 G4bool ascii = false); >> 195 >> 196 // check stored material is consistent with the current detector setup. >> 197 virtual G4bool CheckMaterialInfo(const G4String& directory, >> 198 G4bool ascii = false); >> 199 >> 200 // Store materialCutsCouple information in files under the specified directory. >> 201 virtual G4bool StoreMaterialCutsCoupleInfo(const G4String& directory, >> 202 G4bool ascii = false); >> 203 >> 204 // check stored materialCutsCouple is consistent with the current detector setup. >> 205 virtual G4bool CheckMaterialCutsCoupleInfo(const G4String& directory, >> 206 G4bool ascii = false); >> 207 >> 208 // Store cut values information in files under the specified directory. >> 209 virtual G4bool StoreCutsInfo(const G4String& directory, >> 210 G4bool ascii = false); >> 211 >> 212 // Retrieve cut values information in files under the specified directory. >> 213 virtual G4bool RetrieveCutsInfo(const G4String& directory, >> 214 G4bool ascii = false); 216 215 217 G4MCCIndexConversionTable mccConversionTab << 216 private: >> 217 G4bool firstUse; >> 218 enum { FixedStringLengthForStore = 32 }; 218 219 219 // These two vectors are for backward comp << 220 public: // with description 220 G4double* rangeDoubleVector[NumberOfG4CutI << 221 void SetVerboseLevel(G4int value); 221 G4double* energyDoubleVector[NumberOfG4Cut << 222 G4int GetVerboseLevel() const; >> 223 // controle flag for output message >> 224 // 0: Silent >> 225 // 1: Warning message >> 226 // 2: More 222 227 223 enum { FixedStringLengthForStore = 32 }; << 228 private: >> 229 G4int verboseLevel; 224 230 225 G4ProductionCutsTableMessenger* fMessenger << 226 G4int verboseLevel = 1; << 227 G4bool firstUse = true; << 228 }; 231 }; 229 232 230 // ------------------ << 231 // Inline methods << 232 // ------------------ << 233 << 234 inline 233 inline 235 const std::vector<G4double>* << 234 const std::vector<G4double>* G4ProductionCutsTable::GetRangeCutsVector(size_t pcIdx) const 236 G4ProductionCutsTable::GetRangeCutsVector(std: << 237 { 235 { 238 return rangeCutTable[pcIdx]; 236 return rangeCutTable[pcIdx]; 239 } 237 } 240 238 241 inline 239 inline 242 const std::vector<G4double>* << 240 const std::vector<G4double>* G4ProductionCutsTable::GetEnergyCutsVector(size_t pcIdx) const 243 G4ProductionCutsTable::GetEnergyCutsVector(std << 244 { 241 { 245 return energyCutTable[pcIdx]; << 242 return energyCutTable[pcIdx]; 246 } 243 } 247 244 248 inline 245 inline 249 std::size_t G4ProductionCutsTable::GetTableSiz << 246 size_t G4ProductionCutsTable::GetTableSize() const 250 { 247 { 251 return coupleTable.size(); 248 return coupleTable.size(); 252 } 249 } 253 250 254 inline 251 inline 255 const G4MaterialCutsCouple* << 252 const G4MaterialCutsCouple* G4ProductionCutsTable::GetMaterialCutsCouple(G4int i) const 256 G4ProductionCutsTable::GetMaterialCutsCouple(G << 257 { 253 { 258 return coupleTable[std::size_t(i)]; << 254 return coupleTable[size_t(i)]; 259 } 255 } 260 256 261 inline 257 inline 262 G4bool G4ProductionCutsTable::IsModified() con << 258 G4bool G4ProductionCutsTable::IsModified() const 263 { 259 { 264 if(firstUse) return true; 260 if(firstUse) return true; 265 for(auto itr=coupleTable.cbegin(); itr!=coup << 261 for(G4ProductionCutsTable::CoupleTableIterator itr=coupleTable.begin(); 266 { << 262 itr!=coupleTable.end();itr++){ 267 if((*itr)->IsRecalcNeeded()) 263 if((*itr)->IsRecalcNeeded()) 268 { 264 { 269 return true; 265 return true; 270 } 266 } 271 } 267 } 272 return false; 268 return false; 273 } 269 } 274 270 275 inline 271 inline 276 void G4ProductionCutsTable::PhysicsTableUpdate << 272 void G4ProductionCutsTable::PhysicsTableUpdated() 277 { 273 { 278 for(auto itr=coupleTable.cbegin(); itr!=coup << 274 for(G4ProductionCutsTable::CoupleTableIterator itr=coupleTable.begin();itr!