Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 << 26 //-------------------------------------------- << 27 // << 28 // ClassName: G4Material << 29 // << 30 // Description: Contains material properties << 31 // << 32 // Class description: << 33 // << 34 // Is used to define the material composition << 35 // A G4Material is always made of G4Elements. << 36 // the list of G4Elements, material density, m << 37 // pressure. Other parameters are optional and << 38 // or computed at initialisation. << 39 // << 40 // There is several ways to construct G4Materi << 41 // - from single element; << 42 // - from a list of components (elements or << 43 // - from internal Geant4 database of materi << 44 // 7 // 45 // A collection of constituent Elements/Materi << 8 // $Id: G4Material.hh,v 1.10 2001/03/30 14:43:16 maire Exp $ 46 // with specified weights by fractional mass o << 9 // GEANT4 tag $Name: geant4-03-01 $ 47 // 10 // 48 // Quantities, with physical meaning or not, w << 11 >> 12 // class description >> 13 // >> 14 // Materials defined via the G4Material class are used to define the >> 15 // composition of Geant volumes. >> 16 // a Material is always made of Elements. It can be defined directly >> 17 // from scratch (defined by an implicit, single element), specifying : >> 18 // its name, >> 19 // density, >> 20 // state informations, >> 21 // and Z,A of the underlying Element. >> 22 // >> 23 // or in terms of a collection of constituent Elements with specified weights >> 24 // (composition specified either by fractional mass or atom counts). >> 25 // >> 26 // Quantities, with physical meaning or not, which are constant in a given 49 // material are computed and stored here as De 27 // material are computed and stored here as Derived data members. 50 // 28 // 51 // The class contains as a private static memb 29 // The class contains as a private static member the Table of defined 52 // materials (an ordered vector of materials). 30 // materials (an ordered vector of materials). 53 // 31 // 54 // It is strongly not recommended to delete ma << 32 55 // All materials will be deleted automatically << 33 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 56 // << 34 57 // 10-07-96, new data members added by L.Urban 35 // 10-07-96, new data members added by L.Urban 58 // 12-12-96, new data members added by L.Urban 36 // 12-12-96, new data members added by L.Urban 59 // 20-01-97, aesthetic rearrangement. RadLengt 37 // 20-01-97, aesthetic rearrangement. RadLength calculation modified 60 // Data members Zeff and Aeff REMOVE 38 // Data members Zeff and Aeff REMOVED (i.e. passed to the Elements). 61 // (local definition of Zeff in Dens 39 // (local definition of Zeff in DensityEffect and FluctModel...) 62 // Vacuum defined as a G4State. Mixt << 40 // Vacuum defined as a G4State. Mixture flag removed, M.Maire 63 // 29-01-97, State=Vacuum automatically set de 41 // 29-01-97, State=Vacuum automatically set density=0 in the contructors. 64 // Subsequent protections have been << 42 // Subsequent protections have been put in the calculation of 65 // MeanExcEnergy, ShellCorrectionVec 43 // MeanExcEnergy, ShellCorrectionVector, DensityEffect, M.Maire 66 // 20-03-97, corrected initialization of point 44 // 20-03-97, corrected initialization of pointers, M.Maire 67 // 10-06-97, new data member added by V.Grichi 45 // 10-06-97, new data member added by V.Grichine (fSandiaPhotoAbsCof) 68 // 27-06-97, new function GetElement(int), M.M 46 // 27-06-97, new function GetElement(int), M.Maire 69 // 24-02-98, fFractionVector become fMassFract 47 // 24-02-98, fFractionVector become fMassFractionVector 70 // 28-05-98, kState=kVacuum removed: << 48 // 28-05-98, kState=kVacuum removed: 71 // The vacuum is an ordinary gas vit 49 // The vacuum is an ordinary gas vith very low density, M.Maire 72 // 12-06-98, new method AddMaterial() allowing 50 // 12-06-98, new method AddMaterial() allowing mixture of materials, M.Maire 73 // 09-07-98, Ionisation parameters removed fro 51 // 09-07-98, Ionisation parameters removed from the class, M.Maire 74 // 04-08-98, new method GetMaterial(materialNa 52 // 04-08-98, new method GetMaterial(materialName), M.Maire 75 // 05-10-98, change name: NumDensity -> NbOfAt 53 // 05-10-98, change name: NumDensity -> NbOfAtomsPerVolume 76 // 18-11-98, SandiaTable interface modified. 