Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: HepPolyhedron.cc 69794 2013-05-15 13:17:48Z gcosmo $ >> 28 // >> 29 // >> 30 // 26 // G4 Polyhedron library 31 // G4 Polyhedron library 27 // 32 // 28 // History: 33 // History: 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce 34 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version 30 // 35 // 31 // 30.09.96 E.Chernyaev 36 // 30.09.96 E.Chernyaev 32 // - added GetNextVertexIndex, GetVertex by Ya 37 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada 33 // - added GetNextUnitNormal, GetNextEdgeIndic << 38 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge 34 // 39 // 35 // 15.12.96 E.Chernyaev 40 // 15.12.96 E.Chernyaev 36 // - added GetNumberOfRotationSteps, RotateEdg 41 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences 37 // - rewritten G4PolyhedronCons; 42 // - rewritten G4PolyhedronCons; 38 // - added G4PolyhedronPara, ...Trap, ...Pgon, 43 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus 39 // 44 // 40 // 01.06.97 E.Chernyaev 45 // 01.06.97 E.Chernyaev 41 // - modified RotateAroundZ, added SetSideFace 46 // - modified RotateAroundZ, added SetSideFacets 42 // 47 // 43 // 19.03.00 E.Chernyaev 48 // 19.03.00 E.Chernyaev 44 // - implemented boolean operations (add, subt 49 // - implemented boolean operations (add, subtract, intersect) on polyhedra; 45 // 50 // 46 // 25.05.01 E.Chernyaev 51 // 25.05.01 E.Chernyaev 47 // - added GetSurfaceArea() and GetVolume() << 52 // - added GetSurfaceArea() and GetVolume(); 48 // 53 // 49 // 05.11.02 E.Chernyaev 54 // 05.11.02 E.Chernyaev 50 // - added createTwistedTrap() and createPolyh << 55 // - added createTwistedTrap() and createPolyhedron(); 51 // 56 // 52 // 20.06.05 G.Cosmo 57 // 20.06.05 G.Cosmo 53 // - added HepPolyhedronEllipsoid << 58 // - added HepPolyhedronEllipsoid; 54 // << 55 // 18.07.07 T.Nikitina << 56 // - added HepPolyhedronParaboloid << 57 // << 58 // 22.02.20 E.Chernyaev << 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 60 // << 61 // 12.05.21 E.Chernyaev << 62 // - added TriangulatePolygon(), RotateContour << 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 64 // << 65 // 26.03.22 E.Chernyaev << 66 // - added SetVertex(), SetFacet() << 67 // - added HepPolyhedronTetMesh << 68 // << 69 // 04.04.22 E.Chernyaev << 70 // - added JoinCoplanarFacets() << 71 // 59 // 72 // 07.04.22 E.Chernyaev << 60 // 18.07.07 T.Nikitin 73 // - added HepPolyhedronBoxMesh << 61 // - added HepParaboloid; 74 << 62 75 #include "HepPolyhedron.h" 63 #include "HepPolyhedron.h" 76 #include "G4PhysicalConstants.hh" 64 #include "G4PhysicalConstants.hh" 77 #include "G4Vector3D.hh" 65 #include "G4Vector3D.hh" 78 66 79 #include <cstdlib> // Required on some compil 67 #include <cstdlib> // Required on some compilers for std::abs(int) ... 80 #include <cmath> 68 #include <cmath> 81 #include <algorithm> << 82 69 83 using CLHEP::perMillion; 70 using CLHEP::perMillion; 84 using CLHEP::deg; 71 using CLHEP::deg; 85 using CLHEP::pi; 72 using CLHEP::pi; 86 using CLHEP::twopi; 73 using CLHEP::twopi; 87 using CLHEP::nm; 74 using CLHEP::nm; 88 const G4double spatialTolerance = 0.01*nm; 75 const G4double spatialTolerance = 0.01*nm; 89 76 90 /********************************************* 77 /*********************************************************************** 91 * 78 * * 92 * Name: HepPolyhedron operator << 79 * Name: HepPolyhedron operator << Date: 09.05.96 * 93 * Author: E.Chernyaev (IHEP/Protvino) 80 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 94 * 81 * * 95 * Function: Print contents of G4 polyhedron 82 * Function: Print contents of G4 polyhedron * 96 * 83 * * 97 ********************************************* 84 ***********************************************************************/ 98 std::ostream & operator<<(std::ostream & ostr, 85 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) { 99 for (const auto& edge : facet.edge) { << 86 for (G4int k=0; k<4; k++) { 100 ostr << " " << edge.v << "/" << edge.f; << 87 ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f; 101 } 88 } 102 return ostr; 89 return ostr; 103 } 90 } 104 91 105 std::ostream & operator<<(std::ostream & ostr, 92 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) { 106 ostr << std::endl; 93 ostr << std::endl; 107 ostr << "Nvertices=" << ph.nvert << ", Nface << 94 ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl; 108 G4int i; 95 G4int i; 109 for (i=1; i<=ph.nvert; i++) { 96 for (i=1; i<=ph.nvert; i++) { 110 ostr << "xyz(" << i << ")=" 97 ostr << "xyz(" << i << ")=" 111 << ph.pV[i].x() << ' ' << ph.pV[i].y 98 << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z() 112 << std::endl; 99 << std::endl; 113 } 100 } 114 for (i=1; i<=ph.nface; i++) { 101 for (i=1; i<=ph.nface; i++) { 115 ostr << "face(" << i << ")=" << ph.pF[i] < 102 ostr << "face(" << i << ")=" << ph.pF[i] << std::endl; 116 } 103 } 117 return ostr; 104 return ostr; 118 } 105 } 119 106 120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 121 /********************************************* << 122 * << 123 * Name: HepPolyhedron constructor with << 124 * allocation of memory << 125 * Author: E.Tcherniaev (E.Chernyaev) << 126 * << 127 ********************************************* << 128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 129 { << 130 AllocateMemory(Nvert, Nface); << 131 } << 132 << 133 HepPolyhedron::HepPolyhedron(const HepPolyhedr 107 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from) 134 /********************************************* 108 /*********************************************************************** 135 * 109 * * 136 * Name: HepPolyhedron copy constructor 110 * Name: HepPolyhedron copy constructor Date: 23.07.96 * 137 * Author: E.Chernyaev (IHEP/Protvino) 111 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 138 * 112 * * 139 ********************************************* 113 ***********************************************************************/ 140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 114 : nvert(0), nface(0), pV(0), pF(0) 141 { 115 { 142 AllocateMemory(from.nvert, from.nface); 116 AllocateMemory(from.nvert, from.nface); 143 for (G4int i=1; i<=nvert; i++) pV[i] = from. 117 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 144 for (G4int k=1; k<=nface; k++) pF[k] = from. 118 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 145 } 119 } 146 120 147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 148 /********************************************* << 149 * << 150 * Name: HepPolyhedron move constructor << 151 * Author: E.Tcherniaev (E.Chernyaev) << 152 * << 153 ********************************************* << 154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 155 { << 156 nvert = from.nvert; << 157 nface = from.nface; << 158 pV = from.pV; << 159 pF = from.pF; << 160 << 161 // Release the data from the source object << 162 from.nvert = 0; << 163 from.nface = 0; << 164 from.pV = nullptr; << 165 from.pF = nullptr; << 166 } << 167 << 168 HepPolyhedron & HepPolyhedron::operator=(const 121 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from) 169 /********************************************* 122 /*********************************************************************** 170 * 123 * * 171 * Name: HepPolyhedron operator = 124 * Name: HepPolyhedron operator = Date: 23.07.96 * 172 * Author: E.Chernyaev (IHEP/Protvino) 125 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 173 * 126 * * 174 * Function: Copy contents of one polyhedron t 127 * Function: Copy contents of one polyhedron to another * 175 * 128 * * 176 ********************************************* 129 ***********************************************************************/ 177 { 130 { 178 if (this != &from) { 131 if (this != &from) { 179 AllocateMemory(from.nvert, from.nface); 132 AllocateMemory(from.nvert, from.nface); 180 for (G4int i=1; i<=nvert; i++) pV[i] = fro 133 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 181 for (G4int k=1; k<=nface; k++) pF[k] = fro 134 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 182 } 135 } 183 return *this; 136 return *this; 184 } 137 } 185 138 186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 187 /********************************************* << 188 * << 189 * Name: HepPolyhedron move operator = << 190 * Author: E.Tcherniaev (E.Chernyaev) << 191 * << 192 * Function: Move contents of one polyhedron t << 193 * << 194 ********************************************* << 195 { << 196 if (this != &from) { << 197 delete [] pV; << 198 delete [] pF; << 199 nvert = from.nvert; << 200 nface = from.nface; << 201 pV = from.pV; << 202 pF = from.pF; << 203 << 204 // Release the data from the source object << 205 from.nvert = 0; << 206 from.nface = 0; << 207 from.pV = nullptr; << 208 from.pF = nullptr; << 209 } << 210 return *this; << 211 } << 212 << 213 G4int 139 G4int 214 HepPolyhedron::FindNeighbour(G4int iFace, G4in 140 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const 215 /********************************************* 141 /*********************************************************************** 216 * 142 * * 217 * Name: HepPolyhedron::FindNeighbour 143 * Name: HepPolyhedron::FindNeighbour Date: 22.11.99 * 218 * Author: E.Chernyaev 144 * Author: E.Chernyaev Revised: * 219 * 145 * * 220 * Function: Find neighbouring face 146 * Function: Find neighbouring face * 221 * 147 * * 222 ********************************************* 148 ***********************************************************************/ 223 { 149 { 224 G4int i; 150 G4int i; 225 for (i=0; i<4; i++) { 151 for (i=0; i<4; i++) { 226 if (iNode == std::abs(pF[iFace].edge[i].v) 152 if (iNode == std::abs(pF[iFace].edge[i].v)) break; 227 } 153 } 228 if (i == 4) { 154 if (i == 4) { 229 std::cerr 155 std::cerr 230 << "HepPolyhedron::FindNeighbour: face " 156 << "HepPolyhedron::FindNeighbour: face " << iFace 231 << " has no node " << iNode 157 << " has no node " << iNode 232 << std::endl; << 158 << std::endl; 233 return 0; 159 return 0; 234 } 160 } 235 if (iOrder < 0) { 161 if (iOrder < 0) { 236 if ( --i < 0) i = 3; 162 if ( --i < 0) i = 3; 237 if (pF[iFace].edge[i].v == 0) i = 2; 163 if (pF[iFace].edge[i].v == 0) i = 2; 238 } 164 } 239 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF 165 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f; 240 } 166 } 241 167 242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int 168 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const 243 /********************************************* 169 /*********************************************************************** 244 * 170 * * 245 * Name: HepPolyhedron::FindNodeNormal 171 * Name: HepPolyhedron::FindNodeNormal Date: 22.11.99 * 246 * Author: E.Chernyaev 172 * Author: E.Chernyaev Revised: * 247 * 173 * * 248 * Function: Find normal at given node 174 * Function: Find normal at given node * 249 * 175 * * 250 ********************************************* 176 ***********************************************************************/ 251 { 177 { 252 G4Normal3D normal = GetUnitNormal(iFace); << 178 G4Normal3D normal = GetUnitNormal(iFace); 253 G4int k = iFace, iOrder = 1; << 179 G4int k = iFace, iOrder = 1, n = 1; 254 180 255 for(;;) { 181 for(;;) { 256 k = FindNeighbour(k, iNode, iOrder); 182 k = FindNeighbour(k, iNode, iOrder); 257 if (k == iFace) break; << 183 if (k == iFace) break; 258 if (k > 0) { 184 if (k > 0) { >> 185 n++; 259 normal += GetUnitNormal(k); 186 normal += GetUnitNormal(k); 260 }else{ 187 }else{ 261 if (iOrder < 0) break; 188 if (iOrder < 0) break; 262 k = iFace; 189 k = iFace; 263 iOrder = -iOrder; 190 iOrder = -iOrder; 264 } 191 } 265 } 192 } 266 return normal.unit(); 193 return normal.unit(); 267 } 194 } 268 195 269 G4int HepPolyhedron::GetNumberOfRotationSteps( 196 G4int HepPolyhedron::GetNumberOfRotationSteps() 270 /********************************************* 197 /*********************************************************************** 271 * 198 * * 272 * Name: HepPolyhedron::GetNumberOfRotationSte 199 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 273 * Author: J.Allison (Manchester University) 200 * Author: J.Allison (Manchester University) Revised: * 274 * 201 * * 275 * Function: Get number of steps for whole cir 202 * Function: Get number of steps for whole circle * 276 * 203 * * 277 ********************************************* 204 ***********************************************************************/ 278 { 205 { 279 return fNumberOfRotationSteps; 206 return fNumberOfRotationSteps; 280 } 207 } 281 208 282 void HepPolyhedron::SetVertex(G4int index, con << 283 /********************************************* << 284 * << 285 * Name: HepPolyhedron::SetVertex << 286 * Author: E.Tcherniaev (E.Chernyaev) << 287 * << 288 * Function: Set vertex << 289 * << 290 ********************************************* << 291 { << 292 if (index < 1 || index > nvert) << 293 { << 294 std::cerr << 295 << "HepPolyhedron::SetVertex: vertex ind << 296 << " is out of range\n" << 297 << " N. of vertices = " << nvert << "\ << 298 << " N. of facets = " << nface << std: << 299 return; << 300 } << 301 pV[index] = v; << 302 } << 303 << 304 void << 305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 306 /********************************************* << 307 * << 308 * Name: HepPolyhedron::SetFacet << 309 * Author: E.Tcherniaev (E.Chernyaev) << 310 * << 311 * Function: Set facet << 312 * << 313 ********************************************* << 314 { << 315 if (index < 1 || index > nface) << 316 { << 317 std::cerr << 318 << "HepPolyhedron::SetFacet: facet index << 319 << " is out of range\n" << 320 << " N. of vertices = " << nvert << "\ << 321 << " N. of facets = " << nface << std: << 322 return; << 323 } << 324 if (iv1 < 1 || iv1 > nvert || << 325 iv2 < 1 || iv2 > nvert || << 326 iv3 < 1 || iv3 > nvert || << 327 iv4 < 0 || iv4 > nvert) << 328 { << 329 std::cerr << 330 << "HepPolyhedron::SetFacet: incorrectly << 331 << " (" << iv1 << ", " << iv2 << ", " << << 332 << " N. of vertices = " << nvert << "\ << 333 << " N. of facets = " << nface << std: << 334 return; << 335 } << 336 pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0, << 337 } << 338 << 339 void HepPolyhedron::SetNumberOfRotationSteps(G 209 void HepPolyhedron::SetNumberOfRotationSteps(G4int n) 340 /********************************************* 210 /*********************************************************************** 341 * 211 * * 342 * Name: HepPolyhedron::SetNumberOfRotationSte 212 * Name: HepPolyhedron::SetNumberOfRotationSteps Date: 24.06.97 * 343 * Author: J.Allison (Manchester University) 213 * Author: J.Allison (Manchester University) Revised: * 344 * 214 * * 345 * Function: Set number of steps for whole cir 215 * Function: Set number of steps for whole circle * 346 * 216 * * 347 ********************************************* 217 ***********************************************************************/ 348 { 218 { 349 const G4int nMin = 3; 219 const G4int nMin = 3; 350 if (n < nMin) { 220 if (n < nMin) { 351 std::cerr << 221 std::cerr 352 << "HepPolyhedron::SetNumberOfRotationSt 222 << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n" 353 << "number of steps per circle < " << nM 223 << "number of steps per circle < " << nMin << "; forced to " << nMin 354 << std::endl; 224 << std::endl; 355 fNumberOfRotationSteps = nMin; 225 fNumberOfRotationSteps = nMin; 356 }else{ 226 }else{ 357 fNumberOfRotationSteps = n; 227 fNumberOfRotationSteps = n; 358 } << 228 } 359 } 229 } 360 230 361 void HepPolyhedron::ResetNumberOfRotationSteps 231 void HepPolyhedron::ResetNumberOfRotationSteps() 362 /********************************************* 232 /*********************************************************************** 363 * 233 * * 364 * Name: HepPolyhedron::GetNumberOfRotationSte 234 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 365 * Author: J.Allison (Manchester University) 235 * Author: J.Allison (Manchester University) Revised: * 366 * 236 * * 367 * Function: Reset number of steps for whole c 237 * Function: Reset number of steps for whole circle to default value * 368 * 238 * * 369 ********************************************* 239 ***********************************************************************/ 370 { 240 { 371 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S 241 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 372 } 242 } 373 243 374 void HepPolyhedron::AllocateMemory(G4int Nvert 244 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface) 375 /********************************************* 245 /*********************************************************************** 376 * 246 * * 377 * Name: HepPolyhedron::AllocateMemory 247 * Name: HepPolyhedron::AllocateMemory Date: 19.06.96 * 378 * Author: E.Chernyaev (IHEP/Protvino) 248 * Author: E.Chernyaev (IHEP/Protvino) Revised: 05.11.02 * 379 * 249 * * 380 * Function: Allocate memory for GEANT4 polyhe 250 * Function: Allocate memory for GEANT4 polyhedron * 381 * 251 * * 382 * Input: Nvert - number of nodes 252 * Input: Nvert - number of nodes * 383 * Nface - number of faces 253 * Nface - number of faces * 384 * 254 * * 385 ********************************************* 255 ***********************************************************************/ 386 { 256 { 387 if (nvert == Nvert && nface == Nface) return 257 if (nvert == Nvert && nface == Nface) return; 388 delete [] pV; << 258 if (pV != 0) delete [] pV; 389 delete [] pF; << 259 if (pF != 0) delete [] pF; 390 if (Nvert > 0 && Nface > 0) { 260 if (Nvert > 0 && Nface > 0) { 391 nvert = Nvert; 261 nvert = Nvert; 392 nface = Nface; 262 nface = Nface; 393 pV = new G4Point3D[nvert+1]; 263 pV = new G4Point3D[nvert+1]; 394 pF = new G4Facet[nface+1]; 264 pF = new G4Facet[nface+1]; 395 }else{ 265 }else{ 396 nvert = 0; nface = 0; pV = nullptr; pF = n << 266 nvert = 0; nface = 0; pV = 0; pF = 0; 397 } 267 } 398 } 268 } 399 269 400 void HepPolyhedron::CreatePrism() 270 void HepPolyhedron::CreatePrism() 401 /********************************************* 271 /*********************************************************************** 402 * 272 * * 403 * Name: HepPolyhedron::CreatePrism 273 * Name: HepPolyhedron::CreatePrism Date: 15.07.96 * 404 * Author: E.Chernyaev (IHEP/Protvino) 274 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 405 * 275 * * 406 * Function: Set facets for a prism 276 * Function: Set facets for a prism * 407 * 277 * * 408 ********************************************* 278 ***********************************************************************/ 409 { 279 { 410 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON 280 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP}; 411 281 412 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 282 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 2,FRONT); 413 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 283 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 1,FRONT); 414 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 284 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 4,LEFT); 415 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 285 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 3,BACK); 416 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 286 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 2,RIGHT); 417 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 287 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 8,LEFT); 418 } 288 } 419 289 420 void HepPolyhedron::RotateEdge(G4int k1, G4int 290 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2, 421 G4int v1, G4int 291 G4int v1, G4int v2, G4int vEdge, 422 G4bool ifWholeCi 292 G4bool ifWholeCircle, G4int nds, G4int &kface) 423 /********************************************* 293 /*********************************************************************** 424 * 294 * * 425 * Name: HepPolyhedron::RotateEdge 295 * Name: HepPolyhedron::RotateEdge Date: 05.12.96 * 426 * Author: E.Chernyaev (IHEP/Protvino) 296 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 427 * 297 * * 428 * Function: Create set of facets by rotation 298 * Function: Create set of facets by rotation of an edge around Z-axis * 429 * 299 * * 430 * Input: k1, k2 - end vertices of the edge 300 * Input: k1, k2 - end vertices of the edge * 431 * r1, r2 - radiuses of the end vertice 301 * r1, r2 - radiuses of the end vertices * 432 * v1, v2 - visibility of edges produce 302 * v1, v2 - visibility of edges produced by rotation of the end * 433 * vertices 303 * vertices * 434 * vEdge - visibility of the edge 304 * vEdge - visibility of the edge * 435 * ifWholeCircle - is true in case of w 305 * ifWholeCircle - is true in case of whole circle rotation * 436 * nds - number of discrete steps 306 * nds - number of discrete steps * 437 * r[] - r-coordinates 307 * r[] - r-coordinates * 438 * kface - current free cell in the pF 308 * kface - current free cell in the pF array * 439 * 309 * * 440 ********************************************* 310 ***********************************************************************/ 441 { 311 { 442 if (r1 == 0. && r2 == 0.) return; << 312 if (r1 == 0. && r2 == 0) return; 443 313 444 G4int i; 314 G4int i; 445 G4int i1 = k1; 315 G4int i1 = k1; 446 G4int i2 = k2; 316 G4int i2 = k2; 447 G4int ii1 = ifWholeCircle ? i1 : i1+nds; 317 G4int ii1 = ifWholeCircle ? i1 : i1+nds; 448 G4int ii2 = ifWholeCircle ? i2 : i2+nds; 318 G4int ii2 = ifWholeCircle ? i2 : i2+nds; 449 G4int vv = ifWholeCircle ? vEdge : 1; 319 G4int vv = ifWholeCircle ? vEdge : 1; 450 320 451 if (nds == 1) { 321 if (nds == 1) { 452 if (r1 == 0.) { 322 if (r1 == 0.) { 453 pF[kface++] = G4Facet(i1,0, v2*i2,0 323 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0); 454 }else if (r2 == 0.) { 324 }else if (r2 == 0.) { 455 pF[kface++] = G4Facet(i1,0, i2,0, 325 pF[kface++] = G4Facet(i1,0, i2,0, v1*(i1+1),0); 456 }else{ 326 }else{ 457 pF[kface++] = G4Facet(i1,0, v2*i2,0 327 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0, v1*(i1+1),0); 458 } 328 } 459 }else{ 329 }else{ 460 if (r1 == 0.) { 330 if (r1 == 0.) { 461 pF[kface++] = G4Facet(vv*i1,0, v2*i 331 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0); 462 for (i2++,i=1; i<nds-1; i2++,i++) { 332 for (i2++,i=1; i<nds-1; i2++,i++) { 463 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 333 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0); 464 } 334 } 465 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 335 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0); 466 }else if (r2 == 0.) { 336 }else if (r2 == 0.) { 467 pF[kface++] = G4Facet(vv*i1,0, vEdg 337 pF[kface++] = G4Facet(vv*i1,0, vEdge*i2,0, v1*(i1+1),0); 468 for (i1++,i=1; i<nds-1; i1++,i++) { 338 for (i1++,i=1; i<nds-1; i1++,i++) { 469 pF[kface++] = G4Facet(vEdge*i1,0, vEdg 339 pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0); 470 } 340 } 471 pF[kface++] = G4Facet(vEdge*i1,0, vv*i 341 pF[kface++] = G4Facet(vEdge*i1,0, vv*i2,0, v1*ii1,0); 472 }else{ 342 }else{ 473 pF[kface++] = G4Facet(vv*i1,0, v2*i 343 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 474 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i 344 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) { 475 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 345 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 476 } << 346 } 477 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 347 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0, v1*ii1,0); 478 } 348 } 479 } 349 } 480 } 350 } 481 351 482 void HepPolyhedron::SetSideFacets(G4int ii[4], 352 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4], 483 G4int *kk, G4 353 G4int *kk, G4double *r, 484 G4double dphi 354 G4double dphi, G4int nds, G4int &kface) 485 /********************************************* 355 /*********************************************************************** 486 * 356 * * 487 * Name: HepPolyhedron::SetSideFacets 357 * Name: HepPolyhedron::SetSideFacets Date: 20.05.97 * 488 * Author: E.Chernyaev (IHEP/Protvino) 358 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 489 * 359 * * 490 * Function: Set side facets for the case of i 360 * Function: Set side facets for the case of incomplete rotation * 491 * 361 * * 492 * Input: ii[4] - indices of original vertices << 362 * Input: ii[4] - indeces of original verteces * 493 * vv[4] - visibility of edges 363 * vv[4] - visibility of edges * 494 * kk[] - indices of nodes << 364 * kk[] - indeces of nodes * 495 * r[] - radiuses 365 * r[] - radiuses * 496 * dphi - delta phi 366 * dphi - delta phi * 497 * nds - number of discrete steps 367 * nds - number of discrete steps * 498 * kface - current free cell in the pF 368 * kface - current free cell in the pF array * 499 * 369 * * 500 ********************************************* 370 ***********************************************************************/ 501 { 371 { 502 G4int k1, k2, k3, k4; 372 G4int k1, k2, k3, k4; 503 << 373 504 if (std::abs(dphi-pi) < perMillion) { // hal << 374 if (std::abs((G4double)(dphi-pi)) < perMillion) { // half a circle 505 for (G4int i=0; i<4; i++) { 375 for (G4int i=0; i<4; i++) { 506 k1 = ii[i]; 376 k1 = ii[i]; 507 k2 = ii[(i+1)%4]; << 377 k2 = (i == 3) ? ii[0] : ii[i+1]; 508 if (r[k1] == 0. && r[k2] == 0.) vv[i] = << 378 if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1; 509 } 379 } 510 } 380 } 511 381 512 if (ii[1] == ii[2]) { 382 if (ii[1] == ii[2]) { 513 k1 = kk[ii[0]]; 383 k1 = kk[ii[0]]; 514 k2 = kk[ii[2]]; 384 k2 = kk[ii[2]]; 515 k3 = kk[ii[3]]; 385 k3 = kk[ii[3]]; 516 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2 386 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 517 if (r[ii[0]] != 0.) k1 += nds; 387 if (r[ii[0]] != 0.) k1 += nds; 518 if (r[ii[2]] != 0.) k2 += nds; 388 if (r[ii[2]] != 0.) k2 += nds; 519 if (r[ii[3]] != 0.) k3 += nds; 389 if (r[ii[3]] != 0.) k3 += nds; 520 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2 390 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 521 }else if (kk[ii[0]] == kk[ii[1]]) { 391 }else if (kk[ii[0]] == kk[ii[1]]) { 522 k1 = kk[ii[0]]; 392 k1 = kk[ii[0]]; 523 k2 = kk[ii[2]]; 393 k2 = kk[ii[2]]; 524 k3 = kk[ii[3]]; 394 k3 = kk[ii[3]]; 525 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2 395 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 526 if (r[ii[0]] != 0.) k1 += nds; 396 if (r[ii[0]] != 0.) k1 += nds; 527 if (r[ii[2]] != 0.) k2 += nds; 397 if (r[ii[2]] != 0.) k2 += nds; 528 if (r[ii[3]] != 0.) k3 += nds; 398 if (r[ii[3]] != 0.) k3 += nds; 529 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2 399 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0); 530 }else if (kk[ii[2]] == kk[ii[3]]) { 400 }else if (kk[ii[2]] == kk[ii[3]]) { 531 k1 = kk[ii[0]]; 401 k1 = kk[ii[0]]; 532 k2 = kk[ii[1]]; 402 k2 = kk[ii[1]]; 533 k3 = kk[ii[2]]; 403 k3 = kk[ii[2]]; 534 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 404 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0); 535 if (r[ii[0]] != 0.) k1 += nds; 405 if (r[ii[0]] != 0.) k1 += nds; 536 if (r[ii[1]] != 0.) k2 += nds; 406 if (r[ii[1]] != 0.) k2 += nds; 537 if (r[ii[2]] != 0.) k3 += nds; 407 if (r[ii[2]] != 0.) k3 += nds; 538 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2 408 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 539 }else{ 409 }else{ 540 k1 = kk[ii[0]]; 410 k1 = kk[ii[0]]; 541 k2 = kk[ii[1]]; 411 k2 = kk[ii[1]]; 542 k3 = kk[ii[2]]; 412 k3 = kk[ii[2]]; 543 k4 = kk[ii[3]]; 413 k4 = kk[ii[3]]; 544 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 414 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0); 545 if (r[ii[0]] != 0.) k1 += nds; 415 if (r[ii[0]] != 0.) k1 += nds; 546 if (r[ii[1]] != 0.) k2 += nds; 416 if (r[ii[1]] != 0.) k2 += nds; 547 if (r[ii[2]] != 0.) k3 += nds; 417 if (r[ii[2]] != 0.) k3 += nds; 548 if (r[ii[3]] != 0.) k4 += nds; 418 if (r[ii[3]] != 0.) k4 += nds; 549 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3 419 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 550 } 420 } 551 } 421 } 552 422 553 void HepPolyhedron::RotateAroundZ(G4int nstep, 423 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi, 554 G4int np1, G4 424 G4int np1, G4int np2, 555 const G4doubl 425 const G4double *z, G4double *r, 556 G4int nodeVis 426 G4int nodeVis, G4int edgeVis) 557 /********************************************* 427 /*********************************************************************** 558 * 428 * * 559 * Name: HepPolyhedron::RotateAroundZ 429 * Name: HepPolyhedron::RotateAroundZ Date: 27.11.96 * 560 * Author: E.Chernyaev (IHEP/Protvino) 430 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 561 * 431 * * 562 * Function: Create HepPolyhedron for a solid 432 * Function: Create HepPolyhedron for a solid produced by rotation of * 563 * two polylines around Z-axis 433 * two polylines around Z-axis * 564 * 434 * * 565 * Input: nstep - number of discrete steps, if 435 * Input: nstep - number of discrete steps, if 0 then default * 566 * phi - starting phi angle 436 * phi - starting phi angle * 567 * dphi - delta phi 437 * dphi - delta phi * 568 * np1 - number of points in external 438 * np1 - number of points in external polyline * 569 * (must be negative in case of 439 * (must be negative in case of closed polyline) * 570 * np2 - number of points in internal 440 * np2 - number of points in internal polyline (may be 1) * 571 * z[] - z-coordinates (+z >>> -z for 441 * z[] - z-coordinates (+z >>> -z for both polylines) * 572 * r[] - r-coordinates 442 * r[] - r-coordinates * 573 * nodeVis - how to Draw edges joing co 443 * nodeVis - how to Draw edges joing consecutive positions of * 574 * node during rotation 444 * node during rotation * 575 * edgeVis - how to Draw edges 445 * edgeVis - how to Draw edges * 576 * 446 * * 577 ********************************************* 447 ***********************************************************************/ 578 { 448 { 579 static const G4double wholeCircle = twopi; << 449 static const G4double wholeCircle = twopi; 580 << 450 581 // S E T R O T A T I O N P A R A M E T 451 // S E T R O T A T I O N P A R A M E T E R S 582 452 583 G4bool ifWholeCircle = std::abs(dphi-wholeCi << 453 G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false; 584 G4double delPhi = ifWholeCircle ? wholeCircl << 454 G4double delPhi = ifWholeCircle ? wholeCircle : dphi; 585 G4int nSphi = nstep; << 455 G4int nSphi = (nstep > 0) ? 586 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 456 nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5); 587 if (nSphi == 0) nSphi = 1; 457 if (nSphi == 0) nSphi = 1; 588 G4int nVphi = ifWholeCircle ? nSphi : nSphi << 458 G4int nVphi = ifWholeCircle ? nSphi : nSphi+1; 589 G4bool ifClosed = np1 <= 0; // true if exter << 459 G4bool ifClosed = np1 > 0 ? false : true; 590 << 460 591 // C O U N T V E R T I C E S << 461 // C O U N T V E R T E C E S 592 462 593 G4int absNp1 = std::abs(np1); 463 G4int absNp1 = std::abs(np1); 594 G4int absNp2 = std::abs(np2); 464 G4int absNp2 = std::abs(np2); 595 G4int i1beg = 0; 465 G4int i1beg = 0; 596 G4int i1end = absNp1-1; 466 G4int i1end = absNp1-1; 597 G4int i2beg = absNp1; 467 G4int i2beg = absNp1; 598 G4int i2end = absNp1+absNp2-1; << 468 G4int i2end = absNp1+absNp2-1; 599 G4int i, j, k; 469 G4int i, j, k; 600 470 601 for(i=i1beg; i<=i2end; i++) { 471 for(i=i1beg; i<=i2end; i++) { 602 if (std::abs(r[i]) < spatialTolerance) r[i 472 if (std::abs(r[i]) < spatialTolerance) r[i] = 0.; 603 } 473 } 604 474 605 // external polyline - check position of nod << 475 j = 0; // external nodes 606 // << 607 G4int Nverts = 0; << 608 for (i=i1beg; i<=i1end; i++) { 476 for (i=i1beg; i<=i1end; i++) { 609 Nverts += (r[i] == 0.) ? 1 : nVphi; << 477 j += (r[i] == 0.) ? 1 : nVphi; 610 } 478 } 611 479 612 // internal polyline << 480 G4bool ifSide1 = false; // internal nodes 613 // << 481 G4bool ifSide2 = false; 614 G4bool ifSide1 = false; // whether to create << 615 G4bool ifSide2 = false; // whether to create << 616 482 617 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 483 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) { 618 Nverts += (r[i2beg] == 0.) ? 1 : nVphi; << 484 j += (r[i2beg] == 0.) ? 1 : nVphi; 619 ifSide1 = true; 485 ifSide1 = true; 620 } 486 } 621 487 622 for(i=i2beg+1; i<i2end; i++) { // intermedia << 488 for(i=i2beg+1; i<i2end; i++) { 623 Nverts += (r[i] == 0.) ? 1 : nVphi; << 489 j += (r[i] == 0.) ? 1 : nVphi; 624 } 490 } 625 << 491 626 if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 492 if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) { 627 if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 493 if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi; 628 ifSide2 = true; 494 ifSide2 = true; 629 } 495 } 630 496 631 // C O U N T F A C E S 497 // C O U N T F A C E S 632 498 633 // external lateral faces << 499 k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi; // external faces 634 // << 635 G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 636 500 637 // internal lateral faces << 501 if (absNp2 > 1) { // internal faces 638 // << 639 if (absNp2 > 1) { << 640 for(i=i2beg; i<i2end; i++) { 502 for(i=i2beg; i<i2end; i++) { 641 if (r[i] > 0. || r[i+1] > 0.) Nfaces += << 503 if (r[i] > 0. || r[i+1] > 0.) k += nSphi; 642 } 504 } 643 505 644 if (ifClosed) { 506 if (ifClosed) { 645 if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 507 if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi; 646 } 508 } 647 } 509 } 648 510 649 // bottom and top faces << 511 if (!ifClosed) { // side faces 650 // << 512 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi; 651 if (!ifClosed) { << 513 if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi; 652 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] << 653 if (ifSide2 && (r[i1end] > 0. || r[i2end] << 654 } 514 } 655 515 656 // phi_wedge faces << 516 if (!ifWholeCircle) { // phi_side faces 657 // << 517 k += ifClosed ? 2*absNp1 : 2*(absNp1-1); 658 if (!ifWholeCircle) { << 659 Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 660 } 518 } 661 519 662 // A L L O C A T E M E M O R Y 520 // A L L O C A T E M E M O R Y 663 521 664 AllocateMemory(Nverts, Nfaces); << 522 AllocateMemory(j, k); 665 if (pV == nullptr || pF == nullptr) return; << 666 523 667 // G E N E R A T E V E R T I C E S << 524 // G E N E R A T E V E R T E C E S 668 525 669 G4int *kk; // array of start indices along p << 526 G4int *kk; 670 kk = new G4int[absNp1+absNp2]; 527 kk = new G4int[absNp1+absNp2]; 671 528 672 // external polyline << 529 k = 1; 673 // << 674 k = 1; // free position in array of vertices << 675 for(i=i1beg; i<=i1end; i++) { 530 for(i=i1beg; i<=i1end; i++) { 676 kk[i] = k; 531 kk[i] = k; 677 if (r[i] == 0.) 532 if (r[i] == 0.) 678 { pV[k++] = G4Point3D(0, 0, z[i]); } else 533 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 679 } 534 } 680 535 681 // first point of internal polyline << 682 // << 683 i = i2beg; 536 i = i2beg; 684 if (ifSide1) { 537 if (ifSide1) { 685 kk[i] = k; 538 kk[i] = k; 686 if (r[i] == 0.) 539 if (r[i] == 0.) 687 { pV[k++] = G4Point3D(0, 0, z[i]); } else 540 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 688 }else{ 541 }else{ 689 kk[i] = kk[i1beg]; 542 kk[i] = kk[i1beg]; 690 } 543 } 691 544 692 // intermediate points of internal polyline << 693 // << 694 for(i=i2beg+1; i<i2end; i++) { 545 for(i=i2beg+1; i<i2end; i++) { 695 kk[i] = k; 546 kk[i] = k; 696 if (r[i] == 0.) 547 if (r[i] == 0.) 697 { pV[k++] = G4Point3D(0, 0, z[i]); } else 548 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 698 } 549 } 699 550 700 // last point of internal polyline << 701 // << 702 if (absNp2 > 1) { 551 if (absNp2 > 1) { 703 i = i2end; 552 i = i2end; 704 if (ifSide2) { 553 if (ifSide2) { 705 kk[i] = k; 554 kk[i] = k; 706 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, 555 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]); 707 }else{ 556 }else{ 708 kk[i] = kk[i1end]; 557 kk[i] = kk[i1end]; 709 } 558 } 710 } 559 } 711 560 712 // set vertices << 713 // << 714 G4double cosPhi, sinPhi; 561 G4double cosPhi, sinPhi; 715 562 716 for(j=0; j<nVphi; j++) { 563 for(j=0; j<nVphi; j++) { 717 cosPhi = std::cos(phi+j*delPhi/nSphi); 564 cosPhi = std::cos(phi+j*delPhi/nSphi); 718 sinPhi = std::sin(phi+j*delPhi/nSphi); 565 sinPhi = std::sin(phi+j*delPhi/nSphi); 719 for(i=i1beg; i<=i2end; i++) { 566 for(i=i1beg; i<=i2end; i++) { 720 if (r[i] != 0.) 567 if (r[i] != 0.) 721 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[ 568 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]); 722 } 569 } 723 } 570 } 724 571 725 // G E N E R A T E F A C E S << 572 // G E N E R A T E E X T E R N A L F A C E S 726 573 727 // external faces << 728 // << 729 G4int v1,v2; 574 G4int v1,v2; 730 575 731 k = 1; // free position in array of faces pF << 576 k = 1; 732 v2 = ifClosed ? nodeVis : 1; 577 v2 = ifClosed ? nodeVis : 1; 733 for(i=i1beg; i<i1end; i++) { 578 for(i=i1beg; i<i1end; i++) { 734 v1 = v2; 579 v1 = v2; 735 if (!ifClosed && i == i1end-1) { 580 if (!ifClosed && i == i1end-1) { 736 v2 = 1; 581 v2 = 1; 737 }else{ 582 }else{ 738 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2] 583 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 739 } 584 } 740 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v 585 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2, 741 edgeVis, ifWholeCircle, nSphi, 586 edgeVis, ifWholeCircle, nSphi, k); 742 } 587 } 743 if (ifClosed) { 588 if (ifClosed) { 744 RotateEdge(kk[i1end], kk[i1beg], r[i1end], 589 RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis, 745 edgeVis, ifWholeCircle, nSphi, 590 edgeVis, ifWholeCircle, nSphi, k); 746 } 591 } 747 592 748 // internal faces << 593 // G E N E R A T E I N T E R N A L F A C E S 749 // << 594 750 if (absNp2 > 1) { 595 if (absNp2 > 1) { 751 v2 = ifClosed ? nodeVis : 1; 596 v2 = ifClosed ? nodeVis : 1; 752 for(i=i2beg; i<i2end; i++) { 597 for(i=i2beg; i<i2end; i++) { 753 v1 = v2; 598 v1 = v2; 754 if (!ifClosed && i==i2end-1) { 599 if (!ifClosed && i==i2end-1) { 755 v2 = 1; 600 v2 = 1; 756 }else{ 601 }else{ 757 v2 = (r[i] == r[i+1] && r[i+1] == r[i+ 602 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 758 } 603 } 759 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], 604 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1, 760 edgeVis, ifWholeCircle, nSphi 605 edgeVis, ifWholeCircle, nSphi, k); 761 } 606 } 762 if (ifClosed) { 607 if (ifClosed) { 763 RotateEdge(kk[i2beg], kk[i2end], r[i2beg 608 RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis, 764 edgeVis, ifWholeCircle, nSphi 609 edgeVis, ifWholeCircle, nSphi, k); 765 } 610 } 766 } 611 } 767 612 768 // bottom and top faces << 613 // G E N E R A T E S I D E F A C E S 769 // << 614 770 if (!ifClosed) { 615 if (!ifClosed) { 771 if (ifSide1) { 616 if (ifSide1) { 772 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg 617 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1, 773 -1, ifWholeCircle, nSphi, k); 618 -1, ifWholeCircle, nSphi, k); 774 } 619 } 775 if (ifSide2) { 620 if (ifSide2) { 776 RotateEdge(kk[i1end], kk[i2end], r[i1end 621 RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1, 777 -1, ifWholeCircle, nSphi, k); 622 -1, ifWholeCircle, nSphi, k); 778 } 623 } 779 } 624 } 780 625 781 // phi_wedge faces in case of incomplete cir << 626 // G E N E R A T E S I D E F A C E S for the case of incomplete circle 782 // << 627 783 if (!ifWholeCircle) { 628 if (!ifWholeCircle) { 784 629 785 G4int ii[4], vv[4]; 630 G4int ii[4], vv[4]; 786 631 787 if (ifClosed) { 632 if (ifClosed) { 788 for (i=i1beg; i<=i1end; i++) { 633 for (i=i1beg; i<=i1end; i++) { 789 ii[0] = i; 634 ii[0] = i; 790 ii[3] = (i == i1end) ? i1beg : i+1; 635 ii[3] = (i == i1end) ? i1beg : i+1; 791 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 636 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 792 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 637 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 793 vv[0] = -1; 638 vv[0] = -1; 794 vv[1] = 1; 639 vv[1] = 1; 795 vv[2] = -1; 640 vv[2] = -1; 796 vv[3] = 1; 641 vv[3] = 1; 797 SetSideFacets(ii, vv, kk, r, delPhi, n << 642 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 798 } 643 } 799 }else{ 644 }else{ 800 for (i=i1beg; i<i1end; i++) { 645 for (i=i1beg; i<i1end; i++) { 801 ii[0] = i; 646 ii[0] = i; 802 ii[3] = i+1; 647 ii[3] = i+1; 803 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 648 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 804 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 649 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 805 vv[0] = (i == i1beg) ? 1 : -1; 650 vv[0] = (i == i1beg) ? 1 : -1; 806 vv[1] = 1; 651 vv[1] = 1; 807 vv[2] = (i == i1end-1) ? 1 : -1; 652 vv[2] = (i == i1end-1) ? 