Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/graphics_reps/src/HepPolyhedron.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /graphics_reps/src/HepPolyhedron.cc (Version 11.3.0) and /graphics_reps/src/HepPolyhedron.cc (Version 9.6.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id$
                                                   >>  28 //
                                                   >>  29 // 
                                                   >>  30 //
 26 // G4 Polyhedron library                           31 // G4 Polyhedron library
 27 //                                                 32 //
 28 // History:                                        33 // History:
 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce     34 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version
 30 //                                                 35 //
 31 // 30.09.96 E.Chernyaev                            36 // 30.09.96 E.Chernyaev
 32 // - added GetNextVertexIndex, GetVertex by Ya     37 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada
 33 // - added GetNextUnitNormal, GetNextEdgeIndic <<  38 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge
 34 //                                                 39 //
 35 // 15.12.96 E.Chernyaev                            40 // 15.12.96 E.Chernyaev
 36 // - added GetNumberOfRotationSteps, RotateEdg     41 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences
 37 // - rewritten G4PolyhedronCons;                   42 // - rewritten G4PolyhedronCons;
 38 // - added G4PolyhedronPara, ...Trap, ...Pgon,     43 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus
 39 //                                                 44 //
 40 // 01.06.97 E.Chernyaev                            45 // 01.06.97 E.Chernyaev
 41 // - modified RotateAroundZ, added SetSideFace     46 // - modified RotateAroundZ, added SetSideFacets
 42 //                                                 47 //
 43 // 19.03.00 E.Chernyaev                            48 // 19.03.00 E.Chernyaev
 44 // - implemented boolean operations (add, subt     49 // - implemented boolean operations (add, subtract, intersect) on polyhedra;
 45 //                                                 50 //
 46 // 25.05.01 E.Chernyaev                            51 // 25.05.01 E.Chernyaev
 47 // - added GetSurfaceArea() and GetVolume()    <<  52 // - added GetSurfaceArea() and GetVolume();
 48 //                                                 53 //
 49 // 05.11.02 E.Chernyaev                            54 // 05.11.02 E.Chernyaev
 50 // - added createTwistedTrap() and createPolyh <<  55 // - added createTwistedTrap() and createPolyhedron();
 51 //                                                 56 //
 52 // 20.06.05 G.Cosmo                                57 // 20.06.05 G.Cosmo
 53 // - added HepPolyhedronEllipsoid              <<  58 // - added HepPolyhedronEllipsoid;
 54 //                                             << 
 55 // 18.07.07 T.Nikitina                         << 
 56 // - added HepPolyhedronParaboloid             << 
 57 //                                             << 
 58 // 22.02.20 E.Chernyaev                        << 
 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 
 60 //                                             << 
 61 // 12.05.21 E.Chernyaev                        << 
 62 // - added TriangulatePolygon(), RotateContour << 
 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 
 64 //                                             << 
 65 // 26.03.22 E.Chernyaev                        << 
 66 // - added SetVertex(), SetFacet()             << 
 67 // - added HepPolyhedronTetMesh                << 
 68 //                                             << 
 69 // 04.04.22 E.Chernyaev                        << 
 70 // - added JoinCoplanarFacets()                << 
 71 //                                                 59 //
 72 // 07.04.22 E.Chernyaev                        <<  60 // 18.07.07 T.Nikitin
 73 // - added HepPolyhedronBoxMesh                <<  61 // - added HepParaboloid;
 74                                                <<  62   
 75 #include "HepPolyhedron.h"                         63 #include "HepPolyhedron.h"
 76 #include "G4PhysicalConstants.hh"                  64 #include "G4PhysicalConstants.hh"
 77 #include "G4Vector3D.hh"                           65 #include "G4Vector3D.hh"
 78                                                    66 
 79 #include <cstdlib>  // Required on some compil     67 #include <cstdlib>  // Required on some compilers for std::abs(int) ...
 80 #include <cmath>                                   68 #include <cmath>
 81 #include <algorithm>                           << 
 82                                                    69 
 83 using CLHEP::perMillion;                           70 using CLHEP::perMillion;
 84 using CLHEP::deg;                                  71 using CLHEP::deg;
 85 using CLHEP::pi;                                   72 using CLHEP::pi;
 86 using CLHEP::twopi;                                73 using CLHEP::twopi;
 87 using CLHEP::nm;                               << 
 88 const G4double spatialTolerance = 0.01*nm;     << 
 89                                                    74 
 90 /*********************************************     75 /***********************************************************************
 91  *                                                 76  *                                                                     *
 92  * Name: HepPolyhedron operator <<                 77  * Name: HepPolyhedron operator <<                   Date:    09.05.96 *
 93  * Author: E.Chernyaev (IHEP/Protvino)             78  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
 94  *                                                 79  *                                                                     *
 95  * Function: Print contents of G4 polyhedron       80  * Function: Print contents of G4 polyhedron                           *
 96  *                                                 81  *                                                                     *
 97  *********************************************     82  ***********************************************************************/
 98 std::ostream & operator<<(std::ostream & ostr,     83 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) {
 99   for (const auto& edge : facet.edge) {        <<  84   for (G4int k=0; k<4; k++) {
100     ostr << " " << edge.v << "/" << edge.f;    <<  85     ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f;
101   }                                                86   }
102   return ostr;                                     87   return ostr;
103 }                                                  88 }
104                                                    89 
105 std::ostream & operator<<(std::ostream & ostr,     90 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) {
106   ostr << std::endl;                               91   ostr << std::endl;
107   ostr << "Nvertices=" << ph.nvert << ", Nface <<  92   ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl;
108   G4int i;                                         93   G4int i;
109   for (i=1; i<=ph.nvert; i++) {                    94   for (i=1; i<=ph.nvert; i++) {
110      ostr << "xyz(" << i << ")="                   95      ostr << "xyz(" << i << ")="
111           << ph.pV[i].x() << ' ' << ph.pV[i].y     96           << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z()
112           << std::endl;                            97           << std::endl;
113   }                                                98   }
114   for (i=1; i<=ph.nface; i++) {                    99   for (i=1; i<=ph.nface; i++) {
115     ostr << "face(" << i << ")=" << ph.pF[i] <    100     ostr << "face(" << i << ")=" << ph.pF[i] << std::endl;
116   }                                               101   }
117   return ostr;                                    102   return ostr;
118 }                                                 103 }
119                                                   104 
120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 
121 /********************************************* << 
122  *                                             << 
123  * Name: HepPolyhedron constructor with        << 
124  *       allocation of memory                  << 
125  * Author: E.Tcherniaev (E.Chernyaev)          << 
126  *                                             << 
127  ********************************************* << 
128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
129 {                                              << 
130   AllocateMemory(Nvert, Nface);                << 
131 }                                              << 
132                                                << 
133 HepPolyhedron::HepPolyhedron(const HepPolyhedr    105 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from)
134 /*********************************************    106 /***********************************************************************
135  *                                                107  *                                                                     *
136  * Name: HepPolyhedron copy constructor           108  * Name: HepPolyhedron copy constructor             Date:    23.07.96  *
137  * Author: E.Chernyaev (IHEP/Protvino)            109  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
138  *                                                110  *                                                                     *
139  *********************************************    111  ***********************************************************************/
140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 112 : nvert(0), nface(0), pV(0), pF(0)
141 {                                                 113 {
142   AllocateMemory(from.nvert, from.nface);         114   AllocateMemory(from.nvert, from.nface);
143   for (G4int i=1; i<=nvert; i++) pV[i] = from.    115   for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
144   for (G4int k=1; k<=nface; k++) pF[k] = from.    116   for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
145 }                                                 117 }
146                                                   118 
147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 
148 /********************************************* << 
149  *                                             << 
150  * Name: HepPolyhedron move constructor        << 
151  * Author: E.Tcherniaev (E.Chernyaev)          << 
152  *                                             << 
153  ********************************************* << 
154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
155 {                                              << 
156   nvert = from.nvert;                          << 
157   nface = from.nface;                          << 
158   pV = from.pV;                                << 
159   pF = from.pF;                                << 
160                                                << 
161   // Release the data from the source object   << 
162   from.nvert = 0;                              << 
163   from.nface = 0;                              << 
164   from.pV = nullptr;                           << 
165   from.pF = nullptr;                           << 
166 }                                              << 
167                                                << 
168 HepPolyhedron & HepPolyhedron::operator=(const    119 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from)
169 /*********************************************    120 /***********************************************************************
170  *                                                121  *                                                                     *
171  * Name: HepPolyhedron operator =                 122  * Name: HepPolyhedron operator =                   Date:    23.07.96  *
172  * Author: E.Chernyaev (IHEP/Protvino)            123  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
173  *                                                124  *                                                                     *
174  * Function: Copy contents of one polyhedron t    125  * Function: Copy contents of one polyhedron to another                *
175  *                                                126  *                                                                     *
176  *********************************************    127  ***********************************************************************/
177 {                                                 128 {
178   if (this != &from) {                            129   if (this != &from) {
179     AllocateMemory(from.nvert, from.nface);       130     AllocateMemory(from.nvert, from.nface);
180     for (G4int i=1; i<=nvert; i++) pV[i] = fro    131     for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
181     for (G4int k=1; k<=nface; k++) pF[k] = fro    132     for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
182   }                                               133   }
183   return *this;                                   134   return *this;
184 }                                                 135 }
185                                                   136 
186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 
187 /********************************************* << 
188  *                                             << 
189  * Name: HepPolyhedron move operator =         << 
190  * Author: E.Tcherniaev (E.Chernyaev)          << 
191  *                                             << 
192  * Function: Move contents of one polyhedron t << 
193  *                                             << 
194  ********************************************* << 
195 {                                              << 
196   if (this != &from) {                         << 
197     delete [] pV;                              << 
198     delete [] pF;                              << 
199     nvert = from.nvert;                        << 
200     nface = from.nface;                        << 
201     pV = from.pV;                              << 
202     pF = from.pF;                              << 
203                                                << 
204     // Release the data from the source object << 
205     from.nvert = 0;                            << 
206     from.nface = 0;                            << 
207     from.pV = nullptr;                         << 
208     from.pF = nullptr;                         << 
209   }                                            << 
210   return *this;                                << 
211 }                                              << 
212                                                << 
213 G4int                                             137 G4int
214 HepPolyhedron::FindNeighbour(G4int iFace, G4in    138 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const
215 /*********************************************    139 /***********************************************************************
216  *                                                140  *                                                                     *
217  * Name: HepPolyhedron::FindNeighbour             141  * Name: HepPolyhedron::FindNeighbour                Date:    22.11.99 *
218  * Author: E.Chernyaev                            142  * Author: E.Chernyaev                               Revised:          *
219  *                                                143  *                                                                     *
220  * Function: Find neighbouring face               144  * Function: Find neighbouring face                                    *
221  *                                                145  *                                                                     *
222  *********************************************    146  ***********************************************************************/
223 {                                                 147 {
224   G4int i;                                        148   G4int i;
225   for (i=0; i<4; i++) {                           149   for (i=0; i<4; i++) {
226     if (iNode == std::abs(pF[iFace].edge[i].v)    150     if (iNode == std::abs(pF[iFace].edge[i].v)) break;
227   }                                               151   }
228   if (i == 4) {                                   152   if (i == 4) {
229     std::cerr                                     153     std::cerr
230       << "HepPolyhedron::FindNeighbour: face "    154       << "HepPolyhedron::FindNeighbour: face " << iFace
231       << " has no node " << iNode                 155       << " has no node " << iNode
232       << std::endl;                            << 156       << std::endl; 
233     return 0;                                     157     return 0;
234   }                                               158   }
235   if (iOrder < 0) {                               159   if (iOrder < 0) {
236     if ( --i < 0) i = 3;                          160     if ( --i < 0) i = 3;
237     if (pF[iFace].edge[i].v == 0) i = 2;          161     if (pF[iFace].edge[i].v == 0) i = 2;
238   }                                               162   }
239   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF    163   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f;
240 }                                                 164 }
241                                                   165 
242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int    166 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const
243 /*********************************************    167 /***********************************************************************
244  *                                                168  *                                                                     *
245  * Name: HepPolyhedron::FindNodeNormal            169  * Name: HepPolyhedron::FindNodeNormal               Date:    22.11.99 *
246  * Author: E.Chernyaev                            170  * Author: E.Chernyaev                               Revised:          *
247  *                                                171  *                                                                     *
248  * Function: Find normal at given node            172  * Function: Find normal at given node                                 *
249  *                                                173  *                                                                     *
250  *********************************************    174  ***********************************************************************/
251 {                                                 175 {
252   G4Normal3D normal = GetUnitNormal(iFace);    << 176   G4Normal3D   normal = GetUnitNormal(iFace);
253   G4int      k = iFace, iOrder = 1;            << 177   G4int          k = iFace, iOrder = 1, n = 1;
254                                                   178 
255   for(;;) {                                       179   for(;;) {
256     k = FindNeighbour(k, iNode, iOrder);          180     k = FindNeighbour(k, iNode, iOrder);
257     if (k == iFace) break;                     << 181     if (k == iFace) break; 
258     if (k > 0) {                                  182     if (k > 0) {
                                                   >> 183       n++;
259       normal += GetUnitNormal(k);                 184       normal += GetUnitNormal(k);
260     }else{                                        185     }else{
261       if (iOrder < 0) break;                      186       if (iOrder < 0) break;
262       k = iFace;                                  187       k = iFace;
263       iOrder = -iOrder;                           188       iOrder = -iOrder;
264     }                                             189     }
265   }                                               190   }
266   return normal.unit();                           191   return normal.unit();
267 }                                                 192 }
268                                                   193 
269 G4int HepPolyhedron::GetNumberOfRotationSteps(    194 G4int HepPolyhedron::GetNumberOfRotationSteps()
270 /*********************************************    195 /***********************************************************************
271  *                                                196  *                                                                     *
272  * Name: HepPolyhedron::GetNumberOfRotationSte    197  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
273  * Author: J.Allison (Manchester University)      198  * Author: J.Allison (Manchester University)         Revised:          *
274  *                                                199  *                                                                     *
275  * Function: Get number of steps for whole cir    200  * Function: Get number of steps for whole circle                      *
276  *                                                201  *                                                                     *
277  *********************************************    202  ***********************************************************************/
278 {                                                 203 {
279   return fNumberOfRotationSteps;                  204   return fNumberOfRotationSteps;
280 }                                                 205 }
281                                                   206 
282 void HepPolyhedron::SetVertex(G4int index, con << 
283 /********************************************* << 
284  *                                             << 
285  * Name: HepPolyhedron::SetVertex              << 
286  * Author: E.Tcherniaev (E.Chernyaev)          << 
287  *                                             << 
288  * Function: Set vertex                        << 
289  *                                             << 
290  ********************************************* << 
291 {                                              << 
292   if (index < 1 || index > nvert)              << 
293   {                                            << 
294     std::cerr                                  << 
295       << "HepPolyhedron::SetVertex: vertex ind << 
296       << " is out of range\n"                  << 
297       << "   N. of vertices = " << nvert << "\ << 
298       << "   N. of facets = " << nface << std: << 
299     return;                                    << 
300   }                                            << 
301   pV[index] = v;                               << 
302 }                                              << 
303                                                << 
304 void                                           << 
305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 
306 /********************************************* << 
307  *                                             << 
308  * Name: HepPolyhedron::SetFacet               << 
309  * Author: E.Tcherniaev (E.Chernyaev)          << 
310  *                                             << 
311  * Function: Set facet                         << 
312  *                                             << 
313  ********************************************* << 
314 {                                              << 
315   if (index < 1 || index > nface)              << 
316   {                                            << 
317     std::cerr                                  << 
318       << "HepPolyhedron::SetFacet: facet index << 
319       << " is out of range\n"                  << 
320       << "   N. of vertices = " << nvert << "\ << 
321       << "   N. of facets = " << nface << std: << 
322     return;                                    << 
323   }                                            << 
324   if (iv1 < 1 || iv1 > nvert ||                << 
325       iv2 < 1 || iv2 > nvert ||                << 
326       iv3 < 1 || iv3 > nvert ||                << 
327       iv4 < 0 || iv4 > nvert)                  << 
328   {                                            << 
329     std::cerr                                  << 
330       << "HepPolyhedron::SetFacet: incorrectly << 
331       << " (" << iv1 << ", " << iv2 << ", " << << 
332       << "   N. of vertices = " << nvert << "\ << 
333       << "   N. of facets = " << nface << std: << 
334     return;                                    << 
335   }                                            << 
336   pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0,  << 
337 }                                              << 
338                                                << 
339 void HepPolyhedron::SetNumberOfRotationSteps(G    207 void HepPolyhedron::SetNumberOfRotationSteps(G4int n)
340 /*********************************************    208 /***********************************************************************
341  *                                                209  *                                                                     *
342  * Name: HepPolyhedron::SetNumberOfRotationSte    210  * Name: HepPolyhedron::SetNumberOfRotationSteps     Date:    24.06.97 *
343  * Author: J.Allison (Manchester University)      211  * Author: J.Allison (Manchester University)         Revised:          *
344  *                                                212  *                                                                     *
345  * Function: Set number of steps for whole cir    213  * Function: Set number of steps for whole circle                      *
346  *                                                214  *                                                                     *
347  *********************************************    215  ***********************************************************************/
348 {                                                 216 {
349   const G4int nMin = 3;                           217   const G4int nMin = 3;
350   if (n < nMin) {                                 218   if (n < nMin) {
351     std::cerr                                  << 219     std::cerr 
352       << "HepPolyhedron::SetNumberOfRotationSt    220       << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n"
353       << "number of steps per circle < " << nM    221       << "number of steps per circle < " << nMin << "; forced to " << nMin
354       << std::endl;                               222       << std::endl;
355     fNumberOfRotationSteps = nMin;                223     fNumberOfRotationSteps = nMin;
356   }else{                                          224   }else{
357     fNumberOfRotationSteps = n;                   225     fNumberOfRotationSteps = n;
358   }                                            << 226   }    
359 }                                                 227 }
360                                                   228 
361 void HepPolyhedron::ResetNumberOfRotationSteps    229 void HepPolyhedron::ResetNumberOfRotationSteps()
362 /*********************************************    230 /***********************************************************************
363  *                                                231  *                                                                     *
364  * Name: HepPolyhedron::GetNumberOfRotationSte    232  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
365  * Author: J.Allison (Manchester University)      233  * Author: J.Allison (Manchester University)         Revised:          *
366  *                                                234  *                                                                     *
367  * Function: Reset number of steps for whole c    235  * Function: Reset number of steps for whole circle to default value   *
368  *                                                236  *                                                                     *
369  *********************************************    237  ***********************************************************************/
370 {                                                 238 {
371   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S    239   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
372 }                                                 240 }
373                                                   241 
374 void HepPolyhedron::AllocateMemory(G4int Nvert    242 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface)
375 /*********************************************    243 /***********************************************************************
376  *                                                244  *                                                                     *
377  * Name: HepPolyhedron::AllocateMemory            245  * Name: HepPolyhedron::AllocateMemory               Date:    19.06.96 *
378  * Author: E.Chernyaev (IHEP/Protvino)            246  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 05.11.02 *
379  *                                                247  *                                                                     *
380  * Function: Allocate memory for GEANT4 polyhe    248  * Function: Allocate memory for GEANT4 polyhedron                     *
381  *                                                249  *                                                                     *
382  * Input: Nvert - number of nodes                 250  * Input: Nvert - number of nodes                                      *
383  *        Nface - number of faces                 251  *        Nface - number of faces                                      *
384  *                                                252  *                                                                     *
385  *********************************************    253  ***********************************************************************/
386 {                                                 254 {
387   if (nvert == Nvert && nface == Nface) return    255   if (nvert == Nvert && nface == Nface) return;
388   delete [] pV;                                << 256   if (pV != 0) delete [] pV;
389   delete [] pF;                                << 257   if (pF != 0) delete [] pF;
390   if (Nvert > 0 && Nface > 0) {                   258   if (Nvert > 0 && Nface > 0) {
391     nvert = Nvert;                                259     nvert = Nvert;
392     nface = Nface;                                260     nface = Nface;
393     pV    = new G4Point3D[nvert+1];               261     pV    = new G4Point3D[nvert+1];
394     pF    = new G4Facet[nface+1];                 262     pF    = new G4Facet[nface+1];
