Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 << 26 //-------------------------------------------- << 27 // << 28 // ClassName: G4Material << 29 // 22 // 30 // Description: Contains material properties << 31 // 23 // 32 // Class description: << 24 // $Id: G4Material.hh,v 1.11.2.1 2001/06/28 19:10:29 gunter Exp $ >> 25 // GEANT4 tag $Name: $ 33 // 26 // 34 // Is used to define the material composition << 27 35 // A G4Material is always made of G4Elements. << 28 // class description 36 // the list of G4Elements, material density, m << 37 // pressure. Other parameters are optional and << 38 // or computed at initialisation. << 39 // 29 // 40 // There is several ways to construct G4Materi << 30 // Materials defined via the G4Material class are used to define the 41 // - from single element; << 31 // composition of Geant volumes. 42 // - from a list of components (elements or << 32 // a Material is always made of Elements. It can be defined directly 43 // - from internal Geant4 database of materi << 33 // from scratch (defined by an implicit, single element), specifying : >> 34 // its name, >> 35 // density, >> 36 // state informations, >> 37 // and Z,A of the underlying Element. 44 // 38 // 45 // A collection of constituent Elements/Materi << 39 // or in terms of a collection of constituent Elements with specified weights 46 // with specified weights by fractional mass o << 40 // (composition specified either by fractional mass or atom counts). 47 // 41 // 48 // Quantities, with physical meaning or not, w << 42 // Quantities, with physical meaning or not, which are constant in a given 49 // material are computed and stored here as De 43 // material are computed and stored here as Derived data members. 50 // 44 // 51 // The class contains as a private static memb 45 // The class contains as a private static member the Table of defined 52 // materials (an ordered vector of materials). 46 // materials (an ordered vector of materials). 53 // 47 // 54 // It is strongly not recommended to delete ma << 48 55 // All materials will be deleted automatically << 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 56 // << 50 57 // 10-07-96, new data members added by L.Urban 51 // 10-07-96, new data members added by L.Urban 58 // 12-12-96, new data members added by L.Urban 52 // 12-12-96, new data members added by L.Urban 59 // 20-01-97, aesthetic rearrangement. RadLengt 53 // 20-01-97, aesthetic rearrangement. RadLength calculation modified 60 // Data members Zeff and Aeff REMOVE 54 // Data members Zeff and Aeff REMOVED (i.e. passed to the Elements). 61 // (local definition of Zeff in Dens 55 // (local definition of Zeff in DensityEffect and FluctModel...) 62 // Vacuum defined as a G4State. Mixt << 56 // Vacuum defined as a G4State. Mixture flag removed, M.Maire 63 // 29-01-97, State=Vacuum automatically set de 57 // 29-01-97, State=Vacuum automatically set density=0 in the contructors. 64 // Subsequent protections have been << 58 // Subsequent protections have been put in the calculation of 65 // MeanExcEnergy, ShellCorrectionVec 59 // MeanExcEnergy, ShellCorrectionVector, DensityEffect, M.Maire 66 // 20-03-97, corrected initialization of point 60 // 20-03-97, corrected initialization of pointers, M.Maire 67 // 10-06-97, new data member added by V.Grichi 61 // 10-06-97, new data member added by V.Grichine (fSandiaPhotoAbsCof) 68 // 27-06-97, new function GetElement(int), M.M 62 // 27-06-97, new function GetElement(int), M.Maire 69 // 24-02-98, fFractionVector become fMassFract 63 // 24-02-98, fFractionVector become fMassFractionVector 70 // 28-05-98, kState=kVacuum removed: << 64 // 28-05-98, kState=kVacuum removed: 71 // The vacuum is an ordinary gas vit 65 // The vacuum is an ordinary gas vith very low density, M.Maire 72 // 12-06-98, new method AddMaterial() allowing 66 // 12-06-98, new method AddMaterial() allowing mixture of materials, M.Maire 73 // 09-07-98, Ionisation parameters removed fro 67 // 09-07-98, Ionisation parameters removed from the class, M.Maire 74 // 04-08-98, new method GetMaterial(materialNa 68 // 04-08-98, new method GetMaterial(materialName), M.Maire 75 // 05-10-98, change name: NumDensity -> NbOfAt 69 // 05-10-98, change name: NumDensity -> NbOfAtomsPerVolume 76 // 18-11-98, SandiaTable interface modified. 