Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** >> 25 // >> 26 // >> 27 // $Id: G4Material.hh,v 1.28 2010-05-14 14:34:50 vnivanch Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ >> 29 // 25 30 26 //-------------------------------------------- 31 //--------------------------------------------------------------------------- 27 // 32 // 28 // ClassName: G4Material 33 // ClassName: G4Material 29 // 34 // 30 // Description: Contains material properties 35 // Description: Contains material properties 31 // 36 // 32 // Class description: 37 // Class description: 33 // 38 // 34 // Is used to define the material composition 39 // Is used to define the material composition of Geant4 volumes. 35 // A G4Material is always made of G4Elements. << 40 // A G4Material is always made of G4Elements. It should has the name, 36 // the list of G4Elements, material density, m << 41 // the list of G4Elements, material density, material state, temperature, 37 // pressure. Other parameters are optional and << 42 // pressure. Other parameters are optional and may be set by the user code 38 // or computed at initialisation. << 43 // or computed at initialisation. 39 // << 44 // 40 // There is several ways to construct G4Materi 45 // There is several ways to construct G4Material: 41 // - from single element; 46 // - from single element; 42 // - from a list of components (elements or 47 // - from a list of components (elements or other materials); 43 // - from internal Geant4 database of materi 48 // - from internal Geant4 database of materials 44 // 49 // 45 // A collection of constituent Elements/Materi << 50 // A collection of constituent Elements/Materials should be defined 46 // with specified weights by fractional mass o 51 // with specified weights by fractional mass or atom counts (only for Elements). 47 // 52 // 48 // Quantities, with physical meaning or not, w << 53 // Quantities, with physical meaning or not, which are constant in a given 49 // material are computed and stored here as De 54 // material are computed and stored here as Derived data members. 50 // 55 // 51 // The class contains as a private static memb 56 // The class contains as a private static member the Table of defined 52 // materials (an ordered vector of materials). 57 // materials (an ordered vector of materials). 53 // 58 // 54 // It is strongly not recommended to delete ma 59 // It is strongly not recommended to delete materials in user code. 55 // All materials will be deleted automatically 60 // All materials will be deleted automatically at the end of Geant4 session. 56 // 61 // >> 62 >> 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 64 57 // 10-07-96, new data members added by L.Urban 65 // 10-07-96, new data members added by L.Urban 58 // 12-12-96, new data members added by L.Urban 66 // 12-12-96, new data members added by L.Urban 59 // 20-01-97, aesthetic rearrangement. RadLengt 67 // 20-01-97, aesthetic rearrangement. RadLength calculation modified 60 // Data members Zeff and Aeff REMOVE 68 // Data members Zeff and Aeff REMOVED (i.e. passed to the Elements). 61 // (local definition of Zeff in Dens 69 // (local definition of Zeff in DensityEffect and FluctModel...) 62 // Vacuum defined as a G4State. Mixt << 70 // Vacuum defined as a G4State. Mixture flag removed, M.Maire 63 // 29-01-97, State=Vacuum automatically set de 71 // 29-01-97, State=Vacuum automatically set density=0 in the contructors. 