Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // >> 8 // $Id: G4Electron.cc,v 1.1.10.1 1999/12/07 20:49:47 gunter Exp $ >> 9 // GEANT4 tag $Name: geant4-01-00 $ >> 10 // >> 11 // 26 // ------------------------------------------- 12 // ---------------------------------------------------------------------- 27 // GEANT 4 class implementation file 13 // GEANT 4 class implementation file 28 // 14 // >> 15 // For information related to this code contact: >> 16 // CERN, CN Division, ASD Group 29 // History: first implementation, based o 17 // History: first implementation, based on object model of 30 // 4th April 1996, G.Cosmo 18 // 4th April 1996, G.Cosmo 31 // ******************************************* 19 // ********************************************************************** 32 // New impelemenataion as an utility class M << 20 // Added particle definitions, H.Kurashige, 19 April 1996 >> 21 // Added SetCuts implementation, L.Urban, 30 May 1996 >> 22 // Revised, G.Cosmo, 6 June 1996 >> 23 // Code uses operators (+=, *=, ++, -> etc.) correctly, P. Urban, 26/6/96 >> 24 // Add ElectronDefinition() H.Kurashige 4 July 1996 33 // ------------------------------------------- 25 // ---------------------------------------------------------------------- 34 26 >> 27 #include <fstream.h> >> 28 #include <iomanip.h> >> 29 35 #include "G4Electron.hh" 30 #include "G4Electron.hh" >> 31 // ###################################################################### >> 32 // ### ELECTRON ### >> 33 // ###################################################################### >> 34 >> 35 G4Electron::G4Electron( >> 36 const G4String& aName, G4double mass, >> 37 G4double width, G4double charge, >> 38 G4int iSpin, G4int iParity, >> 39 G4int iConjugation, G4int iIsospin, >> 40 G4int iIsospin3, G4int gParity, >> 41 const G4String& pType, G4int lepton, >> 42 G4int baryon, G4int encoding, >> 43 G4bool stable, G4double lifetime, >> 44 G4DecayTable *decaytable ) >> 45 : G4VLepton( aName,mass,width,charge,iSpin,iParity, >> 46 iConjugation,iIsospin,iIsospin3,gParity,pType, >> 47 lepton,baryon,encoding,stable,lifetime,decaytable ) >> 48 { >> 49 } 36 50 37 #include "G4ParticleTable.hh" << 51 // ...................................................................... 38 #include "G4PhysicalConstants.hh" << 52 // ... static member definitions ... 39 #include "G4String.hh" << 53 // ...................................................................... 40 #include "G4SystemOfUnits.hh" << 54 // 41 #include "G4Types.hh" << 55 // Arguments for constructor are as follows 42 << 56 // name mass width charge 43 G4Electron* G4Electron::theInstance = nullptr; << 57 // 2*spin parity C-conjugation >> 58 // 2*Isospin 2*Isospin3 G-parity >> 59 // type lepton number baryon number PDG encoding >> 60 // stable lifetime decay table >> 61 >> 62 G4Electron G4Electron::theElectron( >> 63 "e-", 0.51099906*MeV, 0.0*MeV, -1.*eplus, >> 64 1, 0, 0, >> 65 0, 0, 0, >> 66 "lepton", 1, 0, 11, >> 67 true, -1.0, NULL >> 68 ); >> 69 >> 70 G4Electron* G4Electron::ElectronDefinition(){return &theElectron;} >> 71 // initialization for static cut values >> 72 G4double G4Electron::theElectronLengthCut = -1.0; >> 73 G4double* G4Electron::theElectronKineticEnergyCuts = NULL; 44 74 45 G4Electron* G4Electron::Definition() << 75 // ********************************************************************** >> 76 // ************************* ComputeLoss ******************************** >> 77 // ********************************************************************** >> 78 G4double G4Electron::ComputeLoss(G4double AtomicNumber, >> 79 G4double KineticEnergy) const 46 { 80 { 47 if (theInstance != nullptr) return theInstan << 81 static G4double Z; 48 const G4String name = "e-"; << 82 static G4double taul, ionpot, ionpotlog; 49 // search in particle table] << 83 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3=1., cbr4=0.072; 50 G4ParticleTable* pTable = G4ParticleTable::G << 84 const G4double Tlow=10.*keV, Thigh=1.