54 // 18-11-98, SandiaTable interface modified. 77 // 19-07-99, new data member (chemicalFormula) 55 // 19-07-99, new data member (chemicalFormula) added by V.Ivanchenko 78 // 12-03-01, G4bool fImplicitElement (mma) 56 // 12-03-01, G4bool fImplicitElement (mma) 79 // 30-03-01, suppression of the warning messag 57 // 30-03-01, suppression of the warning message in GetMaterial 80 // 17-07-01, migration to STL. M. Verderi. << 58 81 // 14-09-01, Suppression of the data member fI << 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 82 // 31-10-01, new function SetChemicalFormula() << 83 // 26-02-02, fIndexInTable renewed << 84 // 06-08-02, remove constructors with Chemical << 85 // 15-11-05, GetMaterial(materialName, G4bool << 86 // 13-04-12, std::map<G4Material*,G4double> fM << 87 // 21-04-12, fMassOfMolecule (mma) << 88 60 89 #ifndef G4MATERIAL_HH 61 #ifndef G4MATERIAL_HH 90 #define G4MATERIAL_HH 1 << 62 #define G4MATERIAL_HH 91 63 >> 64 #include "G4ios.hh" >> 65 #include "g4rw/tpvector.h" >> 66 #include "g4rw/tpordvec.h" >> 67 #include "globals.hh" 92 #include "G4Element.hh" 68 #include "G4Element.hh" 93 #include "G4ElementVector.hh" << 94 #include "G4IonisParamMat.hh" << 95 #include "G4MaterialPropertiesTable.hh" 69 #include "G4MaterialPropertiesTable.hh" 96 #include "G4MaterialTable.hh" << 70 #include "G4IonisParamMat.hh" 97 #include "G4SandiaTable.hh" 71 #include "G4SandiaTable.hh" 98 #include "G4ios.hh" << 99 #include "globals.hh" << 100 72 101 #include <CLHEP/Units/PhysicalConstants.h> << 73 typedef G4RWTPtrVector<G4Element> G4ElementVector; 102 74 103 #include <map> << 75 class G4Material; //forward declaration 104 #include <vector> << 76 typedef G4RWTPtrOrderedVector<G4Material> G4MaterialTable; 105 77 106 enum G4State << 78 enum G4State { kStateUndefined, kStateSolid, kStateLiquid, kStateGas }; 107 { << 108 kStateUndefined = 0, << 109 kStateSolid, << 110 kStateLiquid, << 111 kStateGas << 112 }; << 113 79 114 static const G4double NTP_Temperature = 293.15 << 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 115 81 116 class G4Material 82 class G4Material 117 { 83 { 118 public: // with description << 84 public: // with description 119 // Constructor to create a material from sin << 120 G4Material(const G4String& name, // its nam << 121 G4double z, // atomic number << 122 G4double a, // mass of mole << 123 G4double density, // density << 124 G4State state = kStateUndefined, // solid << 125 G4double temp = NTP_Temperature, // tempe << 126 G4double pressure = CLHEP::STP_Pressure); << 127 << 128 // Constructor to create a material from a c << 129 // and/or materials subsequently added via A << 130 G4Material(const G4String& name, // its nam << 131 G4double density, // density << 132 G4int nComponents, // nbOfComponents << 133 G4State state = kStateUndefined, // solid << 134 G4double temp = NTP_Temperature, // tempe << 135 G4double pressure = CLHEP::STP_Pressure); << 136 << 137 // Constructor to create a material from the << 138 G4Material(const G4String& name, // its nam << 139 G4double density, // density << 140 const G4Material* baseMaterial, // base m << 141 G4State state = kStateUndefined, // solid << 142 G4double temp = NTP_Temperature, // tempe << 143 G4double pressure = CLHEP::STP_Pressure); << 144 << 145 virtual ~G4Material(); << 146 << 147 // These methods allow customisation of corr << 148 // computations. Free electron density above << 149 // is a conductor. Computation of density