1 : -1; 808 vv[3] = 1; 653 vv[3] = 1; 809 SetSideFacets(ii, vv, kk, r, delPhi, n << 654 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 810 } 655 } 811 } << 656 } 812 } 657 } 813 658 814 delete [] kk; // free memory << 659 delete [] kk; 815 660 816 // final check << 817 // << 818 if (k-1 != nface) { 661 if (k-1 != nface) { 819 std::cerr 662 std::cerr 820 << "HepPolyhedron::RotateAroundZ: number << 663 << "Polyhedron::RotateAroundZ: number of generated faces (" 821 << k-1 << ") is not equal to the number 664 << k-1 << ") is not equal to the number of allocated faces (" 822 << nface << ")" 665 << nface << ")" 823 << std::endl; 666 << std::endl; 824 } 667 } 825 } 668 } 826 669 827 void << 828 HepPolyhedron::RotateContourAroundZ(G4int nste << 829 G4double p << 830 G4double d << 831 const std: << 832 G4int node << 833 G4int edge << 834 /********************************************* << 835 * << 836 * Name: HepPolyhedron::RotateContourAroundZ << 837 * Author: E.Tcherniaev (E.Chernyaev) << 838 * << 839 * Function: Create HepPolyhedron for a solid << 840 * a closed polyline (rz-contour) ar << 841 * << 842 * Input: nstep - number of discrete steps, if << 843 * phi - starting phi angle << 844 * dphi - delta phi << 845 * rz - rz-contour << 846 * nodeVis - how to Draw edges joing co << 847 * node during rotation << 848 * edgeVis - how to Draw edges << 849 * << 850 ********************************************* << 851 { << 852 // S E T R O T A T I O N P A R A M E T << 853 << 854 G4bool ifWholeCircle = std::abs(dphi - twopi << 855 G4double delPhi = (ifWholeCircle) ? twopi : << 856 G4int nSphi = nstep; << 857 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 858 if (nSphi == 0) nSphi = 1; << 859 G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 860 << 861 // C A L C U L A T E A R E A << 862 << 863 G4int Nrz = (G4int)rz.size(); << 864 G4double area = 0; << 865 for (G4int i = 0; i < Nrz; ++i) << 866 { << 867 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 868 area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 869 } << 870 << 871 // P R E P A R E P O L Y L I N E << 872 << 873 auto r = new G4double[Nrz]; << 874 auto z = new G4double[Nrz]; << 875 for (G4int i = 0; i < Nrz; ++i) << 876 { << 877 r[i] = rz[i].x(); << 878 z[i] = rz[i].y(); << 879 if (std::abs(r[i]) < spatialTolerance) r[i << 880 } << 881 << 882 // C O U N T V E R T I C E S A N D F << 883 << 884 G4int Nverts = 0; << 885 for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 886 << 887 G4int Nedges = Nrz; << 888 for (G4int i = 0; i < Nrz; ++i) << 889 { << 890 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 891 Nedges -= static_cast<int>(r[k] == 0 && r[ << 892 } << 893 << 894 G4int Nfaces = Nedges*nSphi; / << 895 if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 896 << 897 // A L L O C A T E M E M O R Y << 898 << 899 AllocateMemory(Nverts, Nfaces); << 900 if (pV == nullptr || pF == nullptr) << 901 { << 902 delete [] r; << 903 delete [] z; << 904 return; << 905 } << 906 << 907 // S E T V E R T I C E S << 908 << 909 auto kk = new G4int[Nrz]; // start indices a << 910 G4int kfree = 1; // current free position in << 911 << 912 // set start indices, set vertices for nodes << 913 for(G4int i = 0; i < Nrz; ++i) << 914 { << 915 kk[i] = kfree; << 916 if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 917 if (r[i] != 0.) kfree += nVphi; << 918 } << 919 << 920 // set vertices by rotating r << 921 for(G4int j = 0; j < nVphi; ++j) << 922 { << 923 G4double cosPhi = std::cos(phi + j*delPhi/ << 924 G4double sinPhi = std::sin(phi + j*delPhi/ << 925 for(G4int i = 0; i < Nrz; ++i) << 926 { << 927 if (r[i] != 0.) << 928 pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 929 } << 930 } << 931 << 932 // S E T F A C E S << 933 << 934 kfree = 1; // current free position in array << 935 for(G4int i = 0; i < Nrz; ++i) << 936 { << 937 G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 938 G4int i2 = i; << 939 if (area < 0.) std::swap(i1, i2); << 940 RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 941 edgeVis, ifWholeCircle, nSphi, << 942 } << 943 << 944 // S E T P H I _ W E D G E F A C E S << 945 << 946 if (!ifWholeCircle) << 947 { << 948 std::vector<G4int> triangles; << 949 TriangulatePolygon(rz, triangles); << 950 << 951 G4int ii[4], vv[4]; << 952 G4int ntria = G4int(triangles.size()/3); << 953 for (G4int i = 0; i < ntria; ++i) << 954 { << 955 G4int i1 = triangles[0 + i*3]; << 956 G4int i2 = triangles[1 + i*3]; << 957 G4int i3 = triangles[2 + i*3]; << 958 if (area < 0.) std::swap(i1, i3); << 959 G4int v1 = (std::abs(i2-i1) == 1 || std: << 960 G4int v2 = (std::abs(i3-i2) == 1 || std: << 961 G4int v3 = (std::abs(i1-i3) == 1 || std: << 962 ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 963 vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 964 SetSideFacets(ii, vv, kk, r, delPhi, nSp << 965 } << 966 } << 967 << 968 // free memory << 969 delete [] r; << 970 delete [] z; << 971 delete [] kk; << 972 << 973 // final check << 974 if (kfree - 1 != nface) << 975 { << 976 std::cerr << 977 << "HepPolyhedron::RotateContourAroundZ: << 978 << kfree-1 << ") is not equal to the num << 979 << nface << ")" << 980 << std::endl; << 981 } << 982 } << 983 << 984 G4bool << 985 HepPolyhedron::TriangulatePolygon(const std::v << 986 std::vector< << 987 /********************************************* << 988 * << 989 * Name: HepPolyhedron::TriangulatePolygon << 990 * Author: E.Tcherniaev (E.Chernyaev) << 991 * << 992 * Function: Simple implementation of "ear cli << 993 * triangulation of a simple contour << 994 * the result in a std::vector as tr << 995 * << 996 * If triangulation is sucsessfull t << 997 * returns true, otherwise false << 998 * << 999 * Remark: It's a copy of G4GeomTools::Trian << 1000 * << 1001 ******************************************** << 1002 { << 1003 result.resize(0); << 1004 G4int n = (G4int)polygon.size(); << 1005 if (n < 3) return false; << 1006 << 1007 // calculate area << 1008 // << 1009 G4double area = 0.; << 1010 for(G4int i = 0; i < n; ++i) << 1011 { << 1012 G4int k = (i == 0) ? n - 1 : i - 1; << 1013 area += polygon[k].x()*polygon[i].y() - p << 1014 } << 1015 << 1016 // allocate and initialize list of Vertices << 1017 // we want a counter-clockwise polygon in V << 1018 // << 1019 auto V = new G4int[n]; << 1020 if (area > 0.) << 1021 for (G4int i = 0; i < n; ++i) V[i] = i; << 1022 else << 1023 for (G4int i = 0; i < n; ++i) V[i] = (n - << 1024 << 1025 // Triangulation: remove nv-2 Vertices, cr << 1026 // << 1027 G4int nv = n; << 1028 G4int count = 2*nv; // error detection coun << 1029 for(G4int b = nv - 1; nv > 2; ) << 1030 { << 1031 // ERROR: if we loop, it is probably a no << 1032 if ((count--) <= 0) << 1033 { << 1034 delete [] V; << 1035 if (area < 0.) std::reverse(result.begi << 1036 return false; << 1037 } << 1038 << 1039 // three consecutive vertices in current << 1040 G4int a = (b < nv) ? b : 0; // previo << 1041 b = (a+1 < nv) ? a+1 : 0; // curren << 1042 G4int c = (b+1 < nv) ? b+1 : 0; // next << 1043 << 1044 if (CheckSnip(polygon, a,b,c, nv,V)) << 1045 { << 1046 // output Triangle << 1047 result.push_back(V[a]); << 1048 result.push_back(V[b]); << 1049 result.push_back(V[c]); << 1050 << 1051 // remove vertex b from remaining polyg << 1052 nv--; << 1053 for(G4int i = b; i < nv; ++i) V[i] = V[ << 1054 << 1055 count = 2*nv; // resest error detection << 1056 } << 1057 } << 1058 delete [] V; << 1059 if (area < 0.) std::reverse(result.begin(), << 1060 return true; << 1061 } << 1062 << 1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 1064 G4int a, G4in << 1065 G4int n, cons << 1066 /******************************************** << 1067 * << 1068 * Name: HepPolyhedron::CheckSnip << 1069 * Author: E.Tcherniaev (E.Chernyaev) << 1070 * << 1071 * Function: Check for a valid snip, << 1072 * it is a helper functionfor Trian << 1073 * << 1074 ******************************************** << 1075 { << 1076 static const G4double kCarTolerance = 1.e-9 << 1077 << 1078 // check orientation of Triangle << 1079 G4double Ax = contour[V[a]].x(), Ay = conto << 1080 G4double Bx = contour[V[b]].x(), By = conto << 1081 G4double Cx = contour[V[c]].x(), Cy = conto << 1082 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 1083 << 1084 // check that there is no point inside Tria << 1085 G4double xmin = std::min(std::min(Ax,Bx),Cx << 1086 G4double xmax = std::max(std::max(Ax,Bx),Cx << 1087 G4double ymin = std::min(std::min(Ay,By),Cy << 1088 G4double ymax = std::max(std::max(Ay,By),Cy << 1089 << 1090 for (G4int i=0; i<n; ++i) << 1091 { << 1092 if((i == a) || (i == b) || (i == c)) cont << 1093 G4double Px = contour[V[i]].x(); << 1094 if (Px < xmin || Px > xmax) continue; << 1095 G4double Py = contour[V[i]].y(); << 1096 if (Py < ymin || Py > ymax) continue; << 1097 // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 1098 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 1099 { << 1100 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 1101 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 1102 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 1103 } << 1104 else << 1105 { << 1106 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 1107 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 1108 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 1109 } << 1110 return false; << 1111 } << 1112 return true; << 1113 } << 1114 << 1115 void HepPolyhedron::SetReferences() 670 void HepPolyhedron::SetReferences() 1116 /******************************************** 671 /*********************************************************************** 1117 * 672 * * 1118 * Name: HepPolyhedron::SetReferences 673 * Name: HepPolyhedron::SetReferences Date: 04.12.96 * 1119 * Author: E.Chernyaev (IHEP/Protvino) 674 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1120 * 675 * * 1121 * Function: For each edge set reference to n 676 * Function: For each edge set reference to neighbouring facet * 1122 * 677 * * 1123 ******************************************** 678 ***********************************************************************/ 1124 { 679 { 1125 if (nface <= 0) return; 680 if (nface <= 0) return; 1126 681 1127 struct edgeListMember { 682 struct edgeListMember { 1128 edgeListMember *next; 683 edgeListMember *next; 1129 G4int v2; 684 G4int v2; 1130 G4int iface; 685 G4int iface; 1131 G4int iedge; 686 G4int iedge; 1132 } *edgeList, *freeList, **headList; 687 } *edgeList, *freeList, **headList; 1133 688 1134 << 689 1135 // A L L O C A T E A N D I N I T I A 690 // A L L O C A T E A N D I N I T I A T E L I S T S 1136 691 1137 edgeList = new edgeListMember[2*nface]; 692 edgeList = new edgeListMember[2*nface]; 1138 headList = new edgeListMember*[nvert]; 693 headList = new edgeListMember*[nvert]; 1139 << 694 1140 G4int i; 695 G4int i; 1141 for (i=0; i<nvert; i++) { 696 for (i=0; i<nvert; i++) { 1142 headList[i] = nullptr; << 697 headList[i] = 0; 1143 } 698 } 1144 freeList = edgeList; 699 freeList = edgeList; 1145 for (i=0; i<2*nface-1; i++) { 700 for (i=0; i<2*nface-1; i++) { 1146 edgeList[i].next = &edgeList[i+1]; 701 edgeList[i].next = &edgeList[i+1]; 1147 } 702 } 1148 edgeList[2*nface-1].next = nullptr; << 703 edgeList[2*nface-1].next = 0; 1149 704 1150 // L O O P A L O N G E D G E S 705 // L O O P A L O N G E D G E S 1151 706 1152 G4int iface, iedge, nedge, i1, i2, k1, k2; 707 G4int iface, iedge, nedge, i1, i2, k1, k2; 1153 edgeListMember *prev, *cur; 708 edgeListMember *prev, *cur; 1154 << 709 1155 for(iface=1; iface<=nface; iface++) { 710 for(iface=1; iface<=nface; iface++) { 1156 nedge = (pF[iface].edge[3].v == 0) ? 3 : 711 nedge = (pF[iface].edge[3].v == 0) ? 3 : 4; 1157 for (iedge=0; iedge<nedge; iedge++) { 712 for (iedge=0; iedge<nedge; iedge++) { 1158 i1 = iedge; 713 i1 = iedge; 1159 i2 = (iedge < nedge-1) ? iedge+1 : 0; 714 i2 = (iedge < nedge-1) ? iedge+1 : 0; 1160 i1 = std::abs(pF[iface].edge[i1].v); 715 i1 = std::abs(pF[iface].edge[i1].v); 1161 i2 = std::abs(pF[iface].edge[i2].v); 716 i2 = std::abs(pF[iface].edge[i2].v); 1162 k1 = (i1 < i2) ? i1 : i2; // k 717 k1 = (i1 < i2) ? i1 : i2; // k1 = ::min(i1,i2); 1163 k2 = (i1 > i2) ? i1 : i2; // k 718 k2 = (i1 > i2) ? i1 : i2; // k2 = ::max(i1,i2); 1164 << 719 1165 // check head of the List corresponding 720 // check head of the List corresponding to k1 1166 cur = headList[k1]; 721 cur = headList[k1]; 1167 if (cur == nullptr) { << 722 if (cur == 0) { 1168 headList[k1] = freeList; 723 headList[k1] = freeList; 1169 if (freeList == nullptr) { << 1170 std::cerr << 1171 << "Polyhedron::SetReferences: bad << 1172 << std::endl; << 1173 break; << 1174 } << 1175 freeList = freeList->next; 724 freeList = freeList->next; 1176 cur = headList[k1]; 725 cur = headList[k1]; 1177 cur->next = nullptr; << 726 cur->next = 0; 1178 cur->v2 = k2; 727 cur->v2 = k2; 1179 cur->iface = iface; 728 cur->iface = iface; 1180 cur->iedge = iedge; 729 cur->iedge = iedge; 1181 continue; 730 continue; 1182 } 731 } 1183 732 1184 if (cur->v2 == k2) { 733 if (cur->v2 == k2) { 1185 headList[k1] = cur->next; 734 headList[k1] = cur->next; 1186 cur->next = freeList; 735 cur->next = freeList; 1187 freeList = cur; << 736 freeList = cur; 1188 pF[iface].edge[iedge].f = cur->iface; 737 pF[iface].edge[iedge].f = cur->iface; 1189 pF[cur->iface].edge[cur->iedge].f = i 738 pF[cur->iface].edge[cur->iedge].f = iface; 1190 i1 = (pF[iface].edge[iedge].v < 0) ? 739 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1191 i2 = (pF[cur->iface].edge[cur->iedge] 740 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1192 if (i1 != i2) { 741 if (i1 != i2) { 1193 std::cerr 742 std::cerr 1194 << "Polyhedron::SetReferences: di 743 << "Polyhedron::SetReferences: different edge visibility " 1195 << iface << "/" << iedge << "/" 744 << iface << "/" << iedge << "/" 1196 << pF[iface].edge[iedge].v << " a 745 << pF[iface].edge[iedge].v << " and " 1197 << cur->iface << "/" << cur->iedg 746 << cur->iface << "/" << cur->iedge << "/" 1198 << pF[cur->iface].edge[cur->iedge 747 << pF[cur->iface].edge[cur->iedge].v 1199 << std::endl; 748 << std::endl; 1200 } 749 } 1201 continue; 750 continue; 1202 } 751 } 1203 752 1204 // check List itself 753 // check List itself 1205 for (;;) { 754 for (;;) { 1206 prev = cur; 755 prev = cur; 1207 cur = prev->next; 756 cur = prev->next; 1208 if (cur == nullptr) { << 757 if (cur == 0) { 1209 prev->next = freeList; 758 prev->next = freeList; 1210 if (freeList == nullptr) { << 1211 std::cerr << 1212 << "Polyhedron::SetReferences: ba << 1213 << std::endl; << 1214 break; << 1215 } << 1216 freeList = freeList->next; 759 freeList = freeList->next; 1217 cur = prev->next; 760 cur = prev->next; 1218 cur->next = nullptr; << 761 cur->next = 0; 1219 cur->v2 = k2; 762 cur->v2 = k2; 1220 cur->iface = iface; 763 cur->iface = iface; 1221 cur->iedge = iedge; 764 cur->iedge = iedge; 1222 break; 765 break; 1223 } 766 } 1224 767 1225 if (cur->v2 == k2) { 768 if (cur->v2 == k2) { 1226 prev->next = cur->next; 769 prev->next = cur->next; 1227 cur->next = freeList; 770 cur->next = freeList; 1228 freeList = cur; << 771 freeList = cur; 1229 pF[iface].edge[iedge].f = cur->ifac 772 pF[iface].edge[iedge].f = cur->iface; 1230 pF[cur->iface].edge[cur->iedge].f = 773 pF[cur->iface].edge[cur->iedge].f = iface; 1231 i1 = (pF[iface].edge[iedge].v < 0) 774 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1232 i2 = (pF[cur->iface].edge[cur->iedg 775 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1233 if (i1 != i2) { 776 if (i1 != i2) { 1234 std::cerr 777 std::cerr 1235 << "Polyhedron::SetReferences 778 << "Polyhedron::SetReferences: different edge visibility " 1236 << iface << "/" << iedge << " 779 << iface << "/" << iedge << "/" 1237 << pF[iface].edge[iedge].v << 780 << pF[iface].edge[iedge].v << " and " 1238 << cur->iface << "/" << cur-> 781 << cur->iface << "/" << cur->iedge << "/" 1239 << pF[cur->iface].edge[cur->i 782 << pF[cur->iface].edge[cur->iedge].v 1240 << std::endl; 783 << std::endl; 1241 } 784 } 1242 break; 785 break; 1243 } 786 } 1244 } 787 } 1245 } 788 } 1246 } 789 } 1247 790 1248 // C H E C K T H A T A L L L I S T S 791 // C H E C K T H A T A L L L I S T S A R E E M P T Y 1249 792 1250 for (i=0; i<nvert; i++) { 793 for (i=0; i<nvert; i++) { 1251 if (headList[i] != nullptr) { << 794 if (headList[i] != 0) { 1252 std::cerr 795 std::cerr 1253 << "Polyhedron::SetReferences: List " 796 << "Polyhedron::SetReferences: List " << i << " is not empty" 1254 << std::endl; 797 << std::endl; 1255 } 798 } 1256 } 799 } 1257 800 1258 // F R E E M E M O R Y 801 // F R E E M E M O R Y 1259 802 1260 delete [] edgeList; 803 delete [] edgeList; 1261 delete [] headList; 804 delete [] headList; 1262 } 805 } 1263 806 1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 1265 /******************************************** << 1266 * << 1267 * Name: HepPolyhedron::JoinCoplanarFacets << 1268 * Author: E.Tcherniaev (E.Chernyaev) << 1269 * << 1270 * Function: Join couples of triangular facet << 1271 * where it is possible << 1272 * << 1273 ******************************************** << 1274 { << 1275 G4int njoin = 0; << 1276 for (G4int icur = 1; icur <= nface; ++icur) << 1277 { << 1278 // skip if already joined or quadrangle << 1279 if (pF[icur].edge[0].v == 0) continue; << 1280 if (pF[icur].edge[3].v != 0) continue; << 1281 // skip if all references point to alread << 1282 if (pF[icur].edge[0].f < icur && << 1283 pF[icur].edge[1].f < icur && << 1284 pF[icur].edge[2].f < icur) continue; << 1285 // compute plane equation << 1286 G4Normal3D norm = GetUnitNormal(icur); << 1287 G4double dd = norm.dot(pV[pF[icur].edge[0 << 1288 G4int vcur0 = std::abs(pF[icur].edge[0].v << 1289 G4int vcur1 = std::abs(pF[icur].edge[1].v << 1290 G4int vcur2 = std::abs(pF[icur].edge[2].v << 1291 // select neighbouring facet << 1292 G4int kcheck = 0, icheck = 0, vcheck = 0; << 1293 G4double dist = DBL_MAX; << 1294 for (G4int k = 0; k < 3; ++k) << 1295 { << 1296 G4int itmp = pF[icur].edge[k].f; << 1297 // skip if already checked, joined or q << 1298 if (itmp < icur) continue; << 1299 if (pF[itmp].edge[0].v == 0 || << 1300 pF[itmp].edge[3].v != 0) continue; << 1301 // get candidate vertex << 1302 G4int vtmp = 0; << 1303 for (G4int j = 0; j < 3; ++j) << 1304 { << 1305 vtmp = std::abs(pF[itmp].edge[j].v); << 1306 if (vtmp != vcur0 && vtmp != vcur1 && vtmp << 1307 } << 1308 // check distance to the plane << 1309 G4double dtmp = std::abs(norm.dot(pV[vt << 1310 if (dtmp > tolerance || dtmp >= dist) c << 1311 dist = dtmp; << 1312 kcheck = k; << 1313 icheck = itmp; << 1314 vcheck = vtmp; << 1315 } << 1316 if (icheck == 0) continue; // no facet se << 1317 // join facets << 1318 njoin++; << 1319 pF[icheck].edge[0].v = 0; // mark facet a << 1320 if (kcheck == 0) << 1321 { << 1322 pF[icur].edge[3].v = pF[icur].edge[2].v << 1323 pF[icur].edge[2].v = pF[icur].edge[1].v << 1324 pF[icur].edge[1].v = vcheck; << 1325 } << 1326 else if (kcheck == 1) << 1327 { << 1328 pF[icur].edge[3].v = pF[icur].edge[2].v << 1329 pF[icur].edge[2].v = vcheck; << 1330 } << 1331 else << 1332 { << 1333 pF[icur].edge[3].v = vcheck; << 1334 } << 1335 } << 1336 if (njoin == 0) return; // no joined facets << 1337 << 1338 // restructure facets << 1339 G4int nnew = 0; << 1340 for (G4int icur = 1; icur <= nface; ++icur) << 1341 { << 1342 if (pF[icur].edge[0].v == 0) continue; << 1343 nnew++; << 1344 pF[nnew].edge[0].v = pF[icur].edge[0].v; << 1345 pF[nnew].edge[1].v = pF[icur].edge[1].v; << 1346 pF[nnew].edge[2].v = pF[icur].edge[2].v; << 1347 pF[nnew].edge[3].v = pF[icur].edge[3].v; << 1348 } << 1349 nface = nnew; << 1350 SetReferences(); << 1351 } << 1352 << 1353 void HepPolyhedron::InvertFacets() 807 void HepPolyhedron::InvertFacets() 1354 /******************************************** 808 /*********************************************************************** 1355 * 809 * * 1356 * Name: HepPolyhedron::InvertFacets 810 * Name: HepPolyhedron::InvertFacets Date: 01.12.99 * 1357 * Author: E.Chernyaev 811 * Author: E.Chernyaev Revised: * 1358 * 812 * * 1359 * Function: Invert the order of the nodes in 813 * Function: Invert the order of the nodes in the facets * 1360 * 814 * * 1361 ******************************************** 815 ***********************************************************************/ 1362 { 816 { 1363 if (nface <= 0) return; 817 if (nface <= 0) return; 1364 G4int i, k, nnode, v[4],f[4]; 818 G4int i, k, nnode, v[4],f[4]; 1365 for (i=1; i<=nface; i++) { 819 for (i=1; i<=nface; i++) { 1366 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 820 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 1367 for (k=0; k<nnode; k++) { 821 for (k=0; k<nnode; k++) { 1368 v[k] = (k+1 == nnode) ? pF[i].edge[0].v 822 v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v; 1369 if (v[k] * pF[i].edge[k].v < 0) v[k] = 823 if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k]; 1370 f[k] = pF[i].edge[k].f; 824 f[k] = pF[i].edge[k].f; 1371 } 825 } 1372 for (k=0; k<nnode; k++) { 826 for (k=0; k<nnode; k++) { 1373 pF[i].edge[nnode-1-k].v = v[k]; 827 pF[i].edge[nnode-1-k].v = v[k]; 1374 pF[i].edge[nnode-1-k].f = f[k]; 828 pF[i].edge[nnode-1-k].f = f[k]; 1375 } 829 } 1376 } 830 } 1377 } 831 } 1378 832 1379 HepPolyhedron & HepPolyhedron::Transform(cons 833 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t) 1380 /******************************************** 834 /*********************************************************************** 1381 * 835 * * 1382 * Name: HepPolyhedron::Transform 836 * Name: HepPolyhedron::Transform Date: 01.12.99 * 1383 * Author: E.Chernyaev 837 * Author: E.Chernyaev Revised: * 1384 * 838 * * 1385 * Function: Make transformation of the polyh 839 * Function: Make transformation of the polyhedron * 1386 * 840 * * 1387 ******************************************** 841 ***********************************************************************/ 1388 { 842 { 1389 if (nvert > 0) { 843 if (nvert > 0) { 1390 for (G4int i=1; i<=nvert; i++) { pV[i] = 844 for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; } 1391 845 1392 // C H E C K D E T E R M I N A N T A 846 // C H E C K D E T E R M I N A N T A N D 1393 // I N V E R T F A C E T S I F I T 847 // I N V E R T F A C E T S I F I T I S N E G A T I V E 1394 848 1395 G4Vector3D d = t * G4Vector3D(0,0,0); 849 G4Vector3D d = t * G4Vector3D(0,0,0); 1396 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 850 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 1397 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 851 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 1398 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 852 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 1399 if ((x.cross(y))*z < 0) InvertFacets(); 853 if ((x.cross(y))*z < 0) InvertFacets(); 1400 } 854 } 1401 return *this; 855 return *this; 1402 } 856 } 1403 857 1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in 858 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const 1405 /******************************************** 859 /*********************************************************************** 1406 * 860 * * 1407 * Name: HepPolyhedron::GetNextVertexIndex 861 * Name: HepPolyhedron::GetNextVertexIndex Date: 03.09.96 * 1408 * Author: Yasuhide Sawada 862 * Author: Yasuhide Sawada Revised: * 1409 * 863 * * 1410 * Function: 864 * Function: * 1411 * 865 * * 1412 ******************************************** 866 ***********************************************************************/ 1413 { 867 { 1414 static G4ThreadLocal G4int iFace = 1; << 868 static G4int iFace = 1; 1415 static G4ThreadLocal G4int iQVertex = 0; << 869 static G4int iQVertex = 0; 1416 G4int vIndex = pF[iFace].edge[iQVertex].v; 870 G4int vIndex = pF[iFace].edge[iQVertex].v; 1417 871 1418 edgeFlag = (vIndex > 0) ? 