Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ParticleDefinition << 27 // 26 // 28 // Class description: << 27 // $Id: G4ParticleDefinition.hh 102308 2017-01-20 14:54:21Z gcosmo $ 29 // 28 // 30 // This class contains all the static data of << 29 // 31 // It uses the process manager in order to col << 30 // ------------------------------------------------------------ 32 // this kind of particle can undertake. << 31 // GEANT 4 class header file 33 << 32 // 34 // Authors: G.Cosmo, 2 December 1995 - Design, << 33 // History: first implementation, based on object model of 35 // M.Asai, 29 January 1996 - First im << 34 // 2nd December 1995, G.Cosmo 36 // History: << 35 // ---------------- G4ParticleDefinition ---------------- 37 // - 1996-2003, H.Kurashige - Revisions << 36 // first implementation by Makoto Asai - 29 January 1996 38 // - 11.03.2003, H.Kurashige - Restructuring f << 37 // revised - G.Cosmo - 29 February 1996 39 // - 25.01.2013, G.Cosmo, A.Dotti - Introduced << 38 // revised - H.Kurashige - 19 April 1996 40 // - 15.06.2017, K.L.Genser - Added support fo << 39 // revised - H.Kurashige - 4 July 1996 41 // ------------------------------------------- << 40 // added GetEnergyCuts() and GetLengthCuts() - G.Cosmo - 11 July 1996 42 #ifndef G4ParticleDefinition_hh << 41 // added Set/GetVerboseLevel() - H.Kurashige - 11 November 1997 43 #define G4ParticleDefinition_hh 1 << 42 // added SetCuts() and ResetCuts - H.Kurashige - 15 November 1996 >> 43 // change SetProcessManager as public - H.Kurashige - 06 June 1998 >> 44 // added GetEnergyThreshold - H.Kurashige - 08 June 1998 >> 45 // added ShortLived flag and ApplyCuts flag - H.Kurashige - 27 June 1998 >> 46 // fixed some improper codings - H.Kurashige - 08 April 1999 >> 47 // added sub-type - H.Kurashige - 15 February 2000 >> 48 // added RestoreCuts - H.Kurashige - 09 March 2001 >> 49 // restructuring for Cuts per Region - H.Kurashige - 11 March 2003 >> 50 // added MagneticMoment - H.Kurashige - March 2007 >> 51 // modified for thread-safety for MT - G.Cosmo, A.Dotti - January 2013 >> 52 // ------------------------------------------------------------ 44 53 45 #include "G4PDefManager.hh" << 54 #ifndef G4ParticleDefinition_h 46 #include "G4ios.hh" << 55 #define G4ParticleDefinition_h 1 47 #include "globals.hh" << 48 56 >> 57 #include <vector> 49 #include <CLHEP/Units/PhysicalConstants.h> 58 #include <CLHEP/Units/PhysicalConstants.h> 50 59 51 #include <vector> << 60 #include "globals.hh" >> 61 #include "G4ios.hh" >> 62 #include "G4PDefManager.hh" 52 63 53 class G4ProcessManager; 64 class G4ProcessManager; 54 class G4DecayTable; 65 class G4DecayTable; 55 class G4ParticleTable; 66 class G4ParticleTable; 56 class G4ParticlePropertyTable; 67 class G4ParticlePropertyTable; 57 class G4VTrackingManager; << 58 68 59 using G4ParticleDefinitionSubInstanceManager = << 69 //typedef G4PDefSplitter<G4PDefData> G4PDefManager; >> 70 typedef G4PDefManager G4ParticleDefinitionSubInstanceManager; 60 71 61 class G4ParticleDefinition << 72 class G4ParticleDefinition 62 { 73 { 63 friend class G4ParticlePropertyTable; << 74 // Class Description: >> 75 // >> 76 // This class containes all the static data of a particle. >> 77 // It also has uses a process manager in order to collect >> 78 // all the processes this kind of particle can undertake. >> 79 >> 80 friend class G4ParticlePropertyTable; >> 81 >> 82 public: // With Description >> 83 >> 84 // Only one type of constructor can be used for G4ParticleDefinition. >> 85 // If you want to create new particle, you must set name of the particle >> 86 // at construction. Most of members seen as arguments of the constructor >> 87 // (except last 3 arguments concerning with decay ) are "constant" >> 88 // and can not be changed later. (No "SET" methods are available) >> 89 // Each type of particle must be constructed as a unique object >> 90 // of special class derived from G4ParticleDefinition. >> 