Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: Gamma.cc,v 1.6 2006/06/29 19:14:28 gunter Exp $ >> 27 // GEANT4 tag $Name: geant4-08-01-patch-01 $ 26 // 28 // 27 // 29 // 28 // ------------------------------------------- 30 // ------------------------------------------------------------ 29 // GEANT 4 class implementation 31 // GEANT 4 class implementation 30 // ------------------------------------------- 32 // ------------------------------------------------------------ 31 33 32 #include <cmath> 34 #include <cmath> 33 #include <string.h> 35 #include <string.h> 34 #include "Gamma.hh" 36 #include "Gamma.hh" 35 37 36 MyGamma::MyGamma(){} 38 MyGamma::MyGamma(){} 37 39 38 MyGamma::~MyGamma(){} 40 MyGamma::~MyGamma(){} 39 41 40 //____________________________________________ 42 //____________________________________________________________________________ 41 double MyGamma::Gamma(double z) 43 double MyGamma::Gamma(double z) 42 { 44 { 43 if (z <= 0) << 45 // Computation of gamma(z) for all z>0. 44 return 0; << 46 // 45 << 47 // The algorithm is based on the article by C.Lanczos [1] as denoted in 46 return std::tgamma(z); << 48 // Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.). >> 49 // >> 50 // [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86. >> 51 // >> 52 //--- Nve 14-nov-1998 UU-SAP Utrecht >> 53 >> 54 if (z<=0) return 0; >> 55 >> 56 double v = LnGamma(z); >> 57 return std::exp(v); 47 } 58 } 48 59 49 //____________________________________________ 60 //____________________________________________________________________________ 50 double MyGamma::Gamma(double a, double x) << 61 double MyGamma::Gamma(double a,double x) 51 { 62 { 52 // Computation of the incomplete gamma funct 63 // Computation of the incomplete gamma function P(a,x) 53 // 64 // 54 // The algorithm is based on the formulas an 65 // The algorithm is based on the formulas and code as denoted in 55 // Numerical Recipes 2nd ed. on p. 210-212 ( 66 // Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.). 56 // 67 // 57 //--- Nve 14-nov-1998 UU-SAP Utrecht 68 //--- Nve 14-nov-1998 UU-SAP Utrecht 58 << 69 59 if (a <= 0 || x <= 0) return 0; 70 if (a <= 0 || x <= 0) return 0; 60 << 71 61 if (x < (a + 1)) << 72 if (x < (a+1)) return GamSer(a,x); 62 return GamSer(a, x); << 73 else return GamCf(a,x); 63 else << 64 return GamCf(a, x); << 65 } 74 } 66 75 67 //____________________________________________ 76 //____________________________________________________________________________ 68 double MyGamma::GamCf(double a, double x) << 77 double MyGamma::GamCf(double a,double x) 69 { 78 { 70 // Computation of the incomplete gamma funct 79 // Computation of the incomplete gamma function P(a,x) 71 // via its continued fraction representation 80 // via its continued fraction representation. 72 // 81 // 73 // The algorithm is based on the formulas an 82 // The algorithm is based on the formulas and code as denoted in 74 // Numerical Recipes 2nd ed. on p. 210-212 ( 83 // Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.). 75 // 84 // 76 //--- Nve 14-nov-1998 UU-SAP Utrecht 85 //--- Nve 14-nov-1998 UU-SAP Utrecht 77 << 86 78 int itmax = 100; // Maximum number of itera << 87 int itmax = 100; // Maximum number of iterations 79 double eps = 3.e-7; // Relative accuracy << 88 double eps = 3.e-7; // Relative accuracy 80 double fpmin = 1.e-30; // Smallest double v << 89 double fpmin = 1.e-30; // Smallest double value allowed here 81 << 90 82 if (a <= 0 || x <= 0) return 0; 91 if (a <= 0 || x <= 0) return 0; 83 << 92 84 double gln = LnGamma(a); 93 double gln = LnGamma(a); 85 double b = x + 1 - a; << 94 double b = x+1-a; 86 double c = 1 / fpmin; << 95 double c = 1/fpmin; 87 double d = 1 / b; << 96 double d = 1/b; 88 double h = d; << 97 double h = d; 89 double an, del; << 98 double an,del; 90 