Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4NuclideTable class implementation << 26 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >> 27 // >> 28 // MODULE: G4NuclideTable.cc >> 29 // >> 30 // Date: 10/10/13 >> 31 // Author: T.Koi >> 32 // >> 33 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >> 34 // >> 35 // HISTORY >> 36 // Based on G4IsomerTable >> 37 //////////////////////////////////////////////////////////////////////////////// 27 // 38 // 28 // Author: T.Koi, SLAC - 10 October 2013 << 29 // ------------------------------------------- << 30 << 31 #include "G4NuclideTable.hh" 39 #include "G4NuclideTable.hh" 32 << 33 #include "G4NuclideTableMessenger.hh" 40 #include "G4NuclideTableMessenger.hh" 34 #include "G4PhysicalConstants.hh" << 41 35 #include "G4String.hh" << 36 #include "G4SystemOfUnits.hh" << 37 #include "G4ios.hh" 42 #include "G4ios.hh" >> 43 #include "G4String.hh" 38 #include "globals.hh" 44 #include "globals.hh" 39 << 45 #include "G4PhysicalConstants.hh" 40 #include <fstream> << 46 #include "G4SystemOfUnits.hh" 41 #include <iomanip> 47 #include <iomanip> >> 48 #include <fstream> 42 #include <sstream> 49 #include <sstream> 43 50 44 G4NuclideTable* G4NuclideTable::GetInstance() << 51 // const G4double G4NuclideTable::levelTolerance = 45 { << 52 // torelance for excitation energy 46 static G4NuclideTable instance; << 53 47 return &instance; << 54 48 } << 55 /////////////////////////////////////////////////////////////////////////////// 49 << 56 G4NuclideTable* G4NuclideTable::GetInstance() { 50 G4NuclideTable* G4NuclideTable::GetNuclideTabl << 57 static G4NuclideTable instance; 51 { << 58 return &instance; 52 return GetInstance(); << 53 } 59 } 54 60 >> 61 /////////////////////////////////////////////////////////////////////////////// 55 G4NuclideTable::G4NuclideTable() 62 G4NuclideTable::G4NuclideTable() 56 : G4VIsotopeTable("Isomer"), mean_life_thres << 63 :G4VIsotopeTable("Isomer"), >> 64 threshold_of_half_life(1000.0*ns), >> 65 minimum_threshold_of_half_life(DBL_MAX), >> 66 fUserDefinedList(nullptr), >> 67 fIsotopeList(nullptr), >> 68 flevelTolerance(1.0*eV) 57 { 69 { >> 70 //SetVerboseLevel(G4ParticleTable::GetParticleTable()->GetVerboseLevel()); >> 71 //FillHardCodeList(); 58 fMessenger = new G4NuclideTableMessenger(thi 72 fMessenger = new G4NuclideTableMessenger(this); 59 fIsotopeList = new G4IsotopeList(); 73 fIsotopeList = new G4IsotopeList(); 60 GenerateNuclide(); 74 GenerateNuclide(); 61 } 75 } 62 76 >> 77 /////////////////////////////////////////////////////////////////////////////// 63 G4NuclideTable::~G4NuclideTable() 78 G4NuclideTable::~G4NuclideTable() 64 { 79 { 65 for (auto& it : map_pre_load_list) { << 80 66 it.second.clear(); << 81 for ( std::map< G4int , std::multimap< G4double , G4IsotopeProperty* > >::iterator >> 82 it = map_pre_load_list.begin(); it != map_pre_load_list.end(); it++ ) { >> 83 it->second.clear(); 67 } 84 } 68 map_pre_load_list.clear(); 85 map_pre_load_list.clear(); 69 86 70 for (auto& it : map_full_list) { << 87 71 it.second.clear(); << 88 