395   }else{                                          263   }else{
396     nvert = 0; nface = 0; pV = nullptr; pF = n << 264     nvert = 0; nface = 0; pV = 0; pF = 0;
397   }                                               265   }
398 }                                                 266 }
399                                                   267 
400 void HepPolyhedron::CreatePrism()                 268 void HepPolyhedron::CreatePrism()
401 /*********************************************    269 /***********************************************************************
402  *                                                270  *                                                                     *
403  * Name: HepPolyhedron::CreatePrism               271  * Name: HepPolyhedron::CreatePrism                  Date:    15.07.96 *
404  * Author: E.Chernyaev (IHEP/Protvino)            272  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
405  *                                                273  *                                                                     *
406  * Function: Set facets for a prism               274  * Function: Set facets for a prism                                    *
407  *                                                275  *                                                                     *
408  *********************************************    276  ***********************************************************************/
409 {                                                 277 {
410   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON    278   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP};
411                                                   279 
412   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,      280   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,  2,FRONT);
413   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM,     281   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM, 1,FRONT);
414   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM,     282   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM, 4,LEFT);
415   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM,     283   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM, 3,BACK);
416   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM,     284   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM, 2,RIGHT);
417   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,       285   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,   8,LEFT);
418 }                                                 286 }
419                                                   287 
420 void HepPolyhedron::RotateEdge(G4int k1, G4int    288 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2,
421                               G4int v1, G4int     289                               G4int v1, G4int v2, G4int vEdge,
422                               G4bool ifWholeCi    290                               G4bool ifWholeCircle, G4int nds, G4int &kface)
423 /*********************************************    291 /***********************************************************************
424  *                                                292  *                                                                     *
425  * Name: HepPolyhedron::RotateEdge                293  * Name: HepPolyhedron::RotateEdge                   Date:    05.12.96 *
426  * Author: E.Chernyaev (IHEP/Protvino)            294  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
427  *                                                295  *                                                                     *
428  * Function: Create set of facets by rotation     296  * Function: Create set of facets by rotation of an edge around Z-axis *
429  *                                                297  *                                                                     *
430  * Input: k1, k2 - end vertices of the edge       298  * Input: k1, k2 - end vertices of the edge                            *
431  *        r1, r2 - radiuses of the end vertice    299  *        r1, r2 - radiuses of the end vertices                        *
432  *        v1, v2 - visibility of edges produce    300  *        v1, v2 - visibility of edges produced by rotation of the end *
433  *                 vertices                       301  *                 vertices                                            *
434  *        vEdge  - visibility of the edge         302  *        vEdge  - visibility of the edge                              *
435  *        ifWholeCircle - is true in case of w    303  *        ifWholeCircle - is true in case of whole circle rotation     *
436  *        nds    - number of discrete steps       304  *        nds    - number of discrete steps                            *
437  *        r[]    - r-coordinates                  305  *        r[]    - r-coordinates                                       *
438  *        kface  - current free cell in the pF    306  *        kface  - current free cell in the pF array                   *
439  *                                                307  *                                                                     *
440  *********************************************    308  ***********************************************************************/
441 {                                                 309 {
442   if (r1 == 0. && r2 == 0.) return;            << 310   if (r1 == 0. && r2 == 0) return;
443                                                   311 
444   G4int i;                                        312   G4int i;
445   G4int i1  = k1;                                 313   G4int i1  = k1;
446   G4int i2  = k2;                                 314   G4int i2  = k2;
447   G4int ii1 = ifWholeCircle ? i1 : i1+nds;        315   G4int ii1 = ifWholeCircle ? i1 : i1+nds;
448   G4int ii2 = ifWholeCircle ? i2 : i2+nds;        316   G4int ii2 = ifWholeCircle ? i2 : i2+nds;
449   G4int vv  = ifWholeCircle ? vEdge : 1;          317   G4int vv  = ifWholeCircle ? vEdge : 1;
450                                                   318 
451   if (nds == 1) {                                 319   if (nds == 1) {
452     if (r1 == 0.) {                               320     if (r1 == 0.) {
453       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    321       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0);
454     }else if (r2 == 0.) {                         322     }else if (r2 == 0.) {
455       pF[kface++]   = G4Facet(i1,0,    i2,0,      323       pF[kface++]   = G4Facet(i1,0,    i2,0,    v1*(i1+1),0);
456     }else{                                        324     }else{
457       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    325       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0, v1*(i1+1),0);
458     }                                             326     }
459   }else{                                          327   }else{
460     if (r1 == 0.) {                               328     if (r1 == 0.) {
461       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    329       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0);
462       for (i2++,i=1; i<nds-1; i2++,i++) {         330       for (i2++,i=1; i<nds-1; i2++,i++) {
463         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    331         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0);
464       }                                           332       }
465       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    333       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0);
466     }else if (r2 == 0.) {                         334     }else if (r2 == 0.) {
467       pF[kface++]   = G4Facet(vv*i1,0,    vEdg    335       pF[kface++]   = G4Facet(vv*i1,0,    vEdge*i2,0, v1*(i1+1),0);
468       for (i1++,i=1; i<nds-1; i1++,i++) {         336       for (i1++,i=1; i<nds-1; i1++,i++) {
469         pF[kface++] = G4Facet(vEdge*i1,0, vEdg    337         pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0);
470       }                                           338       }
471       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i    339       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i2,0,    v1*ii1,0);
472     }else{                                        340     }else{
473       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    341       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
474       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i    342       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) {
475         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    343         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
476       }                                        << 344       }  
477       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    345       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0,      v1*ii1,0);
478     }                                             346     }
479   }                                               347   }
480 }                                                 348 }
481                                                   349 
482 void HepPolyhedron::SetSideFacets(G4int ii[4],    350 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4],
483                                  G4int *kk, G4    351                                  G4int *kk, G4double *r,
484                                  G4double dphi    352                                  G4double dphi, G4int nds, G4int &kface)
485 /*********************************************    353 /***********************************************************************
486  *                                                354  *                                                                     *
487  * Name: HepPolyhedron::SetSideFacets             355  * Name: HepPolyhedron::SetSideFacets                Date:    20.05.97 *
488  * Author: E.Chernyaev (IHEP/Protvino)            356  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
489  *                                                357  *                                                                     *
490  * Function: Set side facets for the case of i    358  * Function: Set side facets for the case of incomplete rotation       *
491  *                                                359  *                                                                     *
492  * Input: ii[4] - indices of original vertices << 360  * Input: ii[4] - indeces of original verteces                         *
493  *        vv[4] - visibility of edges             361  *        vv[4] - visibility of edges                                  *
494  *        kk[]  - indices of nodes             << 362  *        kk[]  - indeces of nodes                                     *
495  *        r[]   - radiuses                        363  *        r[]   - radiuses                                             *
496  *        dphi  - delta phi                       364  *        dphi  - delta phi                                            *
497  *        nds    - number of discrete steps       365  *        nds    - number of discrete steps                            *
498  *        kface  - current free cell in the pF    366  *        kface  - current free cell in the pF array                   *
499  *                                                367  *                                                                     *
500  *********************************************    368  ***********************************************************************/
501 {                                                 369 {
502   G4int k1, k2, k3, k4;                           370   G4int k1, k2, k3, k4;
503                                                << 371   
504   if (std::abs(dphi-pi) < perMillion) { // hal << 372   if (std::abs((G4double)(dphi-pi)) < perMillion) {          // half a circle
505     for (G4int i=0; i<4; i++) {                   373     for (G4int i=0; i<4; i++) {
506       k1 = ii[i];                                 374       k1 = ii[i];
507       k2 = ii[(i+1)%4];                        << 375       k2 = (i == 3) ? ii[0] : ii[i+1];
508       if (r[k1] == 0. && r[k2] == 0.) vv[i] =  << 376       if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1;      
509     }                                             377     }
510   }                                               378   }
511                                                   379 
512   if (ii[1] == ii[2]) {                           380   if (ii[1] == ii[2]) {
513     k1 = kk[ii[0]];                               381     k1 = kk[ii[0]];
514     k2 = kk[ii[2]];                               382     k2 = kk[ii[2]];
515     k3 = kk[ii[3]];                               383     k3 = kk[ii[3]];
516     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2    384     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
517     if (r[ii[0]] != 0.) k1 += nds;                385     if (r[ii[0]] != 0.) k1 += nds;
518     if (r[ii[2]] != 0.) k2 += nds;                386     if (r[ii[2]] != 0.) k2 += nds;
519     if (r[ii[3]] != 0.) k3 += nds;                387     if (r[ii[3]] != 0.) k3 += nds;
520     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2    388     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
521   }else if (kk[ii[0]] == kk[ii[1]]) {             389   }else if (kk[ii[0]] == kk[ii[1]]) {
522     k1 = kk[ii[0]];                               390     k1 = kk[ii[0]];
523     k2 = kk[ii[2]];                               391     k2 = kk[ii[2]];
524     k3 = kk[ii[3]];                               392     k3 = kk[ii[3]];
525     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2    393     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
526     if (r[ii[0]] != 0.) k1 += nds;                394     if (r[ii[0]] != 0.) k1 += nds;
527     if (r[ii[2]] != 0.) k2 += nds;                395     if (r[ii[2]] != 0.) k2 += nds;
528     if (r[ii[3]] != 0.) k3 += nds;                396     if (r[ii[3]] != 0.) k3 += nds;
529     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2    397     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0);
530   }else if (kk[ii[2]] == kk[ii[3]]) {             398   }else if (kk[ii[2]] == kk[ii[3]]) {
531     k1 = kk[ii[0]];                               399     k1 = kk[ii[0]];
532     k2 = kk[ii[1]];                               400     k2 = kk[ii[1]];
533     k3 = kk[ii[2]];                               401     k3 = kk[ii[2]];
534     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    402     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0);
535     if (r[ii[0]] != 0.) k1 += nds;                403     if (r[ii[0]] != 0.) k1 += nds;
536     if (r[ii[1]] != 0.) k2 += nds;                404     if (r[ii[1]] != 0.) k2 += nds;
537     if (r[ii[2]] != 0.) k3 += nds;                405     if (r[ii[2]] != 0.) k3 += nds;
538     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2    406     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
539   }else{                                          407   }else{
540     k1 = kk[ii[0]];                               408     k1 = kk[ii[0]];
541     k2 = kk[ii[1]];                               409     k2 = kk[ii[1]];
542     k3 = kk[ii[2]];                               410     k3 = kk[ii[2]];
543     k4 = kk[ii[3]];                               411     k4 = kk[ii[3]];
544     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    412     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0);
545     if (r[ii[0]] != 0.) k1 += nds;                413     if (r[ii[0]] != 0.) k1 += nds;
546     if (r[ii[1]] != 0.) k2 += nds;                414     if (r[ii[1]] != 0.) k2 += nds;
547     if (r[ii[2]] != 0.) k3 += nds;                415     if (r[ii[2]] != 0.) k3 += nds;
548     if (r[ii[3]] != 0.) k4 += nds;                416     if (r[ii[3]] != 0.) k4 += nds;
549     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3    417     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
550   }                                               418   }
551 }                                                 419 }
552                                                   420 
553 void HepPolyhedron::RotateAroundZ(G4int nstep,    421 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi,
554                                  G4int np1, G4    422                                  G4int np1, G4int np2,
555                                  const G4doubl    423                                  const G4double *z, G4double *r,
556                                  G4int nodeVis    424                                  G4int nodeVis, G4int edgeVis)
557 /*********************************************    425 /***********************************************************************
558  *                                                426  *                                                                     *
559  * Name: HepPolyhedron::RotateAroundZ             427  * Name: HepPolyhedron::RotateAroundZ                Date:    27.11.96 *
560  * Author: E.Chernyaev (IHEP/Protvino)            428  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
561  *                                                429  *                                                                     *
562  * Function: Create HepPolyhedron for a solid     430  * Function: Create HepPolyhedron for a solid produced by rotation of  *
563  *           two polylines around Z-axis          431  *           two polylines around Z-axis                               *
564  *                                                432  *                                                                     *
565  * Input: nstep - number of discrete steps, if    433  * Input: nstep - number of discrete steps, if 0 then default          *
566  *        phi   - starting phi angle              434  *        phi   - starting phi angle                                   *
567  *        dphi  - delta phi                       435  *        dphi  - delta phi                                            *
568  *        np1   - number of points in external    436  *        np1   - number of points in external polyline                *
569  *                (must be negative in case of    437  *                (must be negative in case of closed polyline)        *
570  *        np2   - number of points in internal    438  *        np2   - number of points in internal polyline (may be 1)     *
571  *        z[]   - z-coordinates (+z >>> -z for    439  *        z[]   - z-coordinates (+z >>> -z for both polylines)         *
572  *        r[]   - r-coordinates                   440  *        r[]   - r-coordinates                                        *
573  *        nodeVis - how to Draw edges joing co    441  *        nodeVis - how to Draw edges joing consecutive positions of   *
574  *                  node during rotation          442  *                  node during rotation                               *
575  *        edgeVis - how to Draw edges             443  *        edgeVis - how to Draw edges                                  *
576  *                                                444  *                                                                     *
577  *********************************************    445  ***********************************************************************/
578 {                                                 446 {
579   static const G4double wholeCircle   = twopi; << 447   static G4double wholeCircle   = twopi;
580                                                << 448     
581   //   S E T   R O T A T I O N   P A R A M E T    449   //   S E T   R O T A T I O N   P A R A M E T E R S
582                                                   450 
583   G4bool ifWholeCircle = std::abs(dphi-wholeCi << 451   G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false;
584   G4double delPhi = ifWholeCircle ? wholeCircl << 452   G4double   delPhi  = ifWholeCircle ? wholeCircle : dphi;  
585   G4int nSphi = nstep;                         << 453   G4int        nSphi    = (nstep > 0) ?
586   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 454     nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5);
587   if (nSphi == 0) nSphi = 1;                      455   if (nSphi == 0) nSphi = 1;
588   G4int nVphi = ifWholeCircle ? nSphi : nSphi  << 456   G4int        nVphi    = ifWholeCircle ? nSphi : nSphi+1;
589   G4bool ifClosed = np1 <= 0; // true if exter << 457   G4bool ifClosed = np1 > 0 ? false : true;
590                                                << 458   
591   //   C O U N T   V E R T I C E S             << 459   //   C O U N T   V E R T E C E S
592                                                   460 
593   G4int absNp1 = std::abs(np1);                   461   G4int absNp1 = std::abs(np1);
594   G4int absNp2 = std::abs(np2);                   462   G4int absNp2 = std::abs(np2);
595   G4int i1beg = 0;                                463   G4int i1beg = 0;
596   G4int i1end = absNp1-1;                         464   G4int i1end = absNp1-1;
597   G4int i2beg = absNp1;                           465   G4int i2beg = absNp1;
598   G4int i2end = absNp1+absNp2-1;               << 466   G4int i2end = absNp1+absNp2-1; 
599   G4int i, j, k;                                  467   G4int i, j, k;
600                                                   468 
601   for(i=i1beg; i<=i2end; i++) {                   469   for(i=i1beg; i<=i2end; i++) {
602     if (std::abs(r[i]) < spatialTolerance) r[i << 470     if (std::abs(r[i]) < perMillion) r[i] = 0.;
603   }                                               471   }
604                                                   472 
605   // external polyline - check position of nod << 473   j = 0;                                                // external nodes
606   //                                           << 
607   G4int Nverts = 0;                            << 
608   for (i=i1beg; i<=i1end; i++) {                  474   for (i=i1beg; i<=i1end; i++) {
609     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 475     j += (r[i] == 0.) ? 1 : nVphi;
610   }                                               476   }
611                                                   477 
612   // internal polyline                         << 478   G4bool ifSide1 = false;                           // internal nodes
613   //                                           << 479   G4bool ifSide2 = false;
614   G4bool ifSide1 = false; // whether to create << 
615   G4bool ifSide2 = false; // whether to create << 
616                                                   480 
617   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 481   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) {
618     Nverts += (r[i2beg] == 0.) ? 1 : nVphi;    << 482     j += (r[i2beg] == 0.) ? 1 : nVphi;
619     ifSide1 = true;                               483     ifSide1 = true;
620   }                                               484   }
621                                                   485 
622   for(i=i2beg+1; i<i2end; i++) { // intermedia << 486   for(i=i2beg+1; i<i2end; i++) {
623     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 487     j += (r[i] == 0.) ? 1 : nVphi;
624   }                                               488   }
625                                                << 489   
626   if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 490   if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) {
627     if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 491     if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi;
628     ifSide2 = true;                               492     ifSide2 = true;
629   }                                               493   }
630                                                   494 
631   //   C O U N T   F A C E S                      495   //   C O U N T   F A C E S
632                                                   496 
633   // external lateral faces                    << 497   k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi;       // external faces
634   //                                           << 
635   G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 
636                                                   498 
637   // internal lateral faces                    << 499   if (absNp2 > 1) {                                     // internal faces
638   //                                           << 
639   if (absNp2 > 1) {                            << 
640     for(i=i2beg; i<i2end; i++) {                  500     for(i=i2beg; i<i2end; i++) {
641       if (r[i] > 0. || r[i+1] > 0.) Nfaces +=  << 501       if (r[i] > 0. || r[i+1] > 0.)       k += nSphi;
642     }                                             502     }
643                                                   503 
644     if (ifClosed) {                               504     if (ifClosed) {
645       if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 505       if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi;
646     }                                             506     }
647   }                                               507   }
648                                                   508 
649   // bottom and top faces                      << 509   if (!ifClosed) {                                      // side faces
650   //                                           << 510     if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi;
651   if (!ifClosed) {                             << 511     if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi;
652     if (ifSide1 && (r[i1beg] > 0. || r[i2beg]  << 
653     if (ifSide2 && (r[i1end] > 0. || r[i2end]  << 
654   }                                               512   }
655                                                   513 
656   // phi_wedge faces                           << 514   if (!ifWholeCircle) {                                 // phi_side faces
657   //                                           << 515     k += ifClosed ? 2*absNp1 : 2*(absNp1-1);
658   if (!ifWholeCircle) {                        << 
659     Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 
660   }                                               516   }
661                                                   517 
662   //   A L L O C A T E   M E M O R Y              518   //   A L L O C A T E   M E M O R Y
663                                                   519 
664   AllocateMemory(Nverts, Nfaces);              << 520   AllocateMemory(j, k);
665   if (pV == nullptr || pF == nullptr) return;  << 
666                                                   521 
667   //   G E N E R A T E   V E R T I C E S       << 522   //   G E N E R A T E   V E R T E C E S
668                                                   523 
669   G4int *kk; // array of start indices along p << 524   G4int *kk;
670   kk = new G4int[absNp1+absNp2];                  525   kk = new G4int[absNp1+absNp2];
671                                                   526 
672   // external polyline                         << 527   k = 1;
673   //                                           << 
674   k = 1; // free position in array of vertices << 
675   for(i=i1beg; i<=i1end; i++) {                   528   for(i=i1beg; i<=i1end; i++) {
676     kk[i] = k;                                    529     kk[i] = k;
677     if (r[i] == 0.)                               530     if (r[i] == 0.)
678     { pV[k++] = G4Point3D(0, 0, z[i]); } else     531     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
679   }                                               532   }
680                                                   533 
681   // first point of internal polyline          << 
682   //                                           << 
683   i = i2beg;                                      534   i = i2beg;
684   if (ifSide1) {                                  535   if (ifSide1) {
685     kk[i] = k;                                    536     kk[i] = k;
686     if (r[i] == 0.)                               537     if (r[i] == 0.)
687     { pV[k++] = G4Point3D(0, 0, z[i]); } else     538     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
688   }else{                                          539   }else{
689     kk[i] = kk[i1beg];                            540     kk[i] = kk[i1beg];
690   }                                               541   }
691                                                   542 
692   // intermediate points of internal polyline  << 
693   //                                           << 
694   for(i=i2beg+1; i<i2end; i++) {                  543   for(i=i2beg+1; i<i2end; i++) {
695     kk[i] = k;                                    544     kk[i] = k;
696     if (r[i] == 0.)                               545     if (r[i] == 0.)
697     { pV[k++] = G4Point3D(0, 0, z[i]); } else     546     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
698   }                                               547   }
699                                                   548 
700   // last point of internal polyline           << 
701   //                                           << 
702   if (absNp2 > 1) {                               549   if (absNp2 > 1) {
703     i = i2end;                                    550     i = i2end;
704     if (ifSide2) {                                551     if (ifSide2) {
705       kk[i] = k;                                  552       kk[i] = k;
706       if (r[i] == 0.) pV[k] = G4Point3D(0, 0,     553       if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]);
707     }else{                                        554     }else{
708       kk[i] = kk[i1end];                          555       kk[i] = kk[i1end];
709     }                                             556     }
710   }                                               557   }
711                                                   558 
712   // set vertices                              << 
713   //                                           << 
714   G4double cosPhi, sinPhi;                        559   G4double cosPhi, sinPhi;
715                                                   560 
716   for(j=0; j<nVphi; j++) {                        561   for(j=0; j<nVphi; j++) {
717     cosPhi = std::cos(phi+j*delPhi/nSphi);        562     cosPhi = std::cos(phi+j*delPhi/nSphi);
718     sinPhi = std::sin(phi+j*delPhi/nSphi);        563     sinPhi = std::sin(phi+j*delPhi/nSphi);
719     for(i=i1beg; i<=i2end; i++) {                 564     for(i=i1beg; i<=i2end; i++) {
720       if (r[i] != 0.)                             565       if (r[i] != 0.)