=coupleTable.end();itr++){ 279 { << 280 (*itr)->PhysicsTableUpdated(); 275 (*itr)->PhysicsTableUpdated(); 281 } 276 } 282 } 277 } 283 278 284 inline 279 inline 285 G4double* << 280 G4double* G4ProductionCutsTable::GetRangeCutsDoubleVector(size_t pcIdx) const 286 G4ProductionCutsTable::GetRangeCutsDoubleVecto << 281 { return rangeDoubleVector[pcIdx]; } 287 { << 288 return rangeDoubleVector[pcIdx]; << 289 } << 290 282 291 inline 283 inline 292 G4double* << 284 G4double* G4ProductionCutsTable::GetEnergyCutsDoubleVector(size_t pcIdx) const 293 G4ProductionCutsTable::GetEnergyCutsDoubleVect << 285 { return energyDoubleVector[pcIdx]; } 294 { << 295 return energyDoubleVector[pcIdx]; << 296 } << 297 286 298 inline 287 inline 299 G4ProductionCuts* G4ProductionCutsTable::GetDe << 288 G4ProductionCuts* G4ProductionCutsTable::GetDefaultProductionCuts() const 300 { << 289 { return defaultProductionCuts; } 301 return defaultProductionCuts; << 302 } << 303 290 304 inline 291 inline 305 G4bool G4ProductionCutsTable::IsCoupleUsedInTh << 292 bool G4ProductionCutsTable::IsCoupleUsedInTheRegion( 306 const G4Mater 293 const G4MaterialCutsCouple* aCouple, 307 const G4Regio 294 const G4Region* aRegion) const 308 { 295 { 309 G4ProductionCuts* fProductionCut = aRegion-> 296 G4ProductionCuts* fProductionCut = aRegion->GetProductionCuts(); 310 auto mItr = aRegion->GetMaterialIterator(); << 297 std::vector<G4Material*>::const_iterator mItr = aRegion->GetMaterialIterator(); 311 std::size_t nMaterial = aRegion->GetNumberOf << 298 size_t nMaterial = aRegion->GetNumberOfMaterials(); 312 for(std::size_t iMate=0;iMate<nMaterial; ++i << 299 for(size_t iMate=0;iMate<nMaterial;iMate++, mItr++){ 313 { << 314 if(aCouple->GetMaterial()==(*mItr) && 300 if(aCouple->GetMaterial()==(*mItr) && 315 aCouple->GetProductionCuts()==fProducti << 301 aCouple->GetProductionCuts()==fProductionCut){ 316 { << 317 return true; 302 return true; 318 } 303 } 319 } 304 } 320 return false; 305 return false; 321 } 306 } 322 307 323 inline 308 inline 324 const G4MaterialCutsCouple* 309 const G4MaterialCutsCouple* 325 G4ProductionCutsTable::GetMaterialCutsCouple(c << 310 G4ProductionCutsTable::GetMaterialCutsCouple(const G4Material* aMat, 326 c << 311 const G4ProductionCuts* aCut) const 327 { << 312 { 328 for(auto cItr=coupleTable.cbegin(); cItr!=co << 313 for(CoupleTableIterator cItr=coupleTable.begin();cItr!=coupleTable.end();cItr++) 329 { 314 { 330 if((*cItr)->GetMaterial()!=aMat) continue; 315 if((*cItr)->GetMaterial()!=aMat) continue; 331 if((*cItr)->GetProductionCuts()==aCut) ret 316 if((*cItr)->GetProductionCuts()==aCut) return (*cItr); 332 } 317 } 333 return nullptr; << 318 return 0; 334 } 319 } 335 320 336 inline 321 inline 337 G4int << 322 G4int G4ProductionCutsTable::GetCoupleIndex(const G4MaterialCutsCouple* aCouple) const 338 G4ProductionCutsTable::GetCoupleIndex(const G4 << 339 { 323 { 340 G4int idx = 0; 324 G4int idx = 0; 341 for(auto cItr=coupleTable.cbegin(); cItr!=co << 325 for(CoupleTableIterator cItr=coupleTable.begin();cItr!=coupleTable.end();cItr++) 342 { 326 { 343 if((*cItr)==aCouple) return idx; 327 if((*cItr)==aCouple) return idx; 344 ++idx; << 328 idx++; 345 } 329 } 346 return -1; 330 return -1; 347 } 331 } 348 332 349 inline 333 inline 350 G4int G4ProductionCutsTable::GetCoupleIndex(co << 334 G4int G4ProductionCutsTable:: GetCoupleIndex(const G4Material* aMat, 351 co << 335 const G4ProductionCuts* aCut) const 352 { 336 { 353 const G4MaterialCutsCouple* aCouple = GetMat 337 const G4MaterialCutsCouple* aCouple = GetMaterialCutsCouple(aMat,aCut); 354 return GetCoupleIndex(aCouple); 338 return GetCoupleIndex(aCouple); 355 } 339 } 356 340 357 inline 341 inline 358 G4int G4ProductionCutsTable::GetVerboseLevel() << 342 void G4ProductionCutsTable::SetVerboseLevel(G4int value) 359 { 343 { 360 return verboseLevel; << 344 verboseLevel = value; >> 345 } >> 346 >> 347 inline >> 348 G4int G4ProductionCutsTable::GetVerboseLevel() const >> 349 { >> 350 return verboseLevel; 361 } 351 } 362 352 363 inline 353 inline 364 const G4MCCIndexConversionTable* << 354 const G4MCCIndexConversionTable* 365 G4ProductionCutsTable::GetMCCIndexConversionTa << 355 G4ProductionCutsTable::GetMCCIndexConversionTable() const 366 { 356 { 367 return &mccConversionTable; 357 return &mccConversionTable; 368 } 358 } 369 359 370 #endif 360 #endif >> 361 >> 362 >> 363 >> 364 >> 365 >> 366 371 367