1 : 0; 872 edgeFlag = (vIndex > 0) ? 1 : 0; 1419 index = std::abs(vIndex); 873 index = std::abs(vIndex); 1420 874 1421 if (iQVertex >= 3 || pF[iFace].edge[iQVerte 875 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1422 iQVertex = 0; 876 iQVertex = 0; 1423 if (++iFace > nface) iFace = 1; 877 if (++iFace > nface) iFace = 1; 1424 return false; // Last Edge 878 return false; // Last Edge >> 879 }else{ >> 880 ++iQVertex; >> 881 return true; // not Last Edge 1425 } 882 } 1426 << 1427 ++iQVertex; << 1428 return true; // not Last Edge << 1429 } 883 } 1430 884 1431 G4Point3D HepPolyhedron::GetVertex(G4int inde 885 G4Point3D HepPolyhedron::GetVertex(G4int index) const 1432 /******************************************** 886 /*********************************************************************** 1433 * 887 * * 1434 * Name: HepPolyhedron::GetVertex 888 * Name: HepPolyhedron::GetVertex Date: 03.09.96 * 1435 * Author: Yasuhide Sawada 889 * Author: Yasuhide Sawada Revised: 17.11.99 * 1436 * 890 * * 1437 * Function: Get vertex of the index. 891 * Function: Get vertex of the index. * 1438 * 892 * * 1439 ******************************************** 893 ***********************************************************************/ 1440 { 894 { 1441 if (index <= 0 || index > nvert) { 895 if (index <= 0 || index > nvert) { 1442 std::cerr 896 std::cerr 1443 << "HepPolyhedron::GetVertex: irrelevan 897 << "HepPolyhedron::GetVertex: irrelevant index " << index 1444 << std::endl; 898 << std::endl; 1445 return G4Point3D(); 899 return G4Point3D(); 1446 } 900 } 1447 return pV[index]; 901 return pV[index]; 1448 } 902 } 1449 903 1450 G4bool 904 G4bool 1451 HepPolyhedron::GetNextVertex(G4Point3D &verte 905 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const 1452 /******************************************** 906 /*********************************************************************** 1453 * 907 * * 1454 * Name: HepPolyhedron::GetNextVertex 908 * Name: HepPolyhedron::GetNextVertex Date: 22.07.96 * 1455 * Author: John Allison 909 * Author: John Allison Revised: * 1456 * 910 * * 1457 * Function: Get vertices of the quadrilatera 911 * Function: Get vertices of the quadrilaterals in order for each * 1458 * face in face order. Returns fal 912 * face in face order. Returns false when finished each * 1459 * face. 913 * face. * 1460 * 914 * * 1461 ******************************************** 915 ***********************************************************************/ 1462 { 916 { 1463 G4int index; 917 G4int index; 1464 G4bool rep = GetNextVertexIndex(index, edge 918 G4bool rep = GetNextVertexIndex(index, edgeFlag); 1465 vertex = pV[index]; 919 vertex = pV[index]; 1466 return rep; 920 return rep; 1467 } 921 } 1468 922 1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D 923 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag, 1470 G4Normal3D 924 G4Normal3D &normal) const 1471 /******************************************** 925 /*********************************************************************** 1472 * 926 * * 1473 * Name: HepPolyhedron::GetNextVertex 927 * Name: HepPolyhedron::GetNextVertex Date: 26.11.99 * 1474 * Author: E.Chernyaev 928 * Author: E.Chernyaev Revised: * 1475 * 929 * * 1476 * Function: Get vertices with normals of the 930 * Function: Get vertices with normals of the quadrilaterals in order * 1477 * for each face in face order. 931 * for each face in face order. * 1478 * Returns false when finished each 932 * Returns false when finished each face. * 1479 * 933 * * 1480 ******************************************** 934 ***********************************************************************/ 1481 { 935 { 1482 static G4ThreadLocal G4int iFace = 1; << 936 static G4int iFace = 1; 1483 static G4ThreadLocal G4int iNode = 0; << 937 static G4int iNode = 0; 1484 938 1485 if (nface == 0) return false; // empty pol 939 if (nface == 0) return false; // empty polyhedron 1486 940 1487 G4int k = pF[iFace].edge[iNode].v; 941 G4int k = pF[iFace].edge[iNode].v; 1488 if (k > 0) { edgeFlag = 1; } else { edgeFla 942 if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; } 1489 vertex = pV[k]; 943 vertex = pV[k]; 1490 normal = FindNodeNormal(iFace,k); 944 normal = FindNodeNormal(iFace,k); 1491 if (iNode >= 3 || pF[iFace].edge[iNode+1].v 945 if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) { 1492 iNode = 0; 946 iNode = 0; 1493 if (++iFace > nface) iFace = 1; 947 if (++iFace > nface) iFace = 1; 1494 return false; // last node 948 return false; // last node >> 949 }else{ >> 950 ++iNode; >> 951 return true; // not last node 1495 } 952 } 1496 ++iNode; << 1497 return true; // not last no << 1498 } 953 } 1499 954 1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 955 G4bool HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag, 1501 G4int 956 G4int &iface1, G4int &iface2) const 1502 /******************************************** 957 /*********************************************************************** 1503 * 958 * * 1504 * Name: HepPolyhedron::GetNextEdgeIndices << 959 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 30.09.96 * 1505 * Author: E.Chernyaev 960 * Author: E.Chernyaev Revised: 17.11.99 * 1506 * 961 * * 1507 * Function: Get indices of the next edge tog << 962 * Function: Get indeces of the next edge together with indeces of * 1508 * of the faces which share the edg 963 * of the faces which share the edge. * 1509 * Returns false when the last edge 964 * Returns false when the last edge. * 1510 * 965 * * 1511 ******************************************** 966 ***********************************************************************/ 1512 { 967 { 1513 static G4ThreadLocal G4int iFace = 1; << 968 static G4int iFace = 1; 1514 static G4ThreadLocal G4int iQVertex = 0; << 969 static G4int iQVertex = 0; 1515 static G4ThreadLocal G4int iOrder = 1; << 970 static G4int iOrder = 1; 1516 G4int k1, k2, kflag, kface1, kface2; 971 G4int k1, k2, kflag, kface1, kface2; 1517 972 1518 if (iFace == 1 && iQVertex == 0) { 973 if (iFace == 1 && iQVertex == 0) { 1519 k2 = pF[nface].edge[0].v; 974 k2 = pF[nface].edge[0].v; 1520 k1 = pF[nface].edge[3].v; 975 k1 = pF[nface].edge[3].v; 1521 if (k1 == 0) k1 = pF[nface].edge[2].v; 976 if (k1 == 0) k1 = pF[nface].edge[2].v; 1522 if (std::abs(k1) > std::abs(k2)) iOrder = 977 if (std::abs(k1) > std::abs(k2)) iOrder = -1; 1523 } 978 } 1524 979 1525 do { 980 do { 1526 k1 = pF[iFace].edge[iQVertex].v; 981 k1 = pF[iFace].edge[iQVertex].v; 1527 kflag = k1; 982 kflag = k1; 1528 k1 = std::abs(k1); 983 k1 = std::abs(k1); 1529 kface1 = iFace; << 984 kface1 = iFace; 1530 kface2 = pF[iFace].edge[iQVertex].f; 985 kface2 = pF[iFace].edge[iQVertex].f; 1531 if (iQVertex >= 3 || pF[iFace].edge[iQVer 986 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1532 iQVertex = 0; 987 iQVertex = 0; 1533 k2 = std::abs(pF[iFace].edge[iQVertex]. 988 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1534 iFace++; 989 iFace++; 1535 }else{ 990 }else{ 1536 iQVertex++; 991 iQVertex++; 1537 k2 = std::abs(pF[iFace].edge[iQVertex]. 992 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1538 } 993 } 1539 } while (iOrder*k1 > iOrder*k2); 994 } while (iOrder*k1 > iOrder*k2); 1540 995 1541 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 996 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0; 1542 iface1 = kface1; iface2 = kface2; << 997 iface1 = kface1; iface2 = kface2; 1543 998 1544 if (iFace > nface) { 999 if (iFace > nface) { 1545 iFace = 1; iOrder = 1; 1000 iFace = 1; iOrder = 1; 1546 return false; 1001 return false; >> 1002 }else{ >> 1003 return true; 1547 } 1004 } 1548 << 1549 return true; << 1550 } 1005 } 1551 1006 1552 G4bool 1007 G4bool 1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1, << 1008 HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag) const 1554 /******************************************** 1009 /*********************************************************************** 1555 * 1010 * * 1556 * Name: HepPolyhedron::GetNextEdgeIndices << 1011 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 17.11.99 * 1557 * Author: E.Chernyaev 1012 * Author: E.Chernyaev Revised: * 1558 * 1013 * * 1559 * Function: Get indices of the next edge. << 1014 * Function: Get indeces of the next edge. * 1560 * Returns false when the last edge 1015 * Returns false when the last edge. * 1561 * 1016 * * 1562 ******************************************** 1017 ***********************************************************************/ 1563 { 1018 { 1564 G4int kface1, kface2; 1019 G4int kface1, kface2; 1565 return GetNextEdgeIndices(i1, i2, edgeFlag, << 1020 return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2); 1566 } 1021 } 1567 1022 1568 G4bool 1023 G4bool 1569 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1024 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1570 G4Point3D &p2, 1025 G4Point3D &p2, 1571 G4int &edgeFlag) c 1026 G4int &edgeFlag) const 1572 /******************************************** 1027 /*********************************************************************** 1573 * 1028 * * 1574 * Name: HepPolyhedron::GetNextEdge 1029 * Name: HepPolyhedron::GetNextEdge Date: 30.09.96 * 1575 * Author: E.Chernyaev 1030 * Author: E.Chernyaev Revised: * 1576 * 1031 * * 1577 * Function: Get next edge. 1032 * Function: Get next edge. * 1578 * Returns false when the last edge 1033 * Returns false when the last edge. * 1579 * 1034 * * 1580 ******************************************** 1035 ***********************************************************************/ 1581 { 1036 { 1582 G4int i1,i2; 1037 G4int i1,i2; 1583 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1038 G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag); 1584 p1 = pV[i1]; 1039 p1 = pV[i1]; 1585 p2 = pV[i2]; 1040 p2 = pV[i2]; 1586 return rep; 1041 return rep; 1587 } 1042 } 1588 1043 1589 G4bool 1044 G4bool 1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P 1045 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2, 1591 G4int &edgeFlag, G4 1046 G4int &edgeFlag, G4int &iface1, G4int &iface2) const 1592 /******************************************** 1047 /*********************************************************************** 1593 * 1048 * * 1594 * Name: HepPolyhedron::GetNextEdge 1049 * Name: HepPolyhedron::GetNextEdge Date: 17.11.99 * 1595 * Author: E.Chernyaev 1050 * Author: E.Chernyaev Revised: * 1596 * 1051 * * 1597 * Function: Get next edge with indices of th << 1052 * Function: Get next edge with indeces of the faces which share * 1598 * the edge. 1053 * the edge. * 1599 * Returns false when the last edge 1054 * Returns false when the last edge. * 1600 * 1055 * * 1601 ******************************************** 1056 ***********************************************************************/ 1602 { 1057 { 1603 G4int i1,i2; 1058 G4int i1,i2; 1604 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1059 G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2); 1605 p1 = pV[i1]; 1060 p1 = pV[i1]; 1606 p2 = pV[i2]; 1061 p2 = pV[i2]; 1607 return rep; 1062 return rep; 1608 } 1063 } 1609 1064 1610 void HepPolyhedron::GetFacet(G4int iFace, G4i 1065 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes, 1611 G4int *edgeFlags, 1066 G4int *edgeFlags, G4int *iFaces) const 1612 /******************************************** 1067 /*********************************************************************** 1613 * 1068 * * 1614 * Name: HepPolyhedron::GetFacet 1069 * Name: HepPolyhedron::GetFacet Date: 15.12.99 * 1615 * Author: E.Chernyaev 1070 * Author: E.Chernyaev Revised: * 1616 * 1071 * * 1617 * Function: Get face by index 1072 * Function: Get face by index * 1618 * 1073 * * 1619 ******************************************** 1074 ***********************************************************************/ 1620 { 1075 { 1621 if (iFace < 1 || iFace > nface) { 1076 if (iFace < 1 || iFace > nface) { 1622 std::cerr << 1077 std::cerr 1623 << "HepPolyhedron::GetFacet: irrelevant 1078 << "HepPolyhedron::GetFacet: irrelevant index " << iFace 1624 << std::endl; 1079 << std::endl; 1625 n = 0; 1080 n = 0; 1626 }else{ 1081 }else{ 1627 G4int i, k; 1082 G4int i, k; 1628 for (i=0; i<4; i++) { << 1083 for (i=0; i<4; i++) { 1629 k = pF[iFace].edge[i].v; 1084 k = pF[iFace].edge[i].v; 1630 if (k == 0) break; 1085 if (k == 0) break; 1631 if (iFaces != nullptr) iFaces[i] = pF[i << 1086 if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f; 1632 if (k > 0) { << 1087 if (k > 0) { 1633 iNodes[i] = k; 1088 iNodes[i] = k; 1634 if (edgeFlags != nullptr) edgeFlags[i << 1089 if (edgeFlags != 0) edgeFlags[i] = 1; 1635 }else{ 1090 }else{ 1636 iNodes[i] = -k; 1091 iNodes[i] = -k; 1637 if (edgeFlags != nullptr) edgeFlags[i << 1092 if (edgeFlags != 0) edgeFlags[i] = -1; 1638 } 1093 } 1639 } 1094 } 1640 n = i; 1095 n = i; 1641 } 1096 } 1642 } 1097 } 1643 1098 1644 void HepPolyhedron::GetFacet(G4int index, G4i 1099 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes, 1645 G4int *edgeFlags 1100 G4int *edgeFlags, G4Normal3D *normals) const 1646 /******************************************** 1101 /*********************************************************************** 1647 * 1102 * * 1648 * Name: HepPolyhedron::GetFacet 1103 * Name: HepPolyhedron::GetFacet Date: 17.11.99 * 1649 * Author: E.Chernyaev 1104 * Author: E.Chernyaev Revised: * 1650 * 1105 * * 1651 * Function: Get face by index 1106 * Function: Get face by index * 1652 * 1107 * * 1653 ******************************************** 1108 ***********************************************************************/ 1654 { 1109 { 1655 G4int iNodes[4]; 1110 G4int iNodes[4]; 1656 GetFacet(index, n, iNodes, edgeFlags); 1111 GetFacet(index, n, iNodes, edgeFlags); 1657 if (n != 0) { 1112 if (n != 0) { 1658 for (G4int i=0; i<n; i++) { 1113 for (G4int i=0; i<n; i++) { 1659 nodes[i] = pV[iNodes[i]]; 1114 nodes[i] = pV[iNodes[i]]; 1660 if (normals != nullptr) normals[i] = Fi << 1115 if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]); 1661 } 1116 } 1662 } 1117 } 1663 } 1118 } 1664 1119 1665 G4bool 1120 G4bool 1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point 1121 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes, 1667 G4int *edgeFlags, 1122 G4int *edgeFlags, G4Normal3D *normals) const 1668 /******************************************** 1123 /*********************************************************************** 1669 * 1124 * * 1670 * Name: HepPolyhedron::GetNextFacet 1125 * Name: HepPolyhedron::GetNextFacet Date: 19.11.99 * 1671 * Author: E.Chernyaev 1126 * Author: E.Chernyaev Revised: * 1672 * 1127 * * 1673 * Function: Get next face with normals of un 1128 * Function: Get next face with normals of unit length at the nodes. * 1674 * Returns false when finished all 1129 * Returns false when finished all faces. * 1675 * 1130 * * 1676 ******************************************** 1131 ***********************************************************************/ 1677 { 1132 { 1678 static G4ThreadLocal G4int iFace = 1; << 1133 static G4int iFace = 1; 1679 1134 1680 if (edgeFlags == nullptr) { << 1135 if (edgeFlags == 0) { 1681 GetFacet(iFace, n, nodes); 1136 GetFacet(iFace, n, nodes); 1682 }else if (normals == nullptr) { << 1137 }else if (normals == 0) { 1683 GetFacet(iFace, n, nodes, edgeFlags); 1138 GetFacet(iFace, n, nodes, edgeFlags); 1684 }else{ 1139 }else{ 1685 GetFacet(iFace, n, nodes, edgeFlags, norm 1140 GetFacet(iFace, n, nodes, edgeFlags, normals); 1686 } 1141 } 1687 1142 1688 if (++iFace > nface) { 1143 if (++iFace > nface) { 1689 iFace = 1; 1144 iFace = 1; 1690 return false; 1145 return false; >> 1146 }else{ >> 1147 return true; 1691 } 1148 } 1692 << 1693 return true; << 1694 } 1149 } 1695 1150 1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa 1151 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const 1697 /******************************************** 1152 /*********************************************************************** 1698 * 1153 * * 1699 * Name: HepPolyhedron::GetNormal 1154 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1700 * Author: E.Chernyaev 1155 * Author: E.Chernyaev Revised: * 1701 * 1156 * * 1702 * Function: Get normal of the face given by 1157 * Function: Get normal of the face given by index * 1703 * 1158 * * 1704 ******************************************** 1159 ***********************************************************************/ 1705 { 1160 { 1706 if (iFace < 1 || iFace > nface) { 1161 if (iFace < 1 || iFace > nface) { 1707 std::cerr << 1162 std::cerr 1708 << "HepPolyhedron::GetNormal: irrelevan << 1163 << "HepPolyhedron::GetNormal: irrelevant index " << iFace 1709 << std::endl; 1164 << std::endl; 1710 return G4Normal3D(); 1165 return G4Normal3D(); 1711 } 1166 } 1712 1167 1713 G4int i0 = std::abs(pF[iFace].edge[0].v); 1168 G4int i0 = std::abs(pF[iFace].edge[0].v); 1714 G4int i1 = std::abs(pF[iFace].edge[1].v); 1169 G4int i1 = std::abs(pF[iFace].edge[1].v); 1715 G4int i2 = std::abs(pF[iFace].edge[2].v); 1170 G4int i2 = std::abs(pF[iFace].edge[2].v); 1716 G4int i3 = std::abs(pF[iFace].edge[3].v); 1171 G4int i3 = std::abs(pF[iFace].edge[3].v); 1717 if (i3 == 0) i3 = i0; 1172 if (i3 == 0) i3 = i0; 1718 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[ 1173 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]); 1719 } 1174 } 1720 1175 1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int 1176 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const 1722 /******************************************** 1177 /*********************************************************************** 1723 * 1178 * * 1724 * Name: HepPolyhedron::GetNormal 1179 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1725 * Author: E.Chernyaev 1180 * Author: E.Chernyaev Revised: * 1726 * 1181 * * 1727 * Function: Get unit normal of the face give 1182 * Function: Get unit normal of the face given by index * 1728 * 1183 * * 1729 ******************************************** 1184 ***********************************************************************/ 1730 { 1185 { 1731 if (iFace < 1 || iFace > nface) { 1186 if (iFace < 1 || iFace > nface) { 1732 std::cerr << 1187 std::cerr 1733 << "HepPolyhedron::GetUnitNormal: irrel 1188 << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace 1734 << std::endl; 1189 << std::endl; 1735 return G4Normal3D(); 1190 return G4Normal3D(); 1736 } 1191 } 1737 1192 1738 G4int i0 = std::abs(pF[iFace].edge[0].v); 1193 G4int i0 = std::abs(pF[iFace].edge[0].v); 1739 G4int i1 = std::abs(pF[iFace].edge[1].v); 1194 G4int i1 = std::abs(pF[iFace].edge[1].v); 1740 G4int i2 = std::abs(pF[iFace].edge[2].v); 1195 G4int i2 = std::abs(pF[iFace].edge[2].v); 1741 G4int i3 = std::abs(pF[iFace].edge[3].v); 1196 G4int i3 = std::abs(pF[iFace].edge[3].v); 1742 if (i3 == 0) i3 = i0; 1197 if (i3 == 0) i3 = i0; 1743 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1198 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit(); 1744 } 1199 } 1745 1200 1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3 1201 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const 1747 /******************************************** 1202 /*********************************************************************** 1748 * 1203 * * 1749 * Name: HepPolyhedron::GetNextNormal 1204 * Name: HepPolyhedron::GetNextNormal Date: 22.07.96 * 1750 * Author: John Allison 1205 * Author: John Allison Revised: 19.11.99 * 1751 * 1206 * * 1752 * Function: Get normals of each face in face 1207 * Function: Get normals of each face in face order. Returns false * 1753 * when finished all faces. 