70 // 18-11-98, SandiaTable interface modified. 77 // 19-07-99, new data member (chemicalFormula) 71 // 19-07-99, new data member (chemicalFormula) added by V.Ivanchenko 78 // 12-03-01, G4bool fImplicitElement (mma) 72 // 12-03-01, G4bool fImplicitElement (mma) 79 // 30-03-01, suppression of the warning messag 73 // 30-03-01, suppression of the warning message in GetMaterial 80 // 17-07-01, migration to STL. M. Verderi. << 74 81 // 14-09-01, Suppression of the data member fI << 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 82 // 31-10-01, new function SetChemicalFormula() << 83 // 26-02-02, fIndexInTable renewed << 84 // 06-08-02, remove constructors with Chemical << 85 // 15-11-05, GetMaterial(materialName, G4bool << 86 // 13-04-12, std::map<G4Material*,G4double> fM << 87 // 21-04-12, fMassOfMolecule (mma) << 88 76 89 #ifndef G4MATERIAL_HH 77 #ifndef G4MATERIAL_HH 90 #define G4MATERIAL_HH 1 << 78 #define G4MATERIAL_HH 91 79 >> 80 #include "G4ios.hh" >> 81 #include "g4rw/tpvector.h" >> 82 #include "g4rw/tpordvec.h" >> 83 #include "globals.hh" 92 #include "G4Element.hh" 84 #include "G4Element.hh" 93 #include "G4ElementVector.hh" << 94 #include "G4IonisParamMat.hh" << 95 #include "G4MaterialPropertiesTable.hh" 85 #include "G4MaterialPropertiesTable.hh" 96 #include "G4MaterialTable.hh" << 86 #include "G4IonisParamMat.hh" 97 #include "G4SandiaTable.hh" 87 #include "G4SandiaTable.hh" 98 #include "G4ios.hh" << 99 #include "globals.hh" << 100 88 101 #include <CLHEP/Units/PhysicalConstants.h> << 89 typedef G4RWTPtrVector<G4Element> G4ElementVector; 102 90 103 #include <map> << 91 class G4Material; //forward declaration 104 #include <vector> << 92 typedef G4RWTPtrOrderedVector<G4Material> G4MaterialTable; 105 93 106 enum G4State << 94 enum G4State { kStateUndefined, kStateSolid, kStateLiquid, kStateGas }; 107 { << 108 kStateUndefined = 0, << 109 kStateSolid, << 110 kStateLiquid, << 111 kStateGas << 112 }; << 113 95 114 static const G4double NTP_Temperature = 293.15 << 96 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 115 97 116 class G4Material 98 class G4Material 117 { 99 { 118 public: // with description << 100 public: // with description 119 // Constructor to create a material from sin << 120 G4Material(const G4String& name, // its nam << 121 G4double z, // atomic number << 122 G4double a, // mass of mole << 123 G4double density, // density << 124 G4State state = kStateUndefined, // solid << 125 G4double temp = NTP_Temperature, // tempe << 126 G4double pressure = CLHEP::STP_Pressure); << 127 << 128 // Constructor to create a material from a c << 129 // and/or materials subsequently added via A << 130 G4Material(const G4String& name, // its nam << 131 G4double density, // density << 132 G4int nComponents, // nbOfComponents << 133 G4State state = kStateUndefined, // solid << 134 G4double temp = NTP_Temperature, // tempe << 135 G4double pressure = CLHEP::STP_Pressure); << 136 << 137 // Constructor to create a material from the << 138 G4Material(const G4String& name, // its nam << 139 G4double density, // density << 140 const G4Material* baseMaterial, // base m << 141 G4State state = kStateUndefined, // solid << 142 G4double temp = NTP_Temperature, // tempe << 143 G4double pressure = CLHEP::STP_Pressure); << 144 << 145 virtual ~G4Material(); << 146 << 147 // These methods allow customisation of corr << 148 // computations. Free electron density above << 149 // is a conductor. Computation of density ef << 150 // may be more accurate but require extra co << 151 void SetChemicalFormula(const G4String& chF) << 152 void