91 // see G4ParticleTypes for detail >> 92 >> 93 G4ParticleDefinition(const G4String& aName, >> 94 G4double mass, >> 95 G4double width, >> 96 G4double charge, >> 97 G4int iSpin, >> 98 G4int iParity, >> 99 G4int iConjugation, >> 100 G4int iIsospin, >> 101 G4int iIsospinZ, >> 102 G4int gParity, >> 103 const G4String& pType, >> 104 G4int lepton, >> 105 G4int baryon, >> 106 G4int encoding, >> 107 G4bool stable, >> 108 G4double lifetime, >> 109 G4DecayTable *decaytable, >> 110 G4bool shortlived = false, >> 111 const G4String& subType ="", >> 112 G4int anti_encoding =0, >> 113 G4double magneticMoment = 0.0); >> 114 >> 115 virtual ~G4ParticleDefinition(); >> 116 >> 117 // With the following Getxxxx methods, one can get values >> 118 // for members which can not be changed >> 119 >> 120 const G4String& GetParticleName() const { return theParticleName; } >> 121 >> 122 G4double GetPDGMass() const { return thePDGMass; } >> 123 G4double GetPDGWidth() const { return thePDGWidth; } >> 124 G4double GetPDGCharge() const { return thePDGCharge; } >> 125 >> 126 G4double GetPDGSpin() const { return thePDGSpin; } >> 127 G4int GetPDGiSpin() const { return thePDGiSpin; } >> 128 G4int GetPDGiParity() const { return thePDGiParity; } >> 129 G4int GetPDGiConjugation() const { return thePDGiConjugation; } >> 130 G4double GetPDGIsospin() const { return thePDGIsospin; } >> 131 G4double GetPDGIsospin3() const { return thePDGIsospin3; } >> 132 G4int GetPDGiIsospin() const { return thePDGiIsospin; } >> 133 G4int GetPDGiIsospin3() const { return thePDGiIsospin3; } >> 134 G4int GetPDGiGParity() const { return thePDGiGParity; } >> 135 >> 136 G4double GetPDGMagneticMoment() const { return thePDGMagneticMoment; } >> 137 void SetPDGMagneticMoment(G4double mageticMoment); >> 138 G4double CalculateAnomaly() const; >> 139 // Gives the anomaly of magnetic moment for spin 1/2 particles >> 140 >> 141 const G4String& GetParticleType() const { return theParticleType; } >> 142 const G4String& GetParticleSubType() const { return theParticleSubType; } >> 143 G4int GetLeptonNumber() const { return theLeptonNumber; } >> 144 G4int GetBaryonNumber() const { return theBaryonNumber; } >> 145 >> 146 G4int GetPDGEncoding() const { return thePDGEncoding; } >> 147 G4int GetAntiPDGEncoding() const { return theAntiPDGEncoding; } >> 148 void SetAntiPDGEncoding(G4int aEncoding); >> 149 >> 150 >> 151 G4int GetQuarkContent(G4int flavor) const; >> 152 G4int GetAntiQuarkContent(G4int flavor) const; >> 153 // Returns the number of quark with flavor contained in this particle. >> 154 // The value of flavor is assigned as follows >> 155 // 1:d, 2:u, 3:s, 4:c, 5:b, 6:t >> 156 >> 157 G4bool IsShortLived() const { return fShortLivedFlag; } >> 158 >> 159 G4bool GetPDGStable() const; >> 160 void SetPDGStable(const G4bool aFlag) { thePDGStable=aFlag; } >> 161 >> 162 G4double GetPDGLifeTime() const; >> 163 void SetPDGLifeTime(G4double aLifeTime) { thePDGLifeTime=aLifeTime; } >> 164 >> 165 G4double GetIonLifeTime() const; >> 166 // Get life time of a generic ion through G4NuclideTable. >> 167 >> 168 G4DecayTable* GetDecayTable() const; >> 169 void SetDecayTable(G4DecayTable* aDecayTable); >> 170 // Set/Get Decay Table >> 171 // !! Decay Table can be modified !! >> 172 >> 173 G4ProcessManager* GetProcessManager() const; >> 174 void SetProcessManager(G4ProcessManager* aProcessManager); >> 175 // Set/Get Process Manager >> 176 // !! Process Manager can be modified !! >> 177 >> 178 G4ParticleTable* GetParticleTable() const; >> 179 // Get pointer to the particle table >> 180 >> 181 G4int GetAtomicNumber() const; >> 182 G4int GetAtomicMass() const; >> 183 // Get AtomicNumber and AtomicMass >> 184 // These properties are defined for nucleus >> 185 >> 186 void DumpTable() const; >> 187 // Prints information of data members. >> 188 >> 189 void SetVerboseLevel(G4int value); >> 190 G4int GetVerboseLevel() const; >> 191 // controle flag for output message >> 192 // 0: Silent >> 193 // 1: Warning message >> 194 // 2: More >> 195 >> 196 void SetApplyCutsFlag(G4bool); >> 197 G4bool GetApplyCutsFlag() const; >> 198 >> 199 G4bool IsGeneralIon() const; >> 200 // true only if the particle is G4Ions >> 201 // (it means that theProcessManager is same as one for G4GenricIon) >> 202 >> 203 G4int operator==(const G4ParticleDefinition &right) const; >> 204 G4int operator!