Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 26 //-------------------------------------------- 27 // 28 // ClassName: G4Material 29 // 30 // Description: Contains material properties 31 // 32 // Class description: 33 // 34 // Is used to define the material composition 35 // A G4Material is always made of G4Elements. 36 // the list of G4Elements, material density, m 37 // pressure. Other parameters are optional and 38 // or computed at initialisation. 39 // 40 // There is several ways to construct G4Materi 41 // - from single element; 42 // - from a list of components (elements or 43 // - from internal Geant4 database of materi 44 // 45 // A collection of constituent Elements/Materi 46 // with specified weights by fractional mass o 47 // 48 // Quantities, with physical meaning or not, w 49 // material are computed and stored here as De 50 // 51 // The class contains as a private static memb 52 // materials (an ordered vector of materials). 53 // 54 // It is strongly not recommended to delete ma 55 // All materials will be deleted automatically 56 // 57 // 10-07-96, new data members added by L.Urban 58 // 12-12-96, new data members added by L.Urban 59 // 20-01-97, aesthetic rearrangement. RadLengt 60 // Data members Zeff and Aeff REMOVE 61 // (local definition of Zeff in Dens 62 // Vacuum defined as a G4State. Mixt 63 // 29-01-97, State=Vacuum automatically set de 64 // Subsequent protections have been 65 // MeanExcEnergy, ShellCorrectionVec 66 // 20-03-97, corrected initialization of point 67 // 10-06-97, new data member added by V.Grichi 68 // 27-06-97, new function GetElement(int), M.M 69 // 24-02-98, fFractionVector become fMassFract 70 // 28-05-98, kState=kVacuum removed: 71 // The vacuum is an ordinary gas vit 72 // 12-06-98, new method AddMaterial() allowing 73 // 09-07-98, Ionisation parameters removed fro 74 // 04-08-98, new method GetMaterial(materialNa 75 // 05-10-98, change name: NumDensity -> NbOfAt 76 // 18-11-98, SandiaTable interface modified. 77 // 19-07-99, new data member (chemicalFormula) 78 // 12-03-01, G4bool fImplicitElement (mma) 79 // 30-03-01, suppression of the warning messag 80 // 17-07-01, migration to STL. M. Verderi. 81 // 14-09-01, Suppression of the data member fI 82 // 31-10-01, new function SetChemicalFormula() 83 // 26-02-02, fIndexInTable renewed 84 // 06-08-02, remove constructors with Chemical 85 // 15-11-05, GetMaterial(materialName, G4bool 86 // 13-04-12, std::map<G4Material*,G4double> fM 87 // 21-04-12, fMassOfMolecule (mma) 88 89 #ifndef G4MATERIAL_HH 90 #define G4MATERIAL_HH 1 91 92 #include "G4Element.hh" 93 #include "G4ElementVector.hh" 94 #include "G4IonisParamMat.hh" 95 #include "G4MaterialPropertiesTable.hh" 96 #include "G4MaterialTable.hh" 97 #include "G4SandiaTable.hh" 98 #include "G4ios.hh" 99 #include "globals.hh" 100 101 #include <CLHEP/Units/PhysicalConstants.h> 102 103 #include <map> 104 #include <vector> 105 106 enum G4State 107 { 108 kStateUndefined = 0, 109 kStateSolid, 110 kStateLiquid, 111 kStateGas 112 }; 113 114 static const G4double NTP_Temperature = 293.15 115 116 class G4Material 117 { 118 public: // with description 119 // Constructor to create a material from sin 120 G4Material(const G4String& name, // its nam 121 G4double z, // atomic number 122 G4double a, // mass of mole 123 G4double density, // density 124 G4State state = kStateUndefined, // solid 125 G4double temp = NTP_Temperature, // tempe 126 G4double pressure = CLHEP::STP_Pressure); 127 128 // Constructor to create a material from a c 129 // and/or materials subsequently added via A 130 G4Material(const G4String& name, // its nam 131 G4double density, // density 132 G4int nComponents, // nbOfComponents 133 G4State state = kStateUndefined, // solid 134 G4double temp = NTP_Temperature, // tempe 135 G4double pressure = CLHEP::STP_Pressure); 136 137 // Constructor to create a material from the 138 G4Material(const G4String& name, // its nam 139 G4double density, // density 140 const G4Material* baseMaterial, // base m 141 G4State state = kStateUndefined, // solid 142 G4double temp = NTP_Temperature, // tempe 143 G4double pressure = CLHEP::STP_Pressure); 144 145 virtual ~G4Material(); 146 147 // These methods allow customisation of corr 148 // computations. Free electron density above 149 // is a conductor. Computation of density ef 150 // may be more accurate but require extra co 151 void SetChemicalFormula(const G4String& chF) 152 void SetFreeElectronDensity(G4double val); 153 void ComputeDensityEffectOnFly(G4bool val); 154 155 G4Material(const G4Material&) = delete; 156 const G4Material& operator=(const G4Material 157 158 // Add an element, giving number of atoms 159 void AddElementByNumberOfAtoms(const G4Eleme 160 inline void AddElement(G4Element* elm, G4int 161 162 // Add an element or material, giving fracti 163 void AddElementByMassFraction(const G4Elemen 164 inline void AddElement(G4Element* elm, G4dou 165 166 void AddMaterial(G4Material* material, G4dou 167 168 // 169 // retrieval methods 170 // 171 inline const G4String& GetName() const { ret 172 inline const