Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4Electron.cc,v 1.7 2001/10/16 08:16:17 kurasige Exp $ >> 25 // GEANT4 tag $Name: geant4-04-00 $ >> 26 // >> 27 // 26 // ------------------------------------------- 28 // ---------------------------------------------------------------------- 27 // GEANT 4 class implementation file 29 // GEANT 4 class implementation file 28 // 30 // 29 // History: first implementation, based o 31 // History: first implementation, based on object model of 30 // 4th April 1996, G.Cosmo 32 // 4th April 1996, G.Cosmo 31 // ******************************************* 33 // ********************************************************************** 32 // New impelemenataion as an utility class M << 34 // Added particle definitions, H.Kurashige, 19 April 1996 >> 35 // Added SetCuts implementation, L.Urban, 30 May 1996 >> 36 // Revised, G.Cosmo, 6 June 1996 >> 37 // Code uses operators (+=, *=, ++, -> etc.) correctly, P. Urban, 26/6/96 >> 38 // Add ElectronDefinition() H.Kurashige 4 July 1996 33 // ------------------------------------------- 39 // ---------------------------------------------------------------------- 34 40 >> 41 #include "g4std/fstream" >> 42 #include "g4std/iomanip" >> 43 35 #include "G4Electron.hh" 44 #include "G4Electron.hh" >> 45 // ###################################################################### >> 46 // ### ELECTRON ### >> 47 // ###################################################################### >> 48 >> 49 G4Electron::G4Electron( >> 50 const G4String& aName, G4double mass, >> 51 G4double width, G4double charge, >> 52 G4int iSpin, G4int iParity, >> 53 G4int iConjugation, G4int iIsospin, >> 54 G4int iIsospin3, G4int gParity, >> 55 const G4String& pType, G4int lepton, >> 56 G4int baryon, G4int encoding, >> 57 G4bool stable, G4double lifetime, >> 58 G4DecayTable *decaytable ) >> 59 : G4VLepton( aName,mass,width,charge,iSpin,iParity, >> 60 iConjugation,iIsospin,iIsospin3,gParity,pType, >> 61 lepton,baryon,encoding,stable,lifetime,decaytable ) >> 62 { >> 63 SetParticleSubType("e"); >> 64 } 36 65 37 #include "G4ParticleTable.hh" << 66 // ...................................................................... 38 #include "G4PhysicalConstants.hh" << 67 // ... static member definitions ... 39 #include "G4String.hh" << 68 // ...................................................................... 40 #include "G4SystemOfUnits.hh" << 69 // 41 #include "G4Types.hh" << 70 // Arguments for constructor are as follows >> 71 // name mass width charge >> 72 // 2*spin parity C-conjugation >> 73 // 2*Isospin 2*Isospin3 G-parity >> 74 // type lepton number baryon number PDG encoding >> 75 // stable lifetime decay table >> 76 >> 77 G4Electron G4Electron::theElectron( >> 78 "e-", 0.51099906*MeV, 0.0*MeV, -1.*eplus, >> 79 1, 0, 0, >> 80 0, 0, 0, >> 81 "lepton", 1, 0, 11, >> 82 true, -1.0, NULL >> 83 ); 42 84 43 G4Electron* G4Electron::theInstance = nullptr; << 85 G4Electron* G4Electron::ElectronDefinition(){return &theElectron;} 44 86 45 G4Electron* G4Electron::Definition() << 87 // ********************************************************************** >> 88 // ************************* ComputeLoss ******************************** >> 89 // ********************************************************************** >> 90 G4double G4Electron::ComputeLoss(G4double AtomicNumber, >> 91 G4double KineticEnergy) const 46 { 92 { 47 if (theInstance != nullptr) return theInstan << 93 static G4double Z; 48 const G4String name = "e-"; << 94 static G4double taul, ionpot, ionpotlog; 49 // search in particle table] << 95 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3=1., cbr4=0.072; 50 G4ParticleTable* pTable = G4ParticleTable::G << 96 const G4double Tlow=10.*keV, Thigh=1.