SetFreeElectronDensity(G4double val); << 153 void ComputeDensityEffectOnFly(G4bool val); << 154 << 155 G4Material(const G4Material&) = delete; << 156 const G4Material& operator=(const G4Material << 157 << 158 // Add an element, giving number of atoms << 159 void AddElementByNumberOfAtoms(const G4Eleme << 160 inline void AddElement(G4Element* elm, G4int << 161 << 162 // Add an element or material, giving fracti << 163 void AddElementByMassFraction(const G4Elemen << 164 inline void AddElement(G4Element* elm, G4dou << 165 << 166 void AddMaterial(G4Material* material, G4dou << 167 << 168 // << 169 // retrieval methods << 170 // << 171 inline const G4String& GetName() const { ret << 172 inline const G4String& GetChemicalFormula() << 173 inline G4double GetFreeElectronDensity() con << 174 inline G4double GetDensity() const { return << 175 inline G4State GetState() const { return fSt << 176 inline G4double GetTemperature() const { ret << 177 inline G4double GetPressure() const { return << 178 << 179 // number of elements constituing this mater << 180 inline std::size_t GetNumberOfElements() con << 181 << 182 // vector of pointers to elements constituin << 183 inline const G4ElementVector* GetElementVect << 184 << 185 // vector of fractional mass of each element << 186 inline const G4double* GetFractionVector() c << 187 << 188 // vector of atom count of each element: << 189 inline const G4int* GetAtomsVector() const { << 190 << 191 // return a pointer to an element, given its << 192 inline const G4Element* GetElement(G4int iel << 193 << 194 // vector of nb of atoms per volume of each << 195 inline const G4double* GetVecNbOfAtomsPerVol << 196 // total number of atoms per volume: << 197 inline G4double GetTotNbOfAtomsPerVolume() c << 198 // total number of electrons per volume: << 199 inline G4double GetTotNbOfElectPerVolume() c << 200 << 201 // obsolete names (5-10-98) see the 2 functi << 202 inline const G4double* GetAtomicNumDensityVe << 203 inline G4double GetElectronDensity() const { << 204 << 205 // Radiation length: << 206 inline G4double GetRadlen() const { return f << 207 << 208 // Nuclear interaction length << 209 inline G4double GetNuclearInterLength() cons << 210 << 211 // ionisation parameters: << 212 inline G4IonisParamMat* GetIonisation() cons << 213 101 214 // Sandia table: << 102 // 215 inline G4SandiaTable* GetSandiaTable() const << 103 // Constructor to create a material from scratch. >> 104 // >> 105 G4Material(const G4String& name, //its name >> 106 G4double z, //atomic number >> 107 G4double a, //mass of mole >> 108 G4double density, //density >> 109 G4State state = kStateUndefined, //solid,liqid,gas >> 110 G4double temp = STP_Temperature, //temperature >> 111 G4double pressure = STP_Pressure); //pressure >> 112 >> 113 // >> 114 // Constructor to create a material from a combination of elements >> 115 // and/or materials subsequently added via AddElement and/or AddMaterial >> 116 // >> 117 G4Material(const G4String& name, //its name >> 118 G4double density, //density >> 119 G4int nComponents, //nb of components >> 120 G4State state = kStateUndefined, //solid,liquid,gas >> 121 G4double temp = STP_Temperature, //temperature >> 122 G4double pressure = STP_Pressure); //pressure >> 123 >> 124 // >> 125 // Constructor to create a material with chemical formula from scratch. >> 126 // >> 127 G4Material(const G4String& name, //its name >> 128 const G4String& chFormula, //chemical formula >> 129 G4double z, //atomic number >> 130 G4double a, //mass of mole >> 131 G4double density, //density >> 132 G4State state = kStateUndefined, //solid,liqid,gas >> 133 G4double temp = STP_Temperature, //temperature >> 134 G4double pressure = STP_Pressure); //pressure >> 135 >> 136 // >> 137 // Constructor to create a material with chemical formula from a >> 138 // combination of elements and/or materials subsequently added via >> 139 // AddElement and/or AddMaterial >> 140 // >> 141 