64 // Subsequent protections have been << 72 // Subsequent protections have been put in the calculation of 65 // MeanExcEnergy, ShellCorrectionVec 73 // MeanExcEnergy, ShellCorrectionVector, DensityEffect, M.Maire 66 // 20-03-97, corrected initialization of point 74 // 20-03-97, corrected initialization of pointers, M.Maire 67 // 10-06-97, new data member added by V.Grichi 75 // 10-06-97, new data member added by V.Grichine (fSandiaPhotoAbsCof) 68 // 27-06-97, new function GetElement(int), M.M 76 // 27-06-97, new function GetElement(int), M.Maire 69 // 24-02-98, fFractionVector become fMassFract 77 // 24-02-98, fFractionVector become fMassFractionVector 70 // 28-05-98, kState=kVacuum removed: << 78 // 28-05-98, kState=kVacuum removed: 71 // The vacuum is an ordinary gas vit 79 // The vacuum is an ordinary gas vith very low density, M.Maire 72 // 12-06-98, new method AddMaterial() allowing 80 // 12-06-98, new method AddMaterial() allowing mixture of materials, M.Maire 73 // 09-07-98, Ionisation parameters removed fro 81 // 09-07-98, Ionisation parameters removed from the class, M.Maire 74 // 04-08-98, new method GetMaterial(materialNa 82 // 04-08-98, new method GetMaterial(materialName), M.Maire 75 // 05-10-98, change name: NumDensity -> NbOfAt 83 // 05-10-98, change name: NumDensity -> NbOfAtomsPerVolume 76 // 18-11-98, SandiaTable interface modified. 84 // 18-11-98, SandiaTable interface modified. 77 // 19-07-99, new data member (chemicalFormula) 85 // 19-07-99, new data member (chemicalFormula) added by V.Ivanchenko 78 // 12-03-01, G4bool fImplicitElement (mma) 86 // 12-03-01, G4bool fImplicitElement (mma) 79 // 30-03-01, suppression of the warning messag 87 // 30-03-01, suppression of the warning message in GetMaterial 80 // 17-07-01, migration to STL. M. Verderi. 88 // 17-07-01, migration to STL. M. Verderi. 81 // 14-09-01, Suppression of the data member fI 89 // 14-09-01, Suppression of the data member fIndexInTable 82 // 31-10-01, new function SetChemicalFormula() 90 // 31-10-01, new function SetChemicalFormula() (mma) 83 // 26-02-02, fIndexInTable renewed 91 // 26-02-02, fIndexInTable renewed 84 // 06-08-02, remove constructors with Chemical 92 // 06-08-02, remove constructors with ChemicalFormula (mma) 85 // 15-11-05, GetMaterial(materialName, G4bool 93 // 15-11-05, GetMaterial(materialName, G4bool warning=true) 86 // 13-04-12, std::map<G4Material*,G4double> fM << 94 87 // 21-04-12, fMassOfMolecule (mma) << 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 88 96 89 #ifndef G4MATERIAL_HH 97 #ifndef G4MATERIAL_HH 90 #define G4MATERIAL_HH 1 98 #define G4MATERIAL_HH 1 91 99 >> 100 #include "globals.hh" >> 101 #include "G4ios.hh" >> 102 #include <vector> 92 #include "G4Element.hh" 103 #include "G4Element.hh" 93 #include "G4ElementVector.hh" << 94 #include "G4IonisParamMat.hh" << 95 #include "G4MaterialPropertiesTable.hh" 104 #include "G4MaterialPropertiesTable.hh" 96 #include "G4MaterialTable.hh" << 105 #include "G4IonisParamMat.hh" 97 #include "G4SandiaTable.hh" 106 #include "G4SandiaTable.hh" 98 #include "G4ios.hh" << 107 #include "G4ElementVector.hh" 99 #include "globals.hh" << 108 #include "G4MaterialTable.hh" 100 << 101 #include <CLHEP/Units/PhysicalConstants.h> << 102 << 103 #include <map> << 104 #include <vector> << 105 109 106 enum G4State << 110 enum G4State { kStateUndefined = 0, kStateSolid, kStateLiquid, kStateGas }; 107 { << 108 kStateUndefined = 0, << 109 kStateSolid, << 110 kStateLiquid, << 111 kStateGas << 112 }; << 113 111 114 static const G4double NTP_Temperature = 293.15 << 112 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 115 113 116 class G4Material 114 class G4Material 117 { 115 { 118 public: // with description << 116 public: // with description >> 117 >> 118 // 119 // Constructor to create a material from sin 119 // Constructor to create a material from single element 120 G4Material(const G4String& name, // its nam << 120 // 121 G4double z, // atomic number << 121 G4Material(const G4String& name, //its name 122 G4double a, // mass of mole << 122 G4double z, //atomic number 123 G4double density, // density << 123 G4double a, //mass