=(const G4ParticleDefinition &right) const; >> 205 >> 206 public : // without description >> 207 >> 208 inline G4ProcessManager* GetMasterProcessManager() const; >> 209 // Returns the process manager master pointer. >> 210 inline void SetMasterProcessManager(G4ProcessManager* aNewPM); >> 211 //Sets the shadow master pointer (not to be used by user) >> 212 >> 213 inline G4int GetInstanceID() const; >> 214 // Returns the instance ID. >> 215 >> 216 static const G4PDefManager& GetSubInstanceManager(); >> 217 // Returns the private data instance manager. >> 218 private: >> 219 // --- Shadow of master pointers. >> 220 >> 221 G4ProcessManager *theProcessManagerShadow; >> 222 // Each worker thread can access this field from the master thread >> 223 // through this pointer. 64 224 65 public: << 225 G4int g4particleDefinitionInstanceID; 66 // Only one type of constructor can be use << 226 // This field is used as instance ID. 67 // If you want to create new particle, you << 68 // at construction. Most of members seen a << 69 // (except last 3 arguments concerning wit << 70 // and can not be changed later. (No "SET" << 71 // Each type of particle must be construct << 72 // of special class derived from G4Particl << 73 // See G4ParticleTypes for detail << 74 // clang-format off << 75 G4ParticleDefinition(const G4String& aName << 76 G4int iSpin, G4int iP << 77 G4int iIsospinZ, G4in << 78 G4int baryon, G4int e << 79 G4DecayTable* decayta << 80 const G4String& subTy << 81 G4double magneticMome << 82 // clang-format on << 83 << 84 virtual ~G4ParticleDefinition(); << 85 << 86 // Can not use "copy constructor", equalit << 87 G4ParticleDefinition(const G4ParticleDefin << 88 G4ParticleDefinition& operator=(const G4Pa << 89 << 90 G4bool operator==(const G4ParticleDefiniti << 91 G4bool operator!=(const G4ParticleDefiniti << 92 << 93 // With the following Getxxxx methods, one << 94 // for members which can not be changed << 95 << 96 const G4String& GetParticleName() const { << 97 << 98 G4double GetPDGMass() const { return thePD << 99 G4double GetPDGWidth() const { return theP << 100 G4double GetPDGCharge() const { return the << 101 << 102 G4double GetPDGSpin() const { return thePD << 103 G4int GetPDGiSpin() const { return thePDGi << 104 G4int GetPDGiParity() const { return thePD << 105 G4int GetPDGiConjugation() const { return << 106 G4double GetPDGIsospin() const { return th << 107 G4double GetPDGIsospin3() const { return t << 108 G4int GetPDGiIsospin() const { return theP << 109 G4int GetPDGiIsospin3() const { return the << 110 G4int GetPDGiGParity() const { return theP << 111 << 112 G4double GetPDGMagneticMoment() const { re << 113 inline void SetPDGMagneticMoment(G4double << 114 << 115 // Gives the anomaly of magnetic moment fo << 116 G4double CalculateAnomaly() const; << 117 << 118 const G4String& GetParticleType() const { << 119 const G4String& GetParticleSubType() const << 120 G4int GetLeptonNumber() const { return the << 121 G4int GetBaryonNumber() const { return the << 122 << 123 G4int GetPDGEncoding() const { return theP << 124 G4int GetAntiPDGEncoding() const { return << 125 inline void SetAntiPDGEncoding(G4int aEnco << 126 << 127 // Returns the number of quark with flavor << 128 // The value of flavor is assigned as foll << 129 // 1:d, 2:u, 3:s, 4:c, 5:b, 6:t << 130 inline G4int GetQuarkContent(G4int flavor) << 131 inline G4int GetAntiQuarkContent(G4int fla << 132 << 133 G4bool IsShortLived() const { return fShor << 134 << 135 inline G4bool GetPDGStable() const; << 