Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4ParticleDefinition << 27 // 23 // 28 // Class description: << 24 // $Id: G4ParticleDefinition.hh,v 1.20 2003/06/19 14:38:45 gunter Exp $ >> 25 // GEANT4 tag $Name: particles-V05-02-02 $ 29 // 26 // 30 // This class contains all the static data of << 27 // 31 // It uses the process manager in order to col << 28 // ------------------------------------------------------------ 32 // this kind of particle can undertake. << 29 // GEANT 4 class header file 33 << 30 // 34 // Authors: G.Cosmo, 2 December 1995 - Design, << 31 // History: first implementation, based on object model of 35 // M.Asai, 29 January 1996 - First im << 32 // 2nd December 1995, G.Cosmo 36 // History: << 33 // ---------------- G4ParticleDefinition ---------------- 37 // - 1996-2003, H.Kurashige - Revisions << 34 // first implementation by Makoto Asai, 29 January 1996 38 // - 11.03.2003, H.Kurashige - Restructuring f << 35 // revised by G.Cosmo, 29 February 1996 39 // - 25.01.2013, G.Cosmo, A.Dotti - Introduced << 36 // revised by H.Kurashige, 19 April 1996 40 // - 15.06.2017, K.L.Genser - Added support fo << 37 // revised by H.Kurashige, 4 July 1996 41 // ------------------------------------------- << 38 // added GetEnergyCuts() and GetLengthCuts() by G.Cosmo, 11 July 1996 42 #ifndef G4ParticleDefinition_hh << 39 // added Set/GetVerboseLevel() H.Kurashige 11 Nov. 1997 43 #define G4ParticleDefinition_hh 1 << 40 // added SetCuts() and ResetCuts H.Kurashige 15 Nov.1996 44 << 41 // change SetProcessManager as public H.Kurashige 06 June 1998 45 #include "G4PDefManager.hh" << 42 // added GetEnergyThreshold H.Kurashige 08 June 1998 46 #include "G4ios.hh" << 43 // added ShortLived flag and ApplyCuts flag H.Kurashige 27 June 1998 47 #include "globals.hh" << 44 // fixed some improper codings H.Kurashige 08 Apr. 1999 >> 45 // added sub-type H.Kurashige 15 Feb. 2000 >> 46 // added RestoreCuts H.Kurashige 09 Mar. 2001 >> 47 // restructuring for Cuts per Region by Hisaya 11 MAr.2003 >> 48 // ------------------------------------------------------------ 48 49 49 #include <CLHEP/Units/PhysicalConstants.h> << 50 #ifndef G4ParticleDefinition_h >> 51 #define G4ParticleDefinition_h 1 50 52 >> 53 #include "globals.hh" >> 54 #include "G4ios.hh" 51 #include <vector> 55 #include <vector> 52 56 53 class G4ProcessManager; 57 class G4ProcessManager; 54 class G4DecayTable; 58 class G4DecayTable; 55 class G4ParticleTable; 59 class G4ParticleTable; >> 60 class G4Material; 56 class G4ParticlePropertyTable; 61 class G4ParticlePropertyTable; 57 class G4VTrackingManager; << 58 << 59 using G4ParticleDefinitionSubInstanceManager = << 60 62 61 class G4ParticleDefinition << 63 class G4ParticleDefinition 62 { 64 { 63 friend class G4ParticlePropertyTable; << 65 // Class Description >> 66 // This class containes all the static data of a particle. >> 67 // It also has uses a process manager in order to collect >> 68 // all the processes this kind of particle can undertake. >> 69 // >> 70 >> 71 friend class G4ParticlePropertyTable; >> 72 >> 73 public: // With Description >> 74 // Only one type of constructor can be used for G4ParticleDefinition. >> 75 // If you want to create new particle, you must set name of the particle >> 76 // at construction. Most of members seen as arguments of the constructor >> 77 // (except last 3 arguments concerning with decay ) are "constant" >> 78 // and can not be changed later. (No "SET" methods are available) >> 79 // Each type of particle must be constructed as a unique static object >> 80 // of special class derived from G4ParticleDefinition. >> 81 // see G4ParticleTypes for detail >> 82 >> 83 G4ParticleDefinition(const G4String& aName, >> 84 G4double mass, >> 85 G4double width, >> 86 G4double charge, >> 87 G4int iSpin, >> 88 G4int iParity, >> 89 G4int iConjugation, >> 90 G4int iIsospin, >> 91 G4int iIsospinZ, >> 92 G4int gParity, >> 93 const