for ( std::map< G4int , std::multimap< G4double , G4IsotopeProperty* > >::iterator >> 89 it = map_full_list.begin(); it != map_full_list.end(); it++ ) { >> 90 it->second.clear(); 72 } 91 } 73 map_full_list.clear(); 92 map_full_list.clear(); 74 93 75 if (fIsotopeList != nullptr) { 94 if (fIsotopeList != nullptr) { 76 for (const auto& i : *fIsotopeList) { << 95 for (size_t i = 0 ; i<fIsotopeList->size(); i++) { 77 delete i; << 96 delete (*fIsotopeList)[i]; 78 } 97 } 79 fIsotopeList->clear(); 98 fIsotopeList->clear(); 80 delete fIsotopeList; 99 delete fIsotopeList; 81 fIsotopeList = nullptr; 100 fIsotopeList = nullptr; 82 } 101 } 83 delete fMessenger; << 102 84 } 103 } 85 104 >> 105 /////////////////////////////////////////////////////////////////////////////// >> 106 // 86 G4IsotopeProperty* G4NuclideTable::GetIsotope( 107 G4IsotopeProperty* G4NuclideTable::GetIsotope(G4int Z, G4int A, G4double E, 87 << 108 G4Ions::G4FloatLevelBase flb) 88 { 109 { 89 G4IsotopeProperty* fProperty = nullptr; << 90 110 91 // At first searching UserDefined << 111 G4IsotopeProperty* fProperty = nullptr; 92 if (fUserDefinedList != nullptr) { << 112 93 for (const auto it : *fUserDefinedList) { << 113 // At first searching UserDefined 94 if (Z == it->GetAtomicNumber() && A == i << 114 if ( fUserDefinedList ) { 95 G4double levelE = it->GetEnergy(); << 115 for ( G4IsotopeList::iterator it = fUserDefinedList->begin() ; it != fUserDefinedList->end() ; it++ ) { 96 if (levelE - flevelTolerance / 2 <= E << 116 97 if (flb == it->GetFloatLevelBase()) << 117 if ( Z == (*it)->GetAtomicNumber() && A == (*it)->GetAtomicMass() ) { 98 return it; << 118 G4double levelE = (*it)->GetEnergy(); 99 } // found << 119 if ( levelE - flevelTolerance/2 <= E && E < levelE + flevelTolerance/2 ) { 100 } << 120 if( flb == (*it)->GetFloatLevelBase() ) >> 121 { return *it; } //found >> 122 } >> 123 } 101 } 124 } 102 } << 125 } 103 } << 104 126 105 // Searching pre-load << 127 //Serching pre-load 106 // Note: isomer level is properly set only f << 128 //Note: isomer level is properly set only for pre_load_list. 107 // << 129 // 108 G4int ionCode = 1000 * Z + A; << 130 G4int ionCode = 1000*Z + A; 109 auto itf = map_pre_load_list.find(ionCode); << 131 std::map< G4int , std::multimap< G4double , G4IsotopeProperty* > >::iterator itf = map_pre_load_list.find( ionCode ); 110 << 132 111 if (itf != map_pre_load_list.cend()) { << 133 if ( itf != map_pre_load_list.end() ) { 112 auto lower_bound_itr = itf->second.lower_b << 134 std::multimap< G4double , G4IsotopeProperty* >::iterator lower_bound_itr = itf -> second.lower_bound ( E - flevelTolerance/2 ); 113 G4double levelE = DBL_MAX; << 135 G4double levelE = DBL_MAX; 114 << 136 /* 115 while (lower_bound_itr != itf->second.cend << 137 if ( lower_bound_itr != itf -> second.end() ) { 116 levelE = lower_bound_itr->first; << 138 levelE = lower_bound_itr->first; 117 if (levelE - flevelTolerance / 2 <= E && << 139 if ( levelE - flevelTolerance/2 <= E && E < levelE + flevelTolerance/2 ) { 118 if (flb == (lower_bound_itr->second)-> << 