of mole 124 G4State state = kStateUndefined, // solid << 124 G4double density, //density 125 G4double temp = NTP_Temperature, // tempe << 125 G4State state = kStateUndefined, //solid,gas 126 G4double pressure = CLHEP::STP_Pressure); << 126 G4double temp = STP_Temperature, //temperature >> 127 G4double pressure = STP_Pressure); //pressure 127 128 >> 129 // 128 // Constructor to create a material from a c 130 // Constructor to create a material from a combination of elements 129 // and/or materials subsequently added via A 131 // and/or materials subsequently added via AddElement and/or AddMaterial 130 G4Material(const G4String& name, // its nam << 132 // 131 G4double density, // density << 133 G4Material(const G4String& name, //its name 132 G4int nComponents, // nbOfComponents << 134 G4double density, //density 133 G4State state = kStateUndefined, // solid << 135 G4int nComponents, //nbOfComponents 134 G4double temp = NTP_Temperature, // tempe << 136 G4State state = kStateUndefined, //solid,gas 135 G4double pressure = CLHEP::STP_Pressure); << 137 G4double temp = STP_Temperature, //temperature >> 138 G4double pressure = STP_Pressure); //pressure 136 139 >> 140 // 137 // Constructor to create a material from the 141 // Constructor to create a material from the base material 138 G4Material(const G4String& name, // its nam << 142 // 139 G4double density, // density << 143 G4Material(const G4String& name, //its name 140 const G4Material* baseMaterial, // base m << 144 G4double density, //density 141 G4State state = kStateUndefined, // solid << 145 const G4Material* baseMaterial, //base material 142 G4double temp = NTP_Temperature, // tempe << 146 G4State state = kStateUndefined, //solid,gas 143 G4double pressure = CLHEP::STP_Pressure); << 147 G4double temp = STP_Temperature, //temperature 144 << 148 G4double pressure = STP_Pressure); //pressure 145 virtual ~G4Material(); << 146 << 147 // These methods allow customisation of corr << 148 // computations. Free electron density above << 149 // is a conductor. Computation of density ef << 150 // may be more accurate but require extra co << 151 void SetChemicalFormula(const G4String& chF) << 152 void SetFreeElectronDensity(G4double val); << 153 void ComputeDensityEffectOnFly(G4bool val); << 154 << 155 G4Material(const G4Material&) = delete; << 156 const G4Material& operator=(const G4Material << 157 149 >> 150 // 158 // Add an element, giving number of atoms 151 // Add an element, giving number of atoms 159 void AddElementByNumberOfAtoms(const G4Eleme << 152 // 160 inline void AddElement(G4Element* elm, G4int << 153 void AddElement(G4Element* element, //the element 161 << 154 G4int nAtoms); //nb of atoms in >> 155 // a molecule >> 156 // 162 // Add an element or material, giving fracti 157 // Add an element or material, giving fraction of mass 163 void AddElementByMassFraction(const G4Elemen << 158 // 164 inline void AddElement(G4Element* elm, G4dou << 159 void AddElement (G4Element* element , //the element 165 << 160 G4double fraction); //fractionOfMass 166 void AddMaterial(G4Material* material, G4dou << 161 >> 162 void AddMaterial(G4Material* material, //the material >> 163 G4double fraction); //fractionOfMass >> 164 >> 165 >> 166 virtual ~G4Material(); >> 167 >> 168 inline void SetChemicalFormula (const G4String& chF) {fChemicalFormula=chF;} 167 169 168 // 170 // 169 // retrieval methods 171 // retrieval methods 170 // << 172 // 171 inline const G4String& GetName() const { ret << 173 inline const G4String& GetName() const {return fName;} 172 inline const G4String& GetChemicalFormula() << 174 inline const G4String& GetChemicalFormula() const {return fChemicalFormula;} 173 inline G4double GetFreeElectronDensity() con << 175 inline G4double GetDensity() const {return fDensity;} 174 