Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ProductionCutsTable << 27 // 26 // 28 // Class description: << 29 // 27 // 30 // G4ProductionCutsTable is a singleton class << 28 // 31 // G4ProductionCuts objects. This class manage << 29 // ------------------------------------------------------------ 32 // cuts and energy cuts for each particle type << 30 // GEANT 4 class header file 33 << 31 // 34 // Author: M.Asai, 5 October 2002 - First impl << 32 // Class Description 35 // Modifications: H.Kurashige, 2004-2008 << 33 // G4ProductionCutsTable is a static singleton class of a table of 36 // ------------------------------------------- << 34 // G4ProductionCuts objects. This class also manages tables of 37 #ifndef G4ProductionCutsTable_hh << 35 // production cut and energy cut for each particle type. 38 #define G4ProductionCutsTable_hh 1 << 36 // >> 37 // ------------------------------------------------------------ >> 38 // First Implementation 05 Oct. 2002 M.Asai >> 39 // >> 40 // Modified 03 Feb 2004 H.Kurashige >> 41 // Modify RetrieveCutsTable to allow ordering of materials and >> 42 // couples can be different from one in file (i.e. at storing) >> 43 // Modified 20 Aug. 2004 H.Kurashige >> 44 // Modify RetrieveCutsTable to allow materials and >> 45 // couples can be different from one in file (i.e. at storing) >> 46 // Modified 2 Mar. 2008 H.Kurashige >> 47 // add messenger >> 48 // ------------------------------------------------------------ 39 49 40 #include <cmath> << 50 #ifndef G4ProductionCutsTable_h 41 #include <vector> << 51 #define G4ProductionCutsTable_h 1 42 << 43 #include "globals.hh" << 44 #include "G4ios.hh" << 45 #include "G4MaterialCutsCouple.hh" << 46 #include "G4MCCIndexConversionTable.hh" << 47 #include "G4Region.hh" << 48 52 49 class G4RegionStore; 53 class G4RegionStore; 50 class G4VRangeToEnergyConverter; 54 class G4VRangeToEnergyConverter; 51 class G4LogicalVolume; 55 class G4LogicalVolume; 52 class G4VPhysicalVolume; 56 class G4VPhysicalVolume; 53 class G4ProductionCuts; 57 class G4ProductionCuts; >> 58 54 class G4ProductionCutsTableMessenger; 59 class G4ProductionCutsTableMessenger; 55 60 >> 61 #include "globals.hh" >> 62 #include <cmath> >> 63 #include "G4ios.hh" >> 64 #include <vector> >> 65 #include "G4MaterialCutsCouple.hh" >> 66 #include "G4MCCIndexConversionTable.hh" >> 67 #include "G4Region.hh" >> 68 >> 69 56 class G4ProductionCutsTable 70 class G4ProductionCutsTable 57 { 71 { 58 public: << 72 public: // with description 59 << 60 static G4ProductionCutsTable* GetProductio 73 static G4ProductionCutsTable* GetProductionCutsTable(); 61 // This static method returns the single << 74 // This static method returns the singleton pointer of this class object. 62 // At first invocation, the singleton ob << 75 // At the first invokation of this method, the singleton object is instantiated. 63 76 64 G4ProductionCutsTable(const G4ProductionCu << 77 protected: 65 G4ProductionCutsTable& operator=(const G4P << 78 G4ProductionCutsTable(); >> 79 private: >> 80 G4ProductionCutsTable(const G4ProductionCutsTable& right); 66 81 >> 82 public: 67 virtual ~G4ProductionCutsTable(); 83 virtual ~G4ProductionCutsTable(); 68 84 69 void CreateCoupleTables(); << 85 public: // with description 70 // Creates material cuts couples table a << 71 << 72 void UpdateCoupleTable(G4VPhysicalVolume* 86 void UpdateCoupleTable(G4VPhysicalVolume* currentWorld); 73 // Triggers an update of the table of G4 << 87 // This method triggers an update of the table of G4ProductionCuts objects. 