ef << 150 // may be more accurate but require extra co << 151 void SetChemicalFormula(const G4String& chF) << 152 void SetFreeElectronDensity(G4double val); << 153 void ComputeDensityEffectOnFly(G4bool val); << 154 << 155 G4Material(const G4Material&) = delete; << 156 const G4Material& operator=(const G4Material << 157 << 158 // Add an element, giving number of atoms << 159 void AddElementByNumberOfAtoms(const G4Eleme << 160 inline void AddElement(G4Element* elm, G4int << 161 << 162 // Add an element or material, giving fracti << 163 void AddElementByMassFraction(const G4Elemen << 164 inline void AddElement(G4Element* elm, G4dou << 165 << 166 void AddMaterial(G4Material* material, G4dou << 167 << 168 // << 169 // retrieval methods << 170 // << 171 inline const G4String& GetName() const { ret << 172 inline const G4String& GetChemicalFormula() << 173 inline G4double GetFreeElectronDensity() con << 174 inline G4double GetDensity() const { return << 175 inline G4State GetState() const { return fSt << 176 inline G4double GetTemperature() const { ret << 177 inline G4double GetPressure() const { return << 178 << 179 // number of elements constituing this mater << 180 inline std::size_t GetNumberOfElements() con << 181 << 182 // vector of pointers to elements constituin << 183 inline const G4ElementVector* GetElementVect << 184 << 185 // vector of fractional mass of each element << 186 inline const G4double* GetFractionVector() c << 187 << 188 // vector of atom count of each element: << 189 inline const G4int* GetAtomsVector() const { << 190 << 191 // return a pointer to an element, given its << 192 inline const G4Element* GetElement(G4int iel << 193 << 194 // vector of nb of atoms per volume of each << 195 inline const G4double* GetVecNbOfAtomsPerVol << 196 // total number of atoms per volume: << 197 inline G4double GetTotNbOfAtomsPerVolume() c << 198 // total number of electrons per volume: << 199 inline G4double GetTotNbOfElectPerVolume() c << 200 << 201 // obsolete names (5-10-98) see the 2 functi << 202 inline const G4double* GetAtomicNumDensityVe << 203 inline G4double GetElectronDensity() const { << 204 << 205 // Radiation length: << 206 inline G4double GetRadlen() const { return f << 207 << 208 // Nuclear interaction length << 209 inline G4double GetNuclearInterLength() cons << 210 85 211 // ionisation parameters: << 86 // 212 inline G4IonisParamMat* GetIonisation() cons << 87 // Constructor to create a material from scratch. 213 << 88 // 214 // Sandia table: << 89 G4Material(const G4String& name, //its name 215 inline G4SandiaTable* GetSandiaTable() const << 90 G4double z, //atomic number 216 << 91 G4double a, //mass of mole 217 // Base material: << 92 G4double density, //density 218 inline const G4Material* GetBaseMaterial() c << 93 G4State state = kStateUndefined, //solid,liqid,gas 219 << 94 G4double temp = STP_Temperature, //temperature 220 // material components: << 95 G4double pressure = STP_Pressure); //pressure 221 inline const std::map<G4Material*, G4double> << 96 222 << 97 // 223 // for chemical compound << 98 // Constructor to create a material from a combination of elements 224 inline G4double GetMassOfMolecule() const { << 99 // and/or materials subsequently added via AddElement and/or AddMaterial 225 << 100 // 226 // meaningful only for single material: << 101 G4Material(const G4String& name, //its name 227 G4double GetZ() const; << 102 G4double density, //density 228 G4double GetA() const; << 103 G4int nComponents, //nb of components 229 << 104 G4State state = kStateUndefined, //solid,liquid,gas 230 // the MaterialPropertiesTable (if any) atta << 105 G4double temp = STP_Temperature, //temperature 231 void SetMaterialPropertiesTable(G4MaterialPr << 106 G4double pressure = STP_Pressure); //pressure 232 << 107 233 inline G4MaterialPropertiesTable* GetMateria << 108 // 234 { << 109 // Constructor to create a material with chemical formula from scratch. 