Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 << 26 //-------------------------------------------- << 27 // << 28 // ClassName: G4Material << 29 // 25 // 30 // Description: Contains material properties << 31 // 26 // 32 // Class description: << 27 // $Id: G4Material.hh,v 1.25 2006/06/29 19:11:13 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-09-01-patch-02 $ 33 // 29 // 34 // Is used to define the material composition << 30 35 // A G4Material is always made of G4Elements. << 31 // class description 36 // the list of G4Elements, material density, m << 37 // pressure. Other parameters are optional and << 38 // or computed at initialisation. << 39 // 32 // 40 // There is several ways to construct G4Materi << 33 // Materials defined via the G4Material class are used to define the 41 // - from single element; << 34 // composition of Geant volumes. 42 // - from a list of components (elements or << 35 // a Material is always made of Elements. It can be defined directly 43 // - from internal Geant4 database of materi << 36 // from scratch (defined by an implicit, single element), specifying : >> 37 // its name, >> 38 // density, >> 39 // state informations, >> 40 // and Z,A of the underlying Element. 44 // 41 // 45 // A collection of constituent Elements/Materi << 42 // or in terms of a collection of constituent Elements with specified weights 46 // with specified weights by fractional mass o << 43 // (composition specified either by fractional mass or atom counts). 47 // 44 // 48 // Quantities, with physical meaning or not, w << 45 // Quantities, with physical meaning or not, which are constant in a given 49 // material are computed and stored here as De 46 // material are computed and stored here as Derived data members. 50 // 47 // 51 // The class contains as a private static memb 48 // The class contains as a private static member the Table of defined 52 // materials (an ordered vector of materials). 49 // materials (an ordered vector of materials). 53 // 50 // 54 // It is strongly not recommended to delete ma << 51 55 // All materials will be deleted automatically << 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 // << 53 57 // 10-07-96, new data members added by L.Urban 54 // 10-07-96, new data members added by L.Urban 58 // 12-12-96, new data members added by L.Urban 55 // 12-12-96, new data members added by L.Urban 59 // 20-01-97, aesthetic rearrangement. RadLengt 56 // 20-01-97, aesthetic rearrangement. RadLength calculation modified 60 // Data members Zeff and Aeff REMOVE 57 // Data members Zeff and Aeff REMOVED (i.e. passed to the Elements). 61 // (local definition of Zeff in Dens 58 // (local definition of Zeff in DensityEffect and FluctModel...) 62 // Vacuum defined as a G4State. Mixt << 59 // Vacuum defined as a G4State. Mixture flag removed, M.Maire 63 // 29-01-97, State=Vacuum automatically set de 60 // 29-01-97, State=Vacuum automatically set density=0 in the contructors. 64 // Subsequent protections have been << 61 // Subsequent protections have been put in the calculation of 65 // MeanExcEnergy, ShellCorrectionVec 62 // MeanExcEnergy, ShellCorrectionVector, DensityEffect, M.Maire 66 // 20-03-97, corrected initialization of point 63 // 20-03-97, corrected initialization of pointers, M.Maire 67 // 10-06-97, new data member added by V.Grichi 64 // 10-06-97, new data member added by V.Grichine (fSandiaPhotoAbsCof) 68 // 27-06-97, new function GetElement(int), M.M 65 // 27-06-97, new function GetElement(int), M.Maire 69 // 24-02-98, fFractionVector become fMassFract 66 // 24-02-98, fFractionVector become fMassFractionVector 70 // 28-05-98, kState=kVacuum removed: << 67 // 28-05-98, kState=kVacuum