G4String& pType, >> 94 G4int lepton, >> 95 G4int baryon, >> 96 G4int encoding, >> 97 G4bool stable, >> 98 G4double lifetime, >> 99 G4DecayTable *decaytable, >> 100 G4bool shortlived = false); >> 101 >> 102 virtual ~G4ParticleDefinition(); >> 103 >> 104 public: >> 105 // These methods concerning cut values are obsolete >> 106 // virtual void SetCuts(G4double ); >> 107 // virtual void SetRangeCut(G4double ,const G4Material*); >> 108 // virtual void SetRangeCutVector(std::vector<G4double>&); >> 109 // virtual G4double* GetEnergyCuts() const; >> 110 // virtual G4double GetEnergyThreshold(const G4Material* ) const ; >> 111 // virtual G4double* GetLengthCuts() const; >> 112 // virtual G4double GetRangeThreshold(const G4Material* ) const; >> 113 // virtual void ResetCuts(); >> 114 // virtual void ReCalcCuts(); >> 115 // G4bool GetApplyCutsFlag() const; >> 116 // void SetApplyCutsFlag(G4bool flag); >> 117 // virtual void RestoreCuts(const G4double* cutInLength, >> 118 // const G4double* cutInEnergy ){} >> 119 >> 120 >> 121 public: // With Description >> 122 // By these following Getxxxx methods, you can get values >> 123 // for members which can not be changed >> 124 // >> 125 const G4String& GetParticleName() const { return theParticleName; } >> 126 >> 127 G4double GetPDGMass() const { return thePDGMass; } >> 128 G4double GetPDGWidth() const { return thePDGWidth; } >> 129 G4double GetPDGCharge() const { return thePDGCharge; } >> 130 >> 131 G4double GetPDGSpin() const { return thePDGSpin; } >> 132 G4int GetPDGiSpin() const { return thePDGiSpin; } >> 133 G4int GetPDGiParity() const { return thePDGiParity; } >> 134 G4int GetPDGiConjugation() const { return thePDGiConjugation; } >> 135 G4double GetPDGIsospin() const { return thePDGIsospin; } >> 136 G4double GetPDGIsospin3() const { return thePDGIsospin3; } >> 137 G4int GetPDGiIsospin() const { return thePDGiIsospin; } >> 138 G4int GetPDGiIsospin3() const { return thePDGiIsospin3; } >> 139 G4int GetPDGiGParity() const { return thePDGiGParity; } >> 140 >> 141 const G4String& GetParticleType() const { return theParticleType; } >> 142 const G4String& GetParticleSubType() const { return theParticleSubType; } >> 143 G4int GetLeptonNumber() const { return theLeptonNumber; } >> 144 G4int GetBaryonNumber() const { return theBaryonNumber; } >> 145 >> 146 G4int GetPDGEncoding() const { return thePDGEncoding; } >> 147 G4int GetAntiPDGEncoding() const { return theAntiPDGEncoding; } >> 148 void SetAntiPDGEncoding(G4int aEncoding); >> 149 >> 150 >> 151 G4int GetQuarkContent(G4int flavor) const; >> 152 G4int GetAntiQuarkContent(G4int flavor) const; >> 153 // return the number of quark with flavor contained in this particle. >> 154 // The value of flavor is assigned as follows >> 155 // 1:d, 2:u, 3:s, 4:c, 5:b, 6:t >> 156 >> 157 public: // With Description >> 158 // ShortLived flag >> 159 G4bool IsShortLived() const { return fShortLivedFlag; } >> 160 >> 161 G4bool GetPDGStable() const { return thePDGStable; } >> 162 void SetPDGStable(const G4bool aFlag) { thePDGStable=aFlag; } >> 163 >> 164 G4double GetPDGLifeTime() const { return thePDGLifeTime; } >> 165 void SetPDGLifeTime(G4double aLifeTime) { thePDGLifeTime = aLifeTime; } >> 166 >> 167 public:// With Description >> 168 G4DecayTable* GetDecayTable(); >> 169 void SetDecayTable(G4DecayTable* aDecayTable); >> 170 // Set/Get Decay Table >> 171 // !! Decay Table can be modified !! >> 172 >> 173 public: // With Description >> 174 G4ProcessManager* GetProcessManager() const; >> 175 void SetProcessManager(G4ProcessManager* aProcessManager); >> 176 // Set/Get Process Manager >> 177 // !! Process Manager can be modified !! 