inline G4double GetDensity() const { return << 176 inline G4State GetState() const {return fState;} 175 inline G4State GetState() const { return fSt << 177 inline G4double GetTemperature() const {return fTemp;} 176 inline G4double GetTemperature() const { ret << 178 inline G4double GetPressure() const {return fPressure;} 177 inline G4double GetPressure() const { return << 179 178 << 180 //number of elements constituing this material: 179 // number of elements constituing this mater << 181 inline size_t GetNumberOfElements() const {return fNumberOfElements;} 180 inline std::size_t GetNumberOfElements() con << 182 181 << 183 //vector of pointers to elements constituing this material: 182 // vector of pointers to elements constituin << 184 inline const 183 inline const G4ElementVector* GetElementVect << 185 G4ElementVector* GetElementVector() const {return theElementVector;} 184 << 186 185 // vector of fractional mass of each element << 187 //vector of fractional mass of each element: 186 inline const G4double* GetFractionVector() c << 188 inline const 187 << 189 G4double* GetFractionVector() const {return fMassFractionVector;} 188 // vector of atom count of each element: << 190 189 inline const G4int* GetAtomsVector() const { << 191 //vector of atom count of each element: 190 << 192 inline const 191 // return a pointer to an element, given its << 193 G4int* GetAtomsVector() const {return fAtomsVector;} 192 inline const G4Element* GetElement(G4int iel << 194 193 << 195 //return a pointer to an element, given its index in the material: 194 // vector of nb of atoms per volume of each << 196 inline const 195 inline const G4double* GetVecNbOfAtomsPerVol << 197 G4Element* GetElement(G4int iel) const {return (*theElementVector)[iel];} 196 // total number of atoms per volume: << 198 197 inline G4double GetTotNbOfAtomsPerVolume() c << 199 //vector of nb of atoms per volume of each element in this material: 198 // total number of electrons per volume: << 200 inline const 199 inline G4double GetTotNbOfElectPerVolume() c << 201 G4double* GetVecNbOfAtomsPerVolume() const {return VecNbOfAtomsPerVolume;} 200 << 202 //total number of atoms per volume: 201 // obsolete names (5-10-98) see the 2 functi << 203 inline 202 inline const G4double* GetAtomicNumDensityVe << 204 G4double GetTotNbOfAtomsPerVolume() const {return TotNbOfAtomsPerVolume;} 203 inline G4double GetElectronDensity() const { << 205 //total number of electrons per volume: 204 << 206 inline 205 // Radiation length: << 207 G4double GetTotNbOfElectPerVolume() const {return TotNbOfElectPerVolume;} 206 inline G4double GetRadlen() const { return f << 208 207 << 209 //obsolete names (5-10-98) see the 2 functions above 208 // Nuclear interaction length << 210 inline const 209 inline G4double GetNuclearInterLength() cons << 211 G4double* GetAtomicNumDensityVector() const {return VecNbOfAtomsPerVolume;} 210 << 212 inline G4double GetElectronDensity() const {return TotNbOfElectPerVolume;} >> 213 >> 214 // Radiation length: >> 215 inline G4double GetRadlen() const {return fRadlen;} >> 216 >> 217 // Nuclear interaction length: >> 218 inline G4double GetNuclearInterLength() const {return fNuclInterLen;} >> 219 211 // ionisation parameters: 220 // ionisation parameters: 212 inline G4IonisParamMat* GetIonisation() cons << 221 inline G4IonisParamMat* GetIonisation() const {return fIonisation;} 213 << 222 214 // Sandia table: 223 // Sandia table: 215 inline G4SandiaTable* GetSandiaTable() const << 224 inline G4SandiaTable* GetSandiaTable() const {return fSandiaTable;} 216 225 217 // Base material: 226 // Base material: 218 inline const G4Material* GetBaseMaterial() c << 227 inline 219 << 228 const G4Material* GetBaseMaterial() const {return fBaseMaterial;} 220 // material components: << 229 221 