140 if( flb == (lower_bound_itr->second)->GetFloatLevelBase() ) 119 return lower_bound_itr->second; // << 141 { return lower_bound_itr->second; } // found 120 } << 142 } 121 } 143 } 122 else { << 144 */ 123 break; << 145 while ( lower_bound_itr != itf -> second.end() ) { >> 146 levelE = lower_bound_itr->first; >> 147 if ( levelE - flevelTolerance/2 <= E && E < levelE + flevelTolerance/2 ) { >> 148 if ( flb == (lower_bound_itr->second)->GetFloatLevelBase() ) return lower_bound_itr->second; // found >> 149 } else { >> 150 break; >> 151 } >> 152 lower_bound_itr++; 124 } 153 } 125 ++lower_bound_itr; << 154 126 } << 155 } 127 } << 128 156 129 return fProperty; // not found << 157 return fProperty; // not found 130 } 158 } 131 159 132 G4double G4NuclideTable::GetTruncationError(G4 << 160 /////////////////////////////////////////////////////////////////////// 133 { << 161 G4IsotopeProperty* G4NuclideTable::GetIsotopeByIsoLvl(G4int Z, G4int A, G4int lvl) 134 G4double tolerance = G4NuclideTable::GetInst << 135 return eex - (G4long)(eex / tolerance) * tol << 136 } << 137 << 138 G4double G4NuclideTable::Round(G4double eex) << 139 { << 140 G4double tolerance = G4NuclideTable::GetInst << 141 return round(eex / tolerance) * tolerance; << 142 } << 143 << 144 G4long G4NuclideTable::Truncate(G4double eex) << 145 { << 146 G4double tolerance = G4NuclideTable::GetInst << 147 return (G4long)(eex / tolerance); << 148 } << 149 << 150 G4double G4NuclideTable::Tolerance() << 151 { 162 { 152 return G4NuclideTable::GetInstance()->GetLev << 163 if(lvl==0) return GetIsotope(Z,A,0.0); >> 164 return nullptr; 153 } 165 } 154 166 155 G4IsotopeProperty* G4NuclideTable::GetIsotopeB << 167 /////////////////////////////////////////////////////////////////////////////// >> 168 void G4NuclideTable::FillHardCodeList() 156 { 169 { 157 if (lvl == 0) return GetIsotope(Z, A, 0.0); << 158 return nullptr; << 159 } 170 } 160 171 >> 172 /////////////////////////////////////////////////////////////////////////////// 161 void G4NuclideTable::GenerateNuclide() 173 void G4NuclideTable::GenerateNuclide() 162 { 174 { 163 if (mean_life_threshold < minimum_mean_life_ << 175 if ( threshold_of_half_life < minimum_threshold_of_half_life ) { 164 // Need to update full list << 176 // Need to update full list 165 const char* path = G4FindDataDir("G4ENSDFS << 177 char* path = std::getenv("G4ENSDFSTATEDATA"); 166 << 178 167 if (path == nullptr) { << 179 if ( !path ) { 168 G4Exception("G4NuclideTable", "PART70000 << 180 G4Exception("G4NuclideTable", "PART70000", 169 "G4ENSDFSTATEDATA environmen << 181 FatalException, "G4ENSDFSTATEDATA environment variable must be set"); 170 return; << 182 return; 171 } << 172 << 173 std::ifstream ifs; << 174 G4String filename(path); << 175 filename += "/ENSDFSTATE.dat"; << 176 << 177 ifs.open(filename.c_str()); << 178 if (!ifs.good()) { << 179 G4Exception("G4NuclideTable", "PART70001 << 180 return; << 181 } << 182 << 183 G4int ionCode = 0; << 184 G4int iLevel = 0; << 185 G4int ionZ; << 186 G4int ionA; << 187 G4double ionE; << 188 G4String