74 88 75 void SetEnergyRange(G4double lowedge, G4do 89 void SetEnergyRange(G4double lowedge, G4double highedge); 76 // Sets the limits of energy cuts for al << 90 // This method sets the limits of energy cuts for all particles. 77 91 78 G4double GetLowEdgeEnergy() const; 92 G4double GetLowEdgeEnergy() const; 79 G4double GetHighEdgeEnergy() const; 93 G4double GetHighEdgeEnergy() const; 80 // Get the limits of energy cuts for all << 94 // These methods get the limits of energy cuts for all particles. 81 95 >> 96 // get/set max cut energy of RangeToEnergy Converter for all particle type 82 G4double GetMaxEnergyCut(); 97 G4double GetMaxEnergyCut(); 83 void SetMaxEnergyCut(G4double value); 98 void SetMaxEnergyCut(G4double value); 84 // Get/set max cut energy of RangeToEner << 99 85 // for all particle types << 86 100 87 void DumpCouples() const; 101 void DumpCouples() const; 88 // Displays a list of registered couples << 102 // Display a list of registored couples 89 103 90 const G4MCCIndexConversionTable* GetMCCInd 104 const G4MCCIndexConversionTable* GetMCCIndexConversionTable() const; 91 // Gives the pointer to the MCCIndexConv << 105 // gives the pointer to the MCCIndexConversionTable 92 106 93 const std::vector<G4double>* GetRangeCutsV << 107 private: 94 const std::vector<G4double>* GetEnergyCuts << 95 << 96 std::size_t GetTableSize() const; << 97 // Returns the size of the couple table << 98 108 99 const G4MaterialCutsCouple* GetMaterialCut << 109 static G4ProductionCutsTable* fG4ProductionCutsTable; 100 // Returns the pointer to the couple << 101 110 102 const G4MaterialCutsCouple* GetMaterialCut << 111 typedef std::vector<G4MaterialCutsCouple*> G4CoupleTable; 103 co << 112 typedef std::vector<G4MaterialCutsCouple*>::const_iterator CoupleTableIterator; 104 // Returns the pointer to the couple << 113 typedef std::vector<G4double> G4CutVectorForAParticle; 105 << 114 typedef std::vector<G4CutVectorForAParticle*> G4CutTable; 106 G4int GetCoupleIndex(const G4MaterialCutsC << 115 G4CoupleTable coupleTable; 107 G4int GetCoupleIndex(const G4Material* aMa << 116 G4CutTable rangeCutTable; 108 const G4ProductionCut << 117 G4CutTable energyCutTable; 109 // Return the index of the couple. << 118 110 // -1 is returned if index is not found << 119 G4RegionStore* fG4RegionStore; >> 120 G4VRangeToEnergyConverter* converters[NumberOfG4CutIndex]; >> 121 >> 122 G4ProductionCuts* defaultProductionCuts; >> 123 >> 124 G4MCCIndexConversionTable mccConversionTable; >> 125 >> 126 // These two vectors are for the backward comparibility >> 127 G4double* rangeDoubleVector[NumberOfG4CutIndex]; >> 128 G4double* energyDoubleVector[NumberOfG4CutIndex]; >> 129 >> 130 public: >> 131 const std::vector<G4double>* GetRangeCutsVector(size_t pcIdx) const; >> 132 const std::vector<G4double>* GetEnergyCutsVector(size_t pcIdx) const; >> 133 >> 134 // These two vectors are for the backward comparibility >> 135 G4double* GetRangeCutsDoubleVector(size_t pcIdx) const; >> 136 G4double* GetEnergyCutsDoubleVector(size_t pcIdx) const; >> 137 >> 138 public: // with description >> 139 size_t GetTableSize() const; >> 140 // This method returns the size of the couple table. >> 141 >> 142 const G4MaterialCutsCouple* GetMaterialCutsCouple(G4int