235 return fMaterialPropertiesTable; << 110 // 236 } << 111 G4Material(const G4String& name, //its name 237 << 112 const G4String& chFormula, //chemical formula 238 // the index of this material in the Table: << 113 G4double z, //atomic number 239 inline std::size_t GetIndex() const { return << 114 G4double a, //mass of mole 240 << 115 G4double density, //density 241 // the static Table of Materials: << 116 G4State state = kStateUndefined, //solid,liqid,gas 242 static G4MaterialTable* GetMaterialTable(); << 117 G4double temp = STP_Temperature, //temperature 243 << 118 G4double pressure = STP_Pressure); //pressure 244 static std::size_t GetNumberOfMaterials(); << 119 245 << 120 // 246 // return pointer to a material, given its << 121 // Constructor to create a material with chemical formula from a 247 static G4Material* GetMaterial(const G4Strin << 122 // combination of elements and/or materials subsequently added via 248 << 123 // AddElement and/or AddMaterial 249 // return pointer to a simple material, giv << 124 // 250 static G4Material* GetMaterial(G4double z, G << 125 G4Material(const G4String& name, //its name 251 << 126 const G4String& chFormula, //chemical formula 252 // return pointer to a composit material, g << 127 G4double density, //density 253 static G4Material* GetMaterial(std::size_t n << 128 G4int nComponents, //nb of components 254 << 129 G4State state = kStateUndefined, //solid,liquid,gas 255 // printing methods << 130 G4double temp = STP_Temperature, //temperature 256 friend std::ostream& operator<<(std::ostream << 131 G4double pressure = STP_Pressure); //pressure 257 friend std::ostream& operator<<(std::ostream << 132 258 friend std::ostream& operator<<(std::ostream << 133 // 259 << 134 // Add an element, giving number of atoms 260 inline void SetName(const G4String& name) { << 135 // 261 << 136 void AddElement(G4Element* element, //the element 262 virtual G4bool IsExtended() const; << 137 G4int nAtoms); //nb of atoms in a molecule 263 << 138 264 // operators << 139 // 265 G4bool operator==(const G4Material&) const = << 140 // Add an element or material, giving fraction of mass 266 G4bool operator!=(const G4Material&) const = << 141 // 267 << 142 void AddElement (G4Element* element , //the element 268 private: << 143 G4double fraction); //fraction of mass 269 void InitializePointers(); << 144 270 << 145 void AddMaterial(G4Material* material, //the material 271 // Header routine for all derived quantities << 146 G4double fraction); //fraction of mass 272 void ComputeDerivedQuantities(); << 147 273 << 148 274 // Compute Radiation length << 149 virtual ~G4Material(); 275 void ComputeRadiationLength(); << 150 276 << 151 // 277 // Compute Nuclear interaction length << 152 // retrieval methods 278 void ComputeNuclearInterLength(); << 153 // 279 << 154 G4String GetName() const {return fName;}; 280 // Copy pointers of base material << 155 G4String GetChemicalFormula() const {return fChemicalFormula;}; 281 void CopyPointersOfBaseMaterial(); << 156 G4double GetDensity() const {return fDensity;}; 282 << 157 283 void FillVectors(); << 158 G4State GetState() const {return fState;}; 284 << 159 G4double GetTemperature() const {return fTemp;}; 285 G4bool IsLocked(); << 160 G4double GetPressure() const {return fPressure;}; 286 << 161 287 const G4Material* fBaseMaterial; // Pointer << 162 //number of elements constituing this material: 288 G4MaterialPropertiesTable* fMaterialProperti << 163 size_t GetNumberOfElements() const {return fNumberOfElements;}; 289 << 164 290 // << 165 //vector of pointers to elements constituing this material: 291 // General atomic properties defined in cons << 166 const 292 // computed from the basic data members << 167 G4ElementVector* GetElementVector() const {return theElementVector;}; 293 // << 168 294 << 169 //vector of fractional mass of each element: 295 