ionFL; << 189 G4double ionLife; << 190 G4int ionJ; << 191 G4double ionMu; << 192 << 193 // Lifetimes read from ENSDFSTATE are mean << 194 ifs >> ionZ >> ionA >> ionE >> ionFL >> io << 195 << 196 while (ifs.good()) // Loop checking, 09.0 << 197 { << 198 if (ionCode != 1000 * ionZ + ionA) { << 199 iLevel = 0; << 200 ionCode = 1000 * ionZ + ionA; << 201 } 183 } 202 184 203 ionE *= keV; << 185 std::ifstream ifs; 204 G4Ions::G4FloatLevelBase flb = StripFloa << 186 G4String filename(path); 205 ionLife *= ns; << 187 filename += "/ENSDFSTATE.dat"; 206 ionMu *= (joule / tesla); << 188 207 << 189 ifs.open( filename.c_str() ); 208 if ((ionE == 0 && flb == G4Ions::G4Float << 190 if ( !ifs.good() ) { 209 || (mean_life_threshold <= ionLife & << 191 G4Exception("G4NuclideTable", "PART70001", 210 { << 192 FatalException, "ENSDFSTATE.dat is not found."); 211 if (ionE > 0) ++iLevel; << 193 return; 212 if (iLevel > 9) iLevel = 9; << 213 << 214 auto fProperty = new G4IsotopeProperty << 215 << 216 // Set Isotope Property << 217 fProperty->SetAtomicNumber(ionZ); << 218 fProperty->SetAtomicMass(ionA); << 219 fProperty->SetIsomerLevel(iLevel); << 220 fProperty->SetEnergy(ionE); << 221 fProperty->SetiSpin(ionJ); << 222 fProperty->SetLifeTime(ionLife); << 223 fProperty->SetDecayTable(nullptr); << 224 fProperty->SetMagneticMoment(ionMu); << 225 fProperty->SetFloatLevelBase(flb); << 226 << 227 fIsotopeList->push_back(fProperty); << 228 << 229 auto itf = map_full_list.find(ionCode) << 230 if (itf == map_full_list.cend()) { << 231 std::multimap<G4double, G4IsotopePro << 232 itf = (map_full_list.insert(std::pai << 233 ionCode, aMultiMap))) << 234 .first; << 235 } << 236 itf->second.insert(std::pair<G4double, << 237 } 194 } 238 195 >> 196 G4int ionCode=0; >> 197 G4int iLevel=0; >> 198 G4int ionZ; >> 199 G4int ionA; >> 200 G4double ionE; >> 201 G4String ionFL; >> 202 G4double ionLife; >> 203 G4int ionJ; >> 204 G4double ionMu; >> 205 239 ifs >> ionZ >> ionA >> ionE >> ionFL >> 206 ifs >> ionZ >> ionA >> ionE >> ionFL >> ionLife >> ionJ >> ionMu; 240 } // End while << 241 207 242 minimum_mean_life_threshold = mean_life_th << 208 while ( ifs.good() ) {// Loop checking, 09.08.2015, K.Kurashige 243 } << 209 if ( ionCode != 1000*ionZ + ionA ) { >> 210 iLevel = 0; >> 211 ionCode = 1000*ionZ + ionA; >> 212 } >> 213 >> 214 ionE *= keV; >> 215 G4Ions::G4FloatLevelBase flb = StripFloatLevelBase( ionFL ); >> 216 ionLife *= ns; >> 217 ionMu *= (joule/tesla); >> 218 >> 219 if ( ( ionE == 0 && flb == G4Ions::G4FloatLevelBase::no_Float ) // >> 220 || ( threshold_of_half_life <= ionLife*std::log(2.0) && ionLife*std::log(2.0) < minimum_threshold_of_half_life ) ) { >> 221 if ( ionE > 0 ) iLevel++; >> 222 if ( iLevel > 9 ) iLevel=9; >> 223 >> 224 G4IsotopeProperty* fProperty = new G4IsotopeProperty(); >> 225 // Set Isotope Property >> 226 fProperty->SetAtomicNumber(ionZ); >> 227 fProperty->SetAtomicMass(ionA); >> 228 fProperty->SetIsomerLevel(iLevel); >> 229 fProperty->SetEnergy(ionE); >> 230 fProperty->SetiSpin(ionJ); >> 231 fProperty->SetLifeTime(ionLife); >> 