721         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[    566         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]);
722     }                                             567     }
723   }                                               568   }
724                                                   569 
725   //   G E N E R A T E   F A C E S             << 570   //   G E N E R A T E   E X T E R N A L   F A C E S
726                                                   571 
727   //  external faces                           << 
728   //                                           << 
729   G4int v1,v2;                                    572   G4int v1,v2;
730                                                   573 
731   k = 1; // free position in array of faces pF << 574   k = 1;
732   v2 = ifClosed ? nodeVis : 1;                    575   v2 = ifClosed ? nodeVis : 1;
733   for(i=i1beg; i<i1end; i++) {                    576   for(i=i1beg; i<i1end; i++) {
734     v1 = v2;                                      577     v1 = v2;
735     if (!ifClosed && i == i1end-1) {              578     if (!ifClosed && i == i1end-1) {
736       v2 = 1;                                     579       v2 = 1;
737     }else{                                        580     }else{
738       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]    581       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis;
739     }                                             582     }
740     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v    583     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2,
741                edgeVis, ifWholeCircle, nSphi,     584                edgeVis, ifWholeCircle, nSphi, k);
742   }                                               585   }
743   if (ifClosed) {                                 586   if (ifClosed) {
744     RotateEdge(kk[i1end], kk[i1beg], r[i1end],    587     RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis,
745                edgeVis, ifWholeCircle, nSphi,     588                edgeVis, ifWholeCircle, nSphi, k);
746   }                                               589   }
747                                                   590 
748   // internal faces                            << 591   //   G E N E R A T E   I N T E R N A L   F A C E S
749   //                                           << 592 
750   if (absNp2 > 1) {                               593   if (absNp2 > 1) {
751     v2 = ifClosed ? nodeVis : 1;                  594     v2 = ifClosed ? nodeVis : 1;
752     for(i=i2beg; i<i2end; i++) {                  595     for(i=i2beg; i<i2end; i++) {
753       v1 = v2;                                    596       v1 = v2;
754       if (!ifClosed && i==i2end-1) {              597       if (!ifClosed && i==i2end-1) {
755         v2 = 1;                                   598         v2 = 1;
756       }else{                                      599       }else{
757         v2 = (r[i] == r[i+1] && r[i+1] == r[i+    600         v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 :  nodeVis;
758       }                                           601       }
759       RotateEdge(kk[i+1], kk[i], r[i+1], r[i],    602       RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1,
760                  edgeVis, ifWholeCircle, nSphi    603                  edgeVis, ifWholeCircle, nSphi, k);
761     }                                             604     }
762     if (ifClosed) {                               605     if (ifClosed) {
763       RotateEdge(kk[i2beg], kk[i2end], r[i2beg    606       RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis,
764                  edgeVis, ifWholeCircle, nSphi    607                  edgeVis, ifWholeCircle, nSphi, k);
765     }                                             608     }
766   }                                               609   }
767                                                   610 
768   // bottom and top faces                      << 611   //   G E N E R A T E   S I D E   F A C E S
769   //                                           << 612 
770   if (!ifClosed) {                                613   if (!ifClosed) {
771     if (ifSide1) {                                614     if (ifSide1) {
772       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg    615       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1,
773                  -1, ifWholeCircle, nSphi, k);    616                  -1, ifWholeCircle, nSphi, k);
774     }                                             617     }
775     if (ifSide2) {                                618     if (ifSide2) {
776       RotateEdge(kk[i1end], kk[i2end], r[i1end    619       RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1,
777                  -1, ifWholeCircle, nSphi, k);    620                  -1, ifWholeCircle, nSphi, k);
778     }                                             621     }
779   }                                               622   }
780                                                   623 
781   // phi_wedge faces in case of incomplete cir << 624   //   G E N E R A T E   S I D E   F A C E S  for the case of incomplete circle
782   //                                           << 625 
783   if (!ifWholeCircle) {                           626   if (!ifWholeCircle) {
784                                                   627 
785     G4int  ii[4], vv[4];                          628     G4int  ii[4], vv[4];
786                                                   629 
787     if (ifClosed) {                               630     if (ifClosed) {
788       for (i=i1beg; i<=i1end; i++) {              631       for (i=i1beg; i<=i1end; i++) {
789         ii[0] = i;                                632         ii[0] = i;
790         ii[3] = (i == i1end) ? i1beg : i+1;       633         ii[3] = (i == i1end) ? i1beg : i+1;
791         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    634         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
792         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    635         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
793         vv[0] = -1;                               636         vv[0] = -1;
794         vv[1] = 1;                                637         vv[1] = 1;
795         vv[2] = -1;                               638         vv[2] = -1;
796         vv[3] = 1;                                639         vv[3] = 1;
797         SetSideFacets(ii, vv, kk, r, delPhi, n << 640         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
798       }                                           641       }
799     }else{                                        642     }else{
800       for (i=i1beg; i<i1end; i++) {               643       for (i=i1beg; i<i1end; i++) {
801         ii[0] = i;                                644         ii[0] = i;
802         ii[3] = i+1;                              645         ii[3] = i+1;
803         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    646         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
804         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    647         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
805         vv[0] = (i == i1beg)   ? 1 : -1;          648         vv[0] = (i == i1beg)   ? 1 : -1;
806         vv[1] = 1;                                649         vv[1] = 1;
807         vv[2] = (i == i1end-1) ? 1 : -1;          650         vv[2] = (i == i1end-1) ? 1 : -1;
808         vv[3] = 1;                                651         vv[3] = 1;
809         SetSideFacets(ii, vv, kk, r, delPhi, n << 652         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
810       }                                           653       }
811     }                                          << 654     }      
812   }                                               655   }
813                                                   656 
814   delete [] kk; // free memory                 << 657   delete [] kk;
815                                                   658 
816   // final check                               << 
817   //                                           << 
818   if (k-1 != nface) {                             659   if (k-1 != nface) {
819     std::cerr                                     660     std::cerr
820       << "HepPolyhedron::RotateAroundZ: number << 661       << "Polyhedron::RotateAroundZ: number of generated faces ("
821       << k-1 << ") is not equal to the number     662       << k-1 << ") is not equal to the number of allocated faces ("
822       << nface << ")"                             663       << nface << ")"
823       << std::endl;                               664       << std::endl;
824   }                                               665   }
825 }                                                 666 }
826                                                   667 
827 void                                           << 
828 HepPolyhedron::RotateContourAroundZ(G4int nste << 
829                                     G4double p << 
830                                     G4double d << 
831                                     const std: << 
832                                     G4int node << 
833                                     G4int edge << 
834 /********************************************* << 
835  *                                             << 
836  * Name: HepPolyhedron::RotateContourAroundZ   << 
837  * Author: E.Tcherniaev (E.Chernyaev)          << 
838  *                                             << 
839  * Function: Create HepPolyhedron for a solid  << 
840  *           a closed polyline (rz-contour) ar << 
841  *                                             << 
842  * Input: nstep - number of discrete steps, if << 
843  *        phi   - starting phi angle           << 
844  *        dphi  - delta phi                    << 
845  *        rz    - rz-contour                   << 
846  *        nodeVis - how to Draw edges joing co << 
847  *                  node during rotation       << 
848  *        edgeVis - how to Draw edges          << 
849  *                                             << 
850  ********************************************* << 
851 {                                              << 
852   //   S E T   R O T A T I O N   P A R A M E T << 
853                                                << 
854   G4bool ifWholeCircle = std::abs(dphi - twopi << 
855   G4double delPhi = (ifWholeCircle) ? twopi :  << 
856   G4int nSphi = nstep;                         << 
857   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 
858   if (nSphi == 0) nSphi = 1;                   << 
859   G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 
860                                                << 
861   //   C A L C U L A T E   A R E A             << 
862                                                << 
863   G4int Nrz = (G4int)rz.size();                << 
864   G4double area = 0;                           << 
865   for (G4int i = 0; i < Nrz; ++i)              << 
866   {                                            << 
867     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
868     area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 
869   }                                            << 
870                                                << 
871   //   P R E P A R E   P O L Y L I N E         << 
872                                                << 
873   auto r = new G4double[Nrz];                  << 
874   auto z = new G4double[Nrz];                  << 
875   for (G4int i = 0; i < Nrz; ++i)              << 
876   {                                            << 
877     r[i] = rz[i].x();                          << 
878     z[i] = rz[i].y();                          << 
879     if (std::abs(r[i]) < spatialTolerance) r[i << 
880   }                                            << 
881                                                << 
882   //   C O U N T   V E R T I C E S   A N D   F << 
883                                                << 
884   G4int Nverts = 0;                            << 
885   for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 
886                                                << 
887   G4int Nedges = Nrz;                          << 
888   for (G4int i = 0; i < Nrz; ++i)              << 
889   {                                            << 
890     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
891     Nedges -= static_cast<int>(r[k] == 0 && r[ << 
892   }                                            << 
893                                                << 
894   G4int Nfaces = Nedges*nSphi;               / << 
895   if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 
896                                                << 
897   //   A L L O C A T E   M E M O R Y           << 
898                                                << 
899   AllocateMemory(Nverts, Nfaces);              << 
900   if (pV == nullptr || pF == nullptr)          << 
901   {                                            << 
902     delete [] r;                               << 
903     delete [] z;                               << 
904     return;                                    << 
905   }                                            << 
906                                                << 
907   //   S E T   V E R T I C E S                 << 
908                                                << 
909   auto kk = new G4int[Nrz]; // start indices a << 
910   G4int kfree = 1; // current free position in << 
911                                                << 
912   // set start indices, set vertices for nodes << 
913   for(G4int i = 0; i < Nrz; ++i)               << 
914   {                                            << 
915     kk[i] = kfree;                             << 
916     if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 
917     if (r[i] != 0.) kfree += nVphi;            << 
918   }                                            << 
919                                                << 
920   // set vertices by rotating r                << 
921   for(G4int j = 0; j < nVphi; ++j)             << 
922   {                                            << 
923     G4double cosPhi = std::cos(phi + j*delPhi/ << 
924     G4double sinPhi = std::sin(phi + j*delPhi/ << 
925     for(G4int i = 0; i < Nrz; ++i)             << 
926     {                                          << 
927       if (r[i] != 0.)                          << 
928         pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 
929     }                                          << 
930   }                                            << 
931                                                << 
932   //   S E T   F A C E S                       << 
933                                                << 
934   kfree = 1; // current free position in array << 
935   for(G4int i = 0; i < Nrz; ++i)               << 
936   {                                            << 
937     G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 
938     G4int i2 = i;                              << 
939     if (area < 0.) std::swap(i1, i2);          << 
940     RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 
941                edgeVis, ifWholeCircle, nSphi,  << 
942   }                                            << 
943                                                << 
944   //    S E T   P H I _ W E D G E   F A C E S  << 
945                                                << 
946   if (!ifWholeCircle)                          << 
947   {                                            << 
948     std::vector<G4int> triangles;              << 
949     TriangulatePolygon(rz, triangles);         << 
950                                                << 
951     G4int ii[4], vv[4];                        << 
952     G4int ntria = G4int(triangles.size()/3);   << 
953     for (G4int i = 0; i < ntria; ++i)          << 
954     {                                          << 
955       G4int i1 = triangles[0 + i*3];           << 
956       G4int i2 = triangles[1 + i*3];           << 
957       G4int i3 = triangles[2 + i*3];           << 
958       if (area < 0.) std::swap(i1, i3);        << 
959       G4int v1 = (std::abs(i2-i1) == 1 || std: << 
960       G4int v2 = (std::abs(i3-i2) == 1 || std: << 
961       G4int v3 = (std::abs(i1-i3) == 1 || std: << 
962       ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 
963       vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 
964       SetSideFacets(ii, vv, kk, r, delPhi, nSp << 
965     }                                          << 
966   }                                            << 
967                                                << 
968   // free memory                               << 
969   delete [] r;                                 << 
970   delete [] z;                                 << 
971   delete [] kk;                                << 
972                                                << 
973   // final check                               << 
974   if (kfree - 1 != nface)                      << 
975   {                                            << 
976     std::cerr                                  << 
977       << "HepPolyhedron::RotateContourAroundZ: << 
978       << kfree-1 << ") is not equal to the num << 
979       << nface << ")"                          << 
980       << std::endl;                            << 
981   }                                            << 
982 }                                              << 
983                                                << 
984 G4bool                                         << 
985 HepPolyhedron::TriangulatePolygon(const std::v << 
986                                   std::vector< << 
987 /********************************************* << 
988  *                                             << 
989  * Name: HepPolyhedron::TriangulatePolygon     << 
990  * Author: E.Tcherniaev (E.Chernyaev)          << 
991  *                                             << 
992  * Function: Simple implementation of "ear cli << 
993  *           triangulation of a simple contour << 
994  *           the result in a std::vector as tr << 
995  *                                             << 
996  *           If triangulation is sucsessfull t << 
997  *           returns true, otherwise false     << 
998  *                                             << 
999  * Remark:   It's a copy of G4GeomTools::Trian << 
1000  *                                            << 
1001  ******************************************** << 
1002 {                                             << 
1003   result.resize(0);                           << 
1004   G4int n = (G4int)polygon.size();            << 
1005   if (n < 3) return false;                    << 
1006                                               << 
1007   // calculate area                           << 
1008   //                                          << 
1009   G4double area = 0.;                         << 
1010   for(G4int i = 0; i < n; ++i)                << 
1011   {                                           << 
1012     G4int k = (i == 0) ? n - 1 : i - 1;       << 
1013     area += polygon[k].x()*polygon[i].y() - p << 
1014   }                                           << 
1015                                               << 
1016   // allocate and initialize list of Vertices << 
1017   // we want a counter-clockwise polygon in V << 
1018   //                                          << 
1019   auto  V = new G4int[n];                     << 
1020   if (area > 0.)                              << 
1021     for (G4int i = 0; i < n; ++i) V[i] = i;   << 
1022   else                                        << 
1023     for (G4int i = 0; i < n; ++i) V[i] = (n - << 
1024                                               << 
1025   //  Triangulation: remove nv-2 Vertices, cr << 
1026   //                                          << 
1027   G4int nv = n;                               << 
1028   G4int count = 2*nv; // error detection coun << 
1029   for(G4int b = nv - 1; nv > 2; )             << 
1030   {                                           << 
1031     // ERROR: if we loop, it is probably a no << 
1032     if ((count--) <= 0)                       << 
1033     {                                         << 
1034       delete [] V;                            << 
1035       if (area < 0.) std::reverse(result.begi << 
1036       return false;                           << 
1037     }                                         << 
1038                                               << 
1039     // three consecutive vertices in current  << 
1040     G4int a = (b   < nv) ? b   : 0; // previo << 
1041           b = (a+1 < nv) ? a+1 : 0; // curren << 
1042     G4int c = (b+1 < nv) ? b+1 : 0; // next   << 
1043                                               << 
1044     if (CheckSnip(polygon, a,b,c, nv,V))      << 
1045     {                                         << 
1046       // output Triangle                      << 
1047       result.push_back(V[a]);                 << 
1048       result.push_back(V[b]);                 << 
1049       result.push_back(V[c]);                 << 
1050                                               << 
1051       // remove vertex b from remaining polyg << 
1052       nv--;                                   << 
1053       for(G4int i = b; i < nv; ++i) V[i] = V[ << 
1054                                               << 
1055       count = 2*nv; // resest error detection << 
1056     }                                         << 
1057   }                                           << 
1058   delete [] V;                                << 
1059   if (area < 0.) std::reverse(result.begin(), << 
1060   return true;                                << 
1061 }                                             << 
1062                                               << 
1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 
1064                                 G4int a, G4in << 
1065                                 G4int n, cons << 
1066 /******************************************** << 
1067  *                                            << 
1068  * Name: HepPolyhedron::CheckSnip             << 
1069  * Author: E.Tcherniaev (E.Chernyaev)         << 
1070  *                                            << 
1071  * Function: Check for a valid snip,          << 
1072  *           it is a helper functionfor Trian << 
1073  *                                            << 
1074  ******************************************** << 
1075 {                                             << 
1076   static const G4double kCarTolerance = 1.e-9 << 
1077                                               << 
1078   // check orientation of Triangle            << 
1079   G4double Ax = contour[V[a]].x(), Ay = conto << 
1080   G4double Bx = contour[V[b]].x(), By = conto << 
1081   G4double Cx = contour[V[c]].x(), Cy = conto << 
1082   if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 
1083                                               << 
1084   // check that there is no point inside Tria << 
1085   G4double xmin = std::min(std::min(Ax,Bx),Cx << 
1086   G4double xmax = std::max(std::max(Ax,Bx),Cx << 
1087   G4double ymin = std::min(std::min(Ay,By),Cy << 
1088   G4double ymax = std::max(std::max(Ay,By),Cy << 
1089                                               << 
1090   for (G4int i=0; i<n; ++i)                   << 
1091   {                                           << 
1092     if((i == a) || (i == b) || (i == c)) cont << 
1093     G4double Px = contour[V[i]].x();          << 
1094     if (Px < xmin || Px > xmax) continue;     << 
1095     G4double Py = contour[V[i]].y();          << 
1096     if (Py < ymin || Py > ymax) continue;     << 
1097     // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 
1098     if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 
1099     {                                         << 
1100       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 
1101       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 
1102       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 
1103     }                                         << 
1104     else                                      << 
1105     {                                         << 
1106       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 
1107       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 
1108       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 
1109     }                                         << 
1110     return false;                             << 
1111   }                                           << 
1112   return true;                                << 
1113 }                                             << 
1114                                               << 
1115 void HepPolyhedron::SetReferences()              668 void HepPolyhedron::SetReferences()
1116 /********************************************    669 /***********************************************************************
1117  *                                               670  *                                                                     *
1118  * Name: HepPolyhedron::SetReferences            671  * Name: HepPolyhedron::SetReferences                Date:    04.12.96 *
1119  * Author: E.Chernyaev (IHEP/Protvino)           672  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1120  *                                               673  *                                                                     *
1121  * Function: For each edge set reference to n    674  * Function: For each edge set reference to neighbouring facet         *
1122  *                                               675  *                                                                     *
1123  ********************************************    676  ***********************************************************************/
1124 {                                                677 {
1125   if (nface <= 0) return;                        678   if (nface <= 0) return;
1126                                                  679 
1127   struct edgeListMember {                        680   struct edgeListMember {
1128     edgeListMember *next;                        681     edgeListMember *next;
1129     G4int v2;                                    682     G4int v2;
1130     G4int iface;                                 683     G4int iface;
1131     G4int iedge;                                 684     G4int iedge;
1132   } *edgeList, *freeList, **headList;            685   } *edgeList, *freeList, **headList;
1133                                                  686 
1134                                               << 687   
1135   //   A L L O C A T E   A N D   I N I T I A     688   //   A L L O C A T E   A N D   I N I T I A T E   L I S T S
1136                                                  689 
1137   edgeList = new edgeListMember[2*nface];        690   edgeList = new edgeListMember[2*nface];
1138   headList = new edgeListMember*[nvert];         691   headList = new edgeListMember*[nvert];
1139                                               << 692   
1140   G4int i;                                       693   G4int i;
1141   for (i=0; i<nvert; i++) {                      694   for (i=0; i<nvert; i++) {
1142     headList[i] = nullptr;                    << 695     headList[i] = 0;
1143   }                                              696   }
1144   freeList = edgeList;                           697   freeList = edgeList;
1145   for (i=0; i<2*nface-1; i++) {                  698   for (i=0; i<2*nface-1; i++) {
1146     edgeList[i].next = &edgeList[i+1];           699     edgeList[i].next = &edgeList[i+1];
1147   }                                              700   }
1148   edgeList[2*nface-1].next = nullptr;         << 701   edgeList[2*nface-1].next = 0;
1149                                                  702 
1150   //   L O O P   A L O N G   E D G E S           703   //   L O O P   A L O N G   E D G E S
1151                                                  704 
1152   G4int iface, iedge, nedge, i1, i2, k1, k2;     705   G4int iface, iedge, nedge, i1, i2, k1, k2;
1153   edgeListMember *prev, *cur;                    706   edgeListMember *prev, *cur;
1154                                               << 707   
1155   for(iface=1; iface<=nface; iface++) {          708   for(iface=1; iface<=nface; iface++) {
1156     nedge = (pF[iface].edge[3].v == 0) ? 3 :     709     nedge = (pF[iface].edge[3].v == 0) ? 3 : 4;
1157     for (iedge=0; iedge<nedge; iedge++) {        710     for (iedge=0; iedge<nedge; iedge++) {
1158       i1 = iedge;                                711       i1 = iedge;
1159       i2 = (iedge < nedge-1) ? iedge+1 : 0;      712       i2 = (iedge < nedge-1) ? iedge+1 : 0;
1160       i1 = std::abs(pF[iface].edge[i1].v);       713       i1 = std::abs(pF[iface].edge[i1].v);
1161       i2 = std::abs(pF[iface].edge[i2].v);       714       i2 = std::abs(pF[iface].edge[i2].v);
1162       k1 = (i1 < i2) ? i1 : i2;          // k    715       k1 = (i1 < i2) ? i1 : i2;          // k1 = ::min(i1,i2);
1163       k2 = (i1 > i2) ? i1 : i2;          // k    716       k2 = (i1 > i2) ? i1 : i2;          // k2 = ::max(i1,i2);
1164                                               << 717       
1165       // check head of the List corresponding    718       // check head of the List corresponding to k1
1166       cur = headList[k1];                        719       cur = headList[k1];
1167       if (cur == nullptr) {                   << 720       if (cur == 0) {
1168         headList[k1] = freeList;                 721         headList[k1] = freeList;
1169         if (freeList == nullptr) {            << 
1170           std::cerr                           << 
1171           << "Polyhedron::SetReferences: bad  << 
1172           << std::endl;                       << 
1173           break;                              << 
1174         }                                     << 
1175         freeList = freeList->next;               722         freeList = freeList->next;
1176         cur = headList[k1];                      723         cur = headList[k1];
1177         cur->next = nullptr;                  << 724         cur->next = 0;
1178         cur->v2 = k2;                            725         cur->v2 = k2;
1179         cur->iface = iface;                      726         cur->iface = iface;
1180         cur->iedge = iedge;                      727         cur->iedge = iedge;
1181         continue;                                728         continue;
1182       }                                          729       }
1183                                                  730 
1184       if (cur->v2 == k2) {                       731       if (cur->v2 == k2) {
1185         headList[k1] = cur->next;                732         headList[k1] = cur->next;
1186         cur->next = freeList;                    733         cur->next = freeList;
1187         freeList = cur;                       << 734         freeList = cur;      
1188         pF[iface].edge[iedge].f = cur->iface;    735         pF[iface].edge[iedge].f = cur->iface;
1189         pF[cur->iface].edge[cur->iedge].f = i    736         pF[cur->iface].edge[cur->iedge].f = iface;
1190         i1 = (pF[iface].edge[iedge].v < 0) ?     737         i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1191         i2 = (pF[cur->iface].edge[cur->iedge]    738         i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1192         if (i1 != i2) {                          739         if (i1 != i2) {
1193           std::cerr                              740           std::cerr
1194             << "Polyhedron::SetReferences: di    741             << "Polyhedron::SetReferences: different edge visibility "
1195             << iface << "/" << iedge << "/"      742             << iface << "/" << iedge << "/"
1196             << pF[iface].edge[iedge].v << " a    743             << pF[iface].edge[iedge].v << " and "
1197             << cur->iface << "/" << cur->iedg    744             << cur->iface << "/" << cur->iedge << "/"
1198             << pF[cur->iface].edge[cur->iedge    745             << pF[cur->iface].edge[cur->iedge].v
1199             << std::endl;                        746             << std::endl;
1200         }                                        747         }
1201         continue;                                748         continue;
1202       }                                          749       }
1203                                                  750 
1204       // check List itself                       751       // check List itself
1205       for (;;) {                                 752       for (;;) {
1206         prev = cur;                              753         prev = cur;
1207         cur = prev->next;                        754         cur = prev->next;
1208         if (cur == nullptr) {                 << 755         if (cur == 0) {
1209           prev->next = freeList;                 756           prev->next = freeList;
1210           if (freeList == nullptr) {          << 
1211             std::cerr                         << 
1212             << "Polyhedron::SetReferences: ba << 
1213             << std::endl;                     << 
1214             break;                            << 
1215           }                                   << 
1216           freeList = freeList->next;             757           freeList = freeList->next;
1217           cur = prev->next;                      758           cur = prev->next;
1218           cur->next = nullptr;                << 759           cur->next = 0;
1219           cur->v2 = k2;                          760           cur->v2 = k2;
1220           cur->iface = iface;                    761           cur->iface = iface;
1221           cur->iedge = iedge;                    762           cur->iedge = iedge;
1222           break;                                 763           break;
1223         }                                        764         }
1224                                                  765 
1225         if (cur->v2 == k2) {                     766         if (cur->v2 == k2) {
1226           prev->next = cur->next;                767           prev->next = cur->next;
1227           cur->next = freeList;                  768           cur->next = freeList;
1228           freeList = cur;                     << 769           freeList = cur;      
1229           pF[iface].edge[iedge].f = cur->ifac    770           pF[iface].edge[iedge].f = cur->iface;
1230           pF[cur->iface].edge[cur->iedge].f =    771           pF[cur->iface].edge[cur->iedge].f = iface;
1231           i1 = (pF[iface].edge[iedge].v < 0)     772           i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1232           i2 = (pF[cur->iface].edge[cur->iedg    773           i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1233             if (i1 != i2) {                      774             if (i1 != i2) {
1234               std::cerr                          775               std::cerr
1235                 << "Polyhedron::SetReferences    776                 << "Polyhedron::SetReferences: different edge visibility "
1236                 << iface << "/" << iedge << "    777                 << iface << "/" << iedge << "/"
1237                 << pF[iface].edge[iedge].v <<    778                 << pF[iface].edge[iedge].v << " and "
1238                 << cur->iface << "/" << cur->    779                 << cur->iface << "/" << cur->iedge << "/"
1239                 << pF[cur->iface].edge[cur->i    780                 << pF[cur->iface].edge[cur->iedge].v
1240                 << std::endl;                    781                 << std::endl;
1241             }                                    782             }
1242           break;                                 783           break;
1243         }                                        784         }
1244       }                                          785       }
1245     }                                            786     }
1246   }                                              787   }
1247                                                  788 
1248   //  C H E C K   T H A T   A L L   L I S T S    789   //  C H E C K   T H A T   A L L   L I S T S   A R E   E M P T Y
1249                                                  790 
1250   for (i=0; i<nvert; i++) {                      791   for (i=0; i<nvert; i++) {
1251     if (headList[i] != nullptr) {             << 792     if (headList[i] != 0) {
1252       std::cerr                                  793       std::cerr
1253         << "Polyhedron::SetReferences: List "    794         << "Polyhedron::SetReferences: List " << i << " is not empty"
1254         << std::endl;                            795         << std::endl;
1255     }                                            796     }
1256   }                                              797   }
1257                                                  798 
1258   //   F R E E   M E M O R Y                     799   //   F R E E   M E M O R Y
1259                                                  800 
1260   delete [] edgeList;                            801   delete [] edgeList;
1261   delete [] headList;                            802   delete [] headList;
1262 }                                                803 }
1263                                                  804 
1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 
1265 /******************************************** << 
1266  *                                            << 
1267  * Name: HepPolyhedron::JoinCoplanarFacets    << 
1268  * Author: E.Tcherniaev (E.Chernyaev)         << 
1269  *                                            << 
1270  * Function: Join couples of triangular facet << 
1271  *           where it is possible             << 
1272  *                                            << 
1273  ******************************************** << 
1274 {                                             << 
1275   G4int njoin = 0;                            << 
1276   for (G4int icur = 1; icur <= nface; ++icur) << 
1277   {                                           << 
1278     // skip if already joined or quadrangle   << 
1279     if (pF[icur].edge[0].v == 0) continue;    << 
1280     if (pF[icur].edge[3].v != 0) continue;    << 
1281     // skip if all references point to alread << 
1282     if (pF[icur].edge[0].f < icur &&          << 
1283         pF[icur].edge[1].f < icur &&          << 
1284         pF[icur].edge[2].f < icur) continue;  << 
1285     // compute plane equation                 << 
1286     G4Normal3D norm = GetUnitNormal(icur);    << 
1287     G4double dd = norm.dot(pV[pF[icur].edge[0 << 
1288     G4int vcur0 = std::abs(pF[icur].edge[0].v << 
1289     G4int vcur1 = std::abs(pF[icur].edge[1].v << 
1290     G4int vcur2 = std::abs(pF[icur].edge[2].v << 
1291     // select neighbouring facet              << 
1292     G4int kcheck = 0, icheck = 0, vcheck = 0; << 
1293     G4double dist = DBL_MAX;                  << 
1294     for (G4int k = 0; k < 3; ++k)             << 
1295     {                                         << 
1296       G4int itmp = pF[icur].edge[k].f;        << 
1297       // skip if already checked, joined or q << 
1298       if (itmp < icur) continue;              << 
1299       if (pF[itmp].edge[0].v == 0 ||          << 