*GeV; 51 G4ParticleDefinition* anInstance = pTable->F << 97 52 if (anInstance == nullptr) { << 98 static G4double bremfactor= 0.1 ; 53 // create particle << 99 54 // << 100 // calculate dE/dx for electrons 55 // Arguments for constructor are as fol << 101 if( abs(AtomicNumber-Z)>0.1 ) 56 // name mass << 102 { 57 // 2*spin parity C- << 103 Z = AtomicNumber; 58 // 2*Isospin 2*Isospin3 << 104 taul = Tlow/GetPDGMass(); 59 // type lepton number ba << 105 ionpot = 1.6e-5*MeV*exp(0.9*log(Z))/GetPDGMass(); 60 // stable lifetime << 106 ionpotlog = log(ionpot); 61 // shortlived subType << 107 } 62 << 108 63 // use constants in CLHEP << 109 64 // static const double electron_mass_c2 = << 110 G4double tau = KineticEnergy/GetPDGMass(); 65 << 111 G4double dEdx; 66 // clang-format off << 112 67 anInstance = new G4ParticleDefinition( << 113 if(tau<taul) { 68 name, electron_mass_c2, << 114 G4double t1 = taul+1.; 69 1, 0, 0, << 115 G4double t2 = taul+2.; 70 0, 0, 0, << 116 G4double tsq = taul*taul; 71 "lepton", 1, << 117 G4double beta2 = taul*t2/(t1*t1); 72 true, -1.0, nullptr << 118 G4double f = 1.-beta2+log(tsq/2.) 73 false, "e" << 119 +(0.5+0.25*tsq+(1.+2.*taul)*log(0.5))/(t1*t1); 74 ); << 120 dEdx = (log(2.*taul+4.)-2.*ionpotlog+f)/beta2; 75 // clang-format on << 121 dEdx = twopi_mc2_rcl2*Z*dEdx; >> 122 G4double clow = dEdx*sqrt(taul); >> 123 dEdx = clow/sqrt(KineticEnergy/GetPDGMass()); >> 124 } else { >> 125 G4double t1 = tau+1.; >> 126 G4double t2 = tau+2.; >> 127 G4double tsq = tau*tau; >> 128 G4double beta2 = tau*t2/(t1*t1); >> 129 G4double f = 1.-beta2+log(tsq/2.) >> 130 +(0.5+0.25*tsq+(1.+2.*tau)*log(0.5))/(t1*t1); >> 131 dEdx = (log(2.*tau+4.)-2.*ionpotlog+f)/beta2; >> 132 dEdx = twopi_mc2_rcl2*Z*dEdx; >> 133 >> 134 // loss from bremsstrahlung follows >> 135 G4double cbrem = (cbr1+cbr2*Z) >> 136 *(cbr3+cbr4*log(KineticEnergy/Thigh)); >> 137 cbrem = Z*(Z+1.)*cbrem*tau/beta2; 76 138 77 // Bohr Magnetron << 139 cbrem *= bremfactor ; 78 G4double muB = -0.5 * eplus * hbar_Planck << 79 140 80 anInstance->SetPDGMagneticMoment(muB * 1.0 << 141 dEdx += twopi_mc2_rcl2*cbrem; 81 } 142 } 82 theInstance = static_cast<G4Electron*>(anIns << 143 83 return theInstance; << 144 return dEdx; 84 } 145 } 85 146 86 G4Electron* G4Electron::ElectronDefinition() << 147 // ********************************************************************** >> 148 // *********************** BuildRangeVector ***************************** >> 149 // ********************************************************************** >> 150 >> 151 void G4Electron::BuildRangeVector(const G4Material* aMaterial, >> 152 const G4LossTable* aLossTable, >> 153 G4double maxEnergy, >> 154 G4double aMass, >> 155 G4PhysicsLogVector* rangeVector) 87 { 156 { 88 return Definition(); << 157 // create range vector for a material 89 } << 158 const G4double tlim = 10.*keV; >> 159 const G4int maxnbint = 100; >> 160 >> 161 const G4ElementVector* elementVector = aMaterial->GetElementVector(); >> 162 const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector(); >> 163 G4int NumEl = aMaterial->GetNumberOfElements(); >> 164 >> 165 // calculate parameters of the low energy part first >> 166 G4int i; >> 167 G4double loss=0.; >> 168 for (i=0; i<NumEl; i++) >> 169 { >> 170 G4bool isOut; >> 171 G4int IndEl = (*elementVector)[i]->GetIndex(); >> 172 loss += atomicNumDensityVector[i]* >> 173 (*aLossTable)[IndEl]->GetValue(tlim,isOut); >> 174 } >> 175 G4double taulim = tlim/aMass; >> 176 G4double clim = sqrt(taulim)*loss; >> 177 G4double taumax = maxEnergy/aMass; >> 178 >> 179 // now the range vector can be filled >> 180 >> 181 for ( i=0; i<TotBin; i++) >> 182 { >> 183 G4double LowEdgeEnergy = rangeVector->GetLowEdgeEnergy(i); >> 184 G4double tau = LowEdgeEnergy/aMass; >> 185 >> 186 if ( tau <= taulim ) { >> 187 G4double Value = 2.*aMass*tau*sqrt(tau)/(3.*clim); >> 188 rangeVector->PutValue(i,Value); >> 189 } else { >> 190 G4double rangelim = 2.*aMass*taulim*sqrt(taulim)/(3.*clim); >> 191 G4double ltaulow = log(taulim); >> 192 G4double ltauhigh = log(tau); >> 193 G4double ltaumax = log(taumax); >> 194 G4int nbin = G4int(maxnbint*(ltauhigh-ltaulow)/(ltaumax-ltaulow)); >> 195 if( nbin < 1 ) nbin = 1; >> 196 G4double Value = RangeLogSimpson(elementVector, atomicNumDensityVector, >> 197 aLossTable, aMass, >> 198 ltaulow, ltauhigh, >> 199 nbin, NumEl) + rangelim; >> 200 rangeVector->PutValue(i,Value); >> 201 } >> 202 } >> 203 } 90 204 91 G4Electron* G4Electron::Electron() 205 G4Electron* G4Electron::Electron() 92 { << 206 { 93 return Definition(); << 207 return &theElectron; 94 } 208 } >> 209 >> 210 >> 211 >> 212 >> 213 >> 214 95 215