232 fProperty->SetDecayTable(nullptr); >> 233 fProperty->SetMagneticMoment(ionMu); >> 234 fProperty->SetFloatLevelBase( flb ); >> 235 >> 236 fIsotopeList->push_back(fProperty); >> 237 >> 238 std::map< G4int , std::multimap< G4double , G4IsotopeProperty* > >::iterator itf = map_full_list.find( ionCode ); >> 239 if ( itf == map_full_list.end() ) { >> 240 std::multimap<G4double, G4IsotopeProperty*> aMultiMap; >> 241 itf = ( map_full_list.insert( std::pair< G4int , std::multimap< G4double , G4IsotopeProperty* > > ( ionCode , aMultiMap ) ) ).first; >> 242 } >> 243 itf -> second.insert( std::pair< G4double, G4IsotopeProperty* >( ionE , fProperty ) ); >> 244 } 244 245 245 // Clear current map << 246 ifs >> ionZ >> ionA >> ionE >> ionFL >> ionLife >> ionJ >> ionMu; 246 for (auto& it : map_pre_load_list) { << 247 } 247 it.second.clear(); << 248 } << 249 map_pre_load_list.clear(); << 250 248 251 // Build map based on current threshold valu << 249 minimum_threshold_of_half_life = threshold_of_half_life; 252 for (const auto& it : map_full_list) { << 250 253 G4int ionCode = it.first; << 251 } 254 auto itf = map_pre_load_list.find(ionCode) << 255 if (itf == map_pre_load_list.cend()) { << 256 std::multimap<G4double, G4IsotopePropert << 257 itf = (map_pre_load_list.insert( << 258 std::pair<G4int, std::multimap< << 259 .first; << 260 } << 261 252 262 G4int iLevel = 0; << 253 263 for (const auto& itt : it.second) { << 254 // Clear current map 264 G4double exEnergy = itt.first; << 255 for ( std::map< G4int , std::multimap< G4double , G4IsotopeProperty* > >::iterator 265 G4double meanLife = itt.second->GetLifeT << 256 it = map_pre_load_list.begin(); it != map_pre_load_list.end(); it++ ) { 266 if (exEnergy == 0.0 || meanLife > mean_l << 257 it->second.clear(); 267 if (itt.first != 0.0) ++iLevel; << 258 } 268 if (iLevel > 9) iLevel = 9; << 259 map_pre_load_list.clear(); 269 itt.second->SetIsomerLevel(iLevel); << 260 270 itf->second.insert(std::pair<G4double, << 261 // Build map based on current threshold value >> 262 for ( std::map< G4int , std::multimap< G4double , G4IsotopeProperty* > >::iterator >> 263 it = map_full_list.begin(); it != map_full_list.end(); it++ ) { >> 264 >> 265 G4int ionCode = it->first; >> 266 std::map< G4int , std::multimap< G4double , G4IsotopeProperty* > >::iterator itf = map_pre_load_list.find( ionCode ); >> 267 if ( itf == map_pre_load_list.end() ) { >> 268 std::multimap<G4double, G4IsotopeProperty*> aMultiMap; >> 269 itf = ( map_pre_load_list.insert( std::pair< G4int , std::multimap< G4double , G4IsotopeProperty* > > ( ionCode , aMultiMap ) ) ).first; 271 } 270 } 272 } << 271 G4int iLevel = 0; 273 } << 272 for ( std::multimap< G4double , G4IsotopeProperty* >::iterator >> 273 itt = it->second.begin(); itt != it->second.end(); itt++ ) { >> 274 >> 275 G4double exEnergy = itt->first; >> 276 G4double meanLife = itt->second->GetLifeTime(); >> 277 if ( exEnergy == 0.0 >> 278 || meanLife*std::log(2.0) > threshold_of_half_life ) { >> 279 if ( itt->first != 0.0 ) iLevel++; >> 280 if ( iLevel > 9 ) iLevel=9; >> 