1208 * when finished all faces. * 1754 * 1209 * * 1755 ******************************************** 1210 ***********************************************************************/ 1756 { 1211 { 1757 static G4ThreadLocal G4int iFace = 1; << 1212 static G4int iFace = 1; 1758 normal = GetNormal(iFace); 1213 normal = GetNormal(iFace); 1759 if (++iFace > nface) { 1214 if (++iFace > nface) { 1760 iFace = 1; 1215 iFace = 1; 1761 return false; 1216 return false; >> 1217 }else{ >> 1218 return true; 1762 } 1219 } 1763 return true; << 1764 } 1220 } 1765 1221 1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor 1222 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const 1767 /******************************************** 1223 /*********************************************************************** 1768 * 1224 * * 1769 * Name: HepPolyhedron::GetNextUnitNormal 1225 * Name: HepPolyhedron::GetNextUnitNormal Date: 16.09.96 * 1770 * Author: E.Chernyaev 1226 * Author: E.Chernyaev Revised: * 1771 * 1227 * * 1772 * Function: Get normals of unit length of ea 1228 * Function: Get normals of unit length of each face in face order. * 1773 * Returns false when finished all 1229 * Returns false when finished all faces. * 1774 * 1230 * * 1775 ******************************************** 1231 ***********************************************************************/ 1776 { 1232 { 1777 G4bool rep = GetNextNormal(normal); 1233 G4bool rep = GetNextNormal(normal); 1778 normal = normal.unit(); 1234 normal = normal.unit(); 1779 return rep; 1235 return rep; 1780 } 1236 } 1781 1237 1782 G4double HepPolyhedron::GetSurfaceArea() cons 1238 G4double HepPolyhedron::GetSurfaceArea() const 1783 /******************************************** 1239 /*********************************************************************** 1784 * 1240 * * 1785 * Name: HepPolyhedron::GetSurfaceArea 1241 * Name: HepPolyhedron::GetSurfaceArea Date: 25.05.01 * 1786 * Author: E.Chernyaev 1242 * Author: E.Chernyaev Revised: * 1787 * 1243 * * 1788 * Function: Returns area of the surface of t 1244 * Function: Returns area of the surface of the polyhedron. * 1789 * 1245 * * 1790 ******************************************** 1246 ***********************************************************************/ 1791 { 1247 { 1792 G4double srf = 0.; 1248 G4double srf = 0.; 1793 for (G4int iFace=1; iFace<=nface; iFace++) 1249 for (G4int iFace=1; iFace<=nface; iFace++) { 1794 G4int i0 = std::abs(pF[iFace].edge[0].v); 1250 G4int i0 = std::abs(pF[iFace].edge[0].v); 1795 G4int i1 = std::abs(pF[iFace].edge[1].v); 1251 G4int i1 = std::abs(pF[iFace].edge[1].v); 1796 G4int i2 = std::abs(pF[iFace].edge[2].v); 1252 G4int i2 = std::abs(pF[iFace].edge[2].v); 1797 G4int i3 = std::abs(pF[iFace].edge[3].v); 1253 G4int i3 = std::abs(pF[iFace].edge[3].v); 1798 if (i3 == 0) i3 = i0; 1254 if (i3 == 0) i3 = i0; 1799 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - 1255 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag(); 1800 } 1256 } 1801 return srf/2.; 1257 return srf/2.; 1802 } 1258 } 1803 1259 1804 G4double HepPolyhedron::GetVolume() const 1260 G4double HepPolyhedron::GetVolume() const 1805 /******************************************** 1261 /*********************************************************************** 1806 * 1262 * * 1807 * Name: HepPolyhedron::GetVolume 1263 * Name: HepPolyhedron::GetVolume Date: 25.05.01 * 1808 * Author: E.Chernyaev 1264 * Author: E.Chernyaev Revised: * 1809 * 1265 * * 1810 * Function: Returns volume of the polyhedron 1266 * Function: Returns volume of the polyhedron. * 1811 * 1267 * * 1812 ******************************************** 1268 ***********************************************************************/ 1813 { 1269 { 1814 G4double v = 0.; 1270 G4double v = 0.; 1815 for (G4int iFace=1; iFace<=nface; iFace++) 1271 for (G4int iFace=1; iFace<=nface; iFace++) { 1816 G4int i0 = std::abs(pF[iFace].edge[0].v); 1272 G4int i0 = std::abs(pF[iFace].edge[0].v); 1817 G4int i1 = std::abs(pF[iFace].edge[1].v); 1273 G4int i1 = std::abs(pF[iFace].edge[1].v); 1818 G4int i2 = std::abs(pF[iFace].edge[2].v); 1274 G4int i2 = std::abs(pF[iFace].edge[2].v); 1819 G4int i3 = std::abs(pF[iFace].edge[3].v); 1275 G4int i3 = std::abs(pF[iFace].edge[3].v); 1820 G4Point3D pt; 1276 G4Point3D pt; 1821 if (i3 == 0) { 1277 if (i3 == 0) { 1822 i3 = i0; 1278 i3 = i0; 1823 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1279 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1824 }else{ 1280 }else{ 1825 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0. 1281 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25; 1826 } 1282 } 1827 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1283 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt); 1828 } 1284 } 1829 return v/6.; 1285 return v/6.; 1830 } 1286 } 1831 1287 1832 G4int 1288 G4int 1833 HepPolyhedron::createTwistedTrap(G4double Dz, 1289 HepPolyhedron::createTwistedTrap(G4double Dz, 1834 const G4doub 1290 const G4double xy1[][2], 1835 const G4doub 1291 const G4double xy2[][2]) 1836 /******************************************** 1292 /*********************************************************************** 1837 * 1293 * * 1838 * Name: createTwistedTrap 1294 * Name: createTwistedTrap Date: 05.11.02 * 1839 * Author: E.Chernyaev (IHEP/Protvino) 1295 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1840 * 1296 * * 1841 * Function: Creates polyhedron for twisted t 1297 * Function: Creates polyhedron for twisted trapezoid * 1842 * 1298 * * 1843 * Input: Dz - half-length along Z 1299 * Input: Dz - half-length along Z 8----7 * 1844 * xy1[2,4] - quadrilateral at Z=-Dz 1300 * xy1[2,4] - quadrilateral at Z=-Dz 5----6 ! * 1845 * xy2[2,4] - quadrilateral at Z=+Dz 1301 * xy2[2,4] - quadrilateral at Z=+Dz ! 4-!--3 * 1846 * 1302 * 1----2 * 1847 * 1303 * * 1848 ******************************************** 1304 ***********************************************************************/ 1849 { 1305 { 1850 AllocateMemory(12,18); 1306 AllocateMemory(12,18); 1851 1307 1852 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz) 1308 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz); 1853 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz) 1309 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz); 1854 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz) 1310 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz); 1855 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz) 1311 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz); 1856 1312 1857 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz) 1313 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz); 1858 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz) 1314 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz); 1859 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz) 1315 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz); 1860 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz) 1316 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz); 1861 1317 1862 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1318 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1863 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1319 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1864 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1320 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1865 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1321 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1866 1322 1867 enum {DUMMY, BOTTOM, 1323 enum {DUMMY, BOTTOM, 1868 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, 1324 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, LEFT_BACK, 1869 BACK_BOTTOM, BACK_LEFT, BACK_TOP, 1325 BACK_BOTTOM, BACK_LEFT, BACK_TOP, BACK_RIGHT, 1870 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP 1326 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP, RIGHT_FRONT, 1871 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP 1327 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP, FRONT_LEFT, 1872 TOP}; 1328 TOP}; 1873 1329 1874 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM 1330 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM); 1875 1331 1876 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, 1332 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, -12,LEFT_BACK, 0,0); 1877 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, 1333 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, -12,LEFT_BOTTOM, 0,0); 1878 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, 1334 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, -12,LEFT_FRONT, 0,0); 1879 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM 1335 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM, -12,LEFT_TOP, 0,0); 1880 1336 1881 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, 1337 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, -11,BACK_RIGHT, 0,0); 1882 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, 1338 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, -11,BACK_BOTTOM, 0,0); 1883 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, 1339 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, -11,BACK_LEFT, 0,0); 1884 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM 1340 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP, 0,0); 1885 1341 1886 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, 1342 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, -10,RIGHT_FRONT, 0,0); 1887 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, 1343 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, -10,RIGHT_BOTTOM, 0,0); 1888 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT 1344 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT, -10,RIGHT_BACK, 0,0); 1889 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO 1345 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP, 0,0); 1890 1346 1891 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT 1347 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT, -9,FRONT_LEFT, 0,0); 1892 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, 1348 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, -9,FRONT_BOTTOM, 0,0); 1893 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, 1349 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, -9,FRONT_RIGHT, 0,0); 1894 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO 1350 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP, 0,0); 1895 << 1351 1896 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7, 1352 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP); 1897 1353 1898 return 0; 1354 return 0; 1899 } 1355 } 1900 1356 1901 G4int 1357 G4int 1902 HepPolyhedron::createPolyhedron(G4int Nnodes, 1358 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces, 1903 const G4doubl 1359 const G4double xyz[][3], 1904 const G4int 1360 const G4int faces[][4]) 1905 /******************************************** 1361 /*********************************************************************** 1906 * 1362 * * 1907 * Name: createPolyhedron 1363 * Name: createPolyhedron Date: 05.11.02 * 1908 * Author: E.Chernyaev (IHEP/Protvino) 1364 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1909 * 1365 * * 1910 * Function: Creates user defined polyhedron 1366 * Function: Creates user defined polyhedron * 1911 * 1367 * * 1912 * Input: Nnodes - number of nodes 1368 * Input: Nnodes - number of nodes * 1913 * Nfaces - number of faces 1369 * Nfaces - number of faces * 1914 * nodes[][3] - node coordinates 1370 * nodes[][3] - node coordinates * 1915 * faces[][4] - faces 1371 * faces[][4] - faces * 1916 * 1372 * * 1917 ******************************************** 1373 ***********************************************************************/ 1918 { 1374 { 1919 AllocateMemory(Nnodes, Nfaces); 1375 AllocateMemory(Nnodes, Nfaces); 1920 if (nvert == 0) return 1; 1376 if (nvert == 0) return 1; 1921 1377 1922 for (G4int i=0; i<Nnodes; i++) { 1378 for (G4int i=0; i<Nnodes; i++) { 1923 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], 1379 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]); 1924 } 1380 } 1925 for (G4int k=0; k<Nfaces; k++) { 1381 for (G4int k=0; k<Nfaces; k++) { 1926 pF[k+1] = G4Facet(faces[k][0],0,faces[k][ 1382 pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0); 1927 } 1383 } 1928 SetReferences(); 1384 SetReferences(); 1929 return 0; 1385 return 0; 1930 } 1386 } 1931 1387 1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 1933 /****************************************** << 1934 * << 1935 * Name: vertexUnweightedMean << 1936 * Author: S. Boogert (Manchester) << 1937 * << 1938 * Function: Calculate the unweighted mean << 1939 * in the polyhedron. Not to be confused wi << 1940 * centre of mass << 1941 ****************************************** << 1942 << 1943 auto centre = G4Point3D(); << 1944 for(int i=1;i<=nvert;i++) { << 1945 centre += pV[i]; << 1946 } << 1947 centre = centre/nvert; << 1948 return centre; << 1949 } << 1950 << 1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double 1388 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2, 1952 G4double 1389 G4double Dy1, G4double Dy2, 1953 G4double 1390 G4double Dz) 1954 /******************************************** 1391 /*********************************************************************** 1955 * 1392 * * 1956 * Name: HepPolyhedronTrd2 1393 * Name: HepPolyhedronTrd2 Date: 22.07.96 * 1957 * Author: E.Chernyaev (IHEP/Protvino) 1394 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1958 * 1395 * * 1959 * Function: Create GEANT4 TRD2-trapezoid 1396 * Function: Create GEANT4 TRD2-trapezoid * 1960 * 1397 * * 1961 * Input: Dx1 - half-length along X at -Dz 1398 * Input: Dx1 - half-length along X at -Dz 8----7 * 1962 * Dx2 - half-length along X ay +Dz 1399 * Dx2 - half-length along X ay +Dz 5----6 ! * 1963 * Dy1 - half-length along Y ay -Dz 1400 * Dy1 - half-length along Y ay -Dz ! 4-!--3 * 1964 * Dy2 - half-length along Y ay +Dz 1401 * Dy2 - half-length along Y ay +Dz 1----2 * 1965 * Dz - half-length along Z 1402 * Dz - half-length along Z * 1966 * 1403 * * 1967 ******************************************** 1404 ***********************************************************************/ 1968 { 1405 { 1969 AllocateMemory(8,6); 1406 AllocateMemory(8,6); 1970 1407 1971 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1408 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1972 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1409 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1973 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1410 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1974 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1411 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1975 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1412 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1976 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1413 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1977 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1414 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1978 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1415 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1979 1416 1980 CreatePrism(); 1417 CreatePrism(); 1981 } 1418 } 1982 1419 1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1420 HepPolyhedronTrd2::~HepPolyhedronTrd2() {} 1984 1421 1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double 1422 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2, 1986 G4double 1423 G4double Dy, G4double Dz) 1987 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) { 1424 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {} 1988 1425 1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1426 HepPolyhedronTrd1::~HepPolyhedronTrd1() {} 1990 1427 1991 HepPolyhedronBox::HepPolyhedronBox(G4double D 1428 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz) 1992 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1429 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1993 1430 1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1431 HepPolyhedronBox::~HepPolyhedronBox() {} 1995 1432 1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double 1433 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz, 1997 G4double 1434 G4double Theta, 1998 G4double 1435 G4double Phi, 1999 G4double 1436 G4double Dy1, 2000 G4double 1437 G4double Dx1, 2001 G4double 1438 G4double Dx2, 2002 G4double 1439 G4double Alp1, 2003 G4double 1440 G4double Dy2, 2004 G4double 1441 G4double Dx3, 2005 G4double 1442 G4double Dx4, 2006 G4double 1443 G4double Alp2) 2007 /******************************************** 1444 /*********************************************************************** 2008 * 1445 * * 2009 * Name: HepPolyhedronTrap 1446 * Name: HepPolyhedronTrap Date: 20.11.96 * 2010 * Author: E.Chernyaev 1447 * Author: E.Chernyaev Revised: * 2011 * 1448 * * 2012 * Function: Create GEANT4 TRAP-trapezoid 1449 * Function: Create GEANT4 TRAP-trapezoid * 2013 * 1450 * * 2014 * Input: DZ - half-length in Z 1451 * Input: DZ - half-length in Z * 2015 * Theta,Phi - polar angles of the lin 1452 * Theta,Phi - polar angles of the line joining centres of the * 2016 * faces at Z=-Dz and Z=+D 1453 * faces at Z=-Dz and Z=+Dz * 2017 * Dy1 - half-length in Y of the face 1454 * Dy1 - half-length in Y of the face at Z=-Dz * 2018 * Dx1 - half-length in X of low edge 1455 * Dx1 - half-length in X of low edge of the face at Z=-Dz * 2019 * Dx2 - half-length in X of top edge 1456 * Dx2 - half-length in X of top edge of the face at Z=-Dz * 2020 * Alp1 - angle between Y-axis and the 1457 * Alp1 - angle between Y-axis and the median joining top and * 2021 * low edges of the face at Z=- 1458 * low edges of the face at Z=-Dz * 2022 * Dy2 - half-length in Y of the face 1459 * Dy2 - half-length in Y of the face at Z=+Dz * 2023 * Dx3 - half-length in X of low edge 1460 * Dx3 - half-length in X of low edge of the face at Z=+Dz * 2024 * Dx4 - half-length in X of top edge 1461 * Dx4 - half-length in X of top edge of the face at Z=+Dz * 2025 * Alp2 - angle between Y-axis and the 1462 * Alp2 - angle between Y-axis and the median joining top and * 2026 * low edges of the face at Z=+ 1463 * low edges of the face at Z=+Dz * 2027 * 1464 * * 2028 ******************************************** 1465 ***********************************************************************/ 2029 { 1466 { 2030 G4double DzTthetaCphi = Dz*std::tan(Theta)* 1467 G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi); 2031 G4double DzTthetaSphi = Dz*std::tan(Theta)* 1468 G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi); 2032 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 1469 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 2033 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 1470 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 2034 << 1471 2035 AllocateMemory(8,6); 1472 AllocateMemory(8,6); 2036 1473 2037 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx 1474 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz); 2038 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx 1475 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz); 2039 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx 1476 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz); 2040 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx 1477 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz); 2041 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx 1478 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz); 2042 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx 1479 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz); 2043 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx 1480 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz); 2044 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx 1481 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz); 2045 1482 2046 CreatePrism(); 1483 CreatePrism(); 2047 } 1484 } 2048 1485 2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1486 HepPolyhedronTrap::~HepPolyhedronTrap() {} 2050 1487 2051 HepPolyhedronPara::HepPolyhedronPara(G4double 1488 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz, 2052 G4double 1489 G4double Alpha, G4double Theta, 2053 G4double 1490 G4double Phi) 2054 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, 1491 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {} 2055 1492 2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1493 HepPolyhedronPara::~HepPolyhedronPara() {} 2057 1494 2058 HepPolyhedronParaboloid::HepPolyhedronParabol 1495 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1, 2059 1496 G4double r2, 2060 1497 G4double dz, 2061 1498 G4double sPhi, 2062 << 1499 G4double dPhi) 2063 /******************************************** 1500 /*********************************************************************** 2064 * 1501 * * 2065 * Name: HepPolyhedronParaboloid 1502 * Name: HepPolyhedronParaboloid Date: 28.06.07 * 2066 * Author: L.Lindroos, T.Nikitina (CERN), Jul 1503 * Author: L.Lindroos, T.Nikitina (CERN), July 2007 Revised: 28.06.07 * 2067 * 1504 * * 2068 * Function: Constructor for paraboloid 1505 * Function: Constructor for paraboloid * 2069 * 1506 * * 2070 * Input: r1 - inside and outside radiuses 1507 * Input: r1 - inside and outside radiuses at -Dz * 2071 * r2 - inside and outside radiuses 1508 * r2 - inside and outside radiuses at +Dz * 2072 * dz - half length in Z 1509 * dz - half length in Z * 2073 * sPhi - starting angle of the segme 1510 * sPhi - starting angle of the segment * 2074 * dPhi - segment range 1511 * dPhi - segment range * 2075 * 1512 * * 2076 ******************************************** 1513 ***********************************************************************/ 2077 { 1514 { 2078 static const G4double wholeCircle=twopi; 1515 static const G4double wholeCircle=twopi; 2079 1516 2080 // C H E C K I N P U T P A R A M E T 1517 // C H E C K I N P U T P A R A M E T E R S 2081 1518 2082 G4int k = 0; 1519 G4int k = 0; 2083 if (r1 < 0. || r2 <= 0.) k = 1; 1520 if (r1 < 0. || r2 <= 0.) k = 1; 2084 1521 2085 if (dz <= 0.) k += 2; 1522 if (dz <= 0.) k += 2; 2086 1523 2087 G4double phi1, phi2, dphi; 1524 G4double phi1, phi2, dphi; 2088 1525 2089 if(dPhi < 0.) 