i) const; >> 143 // This method returns the pointer to the couple. >> 144 >> 145 const G4MaterialCutsCouple* >> 146 GetMaterialCutsCouple(const G4Material* aMat, >> 147 const G4ProductionCuts* aCut) const; >> 148 // This method returns the pointer to the couple. >> 149 >> 150 G4int GetCoupleIndex(const G4MaterialCutsCouple* aCouple) const; >> 151 G4int GetCoupleIndex(const G4Material* aMat, >> 152 const G4ProductionCuts* aCut) const; >> 153 // These methods return the index of the couple. >> 154 // -1 is returned if index is not found. 111 155 112 G4bool IsModified() const; << 156 G4bool IsModified() const; 113 // Returns TRUE if at least one producti << 157 // This method returns TRUE if at least one production cut value is modified. 114 158 115 void PhysicsTableUpdated(); << 159 void PhysicsTableUpdated(); 116 // Resets the status of IsModified(). Th << 160 // This method resets the status of IsModified(). This method must 117 // used by the RunManager when physics t << 161 // be exclusively used by RunManager when physics tables are built. 118 162 119 G4ProductionCuts* GetDefaultProductionCuts << 163 G4ProductionCuts* GetDefaultProductionCuts() const; 120 // Returns the default production cuts << 164 // This method returns the default production cuts. 121 165 122 G4double ConvertRangeToEnergy(const G4Part << 166 G4double ConvertRangeToEnergy(const G4ParticleDefinition* particle, 123 const G4Mate << 167 const G4Material* material, 124 G4doub << 168 G4double range ); 125 // Gives energy corresponding to range v << 169 // This method gives energy corresponding to range value 126 // -1 is returned if particle or materia << 170 // 127 << 171 // -1 is returned if particle or material is not found. 128 void ResetConverters(); << 172 129 // Resets all range to energy converters << 173 void ResetConverters(); 130 << 174 // reset all Range To Energy Converters 131 G4bool StoreCutsTable(const G4String& dire << 175 132 G4bool ascii = false << 133 // Stores cuts and material information << 134 // the specified directory << 135 << 136 G4bool RetrieveCutsTable(const G4String& d << 137 G4bool ascii = fa << 138 // Retrieve material cut couple informat << 139 // in files under the specified director << 140 << 141 G4bool CheckForRetrieveCutsTable(const G4S << 142 G4bool as << 143 // Checks stored material and cut values << 144 // with the current detector setup << 145 << 146 G4double* GetRangeCutsDoubleVector(std::si << 147 G4double* GetEnergyCutsDoubleVector(std::s << 148 // Methods for backward compatibility << 149 << 150 void SetEnergyCutVector(const std::vector< << 151 // User defined cut vectors (idx < 4) ra << 152 // to avoid inconsistency in physics << 153 << 154 void SetVerboseLevel(G4int value); << 155 G4int GetVerboseLevel() const; << 156 // Control flag for output message << 157 // 0: Silent << 158 // 1: Warning message << 159 // 2: More << 160 << 161 protected: << 162 << 163 G4ProductionCutsTable(); << 164 << 165 virtual G4bool StoreMaterialInfo(const G4S << 166 G4bool as << 167 // Stores material information in files << 168 << 169 virtual G4bool CheckMaterialInfo(const G4S << 170 G4bool as << 171 // Checks stored material is consistent << 172 << 173 virtual G4bool StoreMaterialCutsCoupleInfo << 174 << 175 // Stores materialCutsCouple information << 176 // specified directory << 177 << 178 virtual G4bool