1300           pF[itmp].edge[3].v != 0) continue;  << 
1301       // get candidate vertex                 << 
1302       G4int vtmp = 0;                         << 
1303       for (G4int j = 0; j < 3; ++j)           << 
1304       {                                       << 
1305         vtmp = std::abs(pF[itmp].edge[j].v);  << 
1306   if (vtmp != vcur0 && vtmp != vcur1 && vtmp  << 
1307       }                                       << 
1308       // check distance to the plane          << 
1309       G4double dtmp = std::abs(norm.dot(pV[vt << 
1310       if (dtmp > tolerance || dtmp >= dist) c << 
1311       dist = dtmp;                            << 
1312       kcheck = k;                             << 
1313       icheck = itmp;                          << 
1314       vcheck = vtmp;                          << 
1315     }                                         << 
1316     if (icheck == 0) continue; // no facet se << 
1317     // join facets                            << 
1318     njoin++;                                  << 
1319     pF[icheck].edge[0].v = 0; // mark facet a << 
1320     if (kcheck == 0)                          << 
1321     {                                         << 
1322       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1323       pF[icur].edge[2].v = pF[icur].edge[1].v << 
1324       pF[icur].edge[1].v = vcheck;            << 
1325     }                                         << 
1326     else if (kcheck == 1)                     << 
1327     {                                         << 
1328       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1329       pF[icur].edge[2].v = vcheck;            << 
1330     }                                         << 
1331     else                                      << 
1332     {                                         << 
1333       pF[icur].edge[3].v = vcheck;            << 
1334     }                                         << 
1335   }                                           << 
1336   if (njoin == 0) return; // no joined facets << 
1337                                               << 
1338   // restructure facets                       << 
1339   G4int nnew = 0;                             << 
1340   for (G4int icur = 1; icur <= nface; ++icur) << 
1341   {                                           << 
1342     if (pF[icur].edge[0].v == 0) continue;    << 
1343     nnew++;                                   << 
1344     pF[nnew].edge[0].v = pF[icur].edge[0].v;  << 
1345     pF[nnew].edge[1].v = pF[icur].edge[1].v;  << 
1346     pF[nnew].edge[2].v = pF[icur].edge[2].v;  << 
1347     pF[nnew].edge[3].v = pF[icur].edge[3].v;  << 
1348   }                                           << 
1349   nface = nnew;                               << 
1350   SetReferences();                            << 
1351 }                                             << 
1352                                               << 
1353 void HepPolyhedron::InvertFacets()               805 void HepPolyhedron::InvertFacets()
1354 /********************************************    806 /***********************************************************************
1355  *                                               807  *                                                                     *
1356  * Name: HepPolyhedron::InvertFacets             808  * Name: HepPolyhedron::InvertFacets                Date:    01.12.99  *
1357  * Author: E.Chernyaev                           809  * Author: E.Chernyaev                              Revised:           *
1358  *                                               810  *                                                                     *
1359  * Function: Invert the order of the nodes in    811  * Function: Invert the order of the nodes in the facets               *
1360  *                                               812  *                                                                     *
1361  ********************************************    813  ***********************************************************************/
1362 {                                                814 {
1363   if (nface <= 0) return;                        815   if (nface <= 0) return;
1364   G4int i, k, nnode, v[4],f[4];                  816   G4int i, k, nnode, v[4],f[4];
1365   for (i=1; i<=nface; i++) {                     817   for (i=1; i<=nface; i++) {
1366     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;     818     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;
1367     for (k=0; k<nnode; k++) {                    819     for (k=0; k<nnode; k++) {
1368       v[k] = (k+1 == nnode) ? pF[i].edge[0].v    820       v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v;
1369       if (v[k] * pF[i].edge[k].v < 0) v[k] =     821       if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k];
1370       f[k] = pF[i].edge[k].f;                    822       f[k] = pF[i].edge[k].f;
1371     }                                            823     }
1372     for (k=0; k<nnode; k++) {                    824     for (k=0; k<nnode; k++) {
1373       pF[i].edge[nnode-1-k].v = v[k];            825       pF[i].edge[nnode-1-k].v = v[k];
1374       pF[i].edge[nnode-1-k].f = f[k];            826       pF[i].edge[nnode-1-k].f = f[k];
1375     }                                            827     }
1376   }                                              828   }
1377 }                                                829 }
1378                                                  830 
1379 HepPolyhedron & HepPolyhedron::Transform(cons    831 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t)
1380 /********************************************    832 /***********************************************************************
1381  *                                               833  *                                                                     *
1382  * Name: HepPolyhedron::Transform                834  * Name: HepPolyhedron::Transform                    Date:    01.12.99  *
1383  * Author: E.Chernyaev                           835  * Author: E.Chernyaev                              Revised:           *
1384  *                                               836  *                                                                     *
1385  * Function: Make transformation of the polyh    837  * Function: Make transformation of the polyhedron                     *
1386  *                                               838  *                                                                     *
1387  ********************************************    839  ***********************************************************************/
1388 {                                                840 {
1389   if (nvert > 0) {                               841   if (nvert > 0) {
1390     for (G4int i=1; i<=nvert; i++) { pV[i] =     842     for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; }
1391                                                  843 
1392     //  C H E C K   D E T E R M I N A N T   A    844     //  C H E C K   D E T E R M I N A N T   A N D
1393     //  I N V E R T   F A C E T S   I F   I T    845     //  I N V E R T   F A C E T S   I F   I T   I S   N E G A T I V E
1394                                                  846 
1395     G4Vector3D d = t * G4Vector3D(0,0,0);        847     G4Vector3D d = t * G4Vector3D(0,0,0);
1396     G4Vector3D x = t * G4Vector3D(1,0,0) - d;    848     G4Vector3D x = t * G4Vector3D(1,0,0) - d;
1397     G4Vector3D y = t * G4Vector3D(0,1,0) - d;    849     G4Vector3D y = t * G4Vector3D(0,1,0) - d;
1398     G4Vector3D z = t * G4Vector3D(0,0,1) - d;    850     G4Vector3D z = t * G4Vector3D(0,0,1) - d;
1399     if ((x.cross(y))*z < 0) InvertFacets();      851     if ((x.cross(y))*z < 0) InvertFacets();
1400   }                                              852   }
1401   return *this;                                  853   return *this;
1402 }                                                854 }
1403                                                  855 
1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in    856 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const
1405 /********************************************    857 /***********************************************************************
1406  *                                               858  *                                                                     *
1407  * Name: HepPolyhedron::GetNextVertexIndex       859  * Name: HepPolyhedron::GetNextVertexIndex          Date:    03.09.96  *
1408  * Author: Yasuhide Sawada                       860  * Author: Yasuhide Sawada                          Revised:           *
1409  *                                               861  *                                                                     *
1410  * Function:                                     862  * Function:                                                           *
1411  *                                               863  *                                                                     *
1412  ********************************************    864  ***********************************************************************/
1413 {                                                865 {
1414   static G4ThreadLocal G4int iFace = 1;       << 866   static G4int iFace = 1;
1415   static G4ThreadLocal G4int iQVertex = 0;    << 867   static G4int iQVertex = 0;
1416   G4int vIndex = pF[iFace].edge[iQVertex].v;     868   G4int vIndex = pF[iFace].edge[iQVertex].v;
1417                                                  869 
1418   edgeFlag = (vIndex > 0) ? 1 : 0;               870   edgeFlag = (vIndex > 0) ? 1 : 0;
1419   index = std::abs(vIndex);                      871   index = std::abs(vIndex);
1420                                                  872 
1421   if (iQVertex >= 3 || pF[iFace].edge[iQVerte    873   if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1422     iQVertex = 0;                                874     iQVertex = 0;
1423     if (++iFace > nface) iFace = 1;              875     if (++iFace > nface) iFace = 1;
1424     return false;  // Last Edge                  876     return false;  // Last Edge
                                                   >> 877   }else{
                                                   >> 878     ++iQVertex;
                                                   >> 879     return true;  // not Last Edge
1425   }                                              880   }
1426                                               << 
1427   ++iQVertex;                                 << 
1428   return true;  // not Last Edge              << 
1429 }                                                881 }
1430                                                  882 
1431 G4Point3D HepPolyhedron::GetVertex(G4int inde    883 G4Point3D HepPolyhedron::GetVertex(G4int index) const
1432 /********************************************    884 /***********************************************************************
1433  *                                               885  *                                                                     *
1434  * Name: HepPolyhedron::GetVertex                886  * Name: HepPolyhedron::GetVertex                   Date:    03.09.96  *
1435  * Author: Yasuhide Sawada                       887  * Author: Yasuhide Sawada                          Revised: 17.11.99  *
1436  *                                               888  *                                                                     *
1437  * Function: Get vertex of the index.            889  * Function: Get vertex of the index.                                  *
1438  *                                               890  *                                                                     *
1439  ********************************************    891  ***********************************************************************/
1440 {                                                892 {
1441   if (index <= 0 || index > nvert) {             893   if (index <= 0 || index > nvert) {
1442     std::cerr                                    894     std::cerr
1443       << "HepPolyhedron::GetVertex: irrelevan    895       << "HepPolyhedron::GetVertex: irrelevant index " << index
1444       << std::endl;                              896       << std::endl;
1445     return G4Point3D();                          897     return G4Point3D();
1446   }                                              898   }
1447   return pV[index];                              899   return pV[index];
1448 }                                                900 }
1449                                                  901 
1450 G4bool                                           902 G4bool
1451 HepPolyhedron::GetNextVertex(G4Point3D &verte    903 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const
1452 /********************************************    904 /***********************************************************************
1453  *                                               905  *                                                                     *
1454  * Name: HepPolyhedron::GetNextVertex            906  * Name: HepPolyhedron::GetNextVertex               Date:    22.07.96  *
1455  * Author: John Allison                          907  * Author: John Allison                             Revised:           *
1456  *                                               908  *                                                                     *
1457  * Function: Get vertices of the quadrilatera    909  * Function: Get vertices of the quadrilaterals in order for each      *
1458  *           face in face order.  Returns fal    910  *           face in face order.  Returns false when finished each     *
1459  *           face.                               911  *           face.                                                     *
1460  *                                               912  *                                                                     *
1461  ********************************************    913  ***********************************************************************/
1462 {                                                914 {
1463   G4int index;                                   915   G4int index;
1464   G4bool rep = GetNextVertexIndex(index, edge    916   G4bool rep = GetNextVertexIndex(index, edgeFlag);
1465   vertex = pV[index];                            917   vertex = pV[index];
1466   return rep;                                    918   return rep;
1467 }                                                919 }
1468                                                  920 
1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D    921 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag,
1470                                   G4Normal3D     922                                   G4Normal3D &normal) const
1471 /********************************************    923 /***********************************************************************
1472  *                                               924  *                                                                     *
1473  * Name: HepPolyhedron::GetNextVertex            925  * Name: HepPolyhedron::GetNextVertex               Date:    26.11.99  *
1474  * Author: E.Chernyaev                           926  * Author: E.Chernyaev                              Revised:           *
1475  *                                               927  *                                                                     *
1476  * Function: Get vertices with normals of the    928  * Function: Get vertices with normals of the quadrilaterals in order  *
1477  *           for each face in face order.        929  *           for each face in face order.                              *
1478  *           Returns false when finished each    930  *           Returns false when finished each face.                    *
1479  *                                               931  *                                                                     *
1480  ********************************************    932  ***********************************************************************/
1481 {                                                933 {
1482   static G4ThreadLocal G4int iFace = 1;       << 934   static G4int iFace = 1;
1483   static G4ThreadLocal G4int iNode = 0;       << 935   static G4int iNode = 0;
1484                                                  936 
1485   if (nface == 0) return false;  // empty pol    937   if (nface == 0) return false;  // empty polyhedron
1486                                                  938 
1487   G4int k = pF[iFace].edge[iNode].v;             939   G4int k = pF[iFace].edge[iNode].v;
1488   if (k > 0) { edgeFlag = 1; } else { edgeFla    940   if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; }
1489   vertex = pV[k];                                941   vertex = pV[k];
1490   normal = FindNodeNormal(iFace,k);              942   normal = FindNodeNormal(iFace,k);
1491   if (iNode >= 3 || pF[iFace].edge[iNode+1].v    943   if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) {
1492     iNode = 0;                                   944     iNode = 0;
1493     if (++iFace > nface) iFace = 1;              945     if (++iFace > nface) iFace = 1;
1494     return false;                // last node    946     return false;                // last node
                                                   >> 947   }else{
                                                   >> 948     ++iNode;
                                                   >> 949     return true;                 // not last node
1495   }                                              950   }
1496   ++iNode;                                    << 
1497   return true;                 // not last no << 
1498 }                                                951 }
1499                                                  952 
1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 953 G4bool HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag,
1501                                        G4int     954                                        G4int &iface1, G4int &iface2) const
1502 /********************************************    955 /***********************************************************************
1503  *                                               956  *                                                                     *
1504  * Name: HepPolyhedron::GetNextEdgeIndices    << 957  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    30.09.96  *
1505  * Author: E.Chernyaev                           958  * Author: E.Chernyaev                              Revised: 17.11.99  *
1506  *                                               959  *                                                                     *
1507  * Function: Get indices of the next edge tog << 960  * Function: Get indeces of the next edge together with indeces of     *
1508  *           of the faces which share the edg    961  *           of the faces which share the edge.                        *
1509  *           Returns false when the last edge    962  *           Returns false when the last edge.                         *
1510  *                                               963  *                                                                     *
1511  ********************************************    964  ***********************************************************************/
1512 {                                                965 {
1513   static G4ThreadLocal G4int iFace    = 1;    << 966   static G4int iFace    = 1;
1514   static G4ThreadLocal G4int iQVertex = 0;    << 967   static G4int iQVertex = 0;
1515   static G4ThreadLocal G4int iOrder   = 1;    << 968   static G4int iOrder   = 1;
1516   G4int  k1, k2, kflag, kface1, kface2;          969   G4int  k1, k2, kflag, kface1, kface2;
1517                                                  970 
1518   if (iFace == 1 && iQVertex == 0) {             971   if (iFace == 1 && iQVertex == 0) {
1519     k2 = pF[nface].edge[0].v;                    972     k2 = pF[nface].edge[0].v;
1520     k1 = pF[nface].edge[3].v;                    973     k1 = pF[nface].edge[3].v;
1521     if (k1 == 0) k1 = pF[nface].edge[2].v;       974     if (k1 == 0) k1 = pF[nface].edge[2].v;
1522     if (std::abs(k1) > std::abs(k2)) iOrder =    975     if (std::abs(k1) > std::abs(k2)) iOrder = -1;
1523   }                                              976   }
1524                                                  977 
1525   do {                                           978   do {
1526     k1     = pF[iFace].edge[iQVertex].v;         979     k1     = pF[iFace].edge[iQVertex].v;
1527     kflag  = k1;                                 980     kflag  = k1;
1528     k1     = std::abs(k1);                       981     k1     = std::abs(k1);
1529     kface1 = iFace;                           << 982     kface1 = iFace; 
1530     kface2 = pF[iFace].edge[iQVertex].f;         983     kface2 = pF[iFace].edge[iQVertex].f;
1531     if (iQVertex >= 3 || pF[iFace].edge[iQVer    984     if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1532       iQVertex = 0;                              985       iQVertex = 0;
1533       k2 = std::abs(pF[iFace].edge[iQVertex].    986       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1534       iFace++;                                   987       iFace++;
1535     }else{                                       988     }else{
1536       iQVertex++;                                989       iQVertex++;
1537       k2 = std::abs(pF[iFace].edge[iQVertex].    990       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1538     }                                            991     }
1539   } while (iOrder*k1 > iOrder*k2);               992   } while (iOrder*k1 > iOrder*k2);
1540                                                  993 
1541   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ?     994   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0;
1542   iface1 = kface1; iface2 = kface2;           << 995   iface1 = kface1; iface2 = kface2; 
1543                                                  996 
1544   if (iFace > nface) {                           997   if (iFace > nface) {
1545     iFace  = 1; iOrder = 1;                      998     iFace  = 1; iOrder = 1;
1546     return false;                                999     return false;
                                                   >> 1000   }else{
                                                   >> 1001     return true;
1547   }                                              1002   }
1548                                               << 
1549   return true;                                << 
1550 }                                                1003 }
1551                                                  1004 
1552 G4bool                                           1005 G4bool
1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1,  << 1006 HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag) const
1554 /********************************************    1007 /***********************************************************************
1555  *                                               1008  *                                                                     *
1556  * Name: HepPolyhedron::GetNextEdgeIndices    << 1009  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    17.11.99  *
1557  * Author: E.Chernyaev                           1010  * Author: E.Chernyaev                              Revised:           *
1558  *                                               1011  *                                                                     *
1559  * Function: Get indices of the next edge.    << 1012  * Function: Get indeces of the next edge.                             *
1560  *           Returns false when the last edge    1013  *           Returns false when the last edge.                         *
1561  *                                               1014  *                                                                     *
1562  ********************************************    1015  ***********************************************************************/
1563 {                                                1016 {
1564   G4int kface1, kface2;                          1017   G4int kface1, kface2;
1565   return GetNextEdgeIndices(i1, i2, edgeFlag, << 1018   return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2);
1566 }                                                1019 }
1567                                                  1020 
1568 G4bool                                           1021 G4bool
1569 HepPolyhedron::GetNextEdge(G4Point3D &p1,        1022 HepPolyhedron::GetNextEdge(G4Point3D &p1,
1570                            G4Point3D &p2,        1023                            G4Point3D &p2,
1571                            G4int &edgeFlag) c    1024                            G4int &edgeFlag) const
1572 /********************************************    1025 /***********************************************************************
1573  *                                               1026  *                                                                     *
1574  * Name: HepPolyhedron::GetNextEdge              1027  * Name: HepPolyhedron::GetNextEdge                 Date:    30.09.96  *
1575  * Author: E.Chernyaev                           1028  * Author: E.Chernyaev                              Revised:           *
1576  *                                               1029  *                                                                     *
1577  * Function: Get next edge.                      1030  * Function: Get next edge.                                            *
1578  *           Returns false when the last edge    1031  *           Returns false when the last edge.                         *
1579  *                                               1032  *                                                                     *
1580  ********************************************    1033  ***********************************************************************/
1581 {                                                1034 {
1582   G4int i1,i2;                                   1035   G4int i1,i2;
1583   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1036   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag);
1584   p1 = pV[i1];                                   1037   p1 = pV[i1];
1585   p2 = pV[i2];                                   1038   p2 = pV[i2];
1586   return rep;                                    1039   return rep;
1587 }                                                1040 }
1588                                                  1041 
1589 G4bool                                           1042 G4bool
1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P    1043 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2,
1591                           G4int &edgeFlag, G4    1044                           G4int &edgeFlag, G4int &iface1, G4int &iface2) const
1592 /********************************************    1045 /***********************************************************************
1593  *                                               1046  *                                                                     *
1594  * Name: HepPolyhedron::GetNextEdge              1047  * Name: HepPolyhedron::GetNextEdge                 Date:    17.11.99  *
1595  * Author: E.Chernyaev                           1048  * Author: E.Chernyaev                              Revised:           *
1596  *                                               1049  *                                                                     *
1597  * Function: Get next edge with indices of th << 1050  * Function: Get next edge with indeces of the faces which share       *
1598  *           the edge.                           1051  *           the edge.                                                 *
1599  *           Returns false when the last edge    1052  *           Returns false when the last edge.                         *
1600  *                                               1053  *                                                                     *
1601  ********************************************    1054  ***********************************************************************/
1602 {                                                1055 {
1603   G4int i1,i2;                                   1056   G4int i1,i2;
1604   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1057   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2);
1605   p1 = pV[i1];                                   1058   p1 = pV[i1];
1606   p2 = pV[i2];                                   1059   p2 = pV[i2];
1607   return rep;                                    1060   return rep;
1608 }                                                1061 }
1609                                                  1062 
1610 void HepPolyhedron::GetFacet(G4int iFace, G4i    1063 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes,
1611                             G4int *edgeFlags,    1064                             G4int *edgeFlags, G4int *iFaces) const
1612 /********************************************    1065 /***********************************************************************
1613  *                                               1066  *                                                                     *
1614  * Name: HepPolyhedron::GetFacet                 1067  * Name: HepPolyhedron::GetFacet                    Date:    15.12.99  *
1615  * Author: E.Chernyaev                           1068  * Author: E.Chernyaev                              Revised:           *
1616  *                                               1069  *                                                                     *
1617  * Function: Get face by index                   1070  * Function: Get face by index                                         *
1618  *                                               1071  *                                                                     *
1619  ********************************************    1072  ***********************************************************************/
1620 {                                                1073 {
1621   if (iFace < 1 || iFace > nface) {              1074   if (iFace < 1 || iFace > nface) {
1622     std::cerr                                 << 1075     std::cerr 
1623       << "HepPolyhedron::GetFacet: irrelevant    1076       << "HepPolyhedron::GetFacet: irrelevant index " << iFace
1624       << std::endl;                              1077       << std::endl;
1625     n = 0;                                       1078     n = 0;
1626   }else{                                         1079   }else{
1627     G4int i, k;                                  1080     G4int i, k;
1628     for (i=0; i<4; i++) {                     << 1081     for (i=0; i<4; i++) { 
1629       k = pF[iFace].edge[i].v;                   1082       k = pF[iFace].edge[i].v;
1630       if (k == 0) break;                         1083       if (k == 0) break;
1631       if (iFaces != nullptr) iFaces[i] = pF[i << 1084       if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f;
1632       if (k > 0) {                            << 1085       if (k > 0) { 
1633         iNodes[i] = k;                           1086         iNodes[i] = k;
1634         if (edgeFlags != nullptr) edgeFlags[i << 1087         if (edgeFlags != 0) edgeFlags[i] = 1;
1635       }else{                                     1088       }else{
1636         iNodes[i] = -k;                          1089         iNodes[i] = -k;
1637         if (edgeFlags != nullptr) edgeFlags[i << 1090         if (edgeFlags != 0) edgeFlags[i] = -1;
1638       }                                          1091       }
1639     }                                            1092     }
1640     n = i;                                       1093     n = i;
1641   }                                              1094   }
1642 }                                                1095 }
1643                                                  1096 
1644 void HepPolyhedron::GetFacet(G4int index, G4i    1097 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes,
1645                              G4int *edgeFlags    1098                              G4int *edgeFlags, G4Normal3D *normals) const
1646 /********************************************    1099 /***********************************************************************
1647  *                                               1100  *                                                                     *
1648  * Name: HepPolyhedron::GetFacet                 1101  * Name: HepPolyhedron::GetFacet                    Date:    17.11.99  *
1649  * Author: E.Chernyaev                           1102  * Author: E.Chernyaev                              Revised:           *
1650  *                                               1103  *                                                                     *
1651  * Function: Get face by index                   1104  * Function: Get face by index                                         *
1652  *                                               1105  *                                                                     *
1653  ********************************************    1106  ***********************************************************************/
1654 {                                                1107 {
1655   G4int iNodes[4];                               1108   G4int iNodes[4];
1656   GetFacet(index, n, iNodes, edgeFlags);         1109   GetFacet(index, n, iNodes, edgeFlags);
1657   if (n != 0) {                                  1110   if (n != 0) {
1658     for (G4int i=0; i<n; i++) {                  1111     for (G4int i=0; i<n; i++) {
1659       nodes[i] = pV[iNodes[i]];                  1112       nodes[i] = pV[iNodes[i]];
1660       if (normals != nullptr) normals[i] = Fi << 1113       if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]);
1661     }                                            1114     }
1662   }                                              1115   }
1663 }                                                1116 }
1664                                                  1117 
1665 G4bool                                           1118 G4bool
1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point    1119 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes,
1667                            G4int *edgeFlags,     1120                            G4int *edgeFlags, G4Normal3D *normals) const
1668 /********************************************    1121 /***********************************************************************
1669  *                                               1122  *                                                                     *
1670  * Name: HepPolyhedron::GetNextFacet             1123  * Name: HepPolyhedron::GetNextFacet                Date:    19.11.99  *
1671  * Author: E.Chernyaev                           1124  * Author: E.Chernyaev                              Revised:           *
1672  *                                               1125  *                                                                     *
1673  * Function: Get next face with normals of un    1126  * Function: Get next face with normals of unit length at the nodes.   *
1674  *           Returns false when finished all     1127  *           Returns false when finished all faces.                    *
1675  *                                               1128  *                                                                     *
1676  ********************************************    1129  ***********************************************************************/
1677 {                                                1130 {
1678   static G4ThreadLocal G4int iFace = 1;       << 1131   static G4int iFace = 1;
1679                                                  1132 
1680   if (edgeFlags == nullptr) {                 << 1133   if (edgeFlags == 0) {
1681     GetFacet(iFace, n, nodes);                   1134     GetFacet(iFace, n, nodes);
1682   }else if (normals == nullptr) {             << 1135   }else if (normals == 0) {
1683     GetFacet(iFace, n, nodes, edgeFlags);        1136     GetFacet(iFace, n, nodes, edgeFlags);
1684   }else{                                         1137   }else{
1685     GetFacet(iFace, n, nodes, edgeFlags, norm    1138     GetFacet(iFace, n, nodes, edgeFlags, normals);
1686   }                                              1139   }
1687                                                  1140 
1688   if (++iFace > nface) {                         1141   if (++iFace > nface) {
1689     iFace  = 1;                                  1142     iFace  = 1;
1690     return false;                                1143     return false;
                                                   >> 1144   }else{
                                                   >> 1145     return true;
1691   }                                              1146   }
1692                                               << 
1693   return true;                                << 
1694 }                                                1147 }
1695                                                  1148 
1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa    1149 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const
1697 /********************************************    1150 /***********************************************************************
1698  *                                               1151  *                                                                     *
1699  * Name: HepPolyhedron::GetNormal                1152  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1700  * Author: E.Chernyaev                           1153  * Author: E.Chernyaev                               Revised:          *
1701  *                                               1154  *                                                                     *
1702  * Function: Get normal of the face given by     1155  * Function: Get normal of the face given by index                     *
1703  *                                               1156  *                                                                     *
1704  ********************************************    1157  ***********************************************************************/
1705 {                                                1158 {
1706   if (iFace < 1 || iFace > nface) {              1159   if (iFace < 1 || iFace > nface) {
1707     std::cerr                                 << 1160     std::cerr 
1708       << "HepPolyhedron::GetNormal: irrelevan << 1161       << "HepPolyhedron::GetNormal: irrelevant index " << iFace 
1709       << std::endl;                              1162       << std::endl;
1710     return G4Normal3D();                         1163     return G4Normal3D();
1711   }                                              1164   }
1712                                                  1165 
1713   G4int i0  = std::abs(pF[iFace].edge[0].v);     1166   G4int i0  = std::abs(pF[iFace].edge[0].v);
1714   G4int i1  = std::abs(pF[iFace].edge[1].v);     1167   G4int i1  = std::abs(pF[iFace].edge[1].v);