removed: 71 // The vacuum is an ordinary gas vit 68 // The vacuum is an ordinary gas vith very low density, M.Maire 72 // 12-06-98, new method AddMaterial() allowing 69 // 12-06-98, new method AddMaterial() allowing mixture of materials, M.Maire 73 // 09-07-98, Ionisation parameters removed fro 70 // 09-07-98, Ionisation parameters removed from the class, M.Maire 74 // 04-08-98, new method GetMaterial(materialNa 71 // 04-08-98, new method GetMaterial(materialName), M.Maire 75 // 05-10-98, change name: NumDensity -> NbOfAt 72 // 05-10-98, change name: NumDensity -> NbOfAtomsPerVolume 76 // 18-11-98, SandiaTable interface modified. 73 // 18-11-98, SandiaTable interface modified. 77 // 19-07-99, new data member (chemicalFormula) 74 // 19-07-99, new data member (chemicalFormula) added by V.Ivanchenko 78 // 12-03-01, G4bool fImplicitElement (mma) 75 // 12-03-01, G4bool fImplicitElement (mma) 79 // 30-03-01, suppression of the warning messag 76 // 30-03-01, suppression of the warning message in GetMaterial 80 // 17-07-01, migration to STL. M. Verderi. 77 // 17-07-01, migration to STL. M. Verderi. 81 // 14-09-01, Suppression of the data member fI 78 // 14-09-01, Suppression of the data member fIndexInTable 82 // 31-10-01, new function SetChemicalFormula() 79 // 31-10-01, new function SetChemicalFormula() (mma) 83 // 26-02-02, fIndexInTable renewed 80 // 26-02-02, fIndexInTable renewed 84 // 06-08-02, remove constructors with Chemical 81 // 06-08-02, remove constructors with ChemicalFormula (mma) 85 // 15-11-05, GetMaterial(materialName, G4bool 82 // 15-11-05, GetMaterial(materialName, G4bool warning=true) 86 // 13-04-12, std::map<G4Material*,G4double> fM << 83 87 // 21-04-12, fMassOfMolecule (mma) << 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 88 85 89 #ifndef G4MATERIAL_HH 86 #ifndef G4MATERIAL_HH 90 #define G4MATERIAL_HH 1 << 87 #define G4MATERIAL_HH 91 88 >> 89 #include "globals.hh" >> 90 #include "G4ios.hh" >> 91 #include <vector> 92 #include "G4Element.hh" 92 #include "G4Element.hh" 93 #include "G4ElementVector.hh" << 94 #include "G4IonisParamMat.hh" << 95 #include "G4MaterialPropertiesTable.hh" 93 #include "G4MaterialPropertiesTable.hh" 96 #include "G4MaterialTable.hh" << 94 #include "G4IonisParamMat.hh" 97 #include "G4SandiaTable.hh" 95 #include "G4SandiaTable.hh" 98 #include "G4ios.hh" << 96 #include "G4ElementVector.hh" 99 #include "globals.hh" << 97 #include "G4MaterialTable.hh" 100 << 101 #include <CLHEP/Units/PhysicalConstants.h> << 102 << 103 #include <map> << 104 #include <vector> << 105 98 106 enum G4State << 99 enum G4State { kStateUndefined, kStateSolid, kStateLiquid, kStateGas }; 107 { << 108 kStateUndefined = 0, << 109 kStateSolid, << 110 kStateLiquid, << 111 kStateGas << 112 }; << 113 100 114 static const G4double NTP_Temperature = 293.15 << 101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 115 102 116 class G4Material 103 class G4Material 117 { 104 { 118 public: // with description << 105 public: // with description 119 // Constructor to create a material from sin << 120 G4Material(const G4String& name, // its nam << 121 G4double z, // atomic number << 122 G4double a, // mass of mole << 123 G4double density, // density << 124 G4State state = kStateUndefined, // solid << 125 G4double temp = NTP_Temperature, // tempe << 126 G4double pressure = CLHEP::STP_Pressure); << 127 106 >> 107 // >> 108 // Constructor to create a material from scratch. >> 109 // >> 110 G4Material(const G4String& name, //its name >> 111 G4double z, //atomic number >> 112 G4double a, //mass of mole >> 113 G4double density, //density >> 114 G4State state = kStateUndefined, //solid,gas >> 115 G4double temp = STP_Temperature, //temperature >> 116 G4double pressure = STP_Pressure); //pressure >> 117 >> 118 // 128 // Constructor to create a material from a c 119 // Constructor to create a material from a combination of elements 129 // and/or materials subsequently added via A 120 // and/or materials subsequently added via AddElement and/or AddMaterial 130 G4Material(const G4String& name, // its nam << 121 // 131 G4double density, // density << 122 G4Material(const G4String& name, //its name 132 G4int nComponents, // nbOfComponents << 123 G4double density, //density 133 G4State state = kStateUndefined, // solid << 124 G4int nComponents, //nbOfComponents 134 G4double temp = NTP_Temperature, // tempe << 125 G4State state = kStateUndefined, //solid,gas 135 G4double pressure = CLHEP::STP_Pressure); << 126 G4double temp = STP_Temperature, //temperature 136 << 127 G4double pressure = STP_Pressure); //pressure 137 // Constructor to create a material from the << 138 G4Material(const G4String& name, // its nam << 139 G4double density, // density << 140 const G4Material* baseMaterial, // base m << 141 G4State state = kStateUndefined, // solid << 142 G4double temp = NTP_Temperature, // tempe << 143 G4double pressure = CLHEP::STP_Pressure); << 144 << 145 virtual ~G4Material(); << 146 << 147 // These methods allow customisation of corr << 148 // computations. Free electron density above << 149 // is a conductor. Computation of density ef << 150 // may be more accurate but require extra co << 151 void SetChemicalFormula(const G4String& chF) << 152 void SetFreeElectronDensity(G4double val); << 153 void ComputeDensityEffectOnFly(G4bool val); << 154 << 155 G4Material(const G4Material&) = delete; << 156 const G4Material& operator=(const G4Material << 157 128 >> 129 // 158 // Add an element, giving number of atoms 130 // Add an element, giving number of atoms 159 void AddElementByNumberOfAtoms(const G4Eleme << 131 // 160 inline void AddElement(G4Element* elm, G4int << 132 void AddElement(G4Element* element, //the element 161 << 133 G4int nAtoms); //nb of atoms in >> 134 // a molecule >> 135 // 162 // Add an element or material, giving fracti 136 // Add an element or material, giving fraction of mass 163 void AddElementByMassFraction(const G4Elemen << 164 inline void AddElement(G4Element* elm, G4dou << 165 << 166 void AddMaterial(G4Material* material, G4dou << 167 << 168 // 137 // 169 // retrieval methods << 138 void AddElement (G4Element* element , //the element >> 139 G4double fraction); //fractionOfMass >> 140 >> 141 void AddMaterial(G4Material* material, //the material >> 142 G4double fraction); //fractionOfMass >> 143 >> 144 >> 145 virtual ~G4Material(); >> 146 >> 147 void SetChemicalFormula(const G4String& chF) {fChemicalFormula=chF;}; >> 148 170 // 149 // 171 inline const G4String& GetName() const { ret << 150 // retrieval methods 172 inline const G4String& GetChemicalFormula() << 151 // 173 inline G4double GetFreeElectronDensity() con << 152 G4String GetName() const {return fName;}; 174 inline G4double GetDensity() const { return << 153 G4String GetChemicalFormula() const {return fChemicalFormula;}; 175 inline G4State GetState() const { return fSt << 154 G4double GetDensity() const {return fDensity;}; 176 inline G4double GetTemperature() const { ret << 155 177 inline G4double GetPressure() const { return << 156 G4State GetState() const {return fState;}; 178 << 157 G4double GetTemperature() const {return fTemp;}; 179 // number of elements constituing this mater << 158 G4double GetPressure() const {return fPressure;}; 180 inline std::size_t GetNumberOfElements() con << 159 181 << 160 //number of elements constituing this material: 182 // vector of pointers to elements