1526 if(dPhi < 0.) 2090 { 1527 { 2091 phi2 = sPhi; phi1 = phi2 + dPhi; 1528 phi2 = sPhi; phi1 = phi2 + dPhi; 2092 } 1529 } 2093 else if(dPhi == 0.) << 1530 else if(dPhi == 0.) 2094 { 1531 { 2095 phi1 = sPhi; phi2 = phi1 + wholeCircle; 1532 phi1 = sPhi; phi2 = phi1 + wholeCircle; 2096 } 1533 } 2097 else 1534 else 2098 { 1535 { 2099 phi1 = sPhi; phi2 = phi1 + dPhi; 1536 phi1 = sPhi; phi2 = phi1 + dPhi; 2100 } 1537 } 2101 dphi = phi2 - phi1; 1538 dphi = phi2 - phi1; 2102 1539 2103 if (std::abs(dphi-wholeCircle) < perMillion 1540 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2104 if (dphi > wholeCircle) k += 4; << 1541 if (dphi > wholeCircle) k += 4; 2105 1542 2106 if (k != 0) { 1543 if (k != 0) { 2107 std::cerr << "HepPolyhedronParaboloid: er 1544 std::cerr << "HepPolyhedronParaboloid: error in input parameters"; 2108 if ((k & 1) != 0) std::cerr << " (radiuse 1545 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2109 if ((k & 2) != 0) std::cerr << " (half-le 1546 if ((k & 2) != 0) std::cerr << " (half-length)"; 2110 if ((k & 4) != 0) std::cerr << " (angles) 1547 if ((k & 4) != 0) std::cerr << " (angles)"; 2111 std::cerr << std::endl; 1548 std::cerr << std::endl; 2112 std::cerr << " r1=" << r1; 1549 std::cerr << " r1=" << r1; 2113 std::cerr << " r2=" << r2; 1550 std::cerr << " r2=" << r2; 2114 std::cerr << " dz=" << dz << " sPhi=" << 1551 std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi 2115 << std::endl; 1552 << std::endl; 2116 return; 1553 return; 2117 } 1554 } 2118 << 1555 2119 // P R E P A R E T W O P O L Y L I N 1556 // P R E P A R E T W O P O L Y L I N E S 2120 1557 2121 G4int n = GetNumberOfRotationSteps(); 1558 G4int n = GetNumberOfRotationSteps(); 2122 G4double dl = (r2 - r1) / n; 1559 G4double dl = (r2 - r1) / n; 2123 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 1560 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 2124 G4double k2 = (r2*r2 + r1*r1) / 2; 1561 G4double k2 = (r2*r2 + r1*r1) / 2; 2125 1562 2126 auto zz = new G4double[n + 2], rr = new G4d << 1563 G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2]; 2127 1564 2128 zz[0] = dz; 1565 zz[0] = dz; 2129 rr[0] = r2; 1566 rr[0] = r2; 2130 1567 2131 for(G4int i = 1; i < n - 1; i++) 1568 for(G4int i = 1; i < n - 1; i++) 2132 { 1569 { 2133 rr[i] = rr[i-1] - dl; 1570 rr[i] = rr[i-1] - dl; 2134 zz[i] = (rr[i]*rr[i] - k2) / k1; 1571 zz[i] = (rr[i]*rr[i] - k2) / k1; 2135 if(rr[i] < 0) 1572 if(rr[i] < 0) 2136 { 1573 { 2137 rr[i] = 0; 1574 rr[i] = 0; 2138 zz[i] = 0; 1575 zz[i] = 0; 2139 } 1576 } 2140 } 1577 } 2141 1578 2142 zz[n-1] = -dz; 1579 zz[n-1] = -dz; 2143 rr[n-1] = r1; 1580 rr[n-1] = r1; 2144 1581 2145 zz[n] = dz; 1582 zz[n] = dz; 2146 rr[n] = 0; 1583 rr[n] = 0; 2147 1584 2148 zz[n+1] = -dz; 1585 zz[n+1] = -dz; 2149 rr[n+1] = 0; 1586 rr[n+1] = 0; 2150 1587 2151 // R O T A T E P O L Y L I N E S 1588 // R O T A T E P O L Y L I N E S 2152 1589 2153 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, << 1590 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 2154 SetReferences(); 1591 SetReferences(); 2155 1592 2156 delete [] zz; 1593 delete [] zz; 2157 delete [] rr; 1594 delete [] rr; 2158 } 1595 } 2159 1596 2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1597 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {} 2161 1598 2162 HepPolyhedronHype::HepPolyhedronHype(G4double 1599 HepPolyhedronHype::HepPolyhedronHype(G4double r1, 2163 G4double 1600 G4double r2, 2164 G4double 1601 G4double sqrtan1, 2165 G4double 1602 G4double sqrtan2, 2166 G4double << 1603 G4double halfZ) 2167 /******************************************** 1604 /*********************************************************************** 2168 * 1605 * * 2169 * Name: HepPolyhedronHype 1606 * Name: HepPolyhedronHype Date: 14.04.08 * 2170 * Author: Tatiana Nikitina (CERN) 1607 * Author: Tatiana Nikitina (CERN) Revised: 14.04.08 * 2171 * Evgueni Tcherniaev << 2172 * 1608 * * 2173 * Function: Constructor for Hype 1609 * Function: Constructor for Hype * 2174 * 1610 * * 2175 * Input: r1 - inside radius at z=0 1611 * Input: r1 - inside radius at z=0 * 2176 * r2 - outside radiuses at z=0 1612 * r2 - outside radiuses at z=0 * 2177 * sqrtan1 - sqr of tan of Inner Ster 1613 * sqrtan1 - sqr of tan of Inner Stereo Angle * 2178 * sqrtan2 - sqr of tan of Outer Ster 1614 * sqrtan2 - sqr of tan of Outer Stereo Angle * 2179 * halfZ - half length in Z 1615 * halfZ - half length in Z * 2180 * 1616 * * 2181 ******************************************** 1617 ***********************************************************************/ 2182 { 1618 { 2183 static const G4double wholeCircle = twopi; << 1619 static const G4double wholeCircle=twopi; 2184 1620 2185 // C H E C K I N P U T P A R A M E T 1621 // C H E C K I N P U T P A R A M E T E R S 2186 1622 2187 G4int k = 0; 1623 G4int k = 0; 2188 if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1; << 1624 if (r2 < 0. || r1 < 0. ) k = 1; 2189 if (halfZ <= 0.) k += 2; << 1625 if (r1 > r2 ) k = 1; 2190 if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4; << 1626 if (r1 == r2) k = 1; 2191 1627 >> 1628 if (halfZ <= 0.) k += 2; >> 1629 >> 1630 if (sqrtan1<0.||sqrtan2<0.) k += 4; >> 1631 2192 if (k != 0) 1632 if (k != 0) 2193 { 1633 { 2194 std::cerr << "HepPolyhedronHype: error in 1634 std::cerr << "HepPolyhedronHype: error in input parameters"; 2195 if ((k & 1) != 0) std::cerr << " (radiuse 1635 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2196 if ((k & 2) != 0) std::cerr << " (half-le 1636 if ((k & 2) != 0) std::cerr << " (half-length)"; 2197 if ((k & 4) != 0) std::cerr << " (angles) 1637 if ((k & 4) != 0) std::cerr << " (angles)"; 2198 std::cerr << std::endl; 1638 std::cerr << std::endl; 2199 std::cerr << " r1=" << r1 << " r2=" << r2 1639 std::cerr << " r1=" << r1 << " r2=" << r2; 2200 std::cerr << " halfZ=" << halfZ << " sqrT 1640 std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1 2201 << " sqrTan2=" << sqrtan2 1641 << " sqrTan2=" << sqrtan2 2202 << std::endl; 1642 << std::endl; 2203 return; 1643 return; 2204 } 1644 } 2205 << 1645 2206 // P R E P A R E T W O P O L Y L I N 1646 // P R E P A R E T W O P O L Y L I N E S 2207 1647 2208 G4int ns = std::max(3, GetNumberOfRotationS << 1648 G4int n = GetNumberOfRotationSteps(); 2209 G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1; << 1649 G4double dz = 2.*halfZ / n; 2210 G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1; << 1650 G4double k1 = r1*r1; 2211 auto zz = new G4double[nz1 + nz2]; << 1651 G4double k2 = r2*r2; 2212 auto rr = new G4double[nz1 + nz2]; << 1652 2213 << 1653 G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1]; 2214 // external polyline << 1654 2215 G4double dz2 = 2.*halfZ/(nz2 - 1); << 1655 zz[0] = halfZ; 2216 for(G4int i = 0; i < nz2; ++i) << 1656 rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2); >> 1657 >> 1658 for(G4int i = 1; i < n-1; i++) 2217 { 1659 { 2218 zz[i] = halfZ - dz2*i; << 1660 zz[i] = zz[i-1] - dz; 2219 rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1661 rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2); 2220 } 1662 } 2221 1663 2222 // internal polyline << 1664 zz[n-1] = -halfZ; 2223 G4double dz1 = 2.*halfZ/(nz1 - 1); << 1665 rr[n-1] = rr[0]; 2224 for(G4int i = 0; i < nz1; ++i) << 1666 >> 1667 zz[n] = halfZ; >> 1668 rr[n] = std::sqrt(sqrtan1*halfZ*halfZ+k1); >> 1669 >> 1670 for(G4int i = n+1; i < n+n; i++) 2225 { 1671 { 2226 G4int j = nz2 + i; << 1672 zz[i] = zz[i-1] - dz; 2227 zz[j] = halfZ - dz1*i; << 1673 rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1); 2228 rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 2229 } 1674 } >> 1675 zz[n+n] = -halfZ; >> 1676 rr[n+n] = rr[n]; 2230 1677 2231 // R O T A T E P O L Y L I N E S 1678 // R O T A T E P O L Y L I N E S 2232 1679 2233 RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1680 RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 2234 SetReferences(); 1681 SetReferences(); 2235 1682 2236 delete [] zz; 1683 delete [] zz; 2237 delete [] rr; 1684 delete [] rr; 2238 } 1685 } 2239 1686 2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1687 HepPolyhedronHype::~HepPolyhedronHype() {} 2241 1688 2242 HepPolyhedronCons::HepPolyhedronCons(G4double 1689 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1, 2243 G4double 1690 G4double Rmx1, 2244 G4double 1691 G4double Rmn2, 2245 G4double << 1692 G4double Rmx2, 2246 G4double 1693 G4double Dz, 2247 G4double 1694 G4double Phi1, 2248 G4double << 1695 G4double Dphi) 2249 /******************************************** 1696 /*********************************************************************** 2250 * 1697 * * 2251 * Name: HepPolyhedronCons::HepPolyhedronCons 1698 * Name: HepPolyhedronCons::HepPolyhedronCons Date: 15.12.96 * 2252 * Author: E.Chernyaev (IHEP/Protvino) 1699 * Author: E.Chernyaev (IHEP/Protvino) Revised: 15.12.96 * 2253 * 1700 * * 2254 * Function: Constructor for CONS, TUBS, CONE 1701 * Function: Constructor for CONS, TUBS, CONE, TUBE * 2255 * 1702 * * 2256 * Input: Rmn1, Rmx1 - inside and outside rad 1703 * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz * 2257 * Rmn2, Rmx2 - inside and outside rad 1704 * Rmn2, Rmx2 - inside and outside radiuses at +Dz * 2258 * Dz - half length in Z 1705 * Dz - half length in Z * 2259 * Phi1 - starting angle of the 1706 * Phi1 - starting angle of the segment * 2260 * Dphi - segment range 1707 * Dphi - segment range * 2261 * 1708 * * 2262 ******************************************** 1709 ***********************************************************************/ 2263 { 1710 { 2264 static const G4double wholeCircle=twopi; 1711 static const G4double wholeCircle=twopi; 2265 1712 2266 // C H E C K I N P U T P A R A M E T 1713 // C H E C K I N P U T P A R A M E T E R S 2267 1714 2268 G4int k = 0; 1715 G4int k = 0; 2269 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || 1716 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.) k = 1; 2270 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) 1717 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) k = 1; 2271 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) 1718 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) k = 1; 2272 1719 2273 if (Dz <= 0.) k += 2; 1720 if (Dz <= 0.) k += 2; 2274 << 1721 2275 G4double phi1, phi2, dphi; 1722 G4double phi1, phi2, dphi; 2276 if (Dphi < 0.) { 1723 if (Dphi < 0.) { 2277 phi2 = Phi1; phi1 = phi2 - Dphi; 1724 phi2 = Phi1; phi1 = phi2 - Dphi; 2278 }else if (Dphi == 0.) { 1725 }else if (Dphi == 0.) { 2279 phi1 = Phi1; phi2 = phi1 + wholeCircle; 1726 phi1 = Phi1; phi2 = phi1 + wholeCircle; 2280 }else{ 1727 }else{ 2281 phi1 = Phi1; phi2 = phi1 + Dphi; 1728 phi1 = Phi1; phi2 = phi1 + Dphi; 2282 } 1729 } 2283 dphi = phi2 - phi1; 1730 dphi = phi2 - phi1; 2284 if (std::abs(dphi-wholeCircle) < perMillion 1731 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2285 if (dphi > wholeCircle) k += 4; << 1732 if (dphi > wholeCircle) k += 4; 2286 1733 2287 if (k != 0) { 1734 if (k != 0) { 2288 std::cerr << "HepPolyhedronCone(s)/Tube(s 1735 std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters"; 2289 if ((k & 1) != 0) std::cerr << " (radiuse 1736 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2290 if ((k & 2) != 0) std::cerr << " (half-le 1737 if ((k & 2) != 0) std::cerr << " (half-length)"; 2291 if ((k & 4) != 0) std::cerr << " (angles) 1738 if ((k & 4) != 0) std::cerr << " (angles)"; 2292 std::cerr << std::endl; 1739 std::cerr << std::endl; 2293 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" 1740 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1; 2294 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" 1741 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2; 2295 std::cerr << " Dz=" << Dz << " Phi1=" << 1742 std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi 2296 << std::endl; 1743 << std::endl; 2297 return; 1744 return; 2298 } 1745 } 2299 << 1746 2300 // P R E P A R E T W O P O L Y L I N 1747 // P R E P A R E T W O P O L Y L I N E S 2301 1748 2302 G4double zz[4], rr[4]; 1749 G4double zz[4], rr[4]; 2303 zz[0] = Dz; << 1750 zz[0] = Dz; 2304 zz[1] = -Dz; << 1751 zz[1] = -Dz; 2305 zz[2] = Dz; << 1752 zz[2] = Dz; 2306 zz[3] = -Dz; << 1753 zz[3] = -Dz; 2307 rr[0] = Rmx2; 1754 rr[0] = Rmx2; 2308 rr[1] = Rmx1; 1755 rr[1] = Rmx1; 2309 rr[2] = Rmn2; 1756 rr[2] = Rmn2; 2310 rr[3] = Rmn1; 1757 rr[3] = Rmn1; 2311 1758 2312 // R O T A T E P O L Y L I N E S 1759 // R O T A T E P O L Y L I N E S 2313 1760 2314 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, << 1761 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 2315 SetReferences(); 1762 SetReferences(); 2316 } 1763 } 2317 1764 2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1765 HepPolyhedronCons::~HepPolyhedronCons() {} 2319 1766 2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1767 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 2321 G4double 1768 G4double Rmn2, G4double Rmx2, 2322 G4double 1769 G4double Dz) : 2323 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D 1770 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {} 2324 1771 2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1772 HepPolyhedronCone::~HepPolyhedronCone() {} 2326 1773 2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double 1774 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax, 2328 G4double << 1775 G4double Dz, 2329 G4double 1776 G4double Phi1, G4double Dphi) 2330 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rma 1777 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {} 2331 1778 2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1779 HepPolyhedronTubs::~HepPolyhedronTubs() {} 2333 1780 2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl 1781 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax, 2335 G4doubl 1782 G4double Dz) 2336 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, 1783 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {} 2337 1784 2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1785 HepPolyhedronTube::~HepPolyhedronTube () {} 2339 1786 2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double 1787 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi, 2341 G4double 1788 G4double dphi, 2342 G4int np << 1789 G4int npdv, 2343 G4int nz << 1790 G4int nz, 2344 const G4 1791 const G4double *z, 2345 const G4 1792 const G4double *rmin, 2346 const G4 1793 const G4double *rmax) 2347 /******************************************** 1794 /*********************************************************************** 2348 * 1795 * * 2349 * Name: HepPolyhedronPgon 1796 * Name: HepPolyhedronPgon Date: 09.12.96 * 2350 * Author: E.Chernyaev 1797 * Author: E.Chernyaev Revised: * 2351 * 1798 * * 2352 * Function: Constructor of polyhedron for PG 1799 * Function: Constructor of polyhedron for PGON, PCON * 2353 * 1800 * * 2354 * Input: phi - initial phi 1801 * Input: phi - initial phi * 2355 * dphi - delta phi 1802 * dphi - delta phi * 2356 * npdv - number of steps along phi 1803 * npdv - number of steps along phi * 2357 * nz - number of z-planes (at least 1804 * nz - number of z-planes (at least two) * 2358 * z[] - z coordinates of the slices 1805 * z[] - z coordinates of the slices * 2359 * rmin[] - smaller r at the slices 1806 * rmin[] - smaller r at the slices * 2360 * rmax[] - bigger r at the slices 1807 * rmax[] - bigger r at the slices * 2361 * 1808 * * 2362 ******************************************** 1809 ***********************************************************************/ 2363 { 1810 { 2364 // C H E C K I N P U T P A R A M E T 1811 // C H E C K I N P U T P A R A M E T E R S 2365 1812 2366 if (dphi <= 0. || dphi > twopi) { 1813 if (dphi <= 0. || dphi > twopi) { 2367 std::cerr 1814 std::cerr 2368 << "HepPolyhedronPgon/Pcon: wrong delta 1815 << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi 2369 << std::endl; 1816 << std::endl; 2370 return; 1817 return; 2371 } << 1818 } 2372 << 1819 2373 if (nz < 2) { 1820 if (nz < 2) { 2374 std::cerr 1821 std::cerr 2375 << "HepPolyhedronPgon/Pcon: number of z 1822 << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz 2376 << std::endl; 1823 << std::endl; 2377 return; 1824 return; 2378 } 1825 } 2379 1826 2380 if (npdv < 0) { 1827 if (npdv < 0) { 2381 std::cerr 1828 std::cerr 2382 << "HepPolyhedronPgon/Pcon: error in nu 1829 << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv 2383 << std::endl; 1830 << std::endl; 2384 return; 1831 return; 2385 } 1832 } 2386 1833 2387 G4int i; 1834 G4int i; 2388 for (i=0; i<nz; i++) { 1835 for (i=0; i<nz; i++) { 2389 if (rmin[i] < 0. || rmax[i] < 0. || rmin[ 1836 if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) { 2390 std::cerr 1837 std::cerr 2391 << "HepPolyhedronPgon: error in radiu 1838 << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]=" 2392 << rmin[i] << " rmax[" << i << "]=" < 1839 << rmin[i] << " rmax[" << i << "]=" << rmax[i] 2393 << std::endl; 1840 << std::endl; 2394 return; 1841 return; 2395 } 1842 } 2396 } 1843 } 2397 1844 2398 // P R E P A R E T W O P O L Y L I N 1845 // P R E P A R E T W O P O L Y L I N E S 2399 1846 2400 G4double *zz, *rr; 1847 G4double *zz, *rr; 2401 zz = new G4double[2*nz]; 1848 zz = new G4double[2*nz]; 2402 rr = new G4double[2*nz]; 1849 rr = new G4double[2*nz]; 2403 1850 2404 if (z[0] > z[nz-1]) { 1851 if (z[0] > z[nz-1]) { 2405 for (i=0; i<nz; i++) { 1852 for (i=0; i<nz; i++) { 2406 zz[i] = z[i]; 1853 zz[i] = z[i]; 2407 rr[i] = rmax[i]; 1854 rr[i] = rmax[i]; 2408 zz[i+nz] = z[i]; 1855 zz[i+nz] = z[i]; 2409 rr[i+nz] = rmin[i]; 1856 rr[i+nz] = rmin[i]; 2410 } 1857 } 2411 }else{ 1858 }else{ 2412 for (i=0; i<nz; i++) { 1859 for (i=0; i<nz; i++) { 2413 zz[i] = z[nz-i-1]; 1860 zz[i] = z[nz-i-1]; 2414 rr[i] = rmax[nz-i-1]; 1861 rr[i] = rmax[nz-i-1]; 2415 zz[i+nz] = z[nz-i-1]; 1862 