inline const std::map<G4Material*, G4double> << 230 //meaningful only for single material: 222 << 223 // for chemical compound << 224 inline G4double GetMassOfMolecule() const { << 225 << 226 // meaningful only for single material: << 227 G4double GetZ() const; 231 G4double GetZ() const; 228 G4double GetA() const; 232 G4double GetA() const; 229 << 233 230 // the MaterialPropertiesTable (if any) atta << 234 //the MaterialPropertiesTable (if any) attached to this material: 231 void SetMaterialPropertiesTable(G4MaterialPr << 235 inline void SetMaterialPropertiesTable(G4MaterialPropertiesTable* anMPT) 232 << 236 {fMaterialPropertiesTable = anMPT;} >> 237 233 inline G4MaterialPropertiesTable* GetMateria 238 inline G4MaterialPropertiesTable* GetMaterialPropertiesTable() const 234 { << 239 {return fMaterialPropertiesTable;} 235 return fMaterialPropertiesTable; << 236 } << 237 << 238 // the index of this material in the Table: << 239 inline std::size_t GetIndex() const { return << 240 << 241 // the static Table of Materials: << 242 static G4MaterialTable* GetMaterialTable(); << 243 240 244 static std::size_t GetNumberOfMaterials(); << 241 //the (static) Table of Materials: 245 << 242 // 246 // return pointer to a material, given its << 243 static const G4MaterialTable* GetMaterialTable(); 247 static G4Material* GetMaterial(const G4Strin << 244 248 << 245 static size_t GetNumberOfMaterials(); 249 // return pointer to a simple material, giv << 246 250 static G4Material* GetMaterial(G4double z, G << 247 //the index of this material in the Table: 251 << 248 inline size_t GetIndex() const {return fIndexInTable;} 252 // return pointer to a composit material, g << 249 253 static G4Material* GetMaterial(std::size_t n << 250 //return pointer to a material, given its name: 254 << 251 static G4Material* GetMaterial(const G4String& name, G4bool warning=true); 255 // printing methods << 252 256 friend std::ostream& operator<<(std::ostream << 253 // 257 friend std::ostream& operator<<(std::ostream << 254 //printing methods 258 friend std::ostream& operator<<(std::ostream << 255 // >> 256 friend std::ostream& operator<<(std::ostream&, G4Material*); >> 257 friend std::ostream& operator<<(std::ostream&, G4Material&); >> 258 friend std::ostream& operator<<(std::ostream&, G4MaterialTable); >> 259 >> 260 public: // without description >> 261 >> 262 G4int operator==(const G4Material&) const; >> 263 G4int operator!=(const G4Material&) const; >> 264 G4Material(__void__&); >> 265 // Fake default constructor for usage restricted to direct object >> 266 // persistency for clients requiring preallocation of memory for >> 267 // persistifiable objects. 259 268 260 inline void SetName(const G4String& name) { << 269 inline void SetName (const G4String& name) {fName=name;} 261 270 262 virtual G4bool IsExtended() const; << 271 private: 263 272 264 // operators << 273 G4Material(const G4Material&); 265 G4bool operator==(const G4Material&) const = << 274 const G4Material& operator=(const G4Material&); 266 G4bool operator!=(const G4Material&) const = << 267 275 268 private: << 269 void InitializePointers(); 276 void InitializePointers(); 270 << 277 271 // Header routine for all derived quantities 278 // Header routine for all derived quantities 272 void ComputeDerivedQuantities(); 279 void ComputeDerivedQuantities(); 273 280 274 // Compute Radiation length 281 // Compute Radiation length 275 void ComputeRadiationLength(); 282 void ComputeRadiationLength(); 276 << 283 277 // Compute Nuclear interaction length 284 // Compute Nuclear interaction length 278 void ComputeNuclearInterLength(); 285 void ComputeNuclearInterLength(); 279 286 280 // Copy pointers of base material 287 // Copy pointers of base material 281 void CopyPointersOfBaseMaterial(); 288 void