136 void SetPDGStable(const G4bool aFlag) { th << 137 << 138 inline G4double GetPDGLifeTime() const; << 139 void SetPDGLifeTime(G4double aLifeTime) { << 140 << 141 // Get life time of a generic ion through << 142 inline G4double GetIonLifeTime() const; << 143 << 144 // Set/Get Decay Table << 145 // !! Decay Table can be modified !! << 146 inline G4DecayTable* GetDecayTable() const << 147 inline void SetDecayTable(G4DecayTable* aD << 148 << 149 // Set/Get Process Manager << 150 // !! Process Manager can be modified !! << 151 G4ProcessManager* GetProcessManager() cons << 152 void SetProcessManager(G4ProcessManager* a << 153 << 154 // Set/Get Tracking Manager; nullptr means << 155 // !! Tracking Manager can be modified ! << 156 G4VTrackingManager* GetTrackingManager() c << 157 void SetTrackingManager(G4VTrackingManager << 158 << 159 // Get pointer to the particle table << 160 inline G4ParticleTable* GetParticleTable() << 161 << 162 // Get AtomicNumber and AtomicMass << 163 // These properties are defined for nucleu << 164 inline G4int GetAtomicNumber() const; << 165 inline G4int GetAtomicMass() const; << 166 << 167 // Prints information of data members. << 168 void DumpTable() const; << 169 << 170 // Control flag for output message << 171 // 0: Silent << 172 // 1: Warning message << 173 // 2: More << 174 inline void SetVerboseLevel(G4int value); << 175 inline G4int GetVerboseLevel() const; << 176 << 177 void SetApplyCutsFlag(G4bool); << 178 inline G4bool GetApplyCutsFlag() const; << 179 << 180 // True only if the particle is G4Ions << 181 // (it means that theProcessManager is sam << 182 inline G4bool IsGeneralIon() const; << 183 << 184 // True only if the particle is a G4Muonic << 185 // (it means that theProcessManager is sam << 186 inline G4bool IsMuonicAtom() const; << 187 << 188 // Returns the process manager master poin << 189 inline G4ProcessManager* GetMasterProcessM << 190 << 191 // Sets the shadow master pointer (not to << 192 inline void SetMasterProcessManager(G4Proc << 193 << 194 // Returns the instance ID << 195 inline G4int GetInstanceID() const; << 196 << 197 // Returns the private data instance manag << 198 static const G4PDefManager& GetSubInstance << 199 << 200 // Clear memory allocated by sub-instance << 201 static void Clean(); << 202 << 203 void SetParticleDefinitionID(G4int id = -1 << 204 inline G4int GetParticleDefinitionID() con << 205 << 206 // The first two methods return "false" an << 207 // if the particle is not an hypernucleus; << 208 // "true" and the number of Lambdas bound << 209 // Similarly, the last two methods return << 210 // respectively, if the particle is not an << 211 // else, they return "true" and the number << 212 // bound in the anti-nucleus. << 213 // Notice that, for the time being, we are << 214 // (anti-)Lambda is the only type of (anti << 215 // in all (anti-)hypernuclei. << 216 inline G4bool IsHypernucleus() const; << 217 inline G4int GetNumberOfLambdasInHypernucl << 218 inline G4bool IsAntiHypernucleus() const; << 219 inline G4int GetNumberOfAntiLambdasInAntiH << 220 227 221 protected: << 228 G4PART_DLL static G4PDefManager subInstanceManager; 222 // Cannot be used << 229 // This field helps to use the class G4PDefManager introduced above. 223 G4ParticleDefinition(); << 224 230 225 // Calculates quark and anti-quark content << 231 protected: 226 // return value is the PDG encoding for th << 227 // It means error if the return value is d << 228 // this->thePDGEncoding. << 229 G4int FillQuarkContents(); << 230 << 231 inline void SetParticleSubType(const G4Str << 232 << 233 inline void SetAtomicNumber(G4int); << 234 inline void SetAtomicMass(G4int); << 235 << 236 enum << 237 { << 238 NumberOfQuarkFlavor = 6 << 239 }; << 240 << 241 // the number of quark (minus Sign means << 242 // The value of flavor is assigned as fol << 243 // 0:d, 1:u, 2:s, 3:c, 4:b, 5:t << 244 G4int theQuarkContent[NumberOfQuarkFlavor] << 245 