zz[i+nz] = z[nz-i-1]; 2416 rr[i+nz] = rmin[nz-i-1]; 1863 rr[i+nz] = rmin[nz-i-1]; 2417 } 1864 } 2418 } 1865 } 2419 1866 2420 // R O T A T E P O L Y L I N E S 1867 // R O T A T E P O L Y L I N E S 2421 1868 2422 G4int nodeVis = 1; << 1869 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 2423 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2424 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, << 2425 SetReferences(); 1870 SetReferences(); 2426 << 1871 2427 delete [] zz; 1872 delete [] zz; 2428 delete [] rr; 1873 delete [] rr; 2429 } 1874 } 2430 1875 2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1876 HepPolyhedronPgon::~HepPolyhedronPgon() {} 2432 G4double << 2433 G4int np << 2434 const st << 2435 /******************************************** << 2436 * << 2437 * Name: HepPolyhedronPgon << 2438 * Author: E.Tcherniaev (E.Chernyaev) << 2439 * << 2440 * Function: Constructor of polyhedron for PG << 2441 * << 2442 * Input: phi - initial phi << 2443 * dphi - delta phi << 2444 * npdv - number of steps along phi << 2445 * rz - rz-contour << 2446 * << 2447 ******************************************** << 2448 { << 2449 // C H E C K I N P U T P A R A M E T << 2450 << 2451 if (dphi <= 0. || dphi > twopi) { << 2452 std::cerr << 2453 << "HepPolyhedronPgon/Pcon: wrong delta << 2454 << std::endl; << 2455 return; << 2456 } << 2457 << 2458 if (npdv < 0) { << 2459 std::cerr << 2460 << "HepPolyhedronPgon/Pcon: error in nu << 2461 << std::endl; << 2462 return; << 2463 } << 2464 << 2465 G4int nrz = (G4int)rz.size(); << 2466 if (nrz < 3) { << 2467 std::cerr << 2468 << "HepPolyhedronPgon/Pcon: invalid num << 2469 << std::endl; << 2470 return; << 2471 } << 2472 << 2473 // R O T A T E P O L Y L I N E << 2474 << 2475 G4int nodeVis = 1; << 2476 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2477 RotateContourAroundZ(npdv, phi, dphi, rz, n << 2478 SetReferences(); << 2479 } << 2480 << 2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 2482 1877 2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double 1878 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz, 2484 const G4 1879 const G4double *z, 2485 const G4 1880 const G4double *rmin, 2486 const G4 1881 const G4double *rmax) 2487 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm 1882 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {} 2488 1883 2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1884 HepPolyhedronPcon::~HepPolyhedronPcon() {} 2490 const st << 2491 : HepPolyhedronPgon(phi, dphi, 0, rz) {} << 2492 << 2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 2494 1885 2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do 1886 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax, 2496 G4do 1887 G4double phi, G4double dphi, 2497 G4do 1888 G4double the, G4double dthe) 2498 /******************************************** 1889 /*********************************************************************** 2499 * 1890 * * 2500 * Name: HepPolyhedronSphere 1891 * Name: HepPolyhedronSphere Date: 11.12.96 * 2501 * Author: E.Chernyaev (IHEP/Protvino) 1892 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2502 * 1893 * * 2503 * Function: Constructor of polyhedron for SP 1894 * Function: Constructor of polyhedron for SPHERE * 2504 * 1895 * * 2505 * Input: rmin - internal radius 1896 * Input: rmin - internal radius * 2506 * rmax - external radius 1897 * rmax - external radius * 2507 * phi - initial phi 1898 * phi - initial phi * 2508 * dphi - delta phi 1899 * dphi - delta phi * 2509 * the - initial theta 1900 * the - initial theta * 2510 * dthe - delta theta 1901 * dthe - delta theta * 2511 * 1902 * * 2512 ******************************************** 1903 ***********************************************************************/ 2513 { 1904 { 2514 // C H E C K I N P U T P A R A M E T 1905 // C H E C K I N P U T P A R A M E T E R S 2515 1906 2516 if (dphi <= 0. || dphi > twopi) { 1907 if (dphi <= 0. || dphi > twopi) { 2517 std::cerr 1908 std::cerr 2518 << "HepPolyhedronSphere: wrong delta ph 1909 << "HepPolyhedronSphere: wrong delta phi = " << dphi 2519 << std::endl; 1910 << std::endl; 2520 return; 1911 return; 2521 } << 1912 } 2522 1913 2523 if (the < 0. || the > pi) { 1914 if (the < 0. || the > pi) { 2524 std::cerr 1915 std::cerr 2525 << "HepPolyhedronSphere: wrong theta = 1916 << "HepPolyhedronSphere: wrong theta = " << the 2526 << std::endl; 1917 << std::endl; 2527 return; 1918 return; 2528 } << 1919 } 2529 << 1920 2530 if (dthe <= 0. || dthe > pi) { 1921 if (dthe <= 0. || dthe > pi) { 2531 std::cerr 1922 std::cerr 2532 << "HepPolyhedronSphere: wrong delta th 1923 << "HepPolyhedronSphere: wrong delta theta = " << dthe 2533 << std::endl; 1924 << std::endl; 2534 return; 1925 return; 2535 } << 1926 } 2536 1927 2537 if (the+dthe > pi) { 1928 if (the+dthe > pi) { 2538 std::cerr 1929 std::cerr 2539 << "HepPolyhedronSphere: wrong theta + 1930 << "HepPolyhedronSphere: wrong theta + delta theta = " 2540 << the << " " << dthe 1931 << the << " " << dthe 2541 << std::endl; 1932 << std::endl; 2542 return; 1933 return; 2543 } << 1934 } 2544 << 1935 2545 if (rmin < 0. || rmin >= rmax) { 1936 if (rmin < 0. || rmin >= rmax) { 2546 std::cerr 1937 std::cerr 2547 << "HepPolyhedronSphere: error in radiu 1938 << "HepPolyhedronSphere: error in radiuses" 2548 << " rmin=" << rmin << " rmax=" << rmax 1939 << " rmin=" << rmin << " rmax=" << rmax 2549 << std::endl; 1940 << std::endl; 2550 return; 1941 return; 2551 } 1942 } 2552 1943 2553 // P R E P A R E T W O P O L Y L I N 1944 // P R E P A R E T W O P O L Y L I N E S 2554 1945 2555 G4int nds = (GetNumberOfRotationSteps() + 1 1946 G4int nds = (GetNumberOfRotationSteps() + 1) / 2; 2556 G4int np1 = G4int(dthe*nds/pi+.5) + 1; 1947 G4int np1 = G4int(dthe*nds/pi+.5) + 1; 2557 if (np1 <= 1) np1 = 2; 1948 if (np1 <= 1) np1 = 2; 2558 G4int np2 = rmin < spatialTolerance ? 1 : n 1949 G4int np2 = rmin < spatialTolerance ? 1 : np1; 2559 1950 2560 G4double *zz, *rr; 1951 G4double *zz, *rr; 2561 zz = new G4double[np1+np2]; 1952 zz = new G4double[np1+np2]; 2562 rr = new G4double[np1+np2]; 1953 rr = new G4double[np1+np2]; 2563 1954 2564 G4double a = dthe/(np1-1); 1955 G4double a = dthe/(np1-1); 2565 G4double cosa, sina; 1956 G4double cosa, sina; 2566 for (G4int i=0; i<np1; i++) { 1957 for (G4int i=0; i<np1; i++) { 2567 cosa = std::cos(the+i*a); 1958 cosa = std::cos(the+i*a); 2568 sina = std::sin(the+i*a); 1959 sina = std::sin(the+i*a); 2569 zz[i] = rmax*cosa; 1960 zz[i] = rmax*cosa; 2570 rr[i] = rmax*sina; 1961 rr[i] = rmax*sina; 2571 if (np2 > 1) { 1962 if (np2 > 1) { 2572 zz[i+np1] = rmin*cosa; 1963 zz[i+np1] = rmin*cosa; 2573 rr[i+np1] = rmin*sina; 1964 rr[i+np1] = rmin*sina; 2574 } 1965 } 2575 } 1966 } 2576 if (np2 == 1) { 1967 if (np2 == 1) { 2577 zz[np1] = 0.; 1968 zz[np1] = 0.; 2578 rr[np1] = 0.; 1969 rr[np1] = 0.; 2579 } 1970 } 2580 1971 2581 // R O T A T E P O L Y L I N E S 1972 // R O T A T E P O L Y L I N E S 2582 1973 2583 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1974 RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 2584 SetReferences(); 1975 SetReferences(); 2585 << 1976 2586 delete [] zz; 1977 delete [] zz; 2587 delete [] rr; 1978 delete [] rr; 2588 } 1979 } 2589 1980 2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1981 HepPolyhedronSphere::~HepPolyhedronSphere() {} 2591 1982 2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub 1983 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin, 2593 G4doub 1984 G4double rmax, 2594 G4doub 1985 G4double rtor, 2595 G4doub 1986 G4double phi, 2596 G4doub 1987 G4double dphi) 2597 /******************************************** 1988 /*********************************************************************** 2598 * 1989 * * 2599 * Name: HepPolyhedronTorus 1990 * Name: HepPolyhedronTorus Date: 11.12.96 * 2600 * Author: E.Chernyaev (IHEP/Protvino) 1991 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2601 * 1992 * * 2602 * Function: Constructor of polyhedron for TO 1993 * Function: Constructor of polyhedron for TORUS * 2603 * 1994 * * 2604 * Input: rmin - internal radius 1995 * Input: rmin - internal radius * 2605 * rmax - external radius 1996 * rmax - external radius * 2606 * rtor - radius of torus 1997 * rtor - radius of torus * 2607 * phi - initial phi 1998 * phi - initial phi * 2608 * dphi - delta phi 1999 * dphi - delta phi * 2609 * 2000 * * 2610 ******************************************** 2001 ***********************************************************************/ 2611 { 2002 { 2612 // C H E C K I N P U T P A R A M E T 2003 // C H E C K I N P U T P A R A M E T E R S 2613 2004 2614 if (dphi <= 0. || dphi > twopi) { 2005 if (dphi <= 0. || dphi > twopi) { 2615 std::cerr 2006 std::cerr 2616 << "HepPolyhedronTorus: wrong delta phi 2007 << "HepPolyhedronTorus: wrong delta phi = " << dphi 2617 << std::endl; 2008 << std::endl; 2618 return; 2009 return; 2619 } 2010 } 2620 2011 2621 if (rmin < 0. || rmin >= rmax || rmax >= rt 2012 if (rmin < 0. || rmin >= rmax || rmax >= rtor) { 2622 std::cerr 2013 std::cerr 2623 << "HepPolyhedronTorus: error in radius 2014 << "HepPolyhedronTorus: error in radiuses" 2624 << " rmin=" << rmin << " rmax=" << rmax 2015 << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor 2625 << std::endl; 2016 << std::endl; 2626 return; 2017 return; 2627 } 2018 } 2628 2019 2629 // P R E P A R E T W O P O L Y L I N 2020 // P R E P A R E T W O P O L Y L I N E S 2630 2021 2631 G4int np1 = GetNumberOfRotationSteps(); 2022 G4int np1 = GetNumberOfRotationSteps(); 2632 G4int np2 = rmin < spatialTolerance ? 1 : n 2023 G4int np2 = rmin < spatialTolerance ? 1 : np1; 2633 2024 2634 G4double *zz, *rr; 2025 G4double *zz, *rr; 2635 zz = new G4double[np1+np2]; 2026 zz = new G4double[np1+np2]; 2636 rr = new G4double[np1+np2]; 2027 rr = new G4double[np1+np2]; 2637 2028 2638 G4double a = twopi/np1; 2029 G4double a = twopi/np1; 2639 G4double cosa, sina; 2030 G4double cosa, sina; 2640 for (G4int i=0; i<np1; i++) { 2031 for (G4int i=0; i<np1; i++) { 2641 cosa = std::cos(i*a); 2032 cosa = std::cos(i*a); 2642 sina = std::sin(i*a); 2033 sina = std::sin(i*a); 2643 zz[i] = rmax*cosa; 2034 zz[i] = rmax*cosa; 2644 rr[i] = rtor+rmax*sina; 2035 rr[i] = rtor+rmax*sina; 2645 if (np2 > 1) { 2036 if (np2 > 1) { 2646 zz[i+np1] = rmin*cosa; 2037 zz[i+np1] = rmin*cosa; 2647 rr[i+np1] = rtor+rmin*sina; 2038 rr[i+np1] = rtor+rmin*sina; 2648 } 2039 } 2649 } 2040 } 2650 if (np2 == 1) { 2041 if (np2 == 1) { 2651 zz[np1] = 0.; 2042 zz[np1] = 0.; 2652 rr[np1] = rtor; 2043 rr[np1] = rtor; 2653 np2 = -1; 2044 np2 = -1; 2654 } 2045 } 2655 2046 2656 // R O T A T E P O L Y L I N E S 2047 // R O T A T E P O L Y L I N E S 2657 2048 2658 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2049 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 2659 SetReferences(); 2050 SetReferences(); 2660 << 2051 2661 delete [] zz; 2052 delete [] zz; 2662 delete [] rr; 2053 delete [] rr; 2663 } 2054 } 2664 2055 2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2056 HepPolyhedronTorus::~HepPolyhedronTorus() {} 2666 << 2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 2668 const G4do << 2669 const G4do << 2670 const G4do << 2671 /******************************************** << 2672 * << 2673 * Name: HepPolyhedronTet << 2674 * Author: E.Tcherniaev (E.Chernyaev) << 2675 * << 2676 * Function: Constructor of polyhedron for TE << 2677 * << 2678 * Input: p0,p1,p2,p3 - vertices << 2679 * << 2680 ******************************************** << 2681 { << 2682 AllocateMemory(4,4); << 2683 << 2684 pV[1].set(p0[0], p0[1], p0[2]); << 2685 pV[2].set(p1[0], p1[1], p1[2]); << 2686 pV[3].set(p2[0], p2[1], p2[2]); << 2687 pV[4].set(p3[0], p3[1], p3[2]); << 2688 << 2689 G4Vector3D v1(pV[2] - pV[1]); << 2690 G4Vector3D v2(pV[3] - pV[1]); << 2691 G4Vector3D v3(pV[4] - pV[1]); << 2692 << 2693 if (v1.cross(v2).dot(v3) < 0.) << 2694 { << 2695 pV[3].set(p3[0], p3[1], p3[2]); << 2696 pV[4].set(p2[0], p2[1], p2[2]); << 2697 } << 2698 << 2699 pF[1] = G4Facet(1,2, 3,4, 2,3); << 2700 pF[2] = G4Facet(1,3, 4,4, 3,1); << 2701 pF[3] = G4Facet(1,1, 2,4, 4,2); << 2702 pF[4] = G4Facet(2,1, 3,2, 4,3); << 2703 } << 2704 << 2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 2706 2057 2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi 2058 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by, 2708 2059 G4double cz, G4double zCut1, 2709 2060 G4double zCut2) 2710 /******************************************** 2061 /*********************************************************************** 2711 * 2062 * * 2712 * Name: HepPolyhedronEllipsoid 2063 * Name: HepPolyhedronEllipsoid Date: 25.02.05 * 2713 * Author: G.Guerrieri 2064 * Author: G.Guerrieri Revised: * 2714 * Evgueni Tcherniaev << 2715 * 2065 * * 2716 * Function: Constructor of polyhedron for EL 2066 * Function: Constructor of polyhedron for ELLIPSOID * 2717 * 2067 * * 2718 * Input: ax - semiaxis x 2068 * Input: ax - semiaxis x * 2719 * by - semiaxis y 2069 * by - semiaxis y * 2720 * cz - semiaxis z 2070 * cz - semiaxis z * 2721 * zCut1 - lower cut plane level (soli 2071 * zCut1 - lower cut plane level (solid lies above this plane) * 2722 * zCut2 - upper cut plane level (soli 2072 * zCut2 - upper cut plane level (solid lies below this plane) * 2723 * 2073 * * 2724 ******************************************** 2074 ***********************************************************************/ 2725 { 2075 { 2726 // C H E C K I N P U T P A R A M E T 2076 // C H E C K I N P U T P A R A M E T E R S 2727 2077 2728 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > 2078 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) { 2729 std::cerr << "HepPolyhedronEllipsoid: wro 2079 std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1 2730 << " zCut2 = " << zCut2 2080 << " zCut2 = " << zCut2 2731 << " for given cz = " << cz << std 2081 << " for given cz = " << cz << std::endl; 2732 return; 2082 return; 2733 } 2083 } 2734 if (cz <= 0.0) { 2084 if (cz <= 0.0) { 2735 std::cerr << "HepPolyhedronEllipsoid: bad 2085 std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz 2736 << std::endl; 2086 << std::endl; 2737 return; 2087 return; 2738 } 2088 } 2739 2089 >> 2090 G4double dthe; >> 2091 G4double sthe; >> 2092 G4int cutflag; >> 2093 cutflag= 0; >> 2094 if (zCut2 >= cz) >> 2095 { >> 2096 sthe= 0.0; >> 2097 } >> 2098 else >> 2099 { >> 2100 sthe= std::acos(zCut2/cz); >> 2101 cutflag++; >> 2102 } >> 2103 if (zCut1 <= -cz) >> 2104 { >> 2105 dthe= pi - sthe; >> 2106 } >> 2107 else >> 2108 { >> 2109 dthe= std::acos(zCut1/cz)-sthe; >> 2110 cutflag++; >> 2111 } >> 2112 2740 // P R E P A R E T W O P O L Y L I N 2113 // P R E P A R E T W O P O L Y L I N E S 2741 // generate sphere of radius cz first, th 2114 // generate sphere of radius cz first, then rescale x and y later 2742 2115 2743 G4double sthe = std::acos(zCut2/cz); << 2116 G4int nds = (GetNumberOfRotationSteps() + 1) / 2; 2744 G4double dthe = std::acos(zCut1/cz) - sthe; << 2117 G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag; 2745 G4int nds = (GetNumberOfRotationSteps() + 1 << 2746 G4int np1 = G4int(dthe*nds/pi + 0.5) + 1; << 2747 if (np1 <= 1) np1 = 2; << 2748 G4int np2 = 2; << 2749 2118 2750 G4double *zz, *rr; 2119 G4double *zz, *rr; 2751 zz = new G4double[np1 + np2]; << 2120 zz = new G4double[np1+1]; 2752 rr = new G4double[np1 + np2]; << 2121 rr = new G4double[np1+1]; 2753 if ((zz == nullptr) || (rr == nullptr)) << 2122 if (!zz || !rr) 2754 { << 2123 { 2755 G4Exception("HepPolyhedronEllipsoid::HepP << 2124 G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid", 2756 "greps1002", FatalException, << 2125 "greps1002", FatalException, "Out of memory"); 2757 } << 2126 } 2758 2127 2759 G4double a = dthe/(np1 - 1); << 2128 G4double a = dthe/(np1-cutflag-1); 2760 G4double cosa, sina; 2129 G4double cosa, sina; 2761 for (G4int i = 0; i < np1; ++i) << 2130 G4int j=0; 2762 { << 2131 if (sthe > 0.0) 2763 cosa = std::cos(sthe + i*a); << 2132 { 2764 sina = std::sin(sthe + i*a); << 2133 zz[j]= zCut2; 2765 zz[i] = cz*cosa; << 2134 rr[j]= 0.; 2766 rr[i] = cz*sina; << 2135 j++; 2767 } << 2136 } 2768 zz[np1 + 0] = zCut2; << 2137 for (G4int i=0; i<np1-cutflag; i++) { 2769 rr[np1 + 0] = 0.; << 2138 cosa = std::cos(sthe+i*a); 2770 zz[np1 + 1] = zCut1; << 2139 sina = std::sin(sthe+i*a); 2771 rr[np1 + 1] = 0.; << 2140 zz[j] = cz*cosa; >> 2141 rr[j] = cz*sina; >> 2142 j++; >> 2143 } >> 2144 if (j < np1) >> 2145 { >> 2146 zz[j]= zCut1; >> 2147 rr[j]= 0.; >> 2148 j++; >> 2149 } >> 2150 if (j > np1) >> 2151 { >> 2152 std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!" >> 2153 << std::endl; >> 2154 } >> 2155 if (j < np1) >> 2156 { >> 2157 std::cerr << "Warning: logic error in HepPolyhedronEllipsoid." >> 2158 << std::endl; >> 2159 np1= j; >> 2160 } >> 2161 zz[j] = 0.; >> 2162 rr[j] = 0.; 2772 2163 >> 2164 2773 // R O T A T E P O L Y L I N E S 2165 // R O T A T E P O L Y L I N E S 2774 2166 2775 RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2167 RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 2776 SetReferences(); 2168 SetReferences(); 2777 2169 2778 delete [] zz; 2170 delete [] zz; 2779 delete [] rr; 2171 delete [] rr; 2780 2172 2781 // rescale x and y vertex coordinates 2173 // rescale x and y vertex coordinates 2782 G4double kx = ax/cz; << 2783 G4double ky = by/cz; << 2784 G4Point3D* p = pV; << 2785 for (G4int i = 0; i < nvert; ++i, ++p) << 2786 { 2174 { 2787 p->setX(p->x()*kx); << 2175 G4Point3D * p= pV; 2788 p->setY(p->y()*ky); << 2176 for (G4int i=0; i<nvert; i++, p++) { >> 2177 p->setX( p->x() * ax/cz ); >> 2178 p->setY( p->y() * by/cz ); >> 2179 } 2789 } 2180 } 2790 } 2181 } 2791 2182 2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2183 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {} 2793 2184 2794 HepPolyhedronEllipticalCone::HepPolyhedronEll 2185 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax, 2795 2186 G4double ay, 2796 2187 G4double h, 2797 << 2188 G4double zTopCut) 2798 /******************************************** 2189 /*********************************************************************** 2799 * 2190 * * 2800 * Name: HepPolyhedronEllipticalCone 2191 * Name: HepPolyhedronEllipticalCone Date: 8.9.2005 * 2801 * Author: D.Anninos 2192 * Author: D.Anninos Revised: 9.9.2005 * 2802 * 2193 * * 2803 * Function: Constructor for EllipticalCone 2194 * Function: Constructor for EllipticalCone * 2804 * 2195 * * 2805 * Input: ax, ay - X & Y semi axes at z = 2196 * Input: ax, ay - X & Y semi axes at z = 0 * 2806 * h - height of full cone 2197 * h - height of full cone * 2807 * zTopCut - Top Cut in Z Axis 2198 * zTopCut - Top Cut in Z Axis * 2808 * 2199 * * 2809 ******************************************** 2200 ***********************************************************************/ 2810 { 2201 { 2811 // C H E C K I N P U T P A R A M E T 2202 // C H E C K I N P U T P A R A M E T E R S 2812 2203 2813 G4int k = 0; 2204 G4int k = 0; 2814 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) 2205 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; } 2815 2206 2816 if (k != 0) { 2207 if (k != 0) { 2817 std::cerr << "HepPolyhedronCone: error in 2208 std::cerr << "HepPolyhedronCone: error in input parameters"; 2818 std::cerr << std::endl; 2209 std::cerr << std::endl; 2819 return; 2210 return; 2820 } 2211 } 2821 << 2212 2822 // P R E P A R E T W O P O L Y L I N 2213 // P R E P A R E T W O P O L Y L I N E S 2823 2214 2824 zTopCut = (h >= zTopCut ? zTopCut : h); 2215 zTopCut = (h >= zTopCut ? zTopCut : h); 2825 2216 2826 G4double *zz, *rr; 2217 G4double *zz, *rr; 2827 zz = new G4double[4]; 2218 zz = new G4double[4]; 2828 rr = new G4double[4]; 2219 rr = new G4double[4]; 2829 zz[0] = zTopCut; << 2220 zz[0] = zTopCut; 2830 zz[1] = -zTopCut; << 2221 zz[1] = -zTopCut; 2831 zz[2] = zTopCut; << 2222 zz[2] = zTopCut; 2832 zz[3] = -zTopCut; << 2223 zz[3] = -zTopCut; 2833 rr[0] = (h-zTopCut); 2224 rr[0] = (h-zTopCut); 2834 rr[1] = (h+zTopCut); 2225 rr[1] = (h+zTopCut); 2835 rr[2] = 0.; 2226 rr[2] = 0.; 2836 rr[3] = 0.; 2227 rr[3] = 0.; 2837 2228 2838 // R O T A T E P O L Y L I N E S 2229 // R O T A T E P O L Y L I N E S 2839 2230 2840 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2231 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 2841 SetReferences(); 2232 SetReferences(); 2842 2233 2843 delete [] zz; 2234 delete [] zz; 2844 delete [] rr; 2235 delete [] rr; 2845 2236 2846 // rescale x and y vertex coordinates 2237 // rescale x and y vertex coordinates 2847 { 2238 { 2848 G4Point3D * p= pV; 2239 G4Point3D * p= pV; 2849 for (G4int i=0; i<nvert; i++, p++) { 2240 for (G4int i=0; i<nvert; i++, p++) { 2850 p->setX( p->x() * ax ); 2241 p->setX( p->x() * ax ); 2851 p->setY( p->y() * ay ); 2242 p->setY( p->y() * ay ); 2852 } 2243 } 2853 } 2244 } 2854 } 2245 } 2855 2246 2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2247 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {} 2857 << 2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 2859 << 2860 << 2861 /******************************************** << 2862 * << 2863 * Name: HepPolyhedronHyperbolicMirror << 2864 * Author: E.Tcherniaev (E.Chernyaev) << 2865 * << 2866 * Function: Create polyhedron for Hyperbolic << 2867 * << 2868 * Input: a - half-separation << 2869 * h - height << 2870 * r - radius << 2871 * << 2872 ******************************************** << 2873 { << 2874 G4double H = std::abs(h); << 2875 G4double R = std::abs(r); << 2876 G4double A = std::abs(a); << 2877 G4double B = A*R/std::sqrt(2*A*H + H*H); << 2878 << 2879 // P R E P A R E T W O P O L Y L I N << 2880 << 2881 G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 2882 G4int np2 = 2; << 2883 G4double maxAng = (A == 0.) ? 