for (int i = 1; i <= itmax; i++) { << 99 for (int i=1; i<=itmax; i++) { 91 an = double(-i) * (double(i) - a); << 100 an = double(-i)*(double(i)-a); 92 b += 2; 101 b += 2; 93 d = an * d + b; << 102 d = an*d+b; 94 if (Abs(d) < fpmin) d = fpmin; 103 if (Abs(d) < fpmin) d = fpmin; 95 c = b + an / c; << 104 c = b+an/c; 96 if (Abs(c) < fpmin) c = fpmin; 105 if (Abs(c) < fpmin) c = fpmin; 97 d = 1 / d; << 106 d = 1/d; 98 del = d * c; << 107 del = d*c; 99 h = h * del; << 108 h = h*del; 100 if (Abs(del - 1) < eps) break; << 109 if (Abs(del-1) < eps) break; 101 // if (i==itmax) cout << "*GamCf(a,x)* a t << 110 //if (i==itmax) cout << "*GamCf(a,x)* a too large or itmax too small" << endl; 102 } 111 } 103 double v = Exp(-x + a * Log(x) - gln) * h; << 112 double v = Exp(-x+a*Log(x)-gln)*h; 104 return (1 - v); << 113 return (1-v); 105 } 114 } 106 115 107 //____________________________________________ 116 //____________________________________________________________________________ 108 double MyGamma::GamSer(double a, double x) << 117 double MyGamma::GamSer(double a,double x) 109 { 118 { 110 // Computation of the incomplete gamma funct 119 // Computation of the incomplete gamma function P(a,x) 111 // via its series representation. 120 // via its series representation. 112 // 121 // 113 // The algorithm is based on the formulas an 122 // The algorithm is based on the formulas and code as denoted in 114 // Numerical Recipes 2nd ed. on p. 210-212 ( 123 // Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.). 115 // 124 // 116 //--- Nve 14-nov-1998 UU-SAP Utrecht 125 //--- Nve 14-nov-1998 UU-SAP Utrecht 117 << 126 118 int itmax = 100; // Maximum number of itera << 127 int itmax = 100; // Maximum number of iterations 119 double eps = 3.e-7; // Relative accuracy << 128 double eps = 3.e-7; // Relative accuracy 120 << 129 121 if (a <= 0 || x <= 0) return 0; 130 if (a <= 0 || x <= 0) return 0; 122 << 131 123 double gln = LnGamma(a); 132 double gln = LnGamma(a); 124 double ap = a; << 133 double ap = a; 125 double sum = 1 / a; << 134 double sum = 1/a; 126 double del = sum; 135 double del = sum; 127 for (int n = 1; n <= itmax; n++) { << 136 for (int n=1; n<=itmax; n++) { 128 ap += 1; << 137 ap += 1; 129 del = del * x / ap; << 138 del = del*x/ap; 130 sum += del; 139 sum += del; 131 if (MyGamma::Abs(del) < Abs(sum * eps)) br << 140 if (MyGamma::Abs(del) < Abs(sum*eps)) break; 132 // if (n==itmax) cout << "*GamSer(a,x)* a << 141 //if (n==itmax) cout << "*GamSer(a,x)* a too large or itmax too small" << endl; 133 } 142 } 134 double v = sum * Exp(-x + a * Log(x) - gln); << 143 double v = sum*Exp(-x+a*Log(x)-gln); 135 return v; 144 return v; 136 } 145 } 137 146 >> 147 138 double MyGamma::LnGamma(double z) 148 double MyGamma::LnGamma(double z) 139 { 149 { 140 if (z <= 0) << 150 // Computation of ln[gamma(z)] for all z>0. 141 return 0; << 151 // 142 << 152 // The algorithm is based on the article by C.Lanczos [1] as denoted in 143 return std::lgamma(z); << 153 // Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.). >> 154 // >> 155 // [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86. >> 156 // >> 157 // The accuracy of the result is better than 2e-10. >> 158 // >> 159 //--- Nve 14-nov-1998 UU-SAP Utrecht >> 160 >> 161 if (z<=0) return 0; >> 162 >> 163 // Coefficients for the series expansion >> 164 double c[7] = { 2.5066282746310005, 76.18009172947146, -86.50532032941677 >> 165 ,24.01409824083091, -1.231739572450155, 0.1208650973866179e-2 >> 166 ,-0.5395239384953e-5}; >> 167 >> 168 double x = z; >> 169 double y = x; >> 170 double tmp = x+5.5; >> 171 tmp = (x+0.5)*Log(tmp)-tmp; >> 172 double ser = 1.000000000190015; >> 173 for (int i=1; i<7; i++) { >> 174 y += 1; >> 175 ser += c[i]/y; >> 176 } >> 177 double v = tmp+Log(c[0]*ser/x); >> 178 return v; 144 } 179 } 145 180