G4int theAntiQuarkContent[NumberOfQuarkFla << 246 232 247 G4bool isGeneralIon = false; << 233 G4int FillQuarkContents(); 248 G4bool isMuonicAtom = false; << 234 // Calculates quark and anti-quark contents >> 235 // return value is PDG encoding for this particle. >> 236 // It means error if the return value is deffernt from >> 237 // this->thePDGEncoding. >> 238 >> 239 void SetParticleSubType(const G4String& subtype); >> 240 >> 241 void SetAtomicNumber(G4int ); >> 242 void SetAtomicMass(G4int ); >> 243 >> 244 // !!! can not use "copy constructor" nor "default constructor" !!!! >> 245 // >> 246 G4ParticleDefinition(const G4ParticleDefinition &right); >> 247 G4ParticleDefinition(); 249 248 250 private: 249 private: 251 // --- Shadow of master pointers << 252 250 253 // Each worker thread can access this fiel << 251 // !!! Assignment operation is forbidden !!! 254 // through this pointer. << 252 // 255 G4ProcessManager* theProcessManagerShadow << 253 const G4ParticleDefinition & operator=(const G4ParticleDefinition &r); 256 254 257 // This field is used as instance ID. << 255 protected: 258 G4int g4particleDefinitionInstanceID = 0; << 259 << 260 // This field helps to use the class G4PDe << 261 G4PART_DLL static G4PDefManager subInstanc << 262 256 263 // --- Following values can not be change << 257 enum {NumberOfQuarkFlavor = 6}; 264 // --- i.e. No Setxxxx Methods for them << 258 G4int theQuarkContent[NumberOfQuarkFlavor]; >> 259 G4int theAntiQuarkContent[NumberOfQuarkFlavor]; >> 260 // the number of quark (minus Sign means anti-quark) contents >> 261 // The value of flavor is assigned as follows >> 262 // 0:d, 1:u, 2:s, 3:c, 4:b, 5:t 265 263 266 // The name of the particle. << 264 private: 267 // Each object must have its specific name << 268 G4String theParticleName = ""; << 269 265 270 // --- Following member values must be de << 266 // --- Following values can not be changed >> 267 // --- i.e. No Setxxxx Methods for them 271 268 272 // The mass of the particle, in units of e << 269 G4String theParticleName; 273 G4double thePDGMass = 0.0; << 270 // The name of the particle. >> 271 // Each object must have its specific name!! 274 272 275 // The decay width of the particle, usuall << 273 // --- Following member values must be defined with Units 276 // Breit-Wigner function, assuming that yo << 277 // mass center anyway. (in units of equiva << 278 G4double thePDGWidth = 0.0; << 279 274 280 // The charge of the particle.(in units of << 275 G4double thePDGMass; 281 G4double thePDGCharge = 0.0; << 276 // The mass of the particle, in units of equivalent energy. 282 277 283 // --- Following members are quantum num << 278 G4double thePDGWidth; 284 // i.e. discrete numbers can be allo << 279 // The decay width of the particle, usually the width of a 285 // So, you can define them only by u << 280 // Breit-Wigner function, assuming that you are near the >> 281 // mass center anyway. (in units of equivalent energy) 286 282 287 // The total spin of the particle, also of << 283 G4double thePDGCharge; 288 // capital J, in units of 1/2. << 284 // The charge of the particle.(in units of Coulomb) 289 G4int thePDGiSpin = 0; << 290 285 291 // The total spin of the particle, in unit << 286 // --- Following members are quantum number 292 G4double thePDGSpin = 0.0; << 287 // i.e. discrete numbers can be allowded >> 288 // So, you can defined only by using integer in constructor 293 289 294 // The parity quantum number, in units of << 290 G4int thePDGiSpin; 295 // is not defined for this particle, we wi << 291 // The total spin of the particle, also often denoted as 296 G4int thePDGiParity = 0; << 292 // capital J, in units of 1/2. >> 293 G4double thePDGSpin; >> 294 // The total spin of the particle, in units of 1. 297 295 298 // This charge conjugation quantum number << 296 G4int thePDGiParity; 299 G4int thePDGiConjugation = 0; << 297 // The parity quantum number, in units of 1. If the parity >> 298 // is not defined for this particle, we will set this to 0. 