0. : std::aco << 2884 G4double delAng = maxAng/(np1 - 1); << 2885 << 2886 auto zz = new G4double[np1 + np2]; << 2887 auto rr = new G4double[np1 + np2]; << 2888 << 2889 // 1st polyline << 2890 zz[0] = H; << 2891 rr[0] = R; << 2892 for (G4int iz = 1; iz < np1 - 1; ++iz) << 2893 { << 2894 G4double ang = maxAng - iz*delAng; << 2895 zz[iz] = A*std::cosh(ang) - A; << 2896 rr[iz] = B*std::sinh(ang); << 2897 } << 2898 zz[np1 - 1] = 0.; << 2899 rr[np1 - 1] = 0.; << 2900 << 2901 // 2nd polyline << 2902 zz[np1] = H; << 2903 rr[np1] = 0.; << 2904 zz[np1 + 1] = 0.; << 2905 rr[np1 + 1] = 0.; << 2906 << 2907 // R O T A T E P O L Y L I N E S << 2908 << 2909 G4double phi = 0.; << 2910 G4double dphi = CLHEP::twopi; << 2911 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 2912 SetReferences(); << 2913 << 2914 delete [] zz; << 2915 delete [] rr; << 2916 } << 2917 << 2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 2919 << 2920 HepPolyhedronTetMesh:: << 2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 2922 /******************************************** << 2923 * << 2924 * Name: HepPolyhedronTetMesh << 2925 * Author: E.Tcherniaev (E.Chernyaev) << 2926 * << 2927 * Function: Create polyhedron for tetrahedro << 2928 * << 2929 * Input: tetrahedra - array of tetrahedron v << 2930 * per tetrahedron << 2931 * << 2932 ******************************************** << 2933 { << 2934 // Check size of input vector << 2935 G4int nnodes = (G4int)tetrahedra.size(); << 2936 if (nnodes == 0) << 2937 { << 2938 std::cerr << 2939 << "HepPolyhedronTetMesh: Empty tetrahe << 2940 return; << 2941 } << 2942 G4int ntet = nnodes/4; << 2943 if (nnodes != ntet*4) << 2944 { << 2945 std::cerr << "HepPolyhedronTetMesh: Numbe << 2946 << " in tetrahedron mesh is NOT << 2947 << std::endl; << 2948 return; << 2949 } << 2950 << 2951 // Find coincident vertices using hash tabl << 2952 // This could be done using std::unordered_ << 2953 // below runs faster. << 2954 std::vector<G4int> iheads(nnodes, -1); << 2955 std::vector<std::pair<G4int,G4int>> ipairs( << 2956 for (G4int i = 0; i < nnodes; ++i) << 2957 { << 2958 // Generate hash key << 2959 G4ThreeVector point = tetrahedra[i]; << 2960 auto key = std::hash<G4double>()(point.x( << 2961 key ^= std::hash<G4double>()(point.y()); << 2962 key ^= std::hash<G4double>()(point.z()); << 2963 key %= nnodes; << 2964 // Check head of the list << 2965 if (iheads[key] < 0) << 2966 { << 2967 iheads[key] = i; << 2968 ipairs[i].first = i; << 2969 continue; << 2970 } << 2971 // Loop along the list << 2972 for (G4int icur = iheads[key], iprev = 0; << 2973 { << 2974 G4int icheck = ipairs[icur].first; << 2975 if (tetrahedra[icheck] == point) << 2976 { << 2977 ipairs[i].first = icheck; // coincide << 2978 break; << 2979 } << 2980 iprev = icur; << 2981 icur = ipairs[icur].second; << 2982 // Append vertex to the list << 2983 if (icur < 0) << 2984 { << 2985 ipairs[i].first = i; << 2986 ipairs[iprev].second = i; << 2987 break; << 2988 } << 2989 } << 2990 } << 2991 << 2992 // Create vector of original facets << 2993 struct facet << 2994 { << 2995 G4int i1, i2, i3; << 2996 facet() : i1(0), i2(0), i3(0) {}; << 2997 facet(G4int k1, G4int k2, G4int k3) : i1( << 2998 }; << 2999 G4int nfacets = nnodes; << 3000 std::vector<facet> ifacets(nfacets); << 3001 for (G4int i = 0; i < nfacets; i += 4) << 3002 { << 3003 G4int i0 = ipairs[i + 0].first; << 3004 G4int i1 = ipairs[i + 1].first; << 3005 G4int i2 = ipairs[i + 2].first; << 3006 G4int i3 = ipairs[i + 3].first; << 3007 if (i0 > i1) std::swap(i0, i1); << 3008 if (i0 > i2) std::swap(i0, i2); << 3009 if (i0 > i3) std::swap(i0, i3); << 3010 if (i1 > i2) std::swap(i1, i2); << 3011 if (i1 > i3) std::swap(i1, i3); << 3012 G4ThreeVector e1 = tetrahedra[i1] - tetra << 3013 G4ThreeVector e2 = tetrahedra[i2] - tetra << 3014 G4ThreeVector e3 = tetrahedra[i3] - tetra << 3015 G4double volume = (e1.cross(e2)).dot(e3); << 3016 if (volume > 0.) std::swap(i2, i3); << 3017 ifacets[i + 0] = facet(i0, i1, i2); << 3018 ifacets[i + 1] = facet(i0, i2, i3); << 3019 ifacets[i + 2] = facet(i0, i3, i1); << 3020 ifacets[i + 3] = facet(i1, i3, i2); << 3021 } << 3022 << 3023 // Find shared facets << 3024 std::fill(iheads.begin(), iheads.end(), -1) << 3025 std::fill(ipairs.begin(), ipairs.end(), std << 3026 for (G4int i = 0; i < nfacets; ++i) << 3027 { << 3028 // Check head of the list << 3029 G4int key = ifacets[i].i1; << 3030 if (iheads[key] < 0) << 3031 { << 3032 iheads[key] = i; << 3033 ipairs[i].first = i; << 3034 continue; << 3035 } << 3036 // Loop along the list << 3037 G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 3038 for (G4int icur = iheads[key], iprev = -1 << 3039 { << 3040 G4int icheck = ipairs[icur].first; << 3041 if (ifacets[icheck].i2 == i3 && ifacets << 3042 { << 3043 if (iprev < 0) << 3044 { << 3045 iheads[key] = ipairs[icur].second; << 3046 } << 3047 else << 3048 { << 3049 ipairs[iprev].second = ipairs[icur] << 3050 } << 3051 ipairs[icur].first = -1; // shared fa << 3052 ipairs[icur].second = -1; << 3053 break; << 3054 } << 3055 iprev = icur; << 3056 icur = ipairs[icur].second; << 3057 // Append facet to the list << 3058 if (icur < 0) << 3059 { << 3060 ipairs[i].first = i; << 3061 ipairs[iprev].second = i; << 3062 break; << 3063 } << 3064 } << 3065 } << 3066 << 3067 // Count vertices and facets skipping share << 3068 std::fill(iheads.begin(), iheads.end(), -1) << 3069 G4int nver = 0, nfac = 0; << 3070 for (G4int i = 0; i < nfacets; ++i) << 3071 { << 3072 if (ipairs[i].first < 0) continue; << 3073 G4int i1 = ifacets[i].i1; << 3074 G4int i2 = ifacets[i].i2; << 3075 G4int i3 = ifacets[i].i3; << 3076 if (iheads[i1] < 0) iheads[i1] = nver++; << 3077 if (iheads[i2] < 0) iheads[i2] = nver++; << 3078 if (iheads[i3] < 0) iheads[i3] = nver++; << 3079 nfac++; << 3080 } << 3081 << 3082 // Construct polyhedron << 3083 AllocateMemory(nver, nfac); << 3084 for (G4int i = 0; i < nnodes; ++i) << 3085 { << 3086 G4int k = iheads[i]; << 3087 if (k >= 0) SetVertex(k + 1, tetrahedra[i << 3088 } << 3089 for (G4int i = 0, k = 0; i < nfacets; ++i) << 3090 { << 3091 if (ipairs[i].first < 0) continue; << 3092 G4int i1 = iheads[ifacets[i].i1] + 1; << 3093 G4int i2 = iheads[ifacets[i].i2] + 1; << 3094 G4int i3 = iheads[ifacets[i].i3] + 1; << 3095 SetFacet(++k, i1, i2, i3); << 3096 } << 3097 SetReferences(); << 3098 } << 3099 << 3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 3101 << 3102 HepPolyhedronBoxMesh:: << 3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 3104 const std::vector<G4Thre << 3105 /******************************************** << 3106 * << 3107 * Name: HepPolyhedronBoxMesh << 3108 * Author: E.Tcherniaev (E.Chernyaev) << 3109 * << 3110 * Function: Create polyhedron for box mesh << 3111 * << 3112 * Input: sizeX, sizeY, sizeZ - dimensions of << 3113 * positions - vector of cell centres << 3114 * << 3115 ******************************************** << 3116 { << 3117 G4int nbox = (G4int)positions.size(); << 3118 if (nbox == 0) << 3119 { << 3120 std::cerr << "HepPolyhedronBoxMesh: Empty << 3121 return; << 3122 } << 3123 // compute inverse dimensions << 3124 G4double invx = 1./sizeX, invy = 1./sizeY, << 3125 // find mesh bounding box << 3126 G4ThreeVector pmin = positions[0], pmax = p << 3127 for (const auto& p: positions) << 3128 { << 3129 if (pmin.x() > p.x()) pmin.setX(p.x()); << 3130 if (pmin.y() > p.y()) pmin.setY(p.y()); << 3131 if (pmin.z() > p.z()) pmin.setZ(p.z()); << 3132 if (pmax.x() < p.x()) pmax.setX(p.x()); << 3133 if (pmax.y() < p.y()) pmax.setY(p.y()); << 3134 if (pmax.z() < p.z()) pmax.setZ(p.z()); << 3135 } << 3136 // find number of voxels << 3137 G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 3138 G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 3139 G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 3140 // create structures for voxels and node in << 3141 std::vector<char> voxels(nx*ny*nz, 0); << 3142 std::vector<G4int> indices((nx+1)*(ny+1)*(n << 3143 // mark voxels listed in positions << 3144 G4int kx = ny*nz, ky = nz; << 3145 for (const auto& p: positions) << 3146 { << 3147 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3148 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3149 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3150 G4int i = ix*kx + iy*ky + iz; << 3151 voxels[i] = 1; << 3152 } << 3153 // count number of vertices and facets << 3154 // set indices << 3155 G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 3156 G4int nver = 0, nfac = 0; << 3157 for (const auto& p: positions) << 3158 { << 3159 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3160 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3161 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3162 // << 3163 // 011 111 << 3164 // +---–---+ << 3165 // | 001 | 101 << 3166 // | +---–---+ << 3167 // | | | | << 3168 // +---|---+ | << 3169 // 010 | 110 | << 3170 // +-------+ << 3171 // 000 100 << 3172 // << 3173 G4int vcheck = 0; << 3174 // check (ix - 1) side << 3175 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3176 if (vcheck == 0) << 3177 { << 3178 nfac++; << 3179 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3180 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3181 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3182 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3183 if (indices[i1] == 0) indices[i1] = ++n << 3184 if (indices[i2] == 0) indices[i2] = ++n << 3185 if (indices[i3] == 0) indices[i3] = ++n << 3186 if (indices[i4] == 0) indices[i4] = ++n << 3187 } << 3188 // check (ix + 1) side << 3189 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3190 if (vcheck == 0) << 3191 { << 3192 nfac++; << 3193 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3194 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3195 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3196 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3197 if (indices[i1] == 0) indices[i1] = ++n << 3198 if (indices[i2] == 0) indices[i2] = ++n << 3199 if (indices[i3] == 0) indices[i3] = ++n << 3200 if (indices[i4] == 0) indices[i4] = ++n << 3201 } << 3202 // check (iy - 1) side << 3203 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3204 if (vcheck == 0) << 3205 { << 3206 nfac++; << 3207 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3208 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3209 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3210 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3211 if (indices[i1] == 0) indices[i1] = ++n << 3212 if (indices[i2] == 0) indices[i2] = ++n << 3213 if (indices[i3] == 0) indices[i3] = ++n << 3214 if (indices[i4] == 0) indices[i4] = ++n << 3215 } << 3216 // check (iy + 1) side << 3217 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3218 if (vcheck == 0) << 3219 { << 3220 nfac++; << 3221 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3222 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3223 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3224 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3225 if (indices[i1] == 0) indices[i1] = ++n << 3226 if (indices[i2] == 0) indices[i2] = ++n << 3227 if (indices[i3] == 0) indices[i3] = ++n << 3228 if (indices[i4] == 0) indices[i4] = ++n << 3229 } << 3230 // check (iz - 1) side << 3231 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3232 if (vcheck == 0) << 3233 { << 3234 nfac++; << 3235 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3236 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3237 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3238 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3239 if (indices[i1] == 0) indices[i1] = ++n << 3240 if (indices[i2] == 0) indices[i2] = ++n << 3241 if (indices[i3] == 0) indices[i3] = ++n << 3242 if (indices[i4] == 0) indices[i4] = ++n << 3243 } << 3244 // check (iz + 1) side << 3245 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3246 if (vcheck == 0) << 3247 { << 3248 nfac++; << 3249 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3250 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3251 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3252 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3253 if (indices[i1] == 0) indices[i1] = ++n << 3254 if (indices[i2] == 0) indices[i2] = ++n << 3255 if (indices[i3] == 0) indices[i3] = ++n << 3256 if (indices[i4] == 0) indices[i4] = ++n << 3257 } << 3258 } << 3259 // Construct polyhedron << 3260 AllocateMemory(nver, nfac); << 3261 G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 3262 for (G4int ix = 0; ix <= nx; ++ix) << 3263 { << 3264 for (G4int iy = 0; iy <= ny; ++iy) << 3265 { << 3266 for (G4int iz = 0; iz <= nz; ++iz) << 3267 { << 3268 G4int i = ix*kvx + iy*kvy + iz; << 3269 if (indices[i] == 0) continue; << 3270 SetVertex(indices[i], p0 + G4ThreeVector(ix << 3271 } << 3272 } << 3273 } << 3274 nfac = 0; << 3275 for (const auto& p: positions) << 3276 { << 3277 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3278 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3279 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3280 G4int vcheck = 0; << 3281 // check (ix - 1) side << 3282 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3283 if (vcheck == 0) << 3284 { << 3285 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3286 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3287 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3288 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3289 SetFacet(++nfac, indices[i1], indices[i << 3290 } << 3291 // check (ix + 1) side << 3292 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3293 if (vcheck == 0) << 3294 { << 3295 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3296 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3297 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3298 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3299 SetFacet(++nfac, indices[i1], indices[i << 3300 << 3301 } << 3302 // check (iy - 1) side << 3303 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3304 if (vcheck == 0) << 3305 { << 3306 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3307 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3308 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3309 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3310 SetFacet(++nfac, indices[i1], indices[i << 3311 } << 3312 // check (iy + 1) side << 3313 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3314 if (vcheck == 0) << 3315 { << 3316 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3317 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3318 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3319 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3320 SetFacet(++nfac, indices[i1], indices[i << 3321 } << 3322 // check (iz - 1) side << 3323 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3324 if (vcheck == 0) << 3325 { << 3326 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3327 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3328 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3329 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3330 SetFacet(++nfac, indices[i1], indices[i << 3331 } << 3332 // check (iz + 1) side << 3333 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3334 if (vcheck == 0) << 3335 { << 3336 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3337 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3338 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3339 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3340 SetFacet(++nfac, indices[i1], indices[i << 3341 } << 3342 } << 3343 SetReferences(); << 3344 } << 3345 << 3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 3347 2248 3348 G4ThreadLocal << 3349 G4int HepPolyhedron::fNumberOfRotationSteps = 2249 G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 3350 /******************************************** 2250 /*********************************************************************** 3351 * 2251 * * 3352 * Name: HepPolyhedron::fNumberOfRotationStep 2252 * Name: HepPolyhedron::fNumberOfRotationSteps Date: 24.06.97 * 3353 * Author: J.Allison (Manchester University) 2253 * Author: J.Allison (Manchester University) Revised: * 3354 * 2254 * * 3355 * Function: Number of steps for whole circle 2255 * Function: Number of steps for whole circle * 3356 * 2256 * * 3357 ******************************************** 2257 ***********************************************************************/ 3358 2258 3359 #include "BooleanProcessor.src" 2259 #include "BooleanProcessor.src" 3360 2260 3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2261 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 3362 /******************************************** 2262 /*********************************************************************** 3363 * 2263 * * 3364 * Name: HepPolyhedron::add 2264 * Name: HepPolyhedron::add Date: 19.03.00 * 3365 * Author: E.Chernyaev 2265 * Author: E.Chernyaev Revised: * 3366 * 2266 * * 3367 * Function: Boolean "union" of two polyhedra 2267 * Function: Boolean "union" of two polyhedra * 3368 * 2268 * * 3369 ******************************************** 2269 ***********************************************************************/ 3370 { 2270 { 3371 G4int ierr; 2271 G4int ierr; 3372 BooleanProcessor processor; 2272 BooleanProcessor processor; 3373 return processor.execute(OP_UNION, *this, p 2273 return processor.execute(OP_UNION, *this, p,ierr); 3374 } 2274 } 3375 2275 3376 HepPolyhedron HepPolyhedron::intersect(const << 2276 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 3377 /******************************************** 2277 /*********************************************************************** 3378 * 2278 * * 3379 * Name: HepPolyhedron::intersect 2279 * Name: HepPolyhedron::intersect Date: 19.03.00 * 3380 * Author: E.Chernyaev 2280 * Author: E.Chernyaev Revised: * 3381 * 2281 * * 3382 * Function: Boolean "intersection" of two po 2282 * Function: Boolean "intersection" of two polyhedra * 3383 * 2283 * * 3384 ******************************************** 2284 ***********************************************************************/ 3385 { 2285 { 3386 G4int ierr; 2286 G4int ierr; 3387 BooleanProcessor processor; 2287 BooleanProcessor processor; 3388 return processor.execute(OP_INTERSECTION, * 2288 return processor.execute(OP_INTERSECTION, *this, p,ierr); 3389 } 2289 } 3390 2290 3391 HepPolyhedron HepPolyhedron::subtract(const H << 2291 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 3392 /******************************************** 2292 /*********************************************************************** 3393 * 2293 * * 3394 * Name: HepPolyhedron::add 2294 * Name: HepPolyhedron::add Date: 19.03.00 * 3395 * Author: E.Chernyaev 2295 * Author: E.Chernyaev Revised: * 3396 * 2296 * * 3397 * Function: Boolean "subtraction" of "p" fro 2297 * Function: Boolean "subtraction" of "p" from "this" * 3398 * 2298 * * 3399 ******************************************** 2299 ***********************************************************************/ 3400 { 2300 { 3401 G4int ierr; 2301 G4int ierr; 3402 BooleanProcessor processor; 2302 BooleanProcessor processor; 3403 return processor.execute(OP_SUBTRACTION, *t 2303 return processor.execute(OP_SUBTRACTION, *this, p,ierr); 3404 } 2304 } 3405 2305 3406 //NOTE : include the code of HepPolyhedronPro 2306 //NOTE : include the code of HepPolyhedronProcessor here 3407 // since there is no BooleanProcessor.h 2307 // since there is no BooleanProcessor.h 3408 2308 3409 #undef INTERSECTION 2309 #undef INTERSECTION 3410 2310 3411 #include "HepPolyhedronProcessor.src" 2311 #include "HepPolyhedronProcessor.src" >> 2312 3412 2313