constituin << 161 size_t GetNumberOfElements() const {return fNumberOfElements;}; 183 inline const G4ElementVector* GetElementVect << 162 184 << 163 //vector of pointers to elements constituing this material: 185 // vector of fractional mass of each element << 164 const 186 inline const G4double* GetFractionVector() c << 165 G4ElementVector* GetElementVector() const {return theElementVector;}; 187 << 166 188 // vector of atom count of each element: << 167 //vector of fractional mass of each element: 189 inline const G4int* GetAtomsVector() const { << 168 const G4double* GetFractionVector() const {return fMassFractionVector;}; 190 << 169 191 // return a pointer to an element, given its << 170 //vector of atom count of each element: 192 inline const G4Element* GetElement(G4int iel << 171 const G4int* GetAtomsVector() const {return fAtomsVector;}; 193 << 172 194 // vector of nb of atoms per volume of each << 173 //return a pointer to an element, given its index in the material: 195 inline const G4double* GetVecNbOfAtomsPerVol << 174 const 196 // total number of atoms per volume: << 175 G4Element* GetElement(G4int iel) const {return (*theElementVector)[iel];}; 197 inline G4double GetTotNbOfAtomsPerVolume() c << 176 198 // total number of electrons per volume: << 177 //vector of nb of atoms per volume of each element in this material: 199 inline G4double GetTotNbOfElectPerVolume() c << 178 const 200 << 179 G4double* GetVecNbOfAtomsPerVolume() const {return VecNbOfAtomsPerVolume;}; 201 // obsolete names (5-10-98) see the 2 functi << 180 //total number of atoms per volume: 202 inline const G4double* GetAtomicNumDensityVe << 181 G4double GetTotNbOfAtomsPerVolume() const {return TotNbOfAtomsPerVolume;}; 203 inline G4double GetElectronDensity() const { << 182 //total number of electrons per volume: 204 << 183 G4double GetTotNbOfElectPerVolume() const {return TotNbOfElectPerVolume;}; 205 // Radiation length: << 184 206 inline G4double GetRadlen() const { return f << 185 //obsolete names (5-10-98) see the 2 functions above 207 << 186 const 208 // Nuclear interaction length << 187 G4double* GetAtomicNumDensityVector() const {return VecNbOfAtomsPerVolume;}; 209 inline G4double GetNuclearInterLength() cons << 188 G4double GetElectronDensity() const {return TotNbOfElectPerVolume;}; 210 << 189 >> 190 // Radiation length: >> 191 G4double GetRadlen() const {return fRadlen;}; >> 192 >> 193 // Nuclear interaction length: >> 194 G4double GetNuclearInterLength() const {return fNuclInterLen;}; >> 195 211 // ionisation parameters: 196 // ionisation parameters: 212 inline G4IonisParamMat* GetIonisation() cons << 197 G4IonisParamMat* GetIonisation() const {return fIonisation;}; 213 << 198 214 // Sandia table: 199 // Sandia table: 215 inline G4SandiaTable* GetSandiaTable() const << 200 G4SandiaTable* GetSandiaTable() const {return fSandiaTable;}; 216 << 201 217 // Base material: << 202 //meaningful only for single material: 218 inline const G4Material* GetBaseMaterial() c << 219 << 220 // material components: << 221 inline const std::map<G4Material*, G4double> << 222 << 223 // for chemical compound << 224 inline G4double GetMassOfMolecule() const { << 225 << 226 // meaningful only for single material: << 227 G4double GetZ() const; 203 G4double GetZ() const; 228 G4double GetA() const; 204 G4double GetA() const; >> 205 >> 206 //the MaterialPropertiesTable (if any) attached to this material: >> 207 void SetMaterialPropertiesTable(G4MaterialPropertiesTable* anMPT) >> 208 {fMaterialPropertiesTable = anMPT;}; >> 209 >> 210 G4MaterialPropertiesTable* GetMaterialPropertiesTable() const >> 211 {return fMaterialPropertiesTable;}; 229 212 230 // the MaterialPropertiesTable (if any) atta << 213 //the (static) Table of Materials: 231 void SetMaterialPropertiesTable(G4MaterialPr << 214 // 232 << 215 static 233 inline G4MaterialPropertiesTable* GetMateria << 216 const G4MaterialTable* GetMaterialTable(); 234 { << 217 235 return fMaterialPropertiesTable; << 218 static 236 } << 219 size_t GetNumberOfMaterials(); 237 << 220 238 // the index of this material in the Table: << 221 //the index of this material in the Table: 239 inline std::size_t GetIndex() const { return << 222 size_t GetIndex() const {return fIndexInTable;}; 240 << 223 241 // the static Table of Materials: << 224 //return pointer to a material, given its name: 242 static G4MaterialTable* GetMaterialTable(); << 225 static G4Material* GetMaterial(G4String name, G4bool warning=true); 243 << 226 244 static std::size_t GetNumberOfMaterials(); << 227 // 245 << 228 //printing methods 246 // return pointer to a material, given its << 229 // 247 static G4Material* GetMaterial(const G4Strin << 230 friend std::ostream& operator<<(std::ostream&, G4Material*); 248 << 231 friend std::ostream& operator<<(std::ostream&, G4Material&); 249 // return pointer to a simple material, giv << 232 friend std::ostream& operator<<(std::ostream&, G4MaterialTable); 250 static G4Material* GetMaterial(G4double z, G << 233 251 << 234 public: // without description 252 // return pointer to a composit material, g << 235 253 static G4Material* GetMaterial(std::size_t n << 236 G4int operator==(const G4Material&) const; 254 << 237 G4int operator!=(const G4Material&) const; 255 // printing methods << 238 G4Material(__void__&); 256 friend std::ostream& operator<<(std::ostream << 239 // Fake default constructor for usage restricted to direct object 257 friend std::ostream& operator<<(std::ostream << 240 // persistency for clients requiring preallocation of memory for 258 friend std::ostream& operator<<(std::ostream << 241 // persistifiable objects. 259 << 260 inline void SetName(const G4String& name) { << 261 242 262 virtual G4bool IsExtended() const; << 243 private: 263 244 264 // operators << 245 G4Material(const G4Material&); 265 G4bool operator==(const G4Material&) const = << 246 const G4Material& operator=(const G4Material&); 266 G4bool operator!=(const G4Material&) const = << 267 247 268 private: << 269 void InitializePointers(); 248 void InitializePointers(); 270 << 249 271 // Header routine for all derived quantities 250 // Header routine for all derived quantities 272 void ComputeDerivedQuantities(); 251 void ComputeDerivedQuantities(); 273 252 274 // Compute Radiation length 253 // Compute Radiation length 275 void ComputeRadiationLength(); 254 void ComputeRadiationLength(); 276 << 255 277 // Compute Nuclear interaction length 256 // Compute Nuclear interaction length 278 void ComputeNuclearInterLength(); 257 void ComputeNuclearInterLength(); >> 258 >> 259 private: 279 260 280 // Copy pointers of base material << 261 // 281 void CopyPointersOfBaseMaterial(); << 262 // Basic data members ( To define a material) 282 << 263 // 283 void FillVectors(); << 284 264 285 G4bool IsLocked(); << 265 G4String fName; // Material name >> 266 G4String fChemicalFormula; // Material chemical formula >> 267 G4double fDensity; // Material density >> 268 >> 269 G4State fState; // Material state (determined >> 270 // internally based on density) >> 271 G4double fTemp; // Temperature (defaults: STP) >> 272 G4double fPressure; // Pressure (defaults: STP) >> 273 >> 274 G4int maxNbComponents; // totalNbOfComponentsInTheMaterial >> 275 size_t fNumberOfComponents; // Nb of components declared so far >> 276 >> 277 size_t fNumberOfElements; // Nb of Elements in the material >> 278 