CopyPointersOfBaseMaterial(); 282 << 289 283 void FillVectors(); << 290 private: 284 << 285 G4bool IsLocked(); << 286 << 287 const G4Material* fBaseMaterial; // Pointer << 288 G4MaterialPropertiesTable* fMaterialProperti << 289 291 290 // 292 // 291 // General atomic properties defined in cons << 293 // Basic data members ( To define a material) 292 // computed from the basic data members << 293 // 294 // >> 295 G4String fName; // Material name >> 296 G4String fChemicalFormula; // Material chemical formula >> 297 G4double fDensity; // Material density >> 298 >> 299 G4State fState; // Material state (determined >> 300 // internally based on density) >> 301 G4double fTemp; // Temperature (defaults: STP) >> 302 G4double fPressure; // Pressure (defaults: STP) >> 303 >> 304 G4int maxNbComponents; // totalNbOfComponentsInTheMaterial >> 305 G4int fArrayLength; // the length of FAtomVector >> 306 size_t fNumberOfComponents; // Nb of components declared so far >> 307 >> 308 size_t fNumberOfElements; // Nb of Elements in the material >> 309 G4ElementVector* theElementVector; // vector of constituent Elements >> 310 G4bool fImplicitElement; // implicit Element created by this? >> 311 G4double* fMassFractionVector; // composition by fractional mass >> 312 G4int* fAtomsVector; // composition by atom count 294 313 295 G4ElementVector* theElementVector; // vecto << 314 G4MaterialPropertiesTable* fMaterialPropertiesTable; 296 G4int* fAtomsVector; // composition by atom << 297 G4double* fMassFractionVector; // compositi << 298 G4double* fVecNbOfAtomsPerVolume; // number << 299 << 300 G4IonisParamMat* fIonisation; // ionisation << 301 G4SandiaTable* fSandiaTable; // Sandia tabl << 302 << 303 G4double fDensity; // Material density << 304 G4double fFreeElecDensity; // Free electron << 305 G4double fTemp; // Temperature (defaults: S << 306 G4double fPressure; // Pressure (default << 307 << 308 G4double fTotNbOfAtomsPerVolume; // Total n << 309 G4double fTotNbOfElectPerVolume; // Total n << 310 G4double fRadlen; // Radiation length << 311 G4double fNuclInterLen; // Nuclear interact << 312 G4double fMassOfMolecule; // Correct for ma << 313 << 314 G4State fState; // Material state << 315 std::size_t fIndexInTable; // Index in the << 316 G4int fNumberOfElements; // Number of G4Ele << 317 << 318 // Class members used only at initialisation << 319 G4int fNbComponents; // Number of component << 320 G4int fIdxComponent; // Index of a new comp << 321 G4bool fMassFraction; // Flag of the method << 322 << 323 // For composites built << 324 std::vector<G4int>* fAtoms = nullptr; << 325 std::vector<G4double>* fElmFrac = nullptr; << 326 std::vector<const G4Element*>* fElm = nullpt << 327 315 328 // For composites built via AddMaterial() << 316 static 329 std::map<G4Material*, G4double> fMatComponen << 317 G4MaterialTable theMaterialTable; // the material table >> 318 size_t fIndexInTable; // the position in the table 330 319 331 G4String fName; // Material name << 320 // 332 G4String fChemicalFormula; // Material chem << 321 // Derived data members (computed from the basic data members) >> 322 // >> 323 // some general atomic properties >> 324 >> 325 G4double* VecNbOfAtomsPerVolume; // vector of nb of atoms per volume >> 326 G4double TotNbOfAtomsPerVolume; // total nb of atoms per volume >> 327 G4double TotNbOfElectPerVolume; // total nb of electrons per volume >> 328 G4double fRadlen; // Radiation length >> 329 G4double fNuclInterLen; // Nuclear interaction length >> 330 >> 331 G4IonisParamMat* fIonisation; // ionisation parameters >> 332 G4SandiaTable* fSandiaTable; // Sandia table >> 333 const G4Material* fBaseMaterial; // Pointer to the base material 333 }; 334 }; >> 335 >> 336 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 334 337 335 #endif 338 #endif 336 339