G4String& GetChemicalFormula() 173 inline G4double GetFreeElectronDensity() con 174 inline G4double GetDensity() const { return 175 inline G4State GetState() const { return fSt 176 inline G4double GetTemperature() const { ret 177 inline G4double GetPressure() const { return 178 179 // number of elements constituing this mater 180 inline std::size_t GetNumberOfElements() con 181 182 // vector of pointers to elements constituin 183 inline const G4ElementVector* GetElementVect 184 185 // vector of fractional mass of each element 186 inline const G4double* GetFractionVector() c 187 188 // vector of atom count of each element: 189 inline const G4int* GetAtomsVector() const { 190 191 // return a pointer to an element, given its 192 inline const G4Element* GetElement(G4int iel 193 194 // vector of nb of atoms per volume of each 195 inline const G4double* GetVecNbOfAtomsPerVol 196 // total number of atoms per volume: 197 inline G4double GetTotNbOfAtomsPerVolume() c 198 // total number of electrons per volume: 199 inline G4double GetTotNbOfElectPerVolume() c 200 201 // obsolete names (5-10-98) see the 2 functi 202 inline const G4double* GetAtomicNumDensityVe 203 inline G4double GetElectronDensity() const { 204 205 // Radiation length: 206 inline G4double GetRadlen() const { return f 207 208 // Nuclear interaction length 209 inline G4double GetNuclearInterLength() cons 210 211 // ionisation parameters: 212 inline G4IonisParamMat* GetIonisation() cons 213 214 // Sandia table: 215 inline G4SandiaTable* GetSandiaTable() const 216 217 // Base material: 218 inline const G4Material* GetBaseMaterial() c 219 220 // material components: 221 inline const std::map<G4Material*, G4double> 222 223 // for chemical compound 224 inline G4double GetMassOfMolecule() const { 225 226 // meaningful only for single material: 227 G4double GetZ() const; 228 G4double GetA() const; 229 230 // the MaterialPropertiesTable (if any) atta 231 void SetMaterialPropertiesTable(G4MaterialPr 232 233 inline G4MaterialPropertiesTable* GetMateria 234 { 235 return fMaterialPropertiesTable; 236 } 237 238 // the index of this material in the Table: 239 inline std::size_t GetIndex() const { return 240 241 // the static Table of Materials: 242 static G4MaterialTable* GetMaterialTable(); 243 244 static std::size_t GetNumberOfMaterials(); 245 246 // return pointer to a material, given its 247 static G4Material* GetMaterial(const G4Strin 248 249 // return pointer to a simple material, giv 250 static G4Material* GetMaterial(G4double z, G 251 252 // return pointer to a composit material, g 253 static G4Material* GetMaterial(std::size_t n 254 255 // printing methods 256 friend std::ostream& operator<<(std::ostream 257 friend std::ostream& operator<<(std::ostream 258 friend std::ostream& operator<<(std::ostream 259 260 inline void SetName(const G4String& name) { 261 262 virtual G4bool IsExtended() const; 263 264 // operators 265 G4bool operator==(const G4Material&) const = 266 G4bool operator!=(const G4Material&) const = 267 268 private: 269 void InitializePointers(); 270 271 // Header routine for all derived quantities 272 void ComputeDerivedQuantities(); 273 274 // Compute Radiation length 275 void ComputeRadiationLength(); 276 277 // Compute Nuclear interaction length 278 void ComputeNuclearInterLength(); 279 280 // Copy pointers of base material 281 void CopyPointersOfBaseMaterial(); 282 283 void FillVectors(); 284 285 G4bool IsLocked(); 286 287 const G4Material* fBaseMaterial; // Pointer 288 G4MaterialPropertiesTable* fMaterialProperti 289 290 // 291 // General atomic properties defined in cons 292 // computed from the basic data members 293 // 294 295 G4ElementVector* theElementVector; // vecto 296 G4int* fAtomsVector; // composition by atom 297 G4double* fMassFractionVector; // compositi 298 G4double* fVecNbOfAtomsPerVolume; // number 299 300 G4IonisParamMat* fIonisation; // ionisation 301 G4SandiaTable* fSandiaTable; // Sandia tabl 302 303 G4double fDensity; // Material density 304 G4double fFreeElecDensity; // Free electron 305 G4double fTemp; // Temperature (defaults: S 306 G4double fPressure; // Pressure (default 307 308 G4double fTotNbOfAtomsPerVolume; // Total n 309 G4double fTotNbOfElectPerVolume; // Total n 310 G4double fRadlen; // Radiation length 311 G4double fNuclInterLen; // Nuclear interact 312 G4double fMassOfMolecule; // Correct for ma 313 314 G4State fState; // Material state 315 std::size_t fIndexInTable; // Index in the 316 G4int fNumberOfElements; // Number of G4Ele 317 318 // Class members used only at initialisation 319 G4int fNbComponents; // Number of component 320 G4int fIdxComponent; // Index of a new comp 321 G4bool fMassFraction; // Flag of the method 322 323 // For composites built 324 std::vector<G4int>* fAtoms = nullptr; 325 std::vector<G4double>* fElmFrac = nullptr; 326 std::vector<const G4Element*>* fElm = nullpt 327 328 // For composites built via AddMaterial() 329 std::map<G4Material*, G4double> fMatComponen 330 331 G4String fName; // Material name 332 G4String fChemicalFormula; // Material chem 333 }; 334 335 #endif 336