64 178 65 public: << 179 G4ParticleTable* GetParticleTable(); 66 // Only one type of constructor can be use << 180 // get pointer to the particle table 67 // If you want to create new particle, you << 68 // at construction. Most of members seen a << 69 // (except last 3 arguments concerning wit << 70 // and can not be changed later. (No "SET" << 71 // Each type of particle must be construct << 72 // of special class derived from G4Particl << 73 // See G4ParticleTypes for detail << 74 // clang-format off << 75 G4ParticleDefinition(const G4String& aName << 76 G4int iSpin, G4int iP << 77 G4int iIsospinZ, G4in << 78 G4int baryon, G4int e << 79 G4DecayTable* decayta << 80 const G4String& subTy << 81 G4double magneticMome << 82 // clang-format on << 83 << 84 virtual ~G4ParticleDefinition(); << 85 << 86 // Can not use "copy constructor", equalit << 87 G4ParticleDefinition(const G4ParticleDefin << 88 G4ParticleDefinition& operator=(const G4Pa << 89 << 90 G4bool operator==(const G4ParticleDefiniti << 91 G4bool operator!=(const G4ParticleDefiniti << 92 << 93 // With the following Getxxxx methods, one << 94 // for members which can not be changed << 95 << 96 const G4String& GetParticleName() const { << 97 << 98 G4double GetPDGMass() const { return thePD << 99 G4double GetPDGWidth() const { return theP << 100 G4double GetPDGCharge() const { return the << 101 << 102 G4double GetPDGSpin() const { return thePD << 103 G4int GetPDGiSpin() const { return thePDGi << 104 G4int GetPDGiParity() const { return thePD << 105 G4int GetPDGiConjugation() const { return << 106 G4double GetPDGIsospin() const { return th << 107 G4double GetPDGIsospin3() const { return t << 108 G4int GetPDGiIsospin() const { return theP << 109 G4int GetPDGiIsospin3() const { return the << 110 G4int GetPDGiGParity() const { return theP << 111 << 112 G4double GetPDGMagneticMoment() const { re << 113 inline void SetPDGMagneticMoment(G4double << 114 << 115 // Gives the anomaly of magnetic moment fo << 116 G4double CalculateAnomaly() const; << 117 << 118 const G4String& GetParticleType() const { << 119 const G4String& GetParticleSubType() const << 120 G4int GetLeptonNumber() const { return the << 121 G4int GetBaryonNumber() const { return the << 122 << 123 G4int GetPDGEncoding() const { return theP << 124 G4int GetAntiPDGEncoding() const { return << 125 inline void SetAntiPDGEncoding(G4int aEnco << 126 << 127 // Returns the number of quark with flavor << 128 // The value of flavor is assigned as foll << 129 // 1:d, 2:u, 3:s, 4:c, 5:b, 6:t << 130 inline G4int GetQuarkContent(G4int flavor) << 131 inline G4int GetAntiQuarkContent(G4int fla << 132 << 133 G4bool IsShortLived() const { return fShor << 134 << 135 inline G4bool GetPDGStable() const; << 136 void SetPDGStable(const G4bool aFlag) { th << 137 << 138 inline G4double GetPDGLifeTime() const; << 139 void SetPDGLifeTime(G4double aLifeTime) { << 140 << 141 // Get life time of a generic ion through << 142 inline G4double GetIonLifeTime() const; << 143 << 144 // Set/Get Decay Table << 145 // !! Decay Table can be modified !! << 146 inline G4DecayTable* GetDecayTable() const << 147 inline void SetDecayTable(G4DecayTable* aD << 148 << 149 // Set/Get Process Manager << 150 // !! Process Manager can be modified !! << 151 G4ProcessManager* GetProcessManager() cons << 152 void SetProcessManager(G4ProcessManager* a << 153 << 154 // Set/Get Tracking Manager; nullptr means << 155 // !! Tracking Manager can be modified ! << 156 G4VTrackingManager* GetTrackingManager() c << 157 void SetTrackingManager(G4VTrackingManager << 158 << 159 // Get pointer to the particle table << 160 inline G4ParticleTable* GetParticleTable() << 161 << 162 // Get AtomicNumber and AtomicMass << 163 // These properties are defined for nucleu << 164 inline G4int GetAtomicNumber() const; << 165 inline G4int GetAtomicMass() const; << 166 << 167 // Prints information of data members. << 168 void DumpTable() const; << 169 << 170 // Control flag for output message << 171 // 0: Silent << 172 // 1: Warning message << 173 // 2: More << 174 inline void SetVerboseLevel(G4int value); << 175 inline G4int GetVerboseLevel() const; << 176 << 177 void SetApplyCutsFlag(G4bool); << 