G4ElementVector* theElementVector; // vector of constituent Elements >> 279 G4bool fImplicitElement; // implicit Element created by this? >> 280 G4double* fMassFractionVector; // composition by fractional mass >> 281 G4int* fAtomsVector; // composition by atom count 286 282 287 const G4Material* fBaseMaterial; // Pointer << 288 G4MaterialPropertiesTable* fMaterialProperti 283 G4MaterialPropertiesTable* fMaterialPropertiesTable; 289 284 >> 285 static >> 286 G4MaterialTable theMaterialTable; // the material table >> 287 size_t fIndexInTable; // the position in the table >> 288 290 // 289 // 291 // General atomic properties defined in cons << 290 // Derived data members (computed from the basic data members) 292 // computed from the basic data members << 293 // 291 // >> 292 // some general atomic properties >> 293 >> 294 G4double* VecNbOfAtomsPerVolume; // vector of nb of atoms per volume >> 295 G4double TotNbOfAtomsPerVolume; // total nb of atoms per volume >> 296 G4double TotNbOfElectPerVolume; // total nb of electrons per volume >> 297 G4double fRadlen; // Radiation length >> 298 G4double fNuclInterLen; // Nuclear interaction length >> 299 >> 300 G4IonisParamMat* fIonisation; // ionisation parameters >> 301 G4SandiaTable* fSandiaTable; // Sandia table >> 302 }; 294 303 295 G4ElementVector* theElementVector; // vecto << 304 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 296 G4int* fAtomsVector; // composition by atom << 297 G4double* fMassFractionVector; // compositi << 298 G4double* fVecNbOfAtomsPerVolume; // number << 299 << 300 G4IonisParamMat* fIonisation; // ionisation << 301 G4SandiaTable* fSandiaTable; // Sandia tabl << 302 << 303 G4double fDensity; // Material density << 304 G4double fFreeElecDensity; // Free electron << 305 G4double fTemp; // Temperature (defaults: S << 306 G4double fPressure; // Pressure (default << 307 << 308 G4double fTotNbOfAtomsPerVolume; // Total n << 309 G4double fTotNbOfElectPerVolume; // Total n << 310 G4double fRadlen; // Radiation length << 311 G4double fNuclInterLen; // Nuclear interact << 312 G4double fMassOfMolecule; // Correct for ma << 313 << 314 G4State fState; // Material state << 315 std::size_t fIndexInTable; // Index in the << 316 G4int fNumberOfElements; // Number of G4Ele << 317 << 318 // Class members used only at initialisation << 319 G4int fNbComponents; // Number of component << 320 G4int fIdxComponent; // Index of a new comp << 321 G4bool fMassFraction; // Flag of the method << 322 << 323 // For composites built << 324 std::vector<G4int>* fAtoms = nullptr; << 325 std::vector<G4double>* fElmFrac = nullptr; << 326 std::vector<const G4Element*>* fElm = nullpt << 327 305 328 // For composites built via AddMaterial() << 306 inline 329 std::map<G4Material*, G4double> fMatComponen << 307 G4double G4Material::GetZ() const >> 308 { >> 309 if (fNumberOfElements > 1) { >> 310 G4cerr << "WARNING in GetZ. The material: " << fName << " is a mixture." >> 311 << G4endl; >> 312 G4Exception ( " the Atomic number is not well defined." ); >> 313 } >> 314 return (*theElementVector)[0]->GetZ(); >> 315 } >> 316 >> 317 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 318 >> 319 inline >> 320 G4double G4Material::GetA() const >> 321 { >> 322 if (fNumberOfElements > 1) { >> 323 G4cerr << "WARNING in GetA. The material: " << fName << " is a mixture." >> 324 << G4endl; >> 325 G4Exception ( " the Atomic mass is not well defined." ); >> 326 } >> 327 return (*theElementVector)[0]->GetA(); >> 328 } 330 329 331 G4String fName; // Material name << 330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 332 G4String fChemicalFormula; // Material chem << 333 }; << 334 331 335 #endif 332 #endif 336 333