281 itt->second->SetIsomerLevel( iLevel ); >> 282 itf -> second.insert( std::pair< G4double, G4IsotopeProperty* >( exEnergy , itt->second ) ); >> 283 } >> 284 } >> 285 } >> 286 274 } 287 } 275 288 276 void G4NuclideTable::AddState(G4int ionZ, G4in << 289 void G4NuclideTable::AddState( G4int ionZ, G4int ionA, G4double ionE, G4double ionLife, G4int ionJ, G4double ionMu ) 277 G4double ionMu) << 278 { 290 { 279 if (G4Threading::IsMasterThread()) { << 291 if ( G4Threading::IsMasterThread() ) { 280 G4int flbIndex = 0; << 292 G4int flbIndex = 0; 281 ionE = StripFloatLevelBase(ionE, flbIndex) << 293 ionE = StripFloatLevelBase( ionE, flbIndex ); 282 AddState(ionZ, ionA, ionE, flbIndex, ionLi << 294 AddState(ionZ,ionA,ionE,flbIndex,ionLife,ionJ,ionMu); 283 } << 295 } 284 } 296 } 285 297 286 void G4NuclideTable::AddState(G4int ionZ, G4in << 298 void G4NuclideTable::AddState( G4int ionZ, G4int ionA, G4double ionE, 287 G4double ionLife << 299 G4int flbIndex, G4double ionLife, G4int ionJ, G4double ionMu ) 288 { 300 { 289 if (G4Threading::IsMasterThread()) { << 301 if ( G4Threading::IsMasterThread() ) { 290 if (fUserDefinedList == nullptr) fUserDefi << 291 302 292 auto fProperty = new G4IsotopeProperty(); << 303 if ( fUserDefinedList == NULL ) fUserDefinedList = new G4IsotopeList(); 293 304 294 // Set Isotope Property << 305 G4IsotopeProperty* fProperty = new G4IsotopeProperty(); 295 fProperty->SetAtomicNumber(ionZ); << 296 fProperty->SetAtomicMass(ionA); << 297 fProperty->SetIsomerLevel(9); << 298 fProperty->SetEnergy(ionE); << 299 fProperty->SetiSpin(ionJ); << 300 fProperty->SetLifeTime(ionLife); << 301 fProperty->SetDecayTable(nullptr); << 302 fProperty->SetMagneticMoment(ionMu); << 303 fProperty->SetFloatLevelBase(flbIndex); << 304 306 305 fUserDefinedList->push_back(fProperty); << 307 // Set Isotope Property 306 fIsotopeList->push_back(fProperty); << 308 fProperty->SetAtomicNumber(ionZ); 307 } << 309 fProperty->SetAtomicMass(ionA); >> 310 fProperty->SetIsomerLevel(9); >> 311 fProperty->SetEnergy(ionE); >> 312 fProperty->SetiSpin(ionJ); >> 313 fProperty->SetLifeTime(ionLife); >> 314 fProperty->SetDecayTable(nullptr); >> 315 fProperty->SetMagneticMoment(ionMu); >> 316 fProperty->SetFloatLevelBase(flbIndex); >> 317 >> 318 fUserDefinedList->push_back(fProperty); >> 319 fIsotopeList->push_back(fProperty); >> 320 >> 321 } 308 } 322 } 309 323 310 void G4NuclideTable::AddState(G4int ionZ, G4in << 324 void G4NuclideTable::AddState( G4int ionZ, G4int ionA, G4double ionE, 311 G4double ionLife << 325 G4Ions::G4FloatLevelBase flb, G4double ionLife, G4int ionJ, G4double ionMu ) 312 { 326 { 313 if (G4Threading::IsMasterThread()) { << 327 if ( G4Threading::IsMasterThread() ) { 314 if (fUserDefinedList == nullptr) fUserDefi << 328 if ( fUserDefinedList == nullptr ) fUserDefinedList = new G4IsotopeList(); 315 329 316 auto fProperty = new G4IsotopeProperty(); << 330 G4IsotopeProperty* fProperty = new G4IsotopeProperty(); >> 331 // Set Isotope Property >> 332 fProperty->SetAtomicNumber(ionZ); >> 333 fProperty->SetAtomicMass(ionA); >> 334 