G4Material(const G4String& name, //its name >> 142 const G4String& chFormula, //chemical formula >> 143 G4double density, //density >> 144 G4int nComponents, //nb of components >> 145 G4State state = kStateUndefined, //solid,liquid,gas >> 146 G4double temp = STP_Temperature, //temperature >> 147 G4double pressure = STP_Pressure); //pressure >> 148 >> 149 // >> 150 // Add an element, giving number of atoms >> 151 // >> 152 void AddElement(G4Element* element, //the element >> 153 G4int nAtoms); //nb of atoms in a molecule >> 154 >> 155 // >> 156 // Add an element or material, giving fraction of mass >> 157 // >> 158 void AddElement (G4Element* element , //the element >> 159 G4double fraction); //fraction of mass >> 160 >> 161 void AddMaterial(G4Material* material, //the material >> 162 G4double fraction); //fraction of mass >> 163 >> 164 >> 165 virtual ~G4Material(); >> 166 >> 167 // >> 168 // retrieval methods >> 169 // >> 170 G4String GetName() const {return fName;}; >> 171 G4String GetChemicalFormula() const {return fChemicalFormula;}; >> 172 G4double GetDensity() const {return fDensity;}; >> 173 >> 174 G4State GetState() const {return fState;}; >> 175 G4double GetTemperature() const {return fTemp;}; >> 176 G4double GetPressure() const {return fPressure;}; >> 177 >> 178 //number of elements constituing this material: >> 179 size_t GetNumberOfElements() const {return fNumberOfElements;}; >> 180 >> 181 //vector of pointers to elements constituing this material: >> 182 const >> 183 G4ElementVector* GetElementVector() const {return theElementVector;}; >> 184 >> 185 //vector of fractional mass of each element: >> 186 const G4double* GetFractionVector() const {return fMassFractionVector;}; >> 187 >> 188 //vector of atom count of each element: >> 189 const G4int* GetAtomsVector() const {return fAtomsVector;}; >> 190 >> 191 //return a pointer to an element, given its index in the material: >> 192 const >> 193 G4Element* GetElement(G4int iel) const {return (*theElementVector)[iel];}; >> 194 >> 195 //vector of nb of atoms per volume of each element in this material: >> 196 const >> 197 G4double* GetVecNbOfAtomsPerVolume() const {return VecNbOfAtomsPerVolume;}; >> 198 //total number of atoms per volume: >> 199 G4double GetTotNbOfAtomsPerVolume() const {return TotNbOfAtomsPerVolume;}; >> 200 //total number of electrons per volume: >> 201 G4double GetTotNbOfElectPerVolume() const {return TotNbOfElectPerVolume;}; >> 202 >> 203 //obsolete names (5-10-98) see the 2 functions above >> 204 const >> 205 G4double* GetAtomicNumDensityVector() const {return VecNbOfAtomsPerVolume;}; >> 206 G4double GetElectronDensity() const {return TotNbOfElectPerVolume;}; >> 207 >> 208 // Radiation length: >> 209 G4double GetRadlen() const {return fRadlen;}; >> 210 >> 211 // Nuclear interaction length: >> 212 G4double GetNuclearInterLength() const {return fNuclInterLen;}; >> 213 >> 214 // ionisation parameters: >> 215 G4IonisParamMat* GetIonisation() const {return fIonisation;}; >> 216 >> 217 // Sandia table: >> 218 G4SandiaTable* GetSandiaTable() const {return fSandiaTable;}; >> 219 >> 220 //meaningful only for single material: >> 221 G4double GetZ() const; >> 222 G4double GetA() const; >> 223 >> 224 //the MaterialPropertiesTable (if any) attached to this material: >> 225 void SetMaterialPropertiesTable(G4MaterialPropertiesTable* anMPT) >> 226 {fMaterialPropertiesTable = anMPT;}; >> 227 >> 228 G4MaterialPropertiesTable* GetMaterialPropertiesTable() const >> 229 {return fMaterialPropertiesTable;}; >> 230 >> 231 //the (static) Table of Materials: >> 232 static >> 233 const G4MaterialTable* GetMaterialTable() {return &theMaterialTable;}; >> 234 static >> 235 size_t GetNumberOfMaterials() {return theMaterialTable.length();}; >> 236 //the index of this material in the Table: >> 237 size_t GetIndex() const {return fIndexInTable;}; >> 238 >> 239 //return pointer to a material, given its name: >> 240 static G4Material* GetMaterial(G4String name); >> 241 >> 242 // >> 243 //printing methods >> 244 // >> 245 friend G4std::ostream& operator<<(G4std::ostream&, G4Material*); >> 246 friend G4std::ostream& operator<<(G4std::ostream&, G4Material&); >> 247 friend G4std::ostream& operator<<(G4std::ostream&, G4MaterialTable); >> 248 >> 249 public: // without description >> 250 >> 251 G4int operator==(const G4Material&) const; >> 252 G4int operator!