Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // >> 8 // $Id: G4AntiNeutrinoMu.cc,v 1.1.10.1.2.2 1999/12/14 07:08:13 gunter Exp $ >> 9 // GEANT4 tag $Name: geant4-01-01 $ >> 10 // >> 11 // 26 // ------------------------------------------- 12 // ---------------------------------------------------------------------- 27 // GEANT 4 class implementation file 13 // GEANT 4 class implementation file 28 // 14 // >> 15 // For information related to this code contact: >> 16 // CERN, CN Division, ASD Group 29 // History: first implementation, based o 17 // History: first implementation, based on object model of 30 // 4th April 1996, G.Cosmo << 18 // 4th April 1996, G.Cosmo 31 // by H.Kurashige,7 July 199 19 // by H.Kurashige,7 July 1996 32 // ******************************************* 20 // ********************************************************************** 33 // New impelemenataion as an utility class M << 34 // ------------------------------------------- << 35 << 36 #include "G4AntiNeutrinoMu.hh" << 37 21 38 #include "G4ParticleTable.hh" << 22 #include "g4std/fstream" 39 #include "G4String.hh" << 23 #include "g4std/iomanip" 40 #include "G4SystemOfUnits.hh" << 41 24 42 G4AntiNeutrinoMu* G4AntiNeutrinoMu::theInstanc << 25 #include "G4AntiNeutrinoMu.hh" 43 26 44 G4AntiNeutrinoMu* G4AntiNeutrinoMu::Definition << 27 // ###################################################################### >> 28 // ### ANTI MU NEUTRINO ### >> 29 // ###################################################################### >> 30 >> 31 G4AntiNeutrinoMu::G4AntiNeutrinoMu( >> 32 const G4String& aName, G4double mass, >> 33 G4double width, G4double charge, >> 34 G4int iSpin, G4int iParity, >> 35 G4int iConjugation, G4int iIsospin, >> 36 G4int iIsospin3, G4int gParity, >> 37 const G4String& pType, G4int lepton, >> 38 G4int baryon, G4int encoding, >> 39 G4bool stable, G4double lifetime, >> 40 G4DecayTable *decaytable ) >> 41 : G4VLepton( aName,mass,width,charge,iSpin,iParity, >> 42 iConjugation,iIsospin,iIsospin3,gParity,pType, >> 43 lepton,baryon,encoding,stable,lifetime,decaytable ) 45 { 44 { 46 if (theInstance != nullptr) return theInstan << 45 } 47 const G4String name = "anti_nu_mu"; << 46 48 // search in particle table] << 47 // ...................................................................... 49 G4ParticleTable* pTable = G4ParticleTable::G << 48 // ... static member definitions ... 50 G4ParticleDefinition* anInstance = pTable->F << 49 // ...................................................................... 51 if (anInstance == nullptr) { << 50 // 52 // create particle << 51 // Arguments for constructor are as follows 53 // << 52 // name mass width charge 54 // Arguments for constructor are as fol << 53 // 2*spin parity C-conjugation 55 // name mass << 54 // 2*Isospin 2*Isospin3 G-parity 56 // 2*spin parity C- << 55 // type lepton number baryon number PDG encoding 57 // 2*Isospin 2*Isospin3 << 56 // stable lifetime decay table 58 // type lepton number ba << 57 // 59 // stable lifetime << 58 G4AntiNeutrinoMu G4AntiNeutrinoMu::theAntiNeutrinoMu( 60 // shortlived subType << 59 "anti_nu_mu", 0.0*MeV, 0.0*MeV, 0.0, 61 << 62 // clang-format off << 63 anInstance = new G4ParticleDefinition( << 64 name, 0.0*MeV, << 65 1, 0, 0, 60 1, 0, 0, 66 0, 0, 0, 61 0, 0, 0, 67 "lepton", -1, 62 "lepton", -1, 0, -14, 68 true, -1.0, nullptr, << 63 true, 0.0, NULL 69 false, "mu" << 64 ); 70 ); << 71 // clang-format on << 72 } << 73 theInstance = static_cast<G4AntiNeutrinoMu*> << 74 return theInstance; << 75 } << 76 65 77 G4AntiNeutrinoMu* G4AntiNeutrinoMu::AntiNeutri 66 G4AntiNeutrinoMu* G4AntiNeutrinoMu::AntiNeutrinoMuDefinition() 78 { 67 { 79 return Definition(); << 68 return &theAntiNeutrinoMu; 80 } 69 } >> 70 // initialization for static cut values >> 71 G4double G4AntiNeutrinoMu::theAntiNeutrinoMuLengthCut = -1.0; >> 72 G4double* G4AntiNeutrinoMu::theAntiNeutrinoMuKineticEnergyCuts = NULL; 81 73 82 G4AntiNeutrinoMu* G4AntiNeutrinoMu::AntiNeutri << 74 // ********************************************************************** >> 75 // **************************** SetCuts ********************************* >> 76 // ********************************************************************** >> 77 >> 78 void G4AntiNeutrinoMu::SetCuts(G4double aCut) 83 { 79 { 84 return Definition(); << 80 theCutInMaxInteractionLength = aCut; >> 81 >> 82 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); >> 83 // Create the vector of cuts in energy >> 84 // corresponding to the stopping range cut >> 85 if(theKineticEnergyCuts) delete [] theKineticEnergyCuts; >> 86 theKineticEnergyCuts = new G4double [materialTable->length()]; >> 87 >> 88 // Build range vector for every material, convert cut into energy-cut, >> 89 // fill theKineticEnergyCuts and delete the range vector >> 90 for (G4int J=0; J<materialTable->length(); J++) >> 91 { >> 92 G4Material* aMaterial = (*materialTable)[J]; >> 93 theKineticEnergyCuts[J] = 0.0*keV; >> 94 } >> 95 theAntiNeutrinoMuLengthCut = theCutInMaxInteractionLength; >> 96 theAntiNeutrinoMuKineticEnergyCuts = theKineticEnergyCuts; >> 97 // Rebuild the physics tables for every process for this particle type >> 98 85 } 99 } 86 100