Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4BOptnLeadingParticle << 27 // 26 // 28 // Class Description: << 29 // 27 // 30 // A G4VBiasingOperation that implements the s << 28 //--------------------------------------------------------------------- 31 // particle biasing scheme". It is of interest << 32 // to estimate the flux leaking from the shiel << 33 // It works as follows: << 34 // - it is intented for hadronic inelastic int << 35 // - at each interaction, are kept: << 36 // - the most energetic particle (the lead << 37 // - with unmodified weight << 38 // - randomly one particle of each species << 39 // - with this particle weight = n * p << 40 // n is the number of particles of t << 41 // 29 // 42 // Author: Marc Verderi, November 2019. << 30 // G4BOptnLeadingParticle 43 // ------------------------------------------- << 31 // >> 32 // Class Description: >> 33 // A G4VBiasingOperation that implements the so-called "Leading >> 34 // particle biasing scheme". It is of interest in the shield problem >> 35 // to estimate the flux leaking from the shield. >> 36 // It works as follows: >> 37 // - it is intented for hadronic inelastic interaction >> 38 // - at each interaction, are kept: >> 39 // - the most energetic particle (the leading particle) >> 40 // - with unmodified weight >> 41 // - randomly one particle of each species >> 42 // - with this particle weight = n * primary_weight where >> 43 // n is the number of particles of this species >> 44 //--------------------------------------------------------------------- >> 45 // Initial version Nov. 2019 M. Verderi >> 46 44 47 45 #ifndef G4BOptnLeadingParticle_hh 48 #ifndef G4BOptnLeadingParticle_hh 46 #define G4BOptnLeadingParticle_hh 1 49 #define G4BOptnLeadingParticle_hh 1 47 50 48 #include "G4VBiasingOperation.hh" 51 #include "G4VBiasingOperation.hh" 49 #include "G4ParticleChange.hh" 52 #include "G4ParticleChange.hh" 50 53 51 class G4BOptnLeadingParticle : public G4VBiasi << 54 class G4BOptnLeadingParticle : public G4VBiasingOperation { 52 { << 55 public: 53 public: << 56 // -- Constructor : 54 << 57 G4BOptnLeadingParticle(G4String name); 55 // -- Constructor : << 58 // -- destructor: 56 G4BOptnLeadingParticle(const G4String& nam << 59 virtual ~G4BOptnLeadingParticle(); 57 // -- destructor: << 60 58 virtual ~G4BOptnLeadingParticle(); << 61 public: >> 62 // -- Methods from G4VBiasingOperation interface: >> 63 // ---------------------------------------------- >> 64 // -- Unused: >> 65 virtual const G4VBiasingInteractionLaw* ProvideOccurenceBiasingInteractionLaw( const G4BiasingProcessInterface*, G4ForceCondition& ) {return nullptr;} >> 66 // -- Used: >> 67 virtual G4VParticleChange* ApplyFinalStateBiasing( const G4BiasingProcessInterface*, // -- Method used for this biasing. The related biasing operator >> 68 const G4Track*, // -- returns this biasing operation at the post step do it level >> 69 const G4Step*, // -- when the wrapped process has won the interaction length race. >> 70 G4bool& ); // -- The wrapped process final state is then trimmed. >> 71 // -- Unused: >> 72 virtual G4double DistanceToApplyOperation( const G4Track*, >> 73 G4double, >> 74 G4ForceCondition*) {return 0;} >> 75 virtual G4VParticleChange* GenerateBiasingFinalState( const G4Track*, >> 76 const G4Step* ) {return nullptr;} >> 77 >> 78 public: >> 79 // -- The possibility is given to further apply a Russian roulette on tracks that are accompagnying the leading particle >> 80 // -- after the classical leading particle biasing algorithm has been applied. >> 81 // -- This is of interest when applying the technique to e+ -> gamma gamma for example. Given one gamma is leading, >> 82 // -- the second one is alone in its category, hence selected. With the Russian roulette it is then possible to keep >> 83 // -- this one randomly. This is also of interest for pi0 decays, or for brem. e- -> e- gamma where the e- or gamma >> 84 // -- are alone in their category. >> 85 void SetFurtherKillingProbability( G4double p ) { fRussianRouletteKillingProbability = p; } // -- if p <= 0.0 the killing is ignored. >> 86 G4double GetFurtherKillingProbability() const { return fRussianRouletteKillingProbability; } >> 87 >> 88 private: >> 89 // -- Particle change used to return the trimmed final state: >> 90 G4ParticleChange fParticleChange; >> 91 G4double fRussianRouletteKillingProbability; >> 92 59 93 60 // -- Methods from G4VBiasingOperation int << 61 // --------------------------------------- << 62 // -- Unused: << 63 virtual const G4VBiasingInteractionLaw* << 64 ProvideOccurenceBiasingInteractionLaw( con << 65 G4F << 66 // -- Used: << 67 virtual G4VParticleChange* << 68 ApplyFinalStateBiasing( const G4BiasingPro << 69 const G4Track*, << 70 const G4Step*, << 71 G4bool& ); << 72 // -- Unused: << 73 virtual G4double << 74 DistanceToApplyOperation( const G4Track*, << 75 virtual G4VParticleChange* << 76 GenerateBiasingFinalState( const G4Track*, << 77 << 78 // -- The possibility is given to further << 79 // -- after the classical leading particle << 80 // -- This is of interest when applying th << 81 // -- the second one is alone in its categ << 82 // -- this one randomly. This is also of i << 83 // -- are alone in their category. << 84 void SetFurtherKillingProbability( G4doubl << 85 { << 86 fRussianRouletteKillingProbability = p; << 87 } << 88 G4double GetFurtherKillingProbability() co << 89 { << 90 return fRussianRouletteKillingProbabilit << 91 } << 92 << 93 private: << 94 << 95 // -- Particle change used to return the t << 96 G4ParticleChange fParticleChange; << 97 G4double fRussianRouletteKillingProbabilit << 98 }; 94 }; 99 95 100 #endif 96 #endif 101 97