G4ElementVector* theElementVector; // vecto << 170 const G4double* GetFractionVector() const {return fMassFractionVector;}; 296 G4int* fAtomsVector; // composition by atom << 171 297 G4double* fMassFractionVector; // compositi << 172 //vector of atom count of each element: 298 G4double* fVecNbOfAtomsPerVolume; // number << 173 const G4int* GetAtomsVector() const {return fAtomsVector;}; 299 << 174 300 G4IonisParamMat* fIonisation; // ionisation << 175 //return a pointer to an element, given its index in the material: 301 G4SandiaTable* fSandiaTable; // Sandia tabl << 176 const 302 << 177 G4Element* GetElement(G4int iel) const {return (*theElementVector)[iel];}; 303 G4double fDensity; // Material density << 178 304 G4double fFreeElecDensity; // Free electron << 179 //vector of nb of atoms per volume of each element in this material: 305 G4double fTemp; // Temperature (defaults: S << 180 const 306 G4double fPressure; // Pressure (default << 181 G4double* GetVecNbOfAtomsPerVolume() const {return VecNbOfAtomsPerVolume;}; 307 << 182 //total number of atoms per volume: 308 G4double fTotNbOfAtomsPerVolume; // Total n << 183 G4double GetTotNbOfAtomsPerVolume() const {return TotNbOfAtomsPerVolume;}; 309 G4double fTotNbOfElectPerVolume; // Total n << 184 //total number of electrons per volume: 310 G4double fRadlen; // Radiation length << 185 G4double GetTotNbOfElectPerVolume() const {return TotNbOfElectPerVolume;}; 311 G4double fNuclInterLen; // Nuclear interact << 186 312 G4double fMassOfMolecule; // Correct for ma << 187 //obsolete names (5-10-98) see the 2 functions above 313 << 188 const 314 G4State fState; // Material state << 189 G4double* GetAtomicNumDensityVector() const {return VecNbOfAtomsPerVolume;}; 315 std::size_t fIndexInTable; // Index in the << 190 G4double GetElectronDensity() const {return TotNbOfElectPerVolume;}; 316 G4int fNumberOfElements; // Number of G4Ele << 191 317 << 192 // Radiation length: 318 // Class members used only at initialisation << 193 G4double GetRadlen() const {return fRadlen;}; 319 G4int fNbComponents; // Number of component << 194 320 G4int fIdxComponent; // Index of a new comp << 195 // Nuclear interaction length: 321 G4bool fMassFraction; // Flag of the method << 196 G4double GetNuclearInterLength() const {return fNuclInterLen;}; >> 197 >> 198 // ionisation parameters: >> 199 G4IonisParamMat* GetIonisation() const {return fIonisation;}; >> 200 >> 201 // Sandia table: >> 202 G4SandiaTable* GetSandiaTable() const {return fSandiaTable;}; >> 203 >> 204 //meaningful only for single material: >> 205 G4double GetZ() const; >> 206 G4double GetA() const; >> 207 >> 208 //the MaterialPropertiesTable (if any) attached to this material: >> 209 void SetMaterialPropertiesTable(G4MaterialPropertiesTable* anMPT) >> 210 {fMaterialPropertiesTable = anMPT;}; >> 211 >> 212 G4MaterialPropertiesTable* GetMaterialPropertiesTable() const >> 213 {return fMaterialPropertiesTable;}; >> 214 >> 215 //the (static) Table of Materials: >> 216 static >> 217 const G4MaterialTable* GetMaterialTable() {return &theMaterialTable;}; >> 218 static >> 219 size_t GetNumberOfMaterials() {return theMaterialTable.length();}; >> 220 //the index of this material in the Table: >> 221 size_t GetIndex() const {return fIndexInTable;}; >> 222 >> 223 //return pointer to a material, given its name: >> 224 static G4Material* GetMaterial(G4String name); >> 225 >> 226 // >> 227 //printing methods >> 228 // >> 229 friend G4std::ostream& operator<<(G4std::ostream&, G4Material*); >> 230 friend G4std::ostream& operator<<(G4std::ostream&, G4Material&); >> 231 friend G4std::ostream& operator<<(G4std::ostream&, G4MaterialTable); >> 232 >> 233 public: // without description >> 234 >> 235 G4int operator==(const G4Material&) const; >> 236 G4int operator!