1715   G4int i2  = std::abs(pF[iFace].edge[2].v);     1168   G4int i2  = std::abs(pF[iFace].edge[2].v);
1716   G4int i3  = std::abs(pF[iFace].edge[3].v);     1169   G4int i3  = std::abs(pF[iFace].edge[3].v);
1717   if (i3 == 0) i3 = i0;                          1170   if (i3 == 0) i3 = i0;
1718   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[    1171   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]);
1719 }                                                1172 }
1720                                                  1173 
1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int    1174 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const
1722 /********************************************    1175 /***********************************************************************
1723  *                                               1176  *                                                                     *
1724  * Name: HepPolyhedron::GetNormal                1177  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1725  * Author: E.Chernyaev                           1178  * Author: E.Chernyaev                               Revised:          *
1726  *                                               1179  *                                                                     *
1727  * Function: Get unit normal of the face give    1180  * Function: Get unit normal of the face given by index                *
1728  *                                               1181  *                                                                     *
1729  ********************************************    1182  ***********************************************************************/
1730 {                                                1183 {
1731   if (iFace < 1 || iFace > nface) {              1184   if (iFace < 1 || iFace > nface) {
1732     std::cerr                                 << 1185     std::cerr 
1733       << "HepPolyhedron::GetUnitNormal: irrel    1186       << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace
1734       << std::endl;                              1187       << std::endl;
1735     return G4Normal3D();                         1188     return G4Normal3D();
1736   }                                              1189   }
1737                                                  1190 
1738   G4int i0  = std::abs(pF[iFace].edge[0].v);     1191   G4int i0  = std::abs(pF[iFace].edge[0].v);
1739   G4int i1  = std::abs(pF[iFace].edge[1].v);     1192   G4int i1  = std::abs(pF[iFace].edge[1].v);
1740   G4int i2  = std::abs(pF[iFace].edge[2].v);     1193   G4int i2  = std::abs(pF[iFace].edge[2].v);
1741   G4int i3  = std::abs(pF[iFace].edge[3].v);     1194   G4int i3  = std::abs(pF[iFace].edge[3].v);
1742   if (i3 == 0) i3 = i0;                          1195   if (i3 == 0) i3 = i0;
1743   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1196   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit();
1744 }                                                1197 }
1745                                                  1198 
1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3    1199 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const
1747 /********************************************    1200 /***********************************************************************
1748  *                                               1201  *                                                                     *
1749  * Name: HepPolyhedron::GetNextNormal            1202  * Name: HepPolyhedron::GetNextNormal               Date:    22.07.96  *
1750  * Author: John Allison                          1203  * Author: John Allison                             Revised: 19.11.99  *
1751  *                                               1204  *                                                                     *
1752  * Function: Get normals of each face in face    1205  * Function: Get normals of each face in face order.  Returns false    *
1753  *           when finished all faces.            1206  *           when finished all faces.                                  *
1754  *                                               1207  *                                                                     *
1755  ********************************************    1208  ***********************************************************************/
1756 {                                                1209 {
1757   static G4ThreadLocal G4int iFace = 1;       << 1210   static G4int iFace = 1;
1758   normal = GetNormal(iFace);                     1211   normal = GetNormal(iFace);
1759   if (++iFace > nface) {                         1212   if (++iFace > nface) {
1760     iFace = 1;                                   1213     iFace = 1;
1761     return false;                                1214     return false;
                                                   >> 1215   }else{
                                                   >> 1216     return true;
1762   }                                              1217   }
1763   return true;                                << 
1764 }                                                1218 }
1765                                                  1219 
1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor    1220 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const
1767 /********************************************    1221 /***********************************************************************
1768  *                                               1222  *                                                                     *
1769  * Name: HepPolyhedron::GetNextUnitNormal        1223  * Name: HepPolyhedron::GetNextUnitNormal           Date:    16.09.96  *
1770  * Author: E.Chernyaev                           1224  * Author: E.Chernyaev                              Revised:           *
1771  *                                               1225  *                                                                     *
1772  * Function: Get normals of unit length of ea    1226  * Function: Get normals of unit length of each face in face order.    *
1773  *           Returns false when finished all     1227  *           Returns false when finished all faces.                    *
1774  *                                               1228  *                                                                     *
1775  ********************************************    1229  ***********************************************************************/
1776 {                                                1230 {
1777   G4bool rep = GetNextNormal(normal);            1231   G4bool rep = GetNextNormal(normal);
1778   normal = normal.unit();                        1232   normal = normal.unit();
1779   return rep;                                    1233   return rep;
1780 }                                                1234 }
1781                                                  1235 
1782 G4double HepPolyhedron::GetSurfaceArea() cons    1236 G4double HepPolyhedron::GetSurfaceArea() const
1783 /********************************************    1237 /***********************************************************************
1784  *                                               1238  *                                                                     *
1785  * Name: HepPolyhedron::GetSurfaceArea           1239  * Name: HepPolyhedron::GetSurfaceArea              Date:    25.05.01  *
1786  * Author: E.Chernyaev                           1240  * Author: E.Chernyaev                              Revised:           *
1787  *                                               1241  *                                                                     *
1788  * Function: Returns area of the surface of t    1242  * Function: Returns area of the surface of the polyhedron.            *
1789  *                                               1243  *                                                                     *
1790  ********************************************    1244  ***********************************************************************/
1791 {                                                1245 {
1792   G4double srf = 0.;                             1246   G4double srf = 0.;
1793   for (G4int iFace=1; iFace<=nface; iFace++)     1247   for (G4int iFace=1; iFace<=nface; iFace++) {
1794     G4int i0 = std::abs(pF[iFace].edge[0].v);    1248     G4int i0 = std::abs(pF[iFace].edge[0].v);
1795     G4int i1 = std::abs(pF[iFace].edge[1].v);    1249     G4int i1 = std::abs(pF[iFace].edge[1].v);
1796     G4int i2 = std::abs(pF[iFace].edge[2].v);    1250     G4int i2 = std::abs(pF[iFace].edge[2].v);
1797     G4int i3 = std::abs(pF[iFace].edge[3].v);    1251     G4int i3 = std::abs(pF[iFace].edge[3].v);
1798     if (i3 == 0) i3 = i0;                        1252     if (i3 == 0) i3 = i0;
1799     srf += ((pV[i2] - pV[i0]).cross(pV[i3] -     1253     srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag();
1800   }                                              1254   }
1801   return srf/2.;                                 1255   return srf/2.;
1802 }                                                1256 }
1803                                                  1257 
1804 G4double HepPolyhedron::GetVolume() const        1258 G4double HepPolyhedron::GetVolume() const
1805 /********************************************    1259 /***********************************************************************
1806  *                                               1260  *                                                                     *
1807  * Name: HepPolyhedron::GetVolume                1261  * Name: HepPolyhedron::GetVolume                   Date:    25.05.01  *
1808  * Author: E.Chernyaev                           1262  * Author: E.Chernyaev                              Revised:           *
1809  *                                               1263  *                                                                     *
1810  * Function: Returns volume of the polyhedron    1264  * Function: Returns volume of the polyhedron.                         *
1811  *                                               1265  *                                                                     *
1812  ********************************************    1266  ***********************************************************************/
1813 {                                                1267 {
1814   G4double v = 0.;                               1268   G4double v = 0.;
1815   for (G4int iFace=1; iFace<=nface; iFace++)     1269   for (G4int iFace=1; iFace<=nface; iFace++) {
1816     G4int i0 = std::abs(pF[iFace].edge[0].v);    1270     G4int i0 = std::abs(pF[iFace].edge[0].v);
1817     G4int i1 = std::abs(pF[iFace].edge[1].v);    1271     G4int i1 = std::abs(pF[iFace].edge[1].v);
1818     G4int i2 = std::abs(pF[iFace].edge[2].v);    1272     G4int i2 = std::abs(pF[iFace].edge[2].v);
1819     G4int i3 = std::abs(pF[iFace].edge[3].v);    1273     G4int i3 = std::abs(pF[iFace].edge[3].v);
1820     G4Point3D pt;                                1274     G4Point3D pt;
1821     if (i3 == 0) {                               1275     if (i3 == 0) {
1822       i3 = i0;                                   1276       i3 = i0;
1823       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);     1277       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);
1824     }else{                                       1278     }else{
1825       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.    1279       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25;
1826     }                                            1280     }
1827     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1281     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt);
1828   }                                              1282   }
1829   return v/6.;                                   1283   return v/6.;
1830 }                                                1284 }
1831                                                  1285 
1832 G4int                                            1286 G4int
1833 HepPolyhedron::createTwistedTrap(G4double Dz,    1287 HepPolyhedron::createTwistedTrap(G4double Dz,
1834                                  const G4doub    1288                                  const G4double xy1[][2],
1835                                  const G4doub    1289                                  const G4double xy2[][2])
1836 /********************************************    1290 /***********************************************************************
1837  *                                               1291  *                                                                     *
1838  * Name: createTwistedTrap                       1292  * Name: createTwistedTrap                           Date:    05.11.02 *
1839  * Author: E.Chernyaev (IHEP/Protvino)           1293  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1840  *                                               1294  *                                                                     *
1841  * Function: Creates polyhedron for twisted t    1295  * Function: Creates polyhedron for twisted trapezoid                  *
1842  *                                               1296  *                                                                     *
1843  * Input: Dz       - half-length along Z         1297  * Input: Dz       - half-length along Z             8----7            *
1844  *        xy1[2,4] - quadrilateral at Z=-Dz      1298  *        xy1[2,4] - quadrilateral at Z=-Dz       5----6  !            *
1845  *        xy2[2,4] - quadrilateral at Z=+Dz      1299  *        xy2[2,4] - quadrilateral at Z=+Dz       !  4-!--3            *
1846  *                                               1300  *                                                1----2               *
1847  *                                               1301  *                                                                     *
1848  ********************************************    1302  ***********************************************************************/
1849 {                                                1303 {
1850   AllocateMemory(12,18);                         1304   AllocateMemory(12,18);
1851                                                  1305 
1852   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz)    1306   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz);
1853   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz)    1307   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz);
1854   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz)    1308   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz);
1855   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz)    1309   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz);
1856                                                  1310 
1857   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz)    1311   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz);
1858   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz)    1312   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz);
1859   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz)    1313   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz);
1860   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz)    1314   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz);
1861                                                  1315 
1862   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;         1316   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;
1863   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;         1317   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;
1864   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;         1318   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;
1865   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;         1319   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;
1866                                                  1320 
1867   enum {DUMMY, BOTTOM,                           1321   enum {DUMMY, BOTTOM,
1868         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,    1322         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,  LEFT_BACK,
1869         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,    1323         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,  BACK_RIGHT,
1870         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP    1324         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP, RIGHT_FRONT,
1871         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP    1325         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP, FRONT_LEFT,
1872         TOP};                                    1326         TOP};
1873                                                  1327 
1874   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM    1328   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM);
1875                                                  1329 
1876   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,    1330   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,  -12,LEFT_BACK,    0,0);
1877   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,      1331   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,    -12,LEFT_BOTTOM,  0,0);
1878   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,     1332   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,   -12,LEFT_FRONT,   0,0);
1879   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM    1333   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM, -12,LEFT_TOP,     0,0);
1880                                                  1334 
1881   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,     1335   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,   -11,BACK_RIGHT,   0,0);
1882   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,      1336   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,    -11,BACK_BOTTOM,  0,0);
1883   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,    1337   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,  -11,BACK_LEFT,    0,0);
1884   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM    1338   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP,     0,0);
1885                                                  1339 
1886   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,    1340   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,  -10,RIGHT_FRONT,  0,0);
1887   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,     1341   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,   -10,RIGHT_BOTTOM, 0,0);
1888   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT    1342   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT, -10,RIGHT_BACK,   0,0);
1889   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO    1343   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP,    0,0);
1890                                                  1344 
1891   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT    1345   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT,  -9,FRONT_LEFT,   0,0);
1892   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,     1346   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,    -9,FRONT_BOTTOM, 0,0);
1893   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,    1347   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,   -9,FRONT_RIGHT,  0,0);
1894   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO    1348   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP,    0,0);
1895                                               << 1349  
1896   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,    1350   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP);
1897                                                  1351 
1898   return 0;                                      1352   return 0;
1899 }                                                1353 }
1900                                                  1354 
1901 G4int                                            1355 G4int
1902 HepPolyhedron::createPolyhedron(G4int Nnodes,    1356 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces,
1903                                 const G4doubl    1357                                 const G4double xyz[][3],
1904                                 const G4int      1358                                 const G4int  faces[][4])
1905 /********************************************    1359 /***********************************************************************
1906  *                                               1360  *                                                                     *
1907  * Name: createPolyhedron                        1361  * Name: createPolyhedron                            Date:    05.11.02 *
1908  * Author: E.Chernyaev (IHEP/Protvino)           1362  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1909  *                                               1363  *                                                                     *
1910  * Function: Creates user defined polyhedron     1364  * Function: Creates user defined polyhedron                           *
1911  *                                               1365  *                                                                     *
1912  * Input: Nnodes  - number of nodes              1366  * Input: Nnodes  - number of nodes                                    *
1913  *        Nfaces  - number of faces              1367  *        Nfaces  - number of faces                                    *
1914  *        nodes[][3] - node coordinates          1368  *        nodes[][3] - node coordinates                                *
1915  *        faces[][4] - faces                     1369  *        faces[][4] - faces                                           *
1916  *                                               1370  *                                                                     *
1917  ********************************************    1371  ***********************************************************************/
1918 {                                                1372 {
1919   AllocateMemory(Nnodes, Nfaces);                1373   AllocateMemory(Nnodes, Nfaces);
1920   if (nvert == 0) return 1;                      1374   if (nvert == 0) return 1;
1921                                                  1375 
1922   for (G4int i=0; i<Nnodes; i++) {               1376   for (G4int i=0; i<Nnodes; i++) {
1923     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1],    1377     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]);
1924   }                                              1378   }
1925   for (G4int k=0; k<Nfaces; k++) {               1379   for (G4int k=0; k<Nfaces; k++) {
1926     pF[k+1] = G4Facet(faces[k][0],0,faces[k][    1380     pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0);
1927   }                                              1381   }
1928   SetReferences();                               1382   SetReferences();
1929   return 0;                                      1383   return 0;
1930 }                                                1384 }
1931                                                  1385 
1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 
1933   /****************************************** << 
1934    *                                          << 
1935    * Name: vertexUnweightedMean               << 
1936    * Author: S. Boogert (Manchester)          << 
1937    *                                          << 
1938    * Function: Calculate the unweighted mean  << 
1939    * in the polyhedron. Not to be confused wi << 
1940    * centre of mass                           << 
1941    ****************************************** << 
1942                                               << 
1943   auto centre = G4Point3D();                  << 
1944   for(int i=1;i<=nvert;i++) {                 << 
1945     centre += pV[i];                          << 
1946   }                                           << 
1947   centre = centre/nvert;                      << 
1948   return centre;                              << 
1949 }                                             << 
1950                                               << 
1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double    1386 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2,
1952                                      G4double    1387                                      G4double Dy1, G4double Dy2,
1953                                      G4double    1388                                      G4double Dz)
1954 /********************************************    1389 /***********************************************************************
1955  *                                               1390  *                                                                     *
1956  * Name: HepPolyhedronTrd2                       1391  * Name: HepPolyhedronTrd2                           Date:    22.07.96 *
1957  * Author: E.Chernyaev (IHEP/Protvino)           1392  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1958  *                                               1393  *                                                                     *
1959  * Function: Create GEANT4 TRD2-trapezoid        1394  * Function: Create GEANT4 TRD2-trapezoid                              *
1960  *                                               1395  *                                                                     *
1961  * Input: Dx1 - half-length along X at -Dz       1396  * Input: Dx1 - half-length along X at -Dz           8----7            *
1962  *        Dx2 - half-length along X ay +Dz       1397  *        Dx2 - half-length along X ay +Dz        5----6  !            *
1963  *        Dy1 - half-length along Y ay -Dz       1398  *        Dy1 - half-length along Y ay -Dz        !  4-!--3            *
1964  *        Dy2 - half-length along Y ay +Dz       1399  *        Dy2 - half-length along Y ay +Dz        1----2               *
1965  *        Dz  - half-length along Z              1400  *        Dz  - half-length along Z                                    *
1966  *                                               1401  *                                                                     *
1967  ********************************************    1402  ***********************************************************************/
1968 {                                                1403 {
1969   AllocateMemory(8,6);                           1404   AllocateMemory(8,6);
1970                                                  1405 
1971   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);              1406   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);
1972   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);              1407   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);
1973   pV[3] = G4Point3D( Dx1, Dy1,-Dz);              1408   pV[3] = G4Point3D( Dx1, Dy1,-Dz);
1974   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);              1409   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);
1975   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);              1410   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);
1976   pV[6] = G4Point3D( Dx2,-Dy2, Dz);              1411   pV[6] = G4Point3D( Dx2,-Dy2, Dz);
1977   pV[7] = G4Point3D( Dx2, Dy2, Dz);              1412   pV[7] = G4Point3D( Dx2, Dy2, Dz);
1978   pV[8] = G4Point3D(-Dx2, Dy2, Dz);              1413   pV[8] = G4Point3D(-Dx2, Dy2, Dz);
1979                                                  1414 
1980   CreatePrism();                                 1415   CreatePrism();
1981 }                                                1416 }
1982                                                  1417 
1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1418 HepPolyhedronTrd2::~HepPolyhedronTrd2() {}
1984                                                  1419 
1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double    1420 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2,
1986                                      G4double    1421                                      G4double Dy, G4double Dz)
1987   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {    1422   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {}
1988                                                  1423 
1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1424 HepPolyhedronTrd1::~HepPolyhedronTrd1() {}
1990                                                  1425 
1991 HepPolyhedronBox::HepPolyhedronBox(G4double D    1426 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz)
1992   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}     1427   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}
1993                                                  1428 
1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1429 HepPolyhedronBox::~HepPolyhedronBox() {}
1995                                                  1430 
1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double    1431 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz,
1997                                      G4double    1432                                      G4double Theta,
1998                                      G4double    1433                                      G4double Phi,
1999                                      G4double    1434                                      G4double Dy1,
2000                                      G4double    1435                                      G4double Dx1,
2001                                      G4double    1436                                      G4double Dx2,
2002                                      G4double    1437                                      G4double Alp1,
2003                                      G4double    1438                                      G4double Dy2,
2004                                      G4double    1439                                      G4double Dx3,
2005                                      G4double    1440                                      G4double Dx4,
2006                                      G4double    1441                                      G4double Alp2)
2007 /********************************************    1442 /***********************************************************************
2008  *                                               1443  *                                                                     *
2009  * Name: HepPolyhedronTrap                       1444  * Name: HepPolyhedronTrap                           Date:    20.11.96 *
2010  * Author: E.Chernyaev                           1445  * Author: E.Chernyaev                               Revised:          *
2011  *                                               1446  *                                                                     *
2012  * Function: Create GEANT4 TRAP-trapezoid        1447  * Function: Create GEANT4 TRAP-trapezoid                              *
2013  *                                               1448  *                                                                     *
2014  * Input: DZ   - half-length in Z                1449  * Input: DZ   - half-length in Z                                      *
2015  *        Theta,Phi - polar angles of the lin    1450  *        Theta,Phi - polar angles of the line joining centres of the  *
2016  *                    faces at Z=-Dz and Z=+D    1451  *                    faces at Z=-Dz and Z=+Dz                         *
2017  *        Dy1  - half-length in Y of the face    1452  *        Dy1  - half-length in Y of the face at Z=-Dz                 *
2018  *        Dx1  - half-length in X of low edge    1453  *        Dx1  - half-length in X of low edge of the face at Z=-Dz     *
2019  *        Dx2  - half-length in X of top edge    1454  *        Dx2  - half-length in X of top edge of the face at Z=-Dz     *
2020  *        Alp1 - angle between Y-axis and the    1455  *        Alp1 - angle between Y-axis and the median joining top and   *
2021  *               low edges of the face at Z=-    1456  *               low edges of the face at Z=-Dz                        *
2022  *        Dy2  - half-length in Y of the face    1457  *        Dy2  - half-length in Y of the face at Z=+Dz                 *
2023  *        Dx3  - half-length in X of low edge    1458  *        Dx3  - half-length in X of low edge of the face at Z=+Dz     *
2024  *        Dx4  - half-length in X of top edge    1459  *        Dx4  - half-length in X of top edge of the face at Z=+Dz     *
2025  *        Alp2 - angle between Y-axis and the    1460  *        Alp2 - angle between Y-axis and the median joining top and   *
2026  *               low edges of the face at Z=+    1461  *               low edges of the face at Z=+Dz                        *
2027  *                                               1462  *                                                                     *
2028  ********************************************    1463  ***********************************************************************/
2029 {                                                1464 {
2030   G4double DzTthetaCphi = Dz*std::tan(Theta)*    1465   G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi);
2031   G4double DzTthetaSphi = Dz*std::tan(Theta)*    1466   G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi);
2032   G4double Dy1Talp1 = Dy1*std::tan(Alp1);        1467   G4double Dy1Talp1 = Dy1*std::tan(Alp1);
2033   G4double Dy2Talp2 = Dy2*std::tan(Alp2);        1468   G4double Dy2Talp2 = Dy2*std::tan(Alp2);
2034                                               << 1469   
2035   AllocateMemory(8,6);                           1470   AllocateMemory(8,6);
2036                                                  1471 
2037   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx    1472   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz);
2038   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx    1473   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz);
2039   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx    1474   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz);
2040   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx    1475   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz);
2041   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx    1476   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz);
2042   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx    1477   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz);
2043   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx    1478   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz);
2044   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx    1479   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz);
2045                                                  1480 
2046   CreatePrism();                                 1481   CreatePrism();
2047 }                                                1482 }
2048                                                  1483 
2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1484 HepPolyhedronTrap::~HepPolyhedronTrap() {}
2050                                                  1485 
2051 HepPolyhedronPara::HepPolyhedronPara(G4double    1486 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz,
2052                                      G4double    1487                                      G4double Alpha, G4double Theta,
2053                                      G4double    1488                                      G4double Phi)
2054   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx,    1489   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {}
2055                                                  1490 
2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1491 HepPolyhedronPara::~HepPolyhedronPara() {}
2057                                                  1492 
2058 HepPolyhedronParaboloid::HepPolyhedronParabol    1493 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1,
2059                                                  1494                                                  G4double r2,
2060                                                  1495                                                  G4double dz,
2061                                                  1496                                                  G4double sPhi,
2062                                               << 1497                                                  G4double dPhi) 
2063 /********************************************    1498 /***********************************************************************
2064  *                                               1499  *                                                                     *
2065  * Name: HepPolyhedronParaboloid                 1500  * Name: HepPolyhedronParaboloid                     Date:    28.06.07 *
2066  * Author: L.Lindroos, T.Nikitina (CERN), Jul    1501  * Author: L.Lindroos, T.Nikitina (CERN), July 2007  Revised: 28.06.07 *
2067  *                                               1502  *                                                                     *
2068  * Function: Constructor for paraboloid          1503  * Function: Constructor for paraboloid                                *
2069  *                                               1504  *                                                                     *
2070  * Input: r1    - inside and outside radiuses    1505  * Input: r1    - inside and outside radiuses at -Dz                   *
2071  *        r2    - inside and outside radiuses    1506  *        r2    - inside and outside radiuses at +Dz                   *
2072  *        dz    - half length in Z               1507  *        dz    - half length in Z                                     *
2073  *        sPhi  - starting angle of the segme    1508  *        sPhi  - starting angle of the segment                        *
2074  *        dPhi  - segment range                  1509  *        dPhi  - segment range                                        *
2075  *                                               1510  *                                                                     *
2076  ********************************************    1511  ***********************************************************************/
2077 {                                                1512 {
2078   static const G4double wholeCircle=twopi;    << 1513   static G4double wholeCircle=twopi;
2079                                                  1514 
2080   //   C H E C K   I N P U T   P A R A M E T     1515   //   C H E C K   I N P U T   P A R A M E T E R S
2081                                                  1516 
2082   G4int k = 0;                                   1517   G4int k = 0;
2083   if (r1 < 0. || r2 <= 0.)        k = 1;         1518   if (r1 < 0. || r2 <= 0.)        k = 1;
2084                                                  1519 
2085   if (dz <= 0.) k += 2;                          1520   if (dz <= 0.) k += 2;
2086                                                  1521 
2087   G4double phi1, phi2, dphi;                     1522   G4double phi1, phi2, dphi;
2088                                                  1523 
2089   if(dPhi < 0.)                                  1524   if(dPhi < 0.)