CheckMaterialCutsCoupleInfo << 179 << 180 // Checks stored materialCutsCouple is c << 181 // the current detector setup << 182 << 183 virtual G4bool StoreCutsInfo(const G4Strin << 184 G4bool ascii << 185 // Stores cut values information in file << 186 << 187 virtual G4bool RetrieveCutsInfo(const G4S << 188 G4bool as << 189 // Retrieves cut values information in f << 190 // specified directory << 191 << 192 private: 176 private: 193 << 194 void ScanAndSetCouple(G4LogicalVolume* aLV 177 void ScanAndSetCouple(G4LogicalVolume* aLV, 195 G4MaterialCutsCouple << 178 G4MaterialCutsCouple* aCouple, 196 G4Region* aRegion); << 179 G4Region* aRegion); 197 << 198 G4bool IsCoupleUsedInTheRegion(const G4Mat << 199 const G4Reg << 200 180 >> 181 bool IsCoupleUsedInTheRegion(const G4MaterialCutsCouple* aCouple, >> 182 const G4Region* aRegion) const; 201 183 202 private: << 184 public: // with description 203 << 185 // Store cuts and material information in files under the specified directory. 204 static G4ProductionCutsTable* fProductionC << 186 G4bool StoreCutsTable(const G4String& directory, 205 << 187 G4bool ascii = false); 206 std::vector<G4MaterialCutsCouple*> coupleT << 188 207 std::vector<std::vector<G4double>*> rangeC << 189 // Retrieve material cut couple information 208 std::vector<std::vector<G4double>*> energy << 190 // in files under the specified directory. 209 << 191 G4bool RetrieveCutsTable(const G4String& directory, 210 std::vector<G4double>* userEnergyCuts[4] = << 192 G4bool ascii = false); >> 193 >> 194 // check stored material and cut values are consistent with the current detector setup. >> 195 G4bool CheckForRetrieveCutsTable(const G4String& directory, >> 196 G4bool ascii = false); 211 197 212 G4RegionStore* fG4RegionStore = nullptr; << 198 protected: 213 G4VRangeToEnergyConverter* converters[Numb << 214 199 215 G4ProductionCuts* defaultProductionCuts = << 200 // Store material information in files under the specified directory. >> 201 virtual G4bool StoreMaterialInfo(const G4String& directory, >> 202 G4bool ascii = false); >> 203 >> 204 // check stored material is consistent with the current detector setup. >> 205 virtual G4bool CheckMaterialInfo(const G4String& directory, >> 206 G4bool ascii = false); >> 207 >> 208 // Store materialCutsCouple information in files under the specified directory. >> 209 virtual G4bool StoreMaterialCutsCoupleInfo(const G4String& directory, >> 210 G4bool ascii = false); >> 211 >> 212 // check stored materialCutsCouple is consistent with the current detector setup. >> 213 virtual G4bool CheckMaterialCutsCoupleInfo(const G4String& directory, >> 214 G4bool ascii = false); >> 215 >> 216 // Store cut values information in files under the specified directory. >> 217 virtual G4bool StoreCutsInfo(const G4String& directory, >> 218 G4bool ascii = false); >> 219 >> 220 // Retrieve cut values information in files under the specified directory. >> 221 virtual G4bool RetrieveCutsInfo(const G4String& directory, >> 222 G4bool ascii = false); 216 223 217 G4MCCIndexConversionTable mccConversionTab << 224 private: >> 225 G4bool firstUse; >> 226 enum { FixedStringLengthForStore = 32 }; 218 227 219 // These two vectors are for backward comp << 228 public: // with description 220 G4double* rangeDoubleVector[NumberOfG4CutI << 229 void SetVerboseLevel(G4int value); 221 G4double* energyDoubleVector[NumberOfG4Cut << 230 