178 inline G4bool GetApplyCutsFlag() const; << 179 << 180 // True only if the particle is G4Ions << 181 // (it means that theProcessManager is sam << 182 inline G4bool IsGeneralIon() const; << 183 << 184 // True only if the particle is a G4Muonic << 185 // (it means that theProcessManager is sam << 186 inline G4bool IsMuonicAtom() const; << 187 << 188 // Returns the process manager master poin << 189 inline G4ProcessManager* GetMasterProcessM << 190 << 191 // Sets the shadow master pointer (not to << 192 inline void SetMasterProcessManager(G4Proc << 193 << 194 // Returns the instance ID << 195 inline G4int GetInstanceID() const; << 196 << 197 // Returns the private data instance manag << 198 static const G4PDefManager& GetSubInstance << 199 << 200 // Clear memory allocated by sub-instance << 201 static void Clean(); << 202 << 203 void SetParticleDefinitionID(G4int id = -1 << 204 inline G4int GetParticleDefinitionID() con << 205 << 206 // The first two methods return "false" an << 207 // if the particle is not an hypernucleus; << 208 // "true" and the number of Lambdas bound << 209 // Similarly, the last two methods return << 210 // respectively, if the particle is not an << 211 // else, they return "true" and the number << 212 // bound in the anti-nucleus. << 213 // Notice that, for the time being, we are << 214 // (anti-)Lambda is the only type of (anti << 215 // in all (anti-)hypernuclei. << 216 inline G4bool IsHypernucleus() const; << 217 inline G4int GetNumberOfLambdasInHypernucl << 218 inline G4bool IsAntiHypernucleus() const; << 219 inline G4int GetNumberOfAntiLambdasInAntiH << 220 << 221 protected: << 222 // Cannot be used << 223 G4ParticleDefinition(); << 224 181 225 // Calculates quark and anti-quark content << 182 void DumpTable() const; 226 // return value is the PDG encoding for th << 183 // Prints information of data members. 227 // It means error if the return value is d << 228 // this->thePDGEncoding. << 229 G4int FillQuarkContents(); << 230 << 231 inline void SetParticleSubType(const G4Str << 232 << 233 inline void SetAtomicNumber(G4int); << 234 inline void SetAtomicMass(G4int); << 235 << 236 enum << 237 { << 238 NumberOfQuarkFlavor = 6 << 239 }; << 240 << 241 // the number of quark (minus Sign means << 242 // The value of flavor is assigned as fol << 243 // 0:d, 1:u, 2:s, 3:c, 4:b, 5:t << 244 G4int theQuarkContent[NumberOfQuarkFlavor] << 245 G4int theAntiQuarkContent[NumberOfQuarkFla << 246 184 247 G4bool isGeneralIon = false; << 185 protected: 248 G4bool isMuonicAtom = false; << 186 G4int FillQuarkContents(); >> 187 // calculate quark and anti-quark contents >> 188 // return value is PDG encoding for this particle. >> 189 // It means error if the return value is deffernt from >> 190 // this->thePDGEncoding. >> 191 >> 192 void SetParticleSubType(const G4String& subtype); >> 193 >> 194 public: >> 195 void SetVerboseLevel(G4int value); >> 196 G4int GetVerboseLevel() const; >> 197 // controle flag for output message >> 198 // 0: Silent >> 199 // 1: Warning message >> 200 // 2: More 249 201 250 private: 202 private: 251 // --- Shadow of master pointers << 203 // !!! can not use "copy constructor" nor "default constructor" !!!! 252 << 204 G4ParticleDefinition(const G4ParticleDefinition &right); 253 // Each worker thread can access this fiel << 205 G4ParticleDefinition(); 254 // through this pointer. << 206 255 G4ProcessManager* theProcessManagerShadow << 207 private: 256 << 208 // !!! Assignment operation is forbidden !!! 