*GeV; 51 G4ParticleDefinition* anInstance = pTable->F << 85 52 if (anInstance == nullptr) { << 86 static G4double bremfactor= 0.1 ; 53 // create particle << 87 54 // << 88 // calculate dE/dx for electrons 55 // Arguments for constructor are as fol << 89 if( abs(AtomicNumber-Z)>0.1 ) 56 // name mass << 90 { 57 // 2*spin parity C- << 91 Z = AtomicNumber; 58 // 2*Isospin 2*Isospin3 << 92 taul = Tlow/GetPDGMass(); 59 // type lepton number ba << 93 ionpot = 1.6e-5*MeV*exp(0.9*log(Z))/GetPDGMass(); 60 // stable lifetime << 94 ionpotlog = log(ionpot); 61 // shortlived subType << 95 } 62 << 96 63 // use constants in CLHEP << 97 64 // static const double electron_mass_c2 = << 98 G4double tau = KineticEnergy/GetPDGMass(); 65 << 99 G4double dEdx; 66 // clang-format off << 100 67 anInstance = new G4ParticleDefinition( << 101 if(tau<taul) { 68 name, electron_mass_c2, << 102 G4double t1 = taul+1.; 69 1, 0, 0, << 103 G4double t2 = taul+2.; 70 0, 0, 0, << 104 G4double tsq = taul*taul; 71 "lepton", 1, << 105 G4double beta2 = taul*t2/(t1*t1); 72 true, -1.0, nullptr << 106 G4double f = 1.-beta2+log(tsq/2.) 73 false, "e" << 107 +(0.5+0.25*tsq+(1.+2.*taul)*log(0.5))/(t1*t1); 74 ); << 108 dEdx = (log(2.*taul+4.)-2.*ionpotlog+f)/beta2; 75 // clang-format on << 109 dEdx = twopi_mc2_rcl2*Z*dEdx; >> 110 G4double clow = dEdx*sqrt(taul); >> 111 dEdx = clow/sqrt(KineticEnergy/GetPDGMass()); >> 112 } else { >> 113 G4double t1 = tau+1.; >> 114 G4double t2 = tau+2.; >> 115 G4double tsq = tau*tau; >> 116 G4double beta2 = tau*t2/(t1*t1); >> 117 G4double f = 1.-beta2+log(tsq/2.) >> 118 +(0.5+0.25*tsq+(1.+2.*tau)*log(0.5))/(t1*t1); >> 119 dEdx = (log(2.*tau+4.)-2.*ionpotlog+f)/beta2; >> 120 dEdx = twopi_mc2_rcl2*Z*dEdx; >> 121 >> 122 // loss from bremsstrahlung follows >> 123 G4double cbrem = (cbr1+cbr2*Z) >> 124 *(cbr3+cbr4*log(KineticEnergy/Thigh)); >> 125 cbrem = Z*(Z+1.)*cbrem*tau/beta2; 76 126 77 // Bohr Magnetron << 127 cbrem *= bremfactor ; 78 G4double muB = -0.5 * eplus * hbar_Planck << 79 128 80 anInstance->SetPDGMagneticMoment(muB * 1.0 << 129 dEdx += twopi_mc2_rcl2*cbrem; 81 } 130 } 82 theInstance = static_cast<G4Electron*>(anIns << 83 return theInstance; << 84 } << 85 131 86 G4Electron* G4Electron::ElectronDefinition() << 132 return dEdx; 87 { << 88 return Definition(); << 89 } 133 } 90 134 91 G4Electron* G4Electron::Electron() << 135 // ********************************************************************** >> 136 // *********************** BuildRangeVector ***************************** >> 137 // ********************************************************************** >> 138 >> 139 void G4Electron::BuildRangeVector(const G4Material* aMaterial, >> 140 const G4LossTable* aLossTable, >> 141 G4double maxEnergy, >> 142 G4double aMass, >> 143 G4PhysicsLogVector* rangeVector) 92 { 144 { 93 return Definition(); << 145 // create range vector for a material 94 } << 146 const G4double tlim = 10.*keV; >> 147 const G4int maxnbint = 100; >> 148 >> 149 const G4ElementVector* elementVector = aMaterial->GetElementVector(); >> 150 const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector(); >> 151 G4int NumEl = aMaterial->GetNumberOfElements(); >> 152 >> 153 // calculate parameters of the low energy part first >> 154 G4int i; >> 155 G4double loss=0.; >> 156 for (i=0; i<NumEl; i++) >> 157 { >> 158 G4bool isOut; >> 159 G4int IndEl = (*elementVector)(i)->GetIndex(); >> 160 loss += atomicNumDensityVector[i]* >> 161 (*aLossTable)[IndEl]->GetValue(tlim,isOut); >> 162 } >> 163 G4double taulim = tlim/aMass; >> 164 G4double clim = sqrt(taulim)*loss; >> 165 G4double taumax = maxEnergy/aMass; >> 166 >> 167 // now the range vector can be filled >> 168 >> 169 for ( i=0; i<TotBin; i++) >> 170 { >> 171 G4double LowEdgeEnergy = rangeVector->GetLowEdgeEnergy(i); >> 172 G4double tau = LowEdgeEnergy/aMass; >> 173 >> 174 if ( tau <= taulim ) { >> 175 G4double Value = 2.*aMass*tau*sqrt(tau)/(3.*clim); >> 176 rangeVector->PutValue(i,Value); >> 177 } else { >> 178 G4double rangelim = 2.*aMass*taulim*sqrt(taulim)/(3.*clim); >> 179 G4double ltaulow = log(taulim); >> 180 G4double ltauhigh = log(tau); >> 181 G4double ltaumax = log(taumax); >> 182 G4int nbin = G4int(maxnbint*(ltauhigh-ltaulow)/(ltaumax-ltaulow)); >> 183 if( nbin < 1 ) nbin = 1; >> 184 G4double Value = RangeLogSimpson(elementVector, atomicNumDensityVector, >> 185 aLossTable, aMass, >> 186 ltaulow, ltauhigh, >> 187 nbin, NumEl) + rangelim; >> 188 rangeVector->PutValue(i,Value); >> 189 } >> 190 } >> 191 } >> 192 >> 193 >> 194 >> 195 >> 196 >> 197 95 198