=(const G4Material&) const; >> 253 >> 254 private: >> 255 >> 256 G4Material(const G4Material&); >> 257 const G4Material& operator=(const G4Material&); >> 258 >> 259 void InitializePointers(); >> 260 >> 261 // Header routine for all derived quantities >> 262 void ComputeDerivedQuantities(); >> 263 >> 264 // Compute Radiation length >> 265 void ComputeRadiationLength(); >> 266 >> 267 // Compute Nuclear interaction length >> 268 void ComputeNuclearInterLength(); >> 269 >> 270 private: 216 271 217 // Base material: << 272 // 218 inline const G4Material* GetBaseMaterial() c << 273 // Basic data members ( To define a material) 219 << 274 // 220 // material components: << 221 inline const std::map<G4Material*, G4double> << 222 << 223 // for chemical compound << 224 inline G4double GetMassOfMolecule() const { << 225 << 226 // meaningful only for single material: << 227 G4double GetZ() const; << 228 G4double GetA() const; << 229 << 230 // the MaterialPropertiesTable (if any) atta << 231 void SetMaterialPropertiesTable(G4MaterialPr << 232 << 233 inline G4MaterialPropertiesTable* GetMateria << 234 { << 235 return fMaterialPropertiesTable; << 236 } << 237 << 238 // the index of this material in the Table: << 239 inline std::size_t GetIndex() const { return << 240 << 241 // the static Table of Materials: << 242 static G4MaterialTable* GetMaterialTable(); << 243 << 244 static std::size_t GetNumberOfMaterials(); << 245 << 246 // return pointer to a material, given its << 247 static G4Material* GetMaterial(const G4Strin << 248 << 249 // return pointer to a simple material, giv << 250 static G4Material* GetMaterial(G4double z, G << 251 << 252 // return pointer to a composit material, g << 253 static G4Material* GetMaterial(std::size_t n << 254 << 255 // printing methods << 256 friend std::ostream& operator<<(std::ostream << 257 friend std::ostream& operator<<(std::ostream << 258 friend std::ostream& operator<<(std::ostream << 259 << 260 inline void SetName(const G4String& name) { << 261 << 262 virtual G4bool IsExtended() const; << 263 << 264 // operators << 265 G4bool operator==(const G4Material&) const = << 266 G4bool operator!=(const G4Material&) const = << 267 << 268 private: << 269 void InitializePointers(); << 270 << 271 // Header routine for all derived quantities << 272 void ComputeDerivedQuantities(); << 273 << 274 // Compute Radiation length << 275 void ComputeRadiationLength(); << 276 << 277 // Compute Nuclear interaction length << 278 void ComputeNuclearInterLength(); << 279 << 280 // Copy pointers of base material << 281 void CopyPointersOfBaseMaterial(); << 282 << 283 void FillVectors(); << 284 << 285 G4bool IsLocked(); << 286 << 287 const G4Material* fBaseMaterial; // Pointer << 288 G4MaterialPropertiesTable* fMaterialProperti << 289 << 290 // << 291 // General atomic properties defined in cons << 292 // computed from the basic data members << 293 // << 294 << 295 G4ElementVector* theElementVector; // vecto << 296 G4int* fAtomsVector; // composition by atom << 297 G4double* fMassFractionVector; // compositi << 298 G4double* fVecNbOfAtomsPerVolume; // number << 299 << 300 G4IonisParamMat* fIonisation; // ionisation << 301 G4SandiaTable* fSandiaTable; // Sandia tabl << 302 << 303 G4double fDensity; // Material density << 304 G4double fFreeElecDensity; // Free electron << 305 G4double fTemp; // Temperature (defaults: S << 306 G4double fPressure; // Pressure (default << 307 << 308 G4double fTotNbOfAtomsPerVolume; // Total n << 309 G4double fTotNbOfElectPerVolume; // Total n << 310 G4double fRadlen; // Radiation length << 311 G4double fNuclInterLen; // Nuclear interact << 312 G4double fMassOfMolecule; // Correct for ma << 313 275 314 G4State fState; // Material state << 276 G4String fName; // Material name 315 std::size_t fIndexInTable; // Index in the << 277 G4String fChemicalFormula; // Material chemical formula 316 G4int fNumberOfElements; // Number of G4Ele << 278 G4double fDensity; // Material density >> 279 >> 280 G4State fState; // Material state (defaults to undefined, >> 281 // determined internally based on density) >> 282 G4double fTemp; // Temperature (defaults to STP) >> 283 G4double fPressure; // Pressure (defaults to STP) >> 284 >> 285 G4int maxNbComponents; // total number of components in the material >> 286 size_t fNumberOfComponents; // Number of components declared so far >> 287 >> 288 size_t fNumberOfElements; // Number of Elements in the material >> 289 G4ElementVector* theElementVector; // vector of constituent Elements >> 290 G4bool fImplicitElement; // implicit Element created by this? >> 291 G4double* fMassFractionVector; // composition by fractional mass >> 292 G4int* fAtomsVector; // composition by atom count >> 293 >> 294 G4MaterialPropertiesTable* fMaterialPropertiesTable; >> 295 >> 296 static >> 297 G4MaterialTable theMaterialTable; // the material table >> 298 size_t fIndexInTable; // Index of material in the material table 317 299 318 // Class members used only at initialisation << 300 // 319 G4int fNbComponents; // Number of component << 301 // Derived data members (computed from the basic data members) 320 G4int fIdxComponent; // Index of a new comp << 302 // 321 G4bool fMassFraction; // Flag of the method << 303 // some general atomic properties >> 304 >> 305 G4double* VecNbOfAtomsPerVolume; // vector of nb of atoms per volume >> 306 G4double TotNbOfAtomsPerVolume; // total nb of atoms per volume >> 307 G4double TotNbOfElectPerVolume; // total nb of electrons per volume >> 308 G4double fRadlen; // Radiation length >> 309 G4double fNuclInterLen; // Nuclear interaction length >> 310 >> 311 G4IonisParamMat* fIonisation; // ionisation parameters >> 312 G4SandiaTable* fSandiaTable; // Sandia table >> 313 }; 322 314 323 // For composites built << 315 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 324 std::vector<G4int>* fAtoms = nullptr; << 325 std::vector<G4double>* fElmFrac = nullptr; << 326 std::vector<const G4Element*>* fElm = nullpt << 327 316 328 // For composites built via AddMaterial() << 317 inline 329 std::map<G4Material*, G4double> fMatComponen << 318 G4Material* G4Material::GetMaterial(G4String materialName) >> 319 { >> 320 // search the material by its name >> 321 for (size_t J=0 ; J<theMaterialTable.length() ; J++) >> 322 { >> 323 if(theMaterialTable[J]->GetName() == materialName) >> 324 return theMaterialTable[J]; >> 325 } >> 326 >> 327 // the material does not exist in the table >> 328 return NULL; >> 329 } >> 330 >> 331 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... >> 332 >> 333 inline >> 334 G4double G4Material::GetZ() const >> 335 { >> 336 if (fNumberOfElements > 1) { >> 337 G4cerr << "WARNING in GetZ. The material: " << fName << " is a mixture." << G4endl; >> 338 G4Exception ( " the Atomic number is not well defined." ); >> 339 } >> 340 return (*theElementVector)(0)->GetZ(); >> 341 } >> 342 >> 343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... >> 344 >> 345 >> 346 inline >> 347 G4double G4Material::GetA() const >> 348 { >> 349 if (fNumberOfElements > 1) { >> 350 G4cerr << "WARNING in GetA. The material: " << fName << " is a mixture." << G4endl; >> 351 G4Exception ( " the Atomic mass is not well defined." ); >> 352 } >> 353 return (*theElementVector)(0)->GetA(); >> 354 } 330 355 331 G4String fName; // Material name << 356 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 332 G4String fChemicalFormula; // Material chem << 333 }; << 334 357 335 #endif 358 #endif 336 359