G4int GetVerboseLevel() const; >> 231 // controle flag for output message >> 232 // 0: Silent >> 233 // 1: Warning message >> 234 // 2: More 222 235 223 enum { FixedStringLengthForStore = 32 }; << 236 private: >> 237 G4int verboseLevel; >> 238 G4ProductionCutsTableMessenger* fMessenger; 224 239 225 G4ProductionCutsTableMessenger* fMessenger << 226 G4int verboseLevel = 1; << 227 G4bool firstUse = true; << 228 }; 240 }; 229 241 230 // ------------------ << 231 // Inline methods << 232 // ------------------ << 233 << 234 inline 242 inline 235 const std::vector<G4double>* << 243 const std::vector<G4double>* G4ProductionCutsTable::GetRangeCutsVector(size_t pcIdx) const 236 G4ProductionCutsTable::GetRangeCutsVector(std: << 237 { 244 { 238 return rangeCutTable[pcIdx]; 245 return rangeCutTable[pcIdx]; 239 } 246 } 240 247 241 inline 248 inline 242 const std::vector<G4double>* << 249 const std::vector<G4double>* G4ProductionCutsTable::GetEnergyCutsVector(size_t pcIdx) const 243 G4ProductionCutsTable::GetEnergyCutsVector(std << 244 { 250 { 245 return energyCutTable[pcIdx]; << 251 return energyCutTable[pcIdx]; 246 } 252 } 247 253 248 inline 254 inline 249 std::size_t G4ProductionCutsTable::GetTableSiz << 255 size_t G4ProductionCutsTable::GetTableSize() const 250 { 256 { 251 return coupleTable.size(); 257 return coupleTable.size(); 252 } 258 } 253 259 254 inline 260 inline 255 const G4MaterialCutsCouple* << 261 const G4MaterialCutsCouple* G4ProductionCutsTable::GetMaterialCutsCouple(G4int i) const 256 G4ProductionCutsTable::GetMaterialCutsCouple(G << 257 { 262 { 258 return coupleTable[std::size_t(i)]; << 263 return coupleTable[size_t(i)]; 259 } 264 } 260 265 261 inline 266 inline 262 G4bool G4ProductionCutsTable::IsModified() con << 267 G4bool G4ProductionCutsTable::IsModified() const 263 { 268 { 264 if(firstUse) return true; 269 if(firstUse) return true; 265 for(auto itr=coupleTable.cbegin(); itr!=coup << 270 for(G4ProductionCutsTable::CoupleTableIterator itr=coupleTable.begin(); 266 { << 271 itr!=coupleTable.end();itr++){ 267 if((*itr)->IsRecalcNeeded()) 272 if((*itr)->IsRecalcNeeded()) 268 { 273 { 269 return true; 274 return true; 270 } 275 } 271 } 276 } 272 return false; 277 return false; 273 } 278 } 274 279 275 inline 280 inline 276 void G4ProductionCutsTable::PhysicsTableUpdate << 281 void G4ProductionCutsTable::PhysicsTableUpdated() 277 { 282 { 278 for(auto itr=coupleTable.cbegin(); itr!=coup << 283 for(G4ProductionCutsTable::CoupleTableIterator itr=coupleTable.begin();itr!=coupleTable.end();itr++){ 279 { << 280 (*itr)->PhysicsTableUpdated(); 284 (*itr)->PhysicsTableUpdated(); 281 } 285 } 282 } 286 } 283 287 284 inline 288 inline 285 G4double* << 289 G4double* G4ProductionCutsTable::GetRangeCutsDoubleVector(size_t pcIdx) const 286 G4ProductionCutsTable::GetRangeCutsDoubleVecto << 290 { return rangeDoubleVector[pcIdx]; } 287 { << 288 return rangeDoubleVector[pcIdx]; << 289 } << 290 291 291 inline 292 inline 292 G4double* << 293 G4double* G4ProductionCutsTable::GetEnergyCutsDoubleVector(size_t pcIdx) const 293 G4ProductionCutsTable::GetEnergyCutsDoubleVect << 294 { return energyDoubleVector[pcIdx]; } 294 { << 295 return energyDoubleVector[pcIdx]; << 296 } << 297 295 298 inline 296 inline 299 G4ProductionCuts* G4ProductionCutsTable::GetDe << 297 G4ProductionCuts* G4ProductionCutsTable::GetDefaultProductionCuts() const 300 { << 298 { return