300 299 301 // The value of the G-parity quantum numbe << 300 G4int thePDGiConjugation; 302 G4int thePDGiGParity = 0; << 301 // This charge conjugation quantum number in units of 1. 303 302 304 // The isospin and its 3rd-component in un << 303 G4int thePDGiGParity; 305 G4int thePDGiIsospin = 0; << 304 // The value of the G-parity quantum number. 306 G4int thePDGiIsospin3 = 0; << 307 305 308 // The isospin quantum number in units of << 306 G4int thePDGiIsospin; 309 G4double thePDGIsospin = 0.0; << 307 G4int thePDGiIsospin3; 310 G4double thePDGIsospin3 = 0.0; << 308 // The isospin and its 3rd-component in units of 1/2. >> 309 G4double thePDGIsospin; >> 310 G4double thePDGIsospin3; >> 311 // The isospin quantum number in units of 1. >> 312 >> 313 G4double thePDGMagneticMoment; >> 314 // The magnetic moment. 311 315 312 // The magnetic moment. << 316 G4int theLeptonNumber; 313 G4double thePDGMagneticMoment = 0.0; << 317 // The lepton quantum number. 314 318 315 // The lepton quantum number. << 319 G4int theBaryonNumber; 316 G4int theLeptonNumber = 0; << 320 // The baryon quantum number. 317 321 318 // The baryon quantum number. << 322 G4String theParticleType; 319 G4int theBaryonNumber = 0; << 323 // More general textual type description of the particle. 320 324 321 // More general textual type description o << 325 G4String theParticleSubType; 322 G4String theParticleType = ""; << 326 // Textual type description of the particle >> 327 // eg. pion, lamda etc. 323 328 324 // Textual type description of the particl << 329 G4int thePDGEncoding; 325 // eg. pion, lamda etc. << 330 // The Particle Data Group integer identifier of this particle 326 G4String theParticleSubType = ""; << 331 >> 332 G4int theAntiPDGEncoding; >> 333 // The Particle Data Group integer identifier of the anti-particle 327 334 328 // The Particle Data Group integer identif << 335 // --- Following members can be changed after construction 329 G4int thePDGEncoding = 0; << 330 336 331 // The Particle Data Group integer identif << 337 G4bool fShortLivedFlag; 332 G4int theAntiPDGEncoding = 0; << 338 // Particles which have true value of this flag >> 339 // will not be tracked by TrackingManager 333 340 334 // --- Following members can be changed af << 341 G4bool thePDGStable; >> 342 // Is an indicator that this particle is stable. It must >> 343 // not decay. If the user tries to assign a kind of decay >> 344 // object to it, it will refuse to take it. 335 345 336 // Particles which have true value of this << 346 G4double thePDGLifeTime; 337 // will not be tracked by TrackingManager << 347 // Is related to the decay width of the particle. The mean 338 G4bool fShortLivedFlag = false; << 348 // life time is given in seconds. 339 349 340 // Is an indicator that this particle is s << 350 G4DecayTable *theDecayTable; 341 // not decay. If the user tries to assign << 351 // Points DecayTable 342 // object to it, it will refuse to take it << 343 G4bool thePDGStable = false; << 344 352 345 // Is related to the decay width of the pa << 353 private: 346 // life time is given in seconds. << 347 G4double thePDGLifeTime = 0.0; << 348 354 349 // Points DecayTable << 355 G4ParticleTable* theParticleTable; 350 G4DecayTable* theDecayTable = nullptr; << 351 356 352 G4ParticleTable* theParticleTable = nullpt << 357 G4int theAtomicNumber; >> 358 G4int theAtomicMass; >> 359 >> 360 G4int verboseLevel; >> 361 G4bool fApplyCutsFlag; 353 362 354 G4int theAtomicNumber = 0; << 363 protected: 355 G4int theAtomicMass = 0; << 364 G4bool isGeneralIon; 356 365 357 G4int verboseLevel = 1; << 366 public: 358 G4bool fApplyCutsFlag = false; << 367 void SetParticleDefinitionID(G4int id=-1); >> 368 G4int GetParticleDefinitionID() const; 359 }; 369 }; 360 370 361 #include "G4ParticleDefinition.icc" 371 #include "G4ParticleDefinition.icc" 362 372 363 #endif 373 #endif 364 374