257 // This field is used as instance ID. << 209 const G4ParticleDefinition & operator=(const G4ParticleDefinition &right); 258 G4int g4particleDefinitionInstanceID = 0; << 259 << 260 // This field helps to use the class G4PDe << 261 G4PART_DLL static G4PDefManager subInstanc << 262 << 263 // --- Following values can not be change << 264 // --- i.e. No Setxxxx Methods for them << 265 << 266 // The name of the particle. << 267 // Each object must have its specific name << 268 G4String theParticleName = ""; << 269 << 270 // --- Following member values must be de << 271 << 272 // The mass of the particle, in units of e << 273 G4double thePDGMass = 0.0; << 274 << 275 // The decay width of the particle, usuall << 276 // Breit-Wigner function, assuming that yo << 277 // mass center anyway. (in units of equiva << 278 G4double thePDGWidth = 0.0; << 279 << 280 // The charge of the particle.(in units of << 281 G4double thePDGCharge = 0.0; << 282 210 283 // --- Following members are quantum num << 211 public: 284 // i.e. discrete numbers can be allo << 212 G4int operator==(const G4ParticleDefinition &right) const; 285 // So, you can define them only by u << 213 G4int operator!=(const G4ParticleDefinition &right) const; 286 << 287 // The total spin of the particle, also of << 288 // capital J, in units of 1/2. << 289 G4int thePDGiSpin = 0; << 290 << 291 // The total spin of the particle, in unit << 292 G4double thePDGSpin = 0.0; << 293 << 294 // The parity quantum number, in units of << 295 // is not defined for this particle, we wi << 296 G4int thePDGiParity = 0; << 297 << 298 // This charge conjugation quantum number << 299 G4int thePDGiConjugation = 0; << 300 << 301 // The value of the G-parity quantum numbe << 302 G4int thePDGiGParity = 0; << 303 << 304 // The isospin and its 3rd-component in un << 305 G4int thePDGiIsospin = 0; << 306 G4int thePDGiIsospin3 = 0; << 307 << 308 // The isospin quantum number in units of << 309 G4double thePDGIsospin = 0.0; << 310 G4double thePDGIsospin3 = 0.0; << 311 << 312 // The magnetic moment. << 313 G4double thePDGMagneticMoment = 0.0; << 314 << 315 // The lepton quantum number. << 316 G4int theLeptonNumber = 0; << 317 << 318 // The baryon quantum number. << 319 G4int theBaryonNumber = 0; << 320 << 321 // More general textual type description o << 322 G4String theParticleType = ""; << 323 << 324 // Textual type description of the particl << 325 // eg. pion, lamda etc. << 326 G4String theParticleSubType = ""; << 327 << 328 // The Particle Data Group integer identif << 329 G4int thePDGEncoding = 0; << 330 << 331 // The Particle Data Group integer identif << 332 G4int theAntiPDGEncoding = 0; << 333 << 334 // --- Following members can be changed af << 335 << 336 // Particles which have true value of this << 337 // will not be tracked by TrackingManager << 338 G4bool fShortLivedFlag = false; << 339 214 340 // Is an indicator that this particle is s << 215 private: 341 // not decay. If the user tries to assign << 216 // Values following can not be changed 342 // object to it, it will refuse to take it << 217 // i.e. No Setxxxx Methods for them 343 G4bool thePDGStable = false; << 344 218 345 // Is related to the decay width of the pa << 219 G4String theParticleName; 346 // life time is given in seconds. << 220 // The name of the particle. 347 G4double thePDGLifeTime = 0.0; << 221 // Each object must have its specific name!! >> 222 >> 223 // --- following member values must be defined with Units >> 224 G4double thePDGMass; >> 225 // The mass of the particle, in units of equivalent energy. >> 226 >> 227 G4double thePDGWidth; >> 228 // The decay width of the particle, usually the width of a >> 229 // Breit-Wigner function, assuming that you are near the >> 230 // mass center anyway. (in units of equivalent energy) >> 231 >> 232 G4double thePDGCharge; >> 233 // The charge of the particle.