=(const G4Material&) const; >> 237 >> 238 private: >> 239 >> 240 G4Material(const G4Material&); >> 241 const G4Material& operator=(const G4Material&); >> 242 >> 243 void InitializePointers(); >> 244 >> 245 // Header routine for all derived quantities >> 246 void ComputeDerivedQuantities(); >> 247 >> 248 // Compute Radiation length >> 249 void ComputeRadiationLength(); >> 250 >> 251 // Compute Nuclear interaction length >> 252 void ComputeNuclearInterLength(); >> 253 >> 254 private: >> 255 >> 256 // >> 257 // Basic data members ( To define a material) >> 258 // >> 259 >> 260 G4String fName; // Material name >> 261 G4String fChemicalFormula; // Material chemical formula >> 262 G4double fDensity; // Material density >> 263 >> 264 G4State fState; // Material state (defaults to undefined, >> 265 // determined internally based on density) >> 266 G4double fTemp; // Temperature (defaults to STP) >> 267 G4double fPressure; // Pressure (defaults to STP) >> 268 >> 269 G4int maxNbComponents; // total number of components in the material >> 270 size_t fNumberOfComponents; // Number of components declared so far >> 271 >> 272 size_t fNumberOfElements; // Number of Elements in the material >> 273 G4ElementVector* theElementVector; // vector of constituent Elements >> 274 G4bool fImplicitElement; // implicit Element created by this? >> 275 G4double* fMassFractionVector; // composition by fractional mass >> 276 G4int* fAtomsVector; // composition by atom count >> 277 >> 278 G4MaterialPropertiesTable* fMaterialPropertiesTable; >> 279 >> 280 static >> 281 G4MaterialTable theMaterialTable; // the material table >> 282 size_t fIndexInTable; // Index of material in the material table >> 283 >> 284 // >> 285 // Derived data members (computed from the basic data members) >> 286 // >> 287 // some general atomic properties >> 288 >> 289 G4double* VecNbOfAtomsPerVolume; // vector of nb of atoms per volume >> 290 G4double TotNbOfAtomsPerVolume; // total nb of atoms per volume >> 291 G4double TotNbOfElectPerVolume; // total nb of electrons per volume >> 292 G4double fRadlen; // Radiation length >> 293 G4double fNuclInterLen; // Nuclear interaction length >> 294 >> 295 G4IonisParamMat* fIonisation; // ionisation parameters >> 296 G4SandiaTable* fSandiaTable; // Sandia table >> 297 }; 322 298 323 // For composites built << 299 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 324 std::vector<G4int>* fAtoms = nullptr; << 325 std::vector<G4double>* fElmFrac = nullptr; << 326 std::vector<const G4Element*>* fElm = nullpt << 327 300 328 // For composites built via AddMaterial() << 301 inline 329 std::map<G4Material*, G4double> fMatComponen << 302 G4Material* G4Material::GetMaterial(G4String materialName) >> 303 { >> 304 // search the material by its name >> 305 for (G4int J=0 ; J<theMaterialTable.length() ; J++) >> 306 { >> 307 if(theMaterialTable[J]->GetName() == materialName) >> 308 return theMaterialTable[J]; >> 309 } >> 310 >> 311 // the material does not exist in the table >> 312 return NULL; >> 313 } >> 314 >> 315 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... >> 316 >> 317 inline >> 318 G4double G4Material::GetZ() const >> 319 { >> 320 if (fNumberOfElements > 1) { >> 321 G4cerr << "WARNING in GetZ. The material: " << fName << " is a mixture." << G4endl; >> 322 G4Exception ( " the Atomic number is not well defined." ); >> 323 } >> 324 return (*theElementVector)(0)->GetZ(); >> 325 } >> 326 >> 327 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... >> 328 >> 329 >> 330 inline >> 331 G4double G4Material::GetA() const >> 332 { >> 333 if (fNumberOfElements > 1) { >> 334 G4cerr << "WARNING in GetA. The material: " << fName << " is a mixture." << G4endl; >> 335 G4Exception ( " the Atomic mass is not well defined." ); >> 336 } >> 337 return (*theElementVector)(0)->GetA(); >> 338 } 330 339 331 G4String fName; // Material name << 340 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 332 G4String fChemicalFormula; // Material chem << 333 }; << 334 341 335 #endif 342 #endif 336 343