2090   {                                              1525   {
2091     phi2 = sPhi; phi1 = phi2 + dPhi;             1526     phi2 = sPhi; phi1 = phi2 + dPhi;
2092   }                                              1527   }
2093   else if(dPhi == 0.)                         << 1528   else if(dPhi == 0.) 
2094   {                                              1529   {
2095     phi1 = sPhi; phi2 = phi1 + wholeCircle;      1530     phi1 = sPhi; phi2 = phi1 + wholeCircle;
2096   }                                              1531   }
2097   else                                           1532   else
2098   {                                              1533   {
2099     phi1 = sPhi; phi2 = phi1 + dPhi;             1534     phi1 = sPhi; phi2 = phi1 + dPhi;
2100   }                                              1535   }
2101   dphi  = phi2 - phi1;                           1536   dphi  = phi2 - phi1;
2102                                                  1537 
2103   if (std::abs(dphi-wholeCircle) < perMillion    1538   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2104   if (dphi > wholeCircle) k += 4;             << 1539   if (dphi > wholeCircle) k += 4; 
2105                                                  1540 
2106   if (k != 0) {                                  1541   if (k != 0) {
2107     std::cerr << "HepPolyhedronParaboloid: er    1542     std::cerr << "HepPolyhedronParaboloid: error in input parameters";
2108     if ((k & 1) != 0) std::cerr << " (radiuse    1543     if ((k & 1) != 0) std::cerr << " (radiuses)";
2109     if ((k & 2) != 0) std::cerr << " (half-le    1544     if ((k & 2) != 0) std::cerr << " (half-length)";
2110     if ((k & 4) != 0) std::cerr << " (angles)    1545     if ((k & 4) != 0) std::cerr << " (angles)";
2111     std::cerr << std::endl;                      1546     std::cerr << std::endl;
2112     std::cerr << " r1=" << r1;                   1547     std::cerr << " r1=" << r1;
2113     std::cerr << " r2=" << r2;                   1548     std::cerr << " r2=" << r2;
2114     std::cerr << " dz=" << dz << " sPhi=" <<     1549     std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi
2115               << std::endl;                      1550               << std::endl;
2116     return;                                      1551     return;
2117   }                                              1552   }
2118                                               << 1553   
2119   //   P R E P A R E   T W O   P O L Y L I N     1554   //   P R E P A R E   T W O   P O L Y L I N E S
2120                                                  1555 
2121   G4int n = GetNumberOfRotationSteps();          1556   G4int n = GetNumberOfRotationSteps();
2122   G4double dl = (r2 - r1) / n;                   1557   G4double dl = (r2 - r1) / n;
2123   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;        1558   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;
2124   G4double k2 = (r2*r2 + r1*r1) / 2;             1559   G4double k2 = (r2*r2 + r1*r1) / 2;
2125                                                  1560 
2126   auto zz = new G4double[n + 2], rr = new G4d << 1561   G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2];
2127                                                  1562 
2128   zz[0] = dz;                                    1563   zz[0] = dz;
2129   rr[0] = r2;                                    1564   rr[0] = r2;
2130                                                  1565 
2131   for(G4int i = 1; i < n - 1; i++)               1566   for(G4int i = 1; i < n - 1; i++)
2132   {                                              1567   {
2133     rr[i] = rr[i-1] - dl;                        1568     rr[i] = rr[i-1] - dl;
2134     zz[i] = (rr[i]*rr[i] - k2) / k1;             1569     zz[i] = (rr[i]*rr[i] - k2) / k1;
2135     if(rr[i] < 0)                                1570     if(rr[i] < 0)
2136     {                                            1571     {
2137       rr[i] = 0;                                 1572       rr[i] = 0;
2138       zz[i] = 0;                                 1573       zz[i] = 0;
2139     }                                            1574     }
2140   }                                              1575   }
2141                                                  1576 
2142   zz[n-1] = -dz;                                 1577   zz[n-1] = -dz;
2143   rr[n-1] = r1;                                  1578   rr[n-1] = r1;
2144                                                  1579 
2145   zz[n] = dz;                                    1580   zz[n] = dz;
2146   rr[n] = 0;                                     1581   rr[n] = 0;
2147                                                  1582 
2148   zz[n+1] = -dz;                                 1583   zz[n+1] = -dz;
2149   rr[n+1] = 0;                                   1584   rr[n+1] = 0;
2150                                                  1585 
2151   //   R O T A T E    P O L Y L I N E S          1586   //   R O T A T E    P O L Y L I N E S
2152                                                  1587 
2153   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr,  << 1588   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 
2154   SetReferences();                               1589   SetReferences();
2155                                                  1590 
2156   delete [] zz;                                  1591   delete [] zz;
2157   delete [] rr;                                  1592   delete [] rr;
2158 }                                                1593 }
2159                                                  1594 
2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1595 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {}
2161                                                  1596 
2162 HepPolyhedronHype::HepPolyhedronHype(G4double    1597 HepPolyhedronHype::HepPolyhedronHype(G4double r1,
2163                                      G4double    1598                                      G4double r2,
2164                                      G4double    1599                                      G4double sqrtan1,
2165                                      G4double    1600                                      G4double sqrtan2,
2166                                      G4double << 1601                                      G4double halfZ) 
2167 /********************************************    1602 /***********************************************************************
2168  *                                               1603  *                                                                     *
2169  * Name: HepPolyhedronHype                       1604  * Name: HepPolyhedronHype                           Date:    14.04.08 *
2170  * Author: Tatiana Nikitina (CERN)               1605  * Author: Tatiana Nikitina (CERN)                   Revised: 14.04.08 *
2171  *         Evgueni Tcherniaev                 << 
2172  *                                               1606  *                                                                     *
2173  * Function: Constructor for Hype                1607  * Function: Constructor for Hype                                      *
2174  *                                               1608  *                                                                     *
2175  * Input: r1       - inside radius at z=0        1609  * Input: r1       - inside radius at z=0                              *
2176  *        r2       - outside radiuses at z=0     1610  *        r2       - outside radiuses at z=0                           *
2177  *        sqrtan1  - sqr of tan of Inner Ster    1611  *        sqrtan1  - sqr of tan of Inner Stereo Angle                  *
2178  *        sqrtan2  - sqr of tan of Outer Ster    1612  *        sqrtan2  - sqr of tan of Outer Stereo Angle                  *
2179  *        halfZ    - half length in Z            1613  *        halfZ    - half length in Z                                  *
2180  *                                               1614  *                                                                     *
2181  ********************************************    1615  ***********************************************************************/
2182 {                                                1616 {
2183   static const G4double wholeCircle = twopi;  << 1617   static G4double wholeCircle=twopi;
2184                                                  1618 
2185   //   C H E C K   I N P U T   P A R A M E T     1619   //   C H E C K   I N P U T   P A R A M E T E R S
2186                                                  1620 
2187   G4int k = 0;                                   1621   G4int k = 0;
2188   if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1;  << 1622   if (r2 < 0. || r1 < 0. )        k = 1;
2189   if (halfZ <= 0.) k += 2;                    << 1623   if (r1 > r2 )                   k = 1;
2190   if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4;    << 1624   if (r1 == r2)                   k = 1;
2191                                                  1625 
                                                   >> 1626   if (halfZ <= 0.) k += 2;
                                                   >> 1627  
                                                   >> 1628   if (sqrtan1<0.||sqrtan2<0.) k += 4;  
                                                   >> 1629  
2192   if (k != 0)                                    1630   if (k != 0)
2193   {                                              1631   {
2194     std::cerr << "HepPolyhedronHype: error in    1632     std::cerr << "HepPolyhedronHype: error in input parameters";
2195     if ((k & 1) != 0) std::cerr << " (radiuse    1633     if ((k & 1) != 0) std::cerr << " (radiuses)";
2196     if ((k & 2) != 0) std::cerr << " (half-le    1634     if ((k & 2) != 0) std::cerr << " (half-length)";
2197     if ((k & 4) != 0) std::cerr << " (angles)    1635     if ((k & 4) != 0) std::cerr << " (angles)";
2198     std::cerr << std::endl;                      1636     std::cerr << std::endl;
2199     std::cerr << " r1=" << r1 << " r2=" << r2    1637     std::cerr << " r1=" << r1 << " r2=" << r2;
2200     std::cerr << " halfZ=" << halfZ << " sqrT    1638     std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1
2201               << " sqrTan2=" << sqrtan2          1639               << " sqrTan2=" << sqrtan2
2202               << std::endl;                      1640               << std::endl;
2203     return;                                      1641     return;
2204   }                                              1642   }
2205                                               << 1643   
2206   //   P R E P A R E   T W O   P O L Y L I N     1644   //   P R E P A R E   T W O   P O L Y L I N E S
2207                                                  1645 
2208   G4int ns = std::max(3, GetNumberOfRotationS << 1646   G4int n = GetNumberOfRotationSteps();
2209   G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1;   << 1647   G4double dz = 2.*halfZ / n;
2210   G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1;   << 1648   G4double k1 = r1*r1;
2211   auto  zz = new G4double[nz1 + nz2];         << 1649   G4double k2 = r2*r2;
2212   auto  rr = new G4double[nz1 + nz2];         << 1650 
2213                                               << 1651   G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1];
2214   // external polyline                        << 1652 
2215   G4double dz2 = 2.*halfZ/(nz2 - 1);          << 1653   zz[0] = halfZ;
2216   for(G4int i = 0; i < nz2; ++i)              << 1654   rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2);
                                                   >> 1655 
                                                   >> 1656   for(G4int i = 1; i < n-1; i++)
2217   {                                              1657   {
2218     zz[i] = halfZ - dz2*i;                    << 1658     zz[i] = zz[i-1] - dz;
2219     rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1659     rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2);
2220   }                                              1660   }
2221                                                  1661 
2222   // internal polyline                        << 1662   zz[n-1] = -halfZ;
2223   G4double dz1 = 2.*halfZ/(nz1 - 1);          << 1663   rr[n-1] = rr[0];
2224   for(G4int i = 0; i < nz1; ++i)              << 1664 
                                                   >> 1665   zz[n] = halfZ;
                                                   >> 1666   rr[n] =  std::sqrt(sqrtan1*halfZ*halfZ+k1);
                                                   >> 1667 
                                                   >> 1668   for(G4int i = n+1; i < n+n; i++)
2225   {                                              1669   {
2226     G4int j = nz2 + i;                        << 1670     zz[i] = zz[i-1] - dz;
2227     zz[j] = halfZ - dz1*i;                    << 1671     rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1);
2228     rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 
2229   }                                              1672   }
                                                   >> 1673   zz[n+n] = -halfZ;
                                                   >> 1674   rr[n+n] = rr[n];
2230                                                  1675 
2231   //   R O T A T E    P O L Y L I N E S          1676   //   R O T A T E    P O L Y L I N E S
2232                                                  1677 
2233   RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1678   RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 
2234   SetReferences();                               1679   SetReferences();
2235                                                  1680 
2236   delete [] zz;                                  1681   delete [] zz;
2237   delete [] rr;                                  1682   delete [] rr;
2238 }                                                1683 }
2239                                                  1684 
2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1685 HepPolyhedronHype::~HepPolyhedronHype() {}
2241                                                  1686 
2242 HepPolyhedronCons::HepPolyhedronCons(G4double    1687 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1,
2243                                      G4double    1688                                      G4double Rmx1,
2244                                      G4double    1689                                      G4double Rmn2,
2245                                      G4double << 1690                                      G4double Rmx2, 
2246                                      G4double    1691                                      G4double Dz,
2247                                      G4double    1692                                      G4double Phi1,
2248                                      G4double << 1693                                      G4double Dphi) 
2249 /********************************************    1694 /***********************************************************************
2250  *                                               1695  *                                                                     *
2251  * Name: HepPolyhedronCons::HepPolyhedronCons    1696  * Name: HepPolyhedronCons::HepPolyhedronCons        Date:    15.12.96 *
2252  * Author: E.Chernyaev (IHEP/Protvino)           1697  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 15.12.96 *
2253  *                                               1698  *                                                                     *
2254  * Function: Constructor for CONS, TUBS, CONE    1699  * Function: Constructor for CONS, TUBS, CONE, TUBE                    *
2255  *                                               1700  *                                                                     *
2256  * Input: Rmn1, Rmx1 - inside and outside rad    1701  * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz              *
2257  *        Rmn2, Rmx2 - inside and outside rad    1702  *        Rmn2, Rmx2 - inside and outside radiuses at +Dz              *
2258  *        Dz         - half length in Z          1703  *        Dz         - half length in Z                                *
2259  *        Phi1       - starting angle of the     1704  *        Phi1       - starting angle of the segment                   *
2260  *        Dphi       - segment range             1705  *        Dphi       - segment range                                   *
2261  *                                               1706  *                                                                     *
2262  ********************************************    1707  ***********************************************************************/
2263 {                                                1708 {
2264   static const G4double wholeCircle=twopi;    << 1709   static G4double wholeCircle=twopi;
2265                                                  1710 
2266   //   C H E C K   I N P U T   P A R A M E T     1711   //   C H E C K   I N P U T   P A R A M E T E R S
2267                                                  1712 
2268   G4int k = 0;                                   1713   G4int k = 0;
2269   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. ||     1714   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.)        k = 1;
2270   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                1715   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                              k = 1;
2271   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)              1716   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)                            k = 1;
2272                                                  1717 
2273   if (Dz <= 0.) k += 2;                          1718   if (Dz <= 0.) k += 2;
2274                                               << 1719  
2275   G4double phi1, phi2, dphi;                     1720   G4double phi1, phi2, dphi;
2276   if (Dphi < 0.) {                               1721   if (Dphi < 0.) {
2277     phi2 = Phi1; phi1 = phi2 - Dphi;             1722     phi2 = Phi1; phi1 = phi2 - Dphi;
2278   }else if (Dphi == 0.) {                        1723   }else if (Dphi == 0.) {
2279     phi1 = Phi1; phi2 = phi1 + wholeCircle;      1724     phi1 = Phi1; phi2 = phi1 + wholeCircle;
2280   }else{                                         1725   }else{
2281     phi1 = Phi1; phi2 = phi1 + Dphi;             1726     phi1 = Phi1; phi2 = phi1 + Dphi;
2282   }                                              1727   }
2283   dphi  = phi2 - phi1;                           1728   dphi  = phi2 - phi1;
2284   if (std::abs(dphi-wholeCircle) < perMillion    1729   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2285   if (dphi > wholeCircle) k += 4;             << 1730   if (dphi > wholeCircle) k += 4; 
2286                                                  1731 
2287   if (k != 0) {                                  1732   if (k != 0) {
2288     std::cerr << "HepPolyhedronCone(s)/Tube(s    1733     std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters";
2289     if ((k & 1) != 0) std::cerr << " (radiuse    1734     if ((k & 1) != 0) std::cerr << " (radiuses)";
2290     if ((k & 2) != 0) std::cerr << " (half-le    1735     if ((k & 2) != 0) std::cerr << " (half-length)";
2291     if ((k & 4) != 0) std::cerr << " (angles)    1736     if ((k & 4) != 0) std::cerr << " (angles)";
2292     std::cerr << std::endl;                      1737     std::cerr << std::endl;
2293     std::cerr << " Rmn1=" << Rmn1 << " Rmx1="    1738     std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1;
2294     std::cerr << " Rmn2=" << Rmn2 << " Rmx2="    1739     std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2;
2295     std::cerr << " Dz=" << Dz << " Phi1=" <<     1740     std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi
2296               << std::endl;                      1741               << std::endl;
2297     return;                                      1742     return;
2298   }                                              1743   }
2299                                               << 1744   
2300   //   P R E P A R E   T W O   P O L Y L I N     1745   //   P R E P A R E   T W O   P O L Y L I N E S
2301                                                  1746 
2302   G4double zz[4], rr[4];                         1747   G4double zz[4], rr[4];
2303   zz[0] =  Dz;                                << 1748   zz[0] =  Dz; 
2304   zz[1] = -Dz;                                << 1749   zz[1] = -Dz; 
2305   zz[2] =  Dz;                                << 1750   zz[2] =  Dz; 
2306   zz[3] = -Dz;                                << 1751   zz[3] = -Dz; 
2307   rr[0] =  Rmx2;                                 1752   rr[0] =  Rmx2;
2308   rr[1] =  Rmx1;                                 1753   rr[1] =  Rmx1;
2309   rr[2] =  Rmn2;                                 1754   rr[2] =  Rmn2;
2310   rr[3] =  Rmn1;                                 1755   rr[3] =  Rmn1;
2311                                                  1756 
2312   //   R O T A T E    P O L Y L I N E S          1757   //   R O T A T E    P O L Y L I N E S
2313                                                  1758 
2314   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr,  << 1759   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 
2315   SetReferences();                               1760   SetReferences();
2316 }                                                1761 }
2317                                                  1762 
2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1763 HepPolyhedronCons::~HepPolyhedronCons() {}
2319                                                  1764 
2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1765 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 
2321                                      G4double    1766                                      G4double Rmn2, G4double Rmx2,
2322                                      G4double    1767                                      G4double Dz) :
2323   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D    1768   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {}
2324                                                  1769 
2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1770 HepPolyhedronCone::~HepPolyhedronCone() {}
2326                                                  1771 
2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double    1772 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax,
2328                                      G4double << 1773                                      G4double Dz, 
2329                                      G4double    1774                                      G4double Phi1, G4double Dphi)
2330   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rma    1775   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {}
2331                                                  1776 
2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1777 HepPolyhedronTubs::~HepPolyhedronTubs() {}
2333                                                  1778 
2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl    1779 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax,
2335                                       G4doubl    1780                                       G4double Dz)
2336   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax,    1781   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {}
2337                                                  1782 
2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1783 HepPolyhedronTube::~HepPolyhedronTube () {}
2339                                                  1784 
2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double    1785 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi,
2341                                      G4double    1786                                      G4double dphi,
2342                                      G4int np << 1787                                      G4int    npdv,
2343                                      G4int nz << 1788                                      G4int    nz,
2344                                      const G4    1789                                      const G4double *z,
2345                                      const G4    1790                                      const G4double *rmin,
2346                                      const G4    1791                                      const G4double *rmax)
2347 /********************************************    1792 /***********************************************************************
2348  *                                               1793  *                                                                     *
2349  * Name: HepPolyhedronPgon                       1794  * Name: HepPolyhedronPgon                           Date:    09.12.96 *
2350  * Author: E.Chernyaev                           1795  * Author: E.Chernyaev                               Revised:          *
2351  *                                               1796  *                                                                     *
2352  * Function: Constructor of polyhedron for PG    1797  * Function: Constructor of polyhedron for PGON, PCON                  *
2353  *                                               1798  *                                                                     *
2354  * Input: phi  - initial phi                     1799  * Input: phi  - initial phi                                           *
2355  *        dphi - delta phi                       1800  *        dphi - delta phi                                             *
2356  *        npdv - number of steps along phi       1801  *        npdv - number of steps along phi                             *
2357  *        nz   - number of z-planes (at least    1802  *        nz   - number of z-planes (at least two)                     *
2358  *        z[]  - z coordinates of the slices     1803  *        z[]  - z coordinates of the slices                           *
2359  *        rmin[] - smaller r at the slices       1804  *        rmin[] - smaller r at the slices                             *
2360  *        rmax[] - bigger  r at the slices       1805  *        rmax[] - bigger  r at the slices                             *
2361  *                                               1806  *                                                                     *
2362  ********************************************    1807  ***********************************************************************/
2363 {                                                1808 {
2364   //   C H E C K   I N P U T   P A R A M E T     1809   //   C H E C K   I N P U T   P A R A M E T E R S
2365                                                  1810 
2366   if (dphi <= 0. || dphi > twopi) {              1811   if (dphi <= 0. || dphi > twopi) {
2367     std::cerr                                    1812     std::cerr
2368       << "HepPolyhedronPgon/Pcon: wrong delta    1813       << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi
2369       << std::endl;                              1814       << std::endl;
2370     return;                                      1815     return;
2371   }                                           << 1816   }    
2372                                               << 1817     
2373   if (nz < 2) {                                  1818   if (nz < 2) {
2374     std::cerr                                    1819     std::cerr
2375       << "HepPolyhedronPgon/Pcon: number of z    1820       << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz
2376       << std::endl;                              1821       << std::endl;
2377     return;                                      1822     return;
2378   }                                              1823   }
2379                                                  1824 
2380   if (npdv < 0) {                                1825   if (npdv < 0) {
2381     std::cerr                                    1826     std::cerr
2382       << "HepPolyhedronPgon/Pcon: error in nu    1827       << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv
2383       << std::endl;                              1828       << std::endl;
2384     return;                                      1829     return;
2385   }                                              1830   }
2386                                                  1831 
2387   G4int i;                                       1832   G4int i;
2388   for (i=0; i<nz; i++) {                         1833   for (i=0; i<nz; i++) {
2389     if (rmin[i] < 0. || rmax[i] < 0. || rmin[    1834     if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) {
2390       std::cerr                                  1835       std::cerr
2391         << "HepPolyhedronPgon: error in radiu    1836         << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]="
2392         << rmin[i] << " rmax[" << i << "]=" <    1837         << rmin[i] << " rmax[" << i << "]=" << rmax[i]
2393         << std::endl;                            1838         << std::endl;
2394       return;                                    1839       return;
2395     }                                            1840     }
2396   }                                              1841   }
2397                                                  1842 
2398   //   P R E P A R E   T W O   P O L Y L I N     1843   //   P R E P A R E   T W O   P O L Y L I N E S
2399                                                  1844 
2400   G4double *zz, *rr;                             1845   G4double *zz, *rr;
2401   zz = new G4double[2*nz];                       1846   zz = new G4double[2*nz];
2402   rr = new G4double[2*nz];                       1847   rr = new G4double[2*nz];
2403                                                  1848 
2404   if (z[0] > z[nz-1]) {                          1849   if (z[0] > z[nz-1]) {
2405     for (i=0; i<nz; i++) {                       1850     for (i=0; i<nz; i++) {
2406       zz[i]    = z[i];                           1851       zz[i]    = z[i];
2407       rr[i]    = rmax[i];                        1852       rr[i]    = rmax[i];
2408       zz[i+nz] = z[i];                           1853       zz[i+nz] = z[i];
2409       rr[i+nz] = rmin[i];                        1854       rr[i+nz] = rmin[i];
2410     }                                            1855     }
2411   }else{                                         1856   }else{
2412     for (i=0; i<nz; i++) {                       1857     for (i=0; i<nz; i++) {
2413       zz[i]    = z[nz-i-1];                      1858       zz[i]    = z[nz-i-1];
2414       rr[i]    = rmax[nz-i-1];                   1859       rr[i]    = rmax[nz-i-1];
2415       zz[i+nz] = z[nz-i-1];                      1860       zz[i+nz] = z[nz-i-1];
2416       rr[i+nz] = rmin[nz-i-1];                   1861       rr[i+nz] = rmin[nz-i-1];
2417     }                                            1862     }
2418   }                                              1863   }
2419                                                  1864 