fProperty->SetIsomerLevel(9); >> 335 fProperty->SetEnergy(ionE); >> 336 fProperty->SetiSpin(ionJ); >> 337 fProperty->SetLifeTime(ionLife); >> 338 fProperty->SetDecayTable(0); >> 339 fProperty->SetMagneticMoment(ionMu); >> 340 fProperty->SetFloatLevelBase( flb ); 317 341 318 // Set Isotope Property << 342 fUserDefinedList->push_back(fProperty); 319 fProperty->SetAtomicNumber(ionZ); << 343 fIsotopeList->push_back(fProperty); 320 fProperty->SetAtomicMass(ionA); << 321 fProperty->SetIsomerLevel(9); << 322 fProperty->SetEnergy(ionE); << 323 fProperty->SetiSpin(ionJ); << 324 fProperty->SetLifeTime(ionLife); << 325 fProperty->SetDecayTable(nullptr); << 326 fProperty->SetMagneticMoment(ionMu); << 327 fProperty->SetFloatLevelBase(flb); << 328 344 329 fUserDefinedList->push_back(fProperty); << 345 } 330 fIsotopeList->push_back(fProperty); << 331 } << 332 } 346 } 333 347 334 void G4NuclideTable::SetThresholdOfHalfLife(G4 << 348 //#include "G4Threading.hh" >> 349 void G4NuclideTable::SetThresholdOfHalfLife( G4double t ) 335 { 350 { 336 if (G4Threading::IsMasterThread()) { << 351 if ( G4Threading::IsMasterThread() ) { 337 mean_life_threshold = t / 0.69314718; << 352 threshold_of_half_life=t; 338 GenerateNuclide(); << 353 GenerateNuclide(); 339 } << 354 } 340 } << 341 << 342 // Set the mean life threshold for nuclides << 343 // All nuclides with mean lives greater than t << 344 // for this run << 345 void G4NuclideTable::SetMeanLifeThreshold(G4do << 346 { << 347 if (G4Threading::IsMasterThread()) { << 348 mean_life_threshold = t; << 349 GenerateNuclide(); << 350 } << 351 } 355 } 352 356 353 G4double G4NuclideTable::StripFloatLevelBase(G 357 G4double G4NuclideTable::StripFloatLevelBase(G4double E, G4int& flbIndex) 354 { 358 { 355 G4double rem = std::fmod(E / (1.0E-3 * eV), << 359 G4double rem = std::fmod(E/(1.0E-3*eV),10.0); 356 flbIndex = G4int(rem); << 360 flbIndex = int(rem); 357 return E - rem; << 361 return E-rem; 358 } << 362 } 359 << 363 360 G4Ions::G4FloatLevelBase G4NuclideTable::Strip << 364 G4Ions::G4FloatLevelBase G4NuclideTable::StripFloatLevelBase( G4String sFLB ) 361 { << 365 { 362 if (sFLB.empty() || 2 < sFLB.size()) { << 366 if ( sFLB.size() < 1 || 2 < sFLB.size() ) { 363 G4String text; << 367 G4String text; 364 text += sFLB; << 368 text += sFLB; 365 text += " is not valid indicator of G4Ions << 369 text += " is not valid indicator of G4Ions::G4FloatLevelBase. You may use a wrong version of ENSDFSTATE data. Please use G4ENSDFSTATE2.0 or later."; 366 text += "You may use a wrong version of EN << 370 367 text += "Please use G4ENSDFSTATE-2.0 or la << 371 G4Exception( "G4NuclideTable" , "PART70002" , 368 << 372 FatalException , text ); 369 G4Exception("G4NuclideTable", "PART70002", << 373 } 370 } << 374 G4Ions::G4FloatLevelBase flb = noFloat; 371 G4Ions::G4FloatLevelBase flb = noFloat; << 375 if ( !(sFLB == '-') ) { 372 if (!(sFLB == "-")) { << 376 flb = G4Ions::FloatLevelBase( sFLB.back() ); 373 flb = G4Ions::FloatLevelBase(sFLB.back()); << 377 } 374 } << 378 return flb; 375 return flb; << 376 } 379 } 377 380