(in units of Coulomb) >> 234 >> 235 // ---- following members are quantum number >> 236 // i.e. discrete numbers can be allowded >> 237 // So, you can defined only by using integer in constructor >> 238 G4int thePDGiSpin; >> 239 // The total spin of the particle, also often denoted as >> 240 // capital J, in units of 1/2. >> 241 G4double thePDGSpin; >> 242 // The total spin of the particle, in units of 1. >> 243 >> 244 G4int thePDGiParity; >> 245 // The parity quantum number, in units of 1. If the parity >> 246 // is not defined for this particle, we will set this to 0. >> 247 >> 248 G4int thePDGiConjugation; >> 249 // This charge conjugation quantum number in units of 1. >> 250 >> 251 G4int thePDGiGParity; >> 252 // The value of the G-parity quantum number. >> 253 >> 254 G4int thePDGiIsospin; >> 255 G4int thePDGiIsospin3; >> 256 // The isospin and its 3rd-component in units of 1/2. >> 257 G4double thePDGIsospin; >> 258 G4double thePDGIsospin3; >> 259 // The isospin quantum number in units of 1. >> 260 >> 261 G4int theLeptonNumber; >> 262 // The lepton quantum number. >> 263 >> 264 G4int theBaryonNumber; >> 265 // The baryon quantum number. >> 266 >> 267 G4String theParticleType; >> 268 // More general textual type description of the particle. >> 269 >> 270 G4String theParticleSubType; >> 271 // Textual type description of the particle >> 272 // eg. pion, lamda etc. >> 273 >> 274 G4int thePDGEncoding; >> 275 // The Particle Data Group integer identifier of this particle >> 276 >> 277 G4int theAntiPDGEncoding; >> 278 // The Particle Data Group integer identifier of the anti-particle 348 279 349 // Points DecayTable << 280 protected: 350 G4DecayTable* theDecayTable = nullptr; << 281 enum {NumberOfQuarkFlavor = 6}; >> 282 G4int theQuarkContent[NumberOfQuarkFlavor]; >> 283 G4int theAntiQuarkContent[NumberOfQuarkFlavor]; >> 284 // the number of quark (minus Sign means anti-quark) contents >> 285 // The value of flavor is assigned as follows >> 286 // 0:d, 1:u, 2:s, 3:c, 4:b, 5:t 351 287 352 G4ParticleTable* theParticleTable = nullpt << 288 private: >> 289 // Following members can be changed after construction 353 290 354 G4int theAtomicNumber = 0; << 291 G4bool fShortLivedFlag; 355 G4int theAtomicMass = 0; << 292 // Particles which have true value of this flag >> 293 // will not be tracked by TrackingManager >> 294 >> 295 G4bool thePDGStable; >> 296 // Is an indicator that this particle is stable. It must >> 297 // not decay. If the user tries to assign a kind of decay >> 298 // object to it, it will refuse to take it. >> 299 >> 300 G4double thePDGLifeTime; >> 301 // Is related to the decay width of the particle. The mean >> 302 // life time is given in seconds. >> 303 >> 304 class G4DecayTable *theDecayTable; >> 305 // Points DecayTable >> 306 >> 307 private: >> 308 class G4ProcessManager *theProcessManager; >> 309 // Points to G4ProcessManager >> 310 >> 311 G4ParticleTable* theParticleTable; >> 312 >> 313 private: >> 314 G4int verboseLevel; >> 315 >> 316 private: >> 317 G4bool fApplyCutsFlag; >> 318 public: >> 319 >> 320 void SetApplyCutsFlag(G4bool); >> 321 G4bool GetApplyCutsFlag() const; >> 322 >> 323 public: // With Description >> 324 // Following methods are moved from G4ParticleWithCuts class >> 325 // for keeping backward compatibility. These methods are obsolete >> 326 // and will be completely removed away in near future. >> 327 void SetCuts(G4double aCut); >> 328 // Set the range of aCut for all materials >> 329 void SetRangeCut(G4double aCut, const G4Material*); >> 330 // Set the cut range of aCut for a material >> 331 void SetRangeCutVector(std::vector<G4double>&); >> 332 // Set the vector of range cuts for all material >> 333 >> 334 G4double* GetLengthCuts() const; >> 335 // Get an array of range cuts for all materials >> 336 G4double GetRangeThreshold(const G4Material* ) const; >> 337 // Get a range cut for a material >> 338 G4double* GetEnergyCuts() const; >> 339 // Get an array of energy cuts for all materials >> 340 G4double GetEnergyThreshold(const G4Material* ) const; >> 341 // Get a energy cut for a material 356 342 357 G4int verboseLevel = 1; << 343 static void SetEnergyRange(G4double lowedge, G4double highedge); 358 G4bool fApplyCutsFlag = false; << 359 }; 344 }; 360 345 361 #include "G4ParticleDefinition.icc" 346 #include "G4ParticleDefinition.icc" 362 347 363 #endif 348 #endif 364 349