defaultProductionCuts; } 301 return defaultProductionCuts; << 302 } << 303 299 304 inline 300 inline 305 G4bool G4ProductionCutsTable::IsCoupleUsedInTh << 301 bool G4ProductionCutsTable::IsCoupleUsedInTheRegion( 306 const G4Mater 302 const G4MaterialCutsCouple* aCouple, 307 const G4Regio 303 const G4Region* aRegion) const 308 { 304 { 309 G4ProductionCuts* fProductionCut = aRegion-> 305 G4ProductionCuts* fProductionCut = aRegion->GetProductionCuts(); 310 auto mItr = aRegion->GetMaterialIterator(); << 306 std::vector<G4Material*>::const_iterator mItr = aRegion->GetMaterialIterator(); 311 std::size_t nMaterial = aRegion->GetNumberOf << 307 size_t nMaterial = aRegion->GetNumberOfMaterials(); 312 for(std::size_t iMate=0;iMate<nMaterial; ++i << 308 for(size_t iMate=0;iMate<nMaterial;iMate++, mItr++){ 313 { << 314 if(aCouple->GetMaterial()==(*mItr) && 309 if(aCouple->GetMaterial()==(*mItr) && 315 aCouple->GetProductionCuts()==fProducti << 310 aCouple->GetProductionCuts()==fProductionCut){ 316 { << 317 return true; 311 return true; 318 } 312 } 319 } 313 } 320 return false; 314 return false; 321 } 315 } 322 316 323 inline 317 inline 324 const G4MaterialCutsCouple* 318 const G4MaterialCutsCouple* 325 G4ProductionCutsTable::GetMaterialCutsCouple(c << 319 G4ProductionCutsTable::GetMaterialCutsCouple(const G4Material* aMat, 326 c << 320 const G4ProductionCuts* aCut) const 327 { << 321 { 328 for(auto cItr=coupleTable.cbegin(); cItr!=co << 322 for(CoupleTableIterator cItr=coupleTable.begin();cItr!=coupleTable.end();cItr++) 329 { 323 { 330 if((*cItr)->GetMaterial()!=aMat) continue; 324 if((*cItr)->GetMaterial()!=aMat) continue; 331 if((*cItr)->GetProductionCuts()==aCut) ret 325 if((*cItr)->GetProductionCuts()==aCut) return (*cItr); 332 } 326 } 333 return nullptr; << 327 return 0; 334 } 328 } 335 329 336 inline 330 inline 337 G4int << 331 G4int G4ProductionCutsTable::GetCoupleIndex(const G4MaterialCutsCouple* aCouple) const 338 G4ProductionCutsTable::GetCoupleIndex(const G4 << 339 { 332 { 340 G4int idx = 0; 333 G4int idx = 0; 341 for(auto cItr=coupleTable.cbegin(); cItr!=co << 334 for(CoupleTableIterator cItr=coupleTable.begin();cItr!=coupleTable.end();cItr++) 342 { 335 { 343 if((*cItr)==aCouple) return idx; 336 if((*cItr)==aCouple) return idx; 344 ++idx; << 337 idx++; 345 } 338 } 346 return -1; 339 return -1; 347 } 340 } 348 341 349 inline 342 inline 350 G4int G4ProductionCutsTable::GetCoupleIndex(co << 343 G4int G4ProductionCutsTable:: GetCoupleIndex(const G4Material* aMat, 351 co << 344 const G4ProductionCuts* aCut) const 352 { 345 { 353 const G4MaterialCutsCouple* aCouple = GetMat 346 const G4MaterialCutsCouple* aCouple = GetMaterialCutsCouple(aMat,aCut); 354 return GetCoupleIndex(aCouple); 347 return GetCoupleIndex(aCouple); 355 } 348 } 356 349 357 inline 350 inline 358 G4int G4ProductionCutsTable::GetVerboseLevel() << 351 G4int G4ProductionCutsTable::GetVerboseLevel() const 359 { 352 { 360 return verboseLevel; << 353 return verboseLevel; 361 } 354 } 362 355 363 inline 356 inline 364 const G4MCCIndexConversionTable* << 357 const G4MCCIndexConversionTable* 365 G4ProductionCutsTable::GetMCCIndexConversionTa << 358 G4ProductionCutsTable::GetMCCIndexConversionTable() const 366 { 359 { 367 return &mccConversionTable; 360 return &mccConversionTable; 368 } 361 } 369 362 370 #endif 363 #endif >> 364 >> 365 >> 366 >> 367 >> 368 >> 369 371 370