2420   //   R O T A T E    P O L Y L I N E S          1865   //   R O T A T E    P O L Y L I N E S
2421                                                  1866 
2422   G4int nodeVis = 1;                          << 1867   RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 
2423   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2424   RotateAroundZ(npdv, phi, dphi, nz, nz, zz,  << 
2425   SetReferences();                               1868   SetReferences();
2426                                               << 1869   
2427   delete [] zz;                                  1870   delete [] zz;
2428   delete [] rr;                                  1871   delete [] rr;
2429 }                                                1872 }
2430                                                  1873 
2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1874 HepPolyhedronPgon::~HepPolyhedronPgon() {}
2432                                      G4double << 
2433                                      G4int np << 
2434                                      const st << 
2435 /******************************************** << 
2436  *                                            << 
2437  * Name: HepPolyhedronPgon                    << 
2438  * Author: E.Tcherniaev (E.Chernyaev)         << 
2439  *                                            << 
2440  * Function: Constructor of polyhedron for PG << 
2441  *                                            << 
2442  * Input: phi  - initial phi                  << 
2443  *        dphi - delta phi                    << 
2444  *        npdv - number of steps along phi    << 
2445  *        rz   - rz-contour                   << 
2446  *                                            << 
2447  ******************************************** << 
2448 {                                             << 
2449   //   C H E C K   I N P U T   P A R A M E T  << 
2450                                               << 
2451   if (dphi <= 0. || dphi > twopi) {           << 
2452     std::cerr                                 << 
2453       << "HepPolyhedronPgon/Pcon: wrong delta << 
2454       << std::endl;                           << 
2455     return;                                   << 
2456   }                                           << 
2457                                               << 
2458   if (npdv < 0) {                             << 
2459     std::cerr                                 << 
2460       << "HepPolyhedronPgon/Pcon: error in nu << 
2461       << std::endl;                           << 
2462     return;                                   << 
2463   }                                           << 
2464                                               << 
2465   G4int nrz = (G4int)rz.size();               << 
2466   if (nrz < 3) {                              << 
2467     std::cerr                                 << 
2468       << "HepPolyhedronPgon/Pcon: invalid num << 
2469       << std::endl;                           << 
2470     return;                                   << 
2471   }                                           << 
2472                                               << 
2473   //   R O T A T E    P O L Y L I N E         << 
2474                                               << 
2475   G4int nodeVis = 1;                          << 
2476   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2477   RotateContourAroundZ(npdv, phi, dphi, rz, n << 
2478   SetReferences();                            << 
2479 }                                             << 
2480                                               << 
2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 
2482                                                  1875 
2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double    1876 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz,
2484                                      const G4    1877                                      const G4double *z,
2485                                      const G4    1878                                      const G4double *rmin,
2486                                      const G4    1879                                      const G4double *rmax)
2487   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm    1880   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {}
2488                                                  1881 
2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1882 HepPolyhedronPcon::~HepPolyhedronPcon() {}
2490                                      const st << 
2491   : HepPolyhedronPgon(phi, dphi, 0, rz) {}    << 
2492                                               << 
2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 
2494                                                  1883 
2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do    1884 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax,
2496                                          G4do    1885                                          G4double phi, G4double dphi,
2497                                          G4do    1886                                          G4double the, G4double dthe)
2498 /********************************************    1887 /***********************************************************************
2499  *                                               1888  *                                                                     *
2500  * Name: HepPolyhedronSphere                     1889  * Name: HepPolyhedronSphere                         Date:    11.12.96 *
2501  * Author: E.Chernyaev (IHEP/Protvino)           1890  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2502  *                                               1891  *                                                                     *
2503  * Function: Constructor of polyhedron for SP    1892  * Function: Constructor of polyhedron for SPHERE                      *
2504  *                                               1893  *                                                                     *
2505  * Input: rmin - internal radius                 1894  * Input: rmin - internal radius                                       *
2506  *        rmax - external radius                 1895  *        rmax - external radius                                       *
2507  *        phi  - initial phi                     1896  *        phi  - initial phi                                           *
2508  *        dphi - delta phi                       1897  *        dphi - delta phi                                             *
2509  *        the  - initial theta                   1898  *        the  - initial theta                                         *
2510  *        dthe - delta theta                     1899  *        dthe - delta theta                                           *
2511  *                                               1900  *                                                                     *
2512  ********************************************    1901  ***********************************************************************/
2513 {                                                1902 {
2514   //   C H E C K   I N P U T   P A R A M E T     1903   //   C H E C K   I N P U T   P A R A M E T E R S
2515                                                  1904 
2516   if (dphi <= 0. || dphi > twopi) {              1905   if (dphi <= 0. || dphi > twopi) {
2517     std::cerr                                    1906     std::cerr
2518       << "HepPolyhedronSphere: wrong delta ph    1907       << "HepPolyhedronSphere: wrong delta phi = " << dphi
2519       << std::endl;                              1908       << std::endl;
2520     return;                                      1909     return;
2521   }                                           << 1910   }    
2522                                                  1911 
2523   if (the < 0. || the > pi) {                    1912   if (the < 0. || the > pi) {
2524     std::cerr                                    1913     std::cerr
2525       << "HepPolyhedronSphere: wrong theta =     1914       << "HepPolyhedronSphere: wrong theta = " << the
2526       << std::endl;                              1915       << std::endl;
2527     return;                                      1916     return;
2528   }                                           << 1917   }    
2529                                               << 1918   
2530   if (dthe <= 0. || dthe > pi) {                 1919   if (dthe <= 0. || dthe > pi) {
2531     std::cerr                                    1920     std::cerr
2532       << "HepPolyhedronSphere: wrong delta th    1921       << "HepPolyhedronSphere: wrong delta theta = " << dthe
2533       << std::endl;                              1922       << std::endl;
2534     return;                                      1923     return;
2535   }                                           << 1924   }    
2536                                                  1925 
2537   if (the+dthe > pi) {                           1926   if (the+dthe > pi) {
2538     std::cerr                                    1927     std::cerr
2539       << "HepPolyhedronSphere: wrong theta +     1928       << "HepPolyhedronSphere: wrong theta + delta theta = "
2540       << the << " " << dthe                      1929       << the << " " << dthe
2541       << std::endl;                              1930       << std::endl;
2542     return;                                      1931     return;
2543   }                                           << 1932   }    
2544                                               << 1933   
2545   if (rmin < 0. || rmin >= rmax) {               1934   if (rmin < 0. || rmin >= rmax) {
2546     std::cerr                                    1935     std::cerr
2547       << "HepPolyhedronSphere: error in radiu    1936       << "HepPolyhedronSphere: error in radiuses"
2548       << " rmin=" << rmin << " rmax=" << rmax    1937       << " rmin=" << rmin << " rmax=" << rmax
2549       << std::endl;                              1938       << std::endl;
2550     return;                                      1939     return;
2551   }                                              1940   }
2552                                                  1941 
2553   //   P R E P A R E   T W O   P O L Y L I N     1942   //   P R E P A R E   T W O   P O L Y L I N E S
2554                                                  1943 
2555   G4int nds = (GetNumberOfRotationSteps() + 1    1944   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2556   G4int np1 = G4int(dthe*nds/pi+.5) + 1;         1945   G4int np1 = G4int(dthe*nds/pi+.5) + 1;
2557   if (np1 <= 1) np1 = 2;                         1946   if (np1 <= 1) np1 = 2;
2558   G4int np2 = rmin < spatialTolerance ? 1 : n << 1947   G4int np2 = rmin < perMillion ? 1 : np1;
2559                                                  1948 
2560   G4double *zz, *rr;                             1949   G4double *zz, *rr;
2561   zz = new G4double[np1+np2];                    1950   zz = new G4double[np1+np2];
2562   rr = new G4double[np1+np2];                    1951   rr = new G4double[np1+np2];
2563                                                  1952 
2564   G4double a = dthe/(np1-1);                     1953   G4double a = dthe/(np1-1);
2565   G4double cosa, sina;                           1954   G4double cosa, sina;
2566   for (G4int i=0; i<np1; i++) {                  1955   for (G4int i=0; i<np1; i++) {
2567     cosa  = std::cos(the+i*a);                   1956     cosa  = std::cos(the+i*a);
2568     sina  = std::sin(the+i*a);                   1957     sina  = std::sin(the+i*a);
2569     zz[i] = rmax*cosa;                           1958     zz[i] = rmax*cosa;
2570     rr[i] = rmax*sina;                           1959     rr[i] = rmax*sina;
2571     if (np2 > 1) {                               1960     if (np2 > 1) {
2572       zz[i+np1] = rmin*cosa;                     1961       zz[i+np1] = rmin*cosa;
2573       rr[i+np1] = rmin*sina;                     1962       rr[i+np1] = rmin*sina;
2574     }                                            1963     }
2575   }                                              1964   }
2576   if (np2 == 1) {                                1965   if (np2 == 1) {
2577     zz[np1] = 0.;                                1966     zz[np1] = 0.;
2578     rr[np1] = 0.;                                1967     rr[np1] = 0.;
2579   }                                              1968   }
2580                                                  1969 
2581   //   R O T A T E    P O L Y L I N E S          1970   //   R O T A T E    P O L Y L I N E S
2582                                                  1971 
2583   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1972   RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 
2584   SetReferences();                               1973   SetReferences();
2585                                               << 1974   
2586   delete [] zz;                                  1975   delete [] zz;
2587   delete [] rr;                                  1976   delete [] rr;
2588 }                                                1977 }
2589                                                  1978 
2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1979 HepPolyhedronSphere::~HepPolyhedronSphere() {}
2591                                                  1980 
2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub    1981 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin,
2593                                        G4doub    1982                                        G4double rmax,
2594                                        G4doub    1983                                        G4double rtor,
2595                                        G4doub    1984                                        G4double phi,
2596                                        G4doub    1985                                        G4double dphi)
2597 /********************************************    1986 /***********************************************************************
2598  *                                               1987  *                                                                     *
2599  * Name: HepPolyhedronTorus                      1988  * Name: HepPolyhedronTorus                          Date:    11.12.96 *
2600  * Author: E.Chernyaev (IHEP/Protvino)           1989  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2601  *                                               1990  *                                                                     *
2602  * Function: Constructor of polyhedron for TO    1991  * Function: Constructor of polyhedron for TORUS                       *
2603  *                                               1992  *                                                                     *
2604  * Input: rmin - internal radius                 1993  * Input: rmin - internal radius                                       *
2605  *        rmax - external radius                 1994  *        rmax - external radius                                       *
2606  *        rtor - radius of torus                 1995  *        rtor - radius of torus                                       *
2607  *        phi  - initial phi                     1996  *        phi  - initial phi                                           *
2608  *        dphi - delta phi                       1997  *        dphi - delta phi                                             *
2609  *                                               1998  *                                                                     *
2610  ********************************************    1999  ***********************************************************************/
2611 {                                                2000 {
2612   //   C H E C K   I N P U T   P A R A M E T     2001   //   C H E C K   I N P U T   P A R A M E T E R S
2613                                                  2002 
2614   if (dphi <= 0. || dphi > twopi) {              2003   if (dphi <= 0. || dphi > twopi) {
2615     std::cerr                                    2004     std::cerr
2616       << "HepPolyhedronTorus: wrong delta phi    2005       << "HepPolyhedronTorus: wrong delta phi = " << dphi
2617       << std::endl;                              2006       << std::endl;
2618     return;                                      2007     return;
2619   }                                              2008   }
2620                                                  2009 
2621   if (rmin < 0. || rmin >= rmax || rmax >= rt    2010   if (rmin < 0. || rmin >= rmax || rmax >= rtor) {
2622     std::cerr                                    2011     std::cerr
2623       << "HepPolyhedronTorus: error in radius    2012       << "HepPolyhedronTorus: error in radiuses"
2624       << " rmin=" << rmin << " rmax=" << rmax    2013       << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor
2625       << std::endl;                              2014       << std::endl;
2626     return;                                      2015     return;
2627   }                                              2016   }
2628                                                  2017 
2629   //   P R E P A R E   T W O   P O L Y L I N     2018   //   P R E P A R E   T W O   P O L Y L I N E S
2630                                                  2019 
2631   G4int np1 = GetNumberOfRotationSteps();        2020   G4int np1 = GetNumberOfRotationSteps();
2632   G4int np2 = rmin < spatialTolerance ? 1 : n << 2021   G4int np2 = rmin < perMillion ? 1 : np1;
2633                                                  2022 
2634   G4double *zz, *rr;                             2023   G4double *zz, *rr;
2635   zz = new G4double[np1+np2];                    2024   zz = new G4double[np1+np2];
2636   rr = new G4double[np1+np2];                    2025   rr = new G4double[np1+np2];
2637                                                  2026 
2638   G4double a = twopi/np1;                        2027   G4double a = twopi/np1;
2639   G4double cosa, sina;                           2028   G4double cosa, sina;
2640   for (G4int i=0; i<np1; i++) {                  2029   for (G4int i=0; i<np1; i++) {
2641     cosa  = std::cos(i*a);                       2030     cosa  = std::cos(i*a);
2642     sina  = std::sin(i*a);                       2031     sina  = std::sin(i*a);
2643     zz[i] = rmax*cosa;                           2032     zz[i] = rmax*cosa;
2644     rr[i] = rtor+rmax*sina;                      2033     rr[i] = rtor+rmax*sina;
2645     if (np2 > 1) {                               2034     if (np2 > 1) {
2646       zz[i+np1] = rmin*cosa;                     2035       zz[i+np1] = rmin*cosa;
2647       rr[i+np1] = rtor+rmin*sina;                2036       rr[i+np1] = rtor+rmin*sina;
2648     }                                            2037     }
2649   }                                              2038   }
2650   if (np2 == 1) {                                2039   if (np2 == 1) {
2651     zz[np1] = 0.;                                2040     zz[np1] = 0.;
2652     rr[np1] = rtor;                              2041     rr[np1] = rtor;
2653     np2 = -1;                                    2042     np2 = -1;
2654   }                                              2043   }
2655                                                  2044 
2656   //   R O T A T E    P O L Y L I N E S          2045   //   R O T A T E    P O L Y L I N E S
2657                                                  2046 
2658   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2047   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 
2659   SetReferences();                               2048   SetReferences();
2660                                               << 2049   
2661   delete [] zz;                                  2050   delete [] zz;
2662   delete [] rr;                                  2051   delete [] rr;
2663 }                                                2052 }
2664                                                  2053 
2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2054 HepPolyhedronTorus::~HepPolyhedronTorus() {}
2666                                               << 
2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 
2668                                    const G4do << 
2669                                    const G4do << 
2670                                    const G4do << 
2671 /******************************************** << 
2672  *                                            << 
2673  * Name: HepPolyhedronTet                     << 
2674  * Author: E.Tcherniaev (E.Chernyaev)         << 
2675  *                                            << 
2676  * Function: Constructor of polyhedron for TE << 
2677  *                                            << 
2678  * Input: p0,p1,p2,p3 - vertices              << 
2679  *                                            << 
2680  ******************************************** << 
2681 {                                             << 
2682   AllocateMemory(4,4);                        << 
2683                                               << 
2684   pV[1].set(p0[0], p0[1], p0[2]);             << 
2685   pV[2].set(p1[0], p1[1], p1[2]);             << 
2686   pV[3].set(p2[0], p2[1], p2[2]);             << 
2687   pV[4].set(p3[0], p3[1], p3[2]);             << 
2688                                               << 
2689   G4Vector3D v1(pV[2] - pV[1]);               << 
2690   G4Vector3D v2(pV[3] - pV[1]);               << 
2691   G4Vector3D v3(pV[4] - pV[1]);               << 
2692                                               << 
2693   if (v1.cross(v2).dot(v3) < 0.)              << 
2694   {                                           << 
2695     pV[3].set(p3[0], p3[1], p3[2]);           << 
2696     pV[4].set(p2[0], p2[1], p2[2]);           << 
2697   }                                           << 
2698                                               << 
2699   pF[1] = G4Facet(1,2,  3,4,  2,3);           << 
2700   pF[2] = G4Facet(1,3,  4,4,  3,1);           << 
2701   pF[3] = G4Facet(1,1,  2,4,  4,2);           << 
2702   pF[4] = G4Facet(2,1,  3,2,  4,3);           << 
2703 }                                             << 
2704                                               << 
2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 
2706                                                  2055 
2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi    2056 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by,
2708                                                  2057                                                G4double cz, G4double zCut1,
2709                                                  2058                                                G4double zCut2)
2710 /********************************************    2059 /***********************************************************************
2711  *                                               2060  *                                                                     *
2712  * Name: HepPolyhedronEllipsoid                  2061  * Name: HepPolyhedronEllipsoid                      Date:    25.02.05 *
2713  * Author: G.Guerrieri                           2062  * Author: G.Guerrieri                               Revised:          *
2714  *         Evgueni Tcherniaev                 << 
2715  *                                               2063  *                                                                     *
2716  * Function: Constructor of polyhedron for EL    2064  * Function: Constructor of polyhedron for ELLIPSOID                   *
2717  *                                               2065  *                                                                     *
2718  * Input: ax - semiaxis x                        2066  * Input: ax - semiaxis x                                              *
2719  *        by - semiaxis y                        2067  *        by - semiaxis y                                              *
2720  *        cz - semiaxis z                        2068  *        cz - semiaxis z                                              *
2721  *        zCut1 - lower cut plane level (soli    2069  *        zCut1 - lower cut plane level (solid lies above this plane)  *
2722  *        zCut2 - upper cut plane level (soli    2070  *        zCut2 - upper cut plane level (solid lies below this plane)  *
2723  *                                               2071  *                                                                     *
2724  ********************************************    2072  ***********************************************************************/
2725 {                                                2073 {
2726   //   C H E C K   I N P U T   P A R A M E T     2074   //   C H E C K   I N P U T   P A R A M E T E R S
2727                                                  2075 
2728   if (zCut1 >= cz || zCut2 <= -cz || zCut1 >     2076   if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) {
2729     std::cerr << "HepPolyhedronEllipsoid: wro    2077     std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1
2730            << " zCut2 = " << zCut2               2078            << " zCut2 = " << zCut2
2731            << " for given cz = " << cz << std    2079            << " for given cz = " << cz << std::endl;
2732     return;                                      2080     return;
2733   }                                              2081   }
2734   if (cz <= 0.0) {                               2082   if (cz <= 0.0) {
2735     std::cerr << "HepPolyhedronEllipsoid: bad    2083     std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz
2736       << std::endl;                              2084       << std::endl;
2737     return;                                      2085     return;
2738   }                                              2086   }
2739                                                  2087 
                                                   >> 2088   G4double dthe;
                                                   >> 2089   G4double sthe;
                                                   >> 2090   G4int cutflag;
                                                   >> 2091   cutflag= 0;
                                                   >> 2092   if (zCut2 >= cz)
                                                   >> 2093     {
                                                   >> 2094       sthe= 0.0;
                                                   >> 2095     }
                                                   >> 2096   else
                                                   >> 2097     {
                                                   >> 2098       sthe= std::acos(zCut2/cz);
                                                   >> 2099       cutflag++;
                                                   >> 2100     }
                                                   >> 2101   if (zCut1 <= -cz)
                                                   >> 2102     {
                                                   >> 2103       dthe= pi - sthe;
                                                   >> 2104     }
                                                   >> 2105   else
                                                   >> 2106     {
                                                   >> 2107       dthe= std::acos(zCut1/cz)-sthe;
                                                   >> 2108       cutflag++;
                                                   >> 2109     }
                                                   >> 2110 
2740   //   P R E P A R E   T W O   P O L Y L I N     2111   //   P R E P A R E   T W O   P O L Y L I N E S
2741   //   generate sphere of radius cz first, th    2112   //   generate sphere of radius cz first, then rescale x and y later
2742                                                  2113 
2743   G4double sthe = std::acos(zCut2/cz);        << 2114   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2744   G4double dthe = std::acos(zCut1/cz) - sthe; << 2115   G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag;
2745   G4int nds = (GetNumberOfRotationSteps() + 1 << 
2746   G4int np1 = G4int(dthe*nds/pi + 0.5) + 1;   << 
2747   if (np1 <= 1) np1 = 2;                      << 
2748   G4int np2 = 2;                              << 
2749                                                  2116 
2750   G4double *zz, *rr;                             2117   G4double *zz, *rr;
2751   zz = new G4double[np1 + np2];               << 2118   zz = new G4double[np1+1];
2752   rr = new G4double[np1 + np2];               << 2119   rr = new G4double[np1+1];
2753   if ((zz == nullptr) || (rr == nullptr))     << 2120   if (!zz || !rr)
2754   {                                           << 2121     {
2755     G4Exception("HepPolyhedronEllipsoid::HepP << 2122       G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid",
2756                 "greps1002", FatalException,  << 2123       "greps1002", FatalException, "Out of memory");
2757   }                                           << 2124     }
2758                                                  2125 
2759   G4double a = dthe/(np1 - 1);                << 2126   G4double a = dthe/(np1-cutflag-1);
2760   G4double cosa, sina;                           2127   G4double cosa, sina;
2761   for (G4int i = 0; i < np1; ++i)             << 2128   G4int j=0;
2762   {                                           << 2129   if (sthe > 0.0)
2763     cosa  = std::cos(sthe + i*a);             << 2130     {
2764     sina  = std::sin(sthe + i*a);             << 2131       zz[j]= zCut2;
2765     zz[i] = cz*cosa;                          << 2132       rr[j]= 0.;
2766     rr[i] = cz*sina;                          << 2133       j++;
2767   }                                           << 2134     }
2768   zz[np1 + 0] = zCut2;                        << 2135   for (G4int i=0; i<np1-cutflag; i++) {
2769   rr[np1 + 0] = 0.;                           << 2136     cosa  = std::cos(sthe+i*a);
2770   zz[np1 + 1] = zCut1;                        << 2137     sina  = std::sin(sthe+i*a);
2771   rr[np1 + 1] = 0.;                           << 2138     zz[j] = cz*cosa;
                                                   >> 2139     rr[j] = cz*sina;
                                                   >> 2140     j++;
                                                   >> 2141   }
                                                   >> 2142   if (j < np1)
                                                   >> 2143     {
                                                   >> 2144       zz[j]= zCut1;
                                                   >> 2145       rr[j]= 0.;
                                                   >> 2146       j++;
                                                   >> 2147     }
                                                   >> 2148   if (j > np1)
                                                   >> 2149     {
                                                   >> 2150       std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!"
                                                   >> 2151                 << std::endl;
                                                   >> 2152     }
                                                   >> 2153   if (j < np1)
                                                   >> 2154     {
                                                   >> 2155       std::cerr << "Warning: logic error in HepPolyhedronEllipsoid."
                                                   >> 2156                 << std::endl;
                                                   >> 2157       np1= j;
                                                   >> 2158     }
                                                   >> 2159   zz[j] = 0.;
                                                   >> 2160   rr[j] = 0.;
2772                                                  2161 
                                                   >> 2162   
2773   //   R O T A T E    P O L Y L I N E S          2163   //   R O T A T E    P O L Y L I N E S
2774                                                  2164 
2775   RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2165   RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 
2776   SetReferences();                               2166   SetReferences();
2777                                                  2167 
2778   delete [] zz;                                  2168   delete [] zz;
2779   delete [] rr;                                  2169   delete [] rr;
2780                                                  2170 
2781   // rescale x and y vertex coordinates          2171   // rescale x and y vertex coordinates
2782   G4double kx = ax/cz;                        << 
2783   G4double ky = by/cz;                        << 
2784   G4Point3D* p = pV;                          << 
2785   for (G4int i = 0; i < nvert; ++i, ++p)      << 
2786   {                                              2172   {
2787     p->setX(p->x()*kx);                       << 2173     G4Point3D * p= pV;
2788     p->setY(p->y()*ky);                       << 2174     for (G4int i=0; i<nvert; i++, p++) {
                                                   >> 2175       p->setX( p->x() * ax/cz );
                                                   >> 2176       p->setY( p->y() * by/cz );
                                                   >> 2177     }
2789   }                                              2178   }
2790 }                                                2179 }
2791                                                  2180 
2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2181 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {}
2793                                                  2182 
2794 HepPolyhedronEllipticalCone::HepPolyhedronEll    2183 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax,
2795                                                  2184                                                          G4double ay,
2796                                                  2185                                                          G4double h,
2797                                               << 2186                                                          G4double zTopCut) 
2798 /********************************************    2187 /***********************************************************************
2799  *                                               2188  *                                                                     *
2800  * Name: HepPolyhedronEllipticalCone             2189  * Name: HepPolyhedronEllipticalCone                 Date:    8.9.2005 *
2801  * Author: D.Anninos                             2190  * Author: D.Anninos                                 Revised: 9.9.2005 *
2802  *                                               2191  *                                                                     *
2803  * Function: Constructor for EllipticalCone      2192  * Function: Constructor for EllipticalCone                            *
2804  *                                               2193  *                                                                     *
2805  * Input: ax, ay     - X & Y semi axes at z =    2194  * Input: ax, ay     - X & Y semi axes at z = 0                        *
2806  *        h          - height of full cone       2195  *        h          - height of full cone                             *
2807  *        zTopCut    - Top Cut in Z Axis         2196  *        zTopCut    - Top Cut in Z Axis                               *
2808  *                                               2197  *                                                                     *
2809  ********************************************    2198  ***********************************************************************/
2810 {                                                2199 {
2811   //   C H E C K   I N P U T   P A R A M E T     2200   //   C H E C K   I N P U T   P A R A M E T E R S
2812                                                  2201 
2813   G4int k = 0;                                   2202   G4int k = 0;
2814   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.)     2203   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; }
2815                                                  2204 
2816   if (k != 0) {                                  2205   if (k != 0) {
2817     std::cerr << "HepPolyhedronCone: error in    2206     std::cerr << "HepPolyhedronCone: error in input parameters";
2818     std::cerr << std::endl;                      2207     std::cerr << std::endl;
2819     return;                                      2208     return;
2820   }                                              2209   }
2821                                               << 2210   
2822   //   P R E P A R E   T W O   P O L Y L I N     2211   //   P R E P A R E   T W O   P O L Y L I N E S
2823                                                  2212 
2824   zTopCut = (h >= zTopCut ? zTopCut : h);        2213   zTopCut = (h >= zTopCut ? zTopCut : h);
2825                                                  2214 
2826   G4double *zz, *rr;                             2215   G4double *zz, *rr;
2827   zz = new G4double[4];                          2216   zz = new G4double[4];
2828   rr = new G4double[4];                          2217   rr = new G4double[4];
2829   zz[0] =   zTopCut;                          << 2218   zz[0] =   zTopCut; 
2830   zz[1] =  -zTopCut;                          << 2219   zz[1] =  -zTopCut; 
2831   zz[2] =   zTopCut;                          << 2220   zz[2] =   zTopCut; 
2832   zz[3] =  -zTopCut;                          << 2221   zz[3] =  -zTopCut; 
2833   rr[0] =  (h-zTopCut);                          2222   rr[0] =  (h-zTopCut);
2834   rr[1] =  (h+zTopCut);                          2223   rr[1] =  (h+zTopCut);
2835   rr[2] =  0.;                                   2224   rr[2] =  0.;
2836   rr[3] =  0.;                                   2225   rr[3] =  0.;
2837                                                  2226 
2838   //   R O T A T E    P O L Y L I N E S          2227   //   R O T A T E    P O L Y L I N E S
2839                                                  2228 
2840   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2229   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 
2841   SetReferences();                               2230   SetReferences();
2842                                                  2231 
2843   delete [] zz;                                  2232   delete [] zz;
2844   delete [] rr;                                  2233   delete [] rr;
2845                                                  2234 
2846   // rescale x and y vertex coordinates          2235   // rescale x and y vertex coordinates
2847  {                                               2236  {
2848    G4Point3D * p= pV;                            2237    G4Point3D * p= pV;
2849    for (G4int i=0; i<nvert; i++, p++) {          2238    for (G4int i=0; i<nvert; i++, p++) {
2850      p->setX( p->x() * ax );                     2239      p->setX( p->x() * ax );
2851      p->setY( p->y() * ay );                     2240      p->setY( p->y() * ay );
2852    }                                             2241    }
2853  }                                               2242  }
2854 }                                                2243 }
2855                                                  2244 
2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2245 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {}
2857                                               << 
2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 
2859                                               << 
2860                                               << 
2861 /******************************************** << 
2862  *                                            << 
2863  * Name: HepPolyhedronHyperbolicMirror        << 
2864  * Author: E.Tcherniaev (E.Chernyaev)         << 
2865  *                                            << 
2866  * Function: Create polyhedron for Hyperbolic << 
2867  *                                            << 
2868  * Input: a - half-separation                 << 
2869  *        h - height                          << 
2870  *        r - radius                          << 
2871  *                                            << 
2872  ******************************************** << 
2873 {                                             << 
2874   G4double H = std::abs(h);                   << 
2875   G4double R = std::abs(r);                   << 
2876   G4double A = std::abs(a);                   << 
2877   G4double B = A*R/std::sqrt(2*A*H + H*H);    << 
2878                                               << 
2879   //   P R E P A R E   T W O   P O L Y L I N  << 
2880                                               << 
2881   G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 
2882   G4int np2 = 2;                              << 
2883   G4double maxAng = (A == 0.) ? 0. : std::aco << 
2884   G4double delAng = maxAng/(np1 - 1);         << 
2885                                               << 
2886   auto zz = new G4double[np1 + np2];          << 
2887   auto rr = new G4double[np1 + np2];          << 
2888                                               << 
2889   // 1st polyline                             << 
2890   zz[0] = H;                                  << 
2891   rr[0] = R;                                  << 
2892   for (G4int iz = 1; iz < np1 - 1; ++iz)      << 
2893   {                                           << 
2894     G4double ang = maxAng - iz*delAng;        << 
2895     zz[iz] = A*std::cosh(ang) - A;            << 
2896     rr[iz] = B*std::sinh(ang);                << 
2897   }                                           << 
2898   zz[np1 - 1] = 0.;                           << 
2899   rr[np1 - 1] = 0.;                           << 
2900                                               << 
2901   // 2nd polyline                             << 
2902   zz[np1] = H;                                << 
2903   rr[np1] = 0.;                               << 
2904   zz[np1 + 1] = 0.;                           << 
2905   rr[np1 + 1] = 0.;                           << 
2906                                               << 
2907   //   R O T A T E    P O L Y L I N E S       << 
2908                                               << 
2909   G4double phi  = 0.;                         << 
2910   G4double dphi = CLHEP::twopi;               << 
2911   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 
2912   SetReferences();                            << 
2913                                               << 
2914   delete [] zz;                               << 
2915   delete [] rr;                               << 
2916 }                                             << 
2917                                               << 
2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 
2919                                               << 
2920 HepPolyhedronTetMesh::                        << 
2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 
2922 /******************************************** << 
2923  *                                            << 
2924  * Name: HepPolyhedronTetMesh                 << 
2925  * Author: E.Tcherniaev (E.Chernyaev)         << 
2926  *                                            << 
2927  * Function: Create polyhedron for tetrahedro << 
2928  *                                            << 
2929  * Input: tetrahedra - array of tetrahedron v << 
2930  *                     per tetrahedron        << 
2931  *                                            << 
2932  ******************************************** << 
2933 {                                             << 
2934   // Check size of input vector               << 
2935   G4int nnodes = (G4int)tetrahedra.size();    << 
2936   if (nnodes == 0)                            << 
2937   {                                           << 
2938     std::cerr                                 << 
2939       << "HepPolyhedronTetMesh: Empty tetrahe << 
2940     return;                                   << 
2941   }                                           << 
2942   G4int ntet = nnodes/4;                      << 
2943   if (nnodes != ntet*4)                       << 
2944   {                                           << 
2945     std::cerr << "HepPolyhedronTetMesh: Numbe << 
2946               << " in tetrahedron mesh is NOT << 
2947               << std::endl;                   << 
2948     return;                                   << 
2949   }                                           << 
2950                                                  2246 
2951   // Find coincident vertices using hash tabl << 
2952   // This could be done using std::unordered_ << 
2953   // below runs faster.                       << 
2954   std::vector<G4int> iheads(nnodes, -1);      << 
2955   std::vector<std::pair<G4int,G4int>> ipairs( << 
2956   for (G4int i = 0; i < nnodes; ++i)          << 
2957   {                                           << 
2958     // Generate hash key                      << 
2959     G4ThreeVector point = tetrahedra[i];      << 
2960     auto key = std::hash<G4double>()(point.x( << 
2961     key ^= std::hash<G4double>()(point.y());  << 
2962     key ^= std::hash<G4double>()(point.z());  << 
2963     key %= nnodes;                            << 
2964     // Check head of the list                 << 
2965     if (iheads[key] < 0)                      << 
2966     {                                         << 
2967       iheads[key] = i;                        << 
2968       ipairs[i].first = i;                    << 
2969       continue;                               << 
2970     }                                         << 
2971     // Loop along the list                    << 
2972     for (G4int icur = iheads[key], iprev = 0; << 
2973     {                                         << 
2974       G4int icheck = ipairs[icur].first;      << 
2975       if (tetrahedra[icheck] == point)        << 
2976       {                                       << 
2977         ipairs[i].first = icheck; // coincide << 
2978         break;                                << 
2979       }                                       << 
2980       iprev = icur;                           << 
2981       icur = ipairs[icur].second;             << 
2982       // Append vertex to the list            << 
2983       if (icur < 0)                           << 
2984       {                                       << 
2985         ipairs[i].first = i;                  << 
2986         ipairs[iprev].second = i;             << 
2987         break;                                << 
2988       }                                       << 
2989     }                                         << 
2990   }                                           << 
2991                                               << 
2992   // Create vector of original facets         << 
2993   struct facet                                << 
2994   {                                           << 
2995     G4int i1, i2, i3;                         << 
2996     facet() : i1(0), i2(0), i3(0) {};         << 
2997     facet(G4int k1, G4int k2, G4int k3) : i1( << 
2998   };                                          << 
2999   G4int nfacets = nnodes;                     << 
3000   std::vector<facet> ifacets(nfacets);        << 
3001   for (G4int i = 0; i < nfacets; i += 4)      << 
3002   {                                           << 
3003     G4int i0 = ipairs[i + 0].first;           << 
3004     G4int i1 = ipairs[i + 1].first;           << 
3005     G4int i2 = ipairs[i + 2].first;           << 
3006     G4int i3 = ipairs[i + 3].first;           << 
3007     if (i0 > i1) std::swap(i0, i1);           << 
3008     if (i0 > i2) std::swap(i0, i2);           << 
3009     if (i0 > i3) std::swap(i0, i3);           << 
3010     if (i1 > i2) std::swap(i1, i2);           << 
3011     if (i1 > i3) std::swap(i1, i3);           << 
3012     G4ThreeVector e1 = tetrahedra[i1] - tetra << 
3013     G4ThreeVector e2 = tetrahedra[i2] - tetra << 
3014     G4ThreeVector e3 = tetrahedra[i3] - tetra << 
3015     G4double volume = (e1.cross(e2)).dot(e3); << 
3016     if (volume > 0.) std::swap(i2, i3);       << 
3017     ifacets[i + 0] = facet(i0, i1, i2);       << 
3018     ifacets[i + 1] = facet(i0, i2, i3);       << 
3019     ifacets[i + 2] = facet(i0, i3, i1);       << 
3020     ifacets[i + 3] = facet(i1, i3, i2);       << 
3021   }                                           << 
3022                                               << 
3023   // Find shared facets                       << 
3024   std::fill(iheads.begin(), iheads.end(), -1) << 
3025   std::fill(ipairs.begin(), ipairs.end(), std << 
3026   for (G4int i = 0; i < nfacets; ++i)         << 
3027   {                                           << 
3028     // Check head of the list                 << 
3029     G4int key = ifacets[i].i1;                << 
3030     if (iheads[key] < 0)                      << 
3031     {                                         << 
3032       iheads[key] = i;                        << 
3033       ipairs[i].first = i;                    << 
3034       continue;                               << 
3035     }                                         << 
3036     // Loop along the list                    << 
3037     G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 
3038     for (G4int icur = iheads[key], iprev = -1 << 
3039     {                                         << 
3040       G4int icheck = ipairs[icur].first;      << 
3041       if (ifacets[icheck].i2 == i3 && ifacets << 
3042       {                                       << 
3043         if (iprev < 0)                        << 
3044         {                                     << 
3045           iheads[key] = ipairs[icur].second;  << 
3046         }                                     << 
3047         else                                  << 
3048         {                                     << 
3049           ipairs[iprev].second = ipairs[icur] << 
3050         }                                     << 
3051         ipairs[icur].first = -1; // shared fa << 
3052         ipairs[icur].second = -1;             << 
3053         break;                                << 
3054       }                                       << 
3055       iprev = icur;                           << 
3056       icur = ipairs[icur].second;             << 
3057       // Append facet to the list             << 
3058       if (icur < 0)                           << 
3059       {                                       << 
3060         ipairs[i].first = i;                  << 
3061         ipairs[iprev].second = i;             << 
3062         break;                                << 
3063       }                                       << 
3064     }                                         << 
3065   }                                           << 
3066                                               << 
3067   // Count vertices and facets skipping share << 
3068   std::fill(iheads.begin(), iheads.end(), -1) << 
3069   G4int nver = 0, nfac = 0;                   << 
3070   for (G4int i = 0; i < nfacets; ++i)         << 
3071   {                                           << 
3072     if (ipairs[i].first < 0) continue;        << 
3073     G4int i1 = ifacets[i].i1;                 << 
3074     G4int i2 = ifacets[i].i2;                 << 
3075     G4int i3 = ifacets[i].i3;                 << 
3076     if (iheads[i1] < 0) iheads[i1] = nver++;  << 
3077     if (iheads[i2] < 0) iheads[i2] = nver++;  << 
3078     if (iheads[i3] < 0) iheads[i3] = nver++;  << 
3079     nfac++;                                   << 
3080   }                                           << 
3081                                               << 
3082   // Construct polyhedron                     << 
3083   AllocateMemory(nver, nfac);                 << 
3084   for (G4int i = 0; i < nnodes; ++i)          << 
3085   {                                           << 
3086     G4int k = iheads[i];                      << 
3087     if (k >= 0) SetVertex(k + 1, tetrahedra[i << 
3088   }                                           << 
3089   for (G4int i = 0, k = 0; i < nfacets; ++i)  << 
3090   {                                           << 
3091     if (ipairs[i].first < 0) continue;        << 
3092     G4int i1 = iheads[ifacets[i].i1] + 1;     << 
3093     G4int i2 = iheads[ifacets[i].i2] + 1;     << 
3094     G4int i3 = iheads[ifacets[i].i3] + 1;     << 
3095     SetFacet(++k, i1, i2, i3);                << 
3096   }                                           << 
3097   SetReferences();                            << 
3098 }                                             << 
3099                                               << 
3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 
3101                                               << 
3102 HepPolyhedronBoxMesh::                        << 
3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 
3104                      const std::vector<G4Thre << 
3105 /******************************************** << 
3106  *                                            << 
3107  * Name: HepPolyhedronBoxMesh                 << 
3108  * Author: E.Tcherniaev (E.Chernyaev)         << 
3109  *                                            << 
3110  * Function: Create polyhedron for box mesh   << 
3111  *                                            << 
3112  * Input: sizeX, sizeY, sizeZ - dimensions of << 
3113  *        positions - vector of cell centres  << 
3114  *                                            << 
3115  ******************************************** << 
3116 {                                             << 
3117   G4int nbox = (G4int)positions.size();       << 
3118   if (nbox == 0)                              << 
3119   {                                           << 
3120     std::cerr << "HepPolyhedronBoxMesh: Empty << 
3121     return;                                   << 
3122   }                                           << 
3123   // compute inverse dimensions               << 
3124   G4double invx = 1./sizeX, invy = 1./sizeY,  << 
3125   // find mesh bounding box                   << 
3126   G4ThreeVector pmin = positions[0], pmax = p << 
3127   for (const auto& p: positions)              << 
3128   {                                           << 
3129     if (pmin.x() > p.x()) pmin.setX(p.x());   << 
3130     if (pmin.y() > p.y()) pmin.setY(p.y());   << 
3131     if (pmin.z() > p.z()) pmin.setZ(p.z());   << 
3132     if (pmax.x() < p.x()) pmax.setX(p.x());   << 
3133     if (pmax.y() < p.y()) pmax.setY(p.y());   << 
3134     if (pmax.z() < p.z()) pmax.setZ(p.z());   << 
3135   }                                           << 
3136   // find number of voxels                    << 
3137   G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 
3138   G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 
3139   G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 
3140   // create structures for voxels and node in << 
3141   std::vector<char> voxels(nx*ny*nz, 0);      << 
3142   std::vector<G4int> indices((nx+1)*(ny+1)*(n << 
3143   // mark voxels listed in positions          << 
3144   G4int kx =  ny*nz, ky = nz;                 << 
3145   for (const auto& p: positions)              << 
3146   {                                           << 
3147     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3148     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3149     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3150     G4int i = ix*kx + iy*ky + iz;             << 
3151     voxels[i] = 1;                            << 
3152   }                                           << 
3153   // count number of vertices and facets      << 
3154   // set indices                              << 
3155   G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 
3156   G4int nver = 0, nfac = 0;                   << 
3157   for (const auto& p: positions)              << 
3158   {                                           << 
3159     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3160     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3161     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3162     //                                        << 
3163     //    011       111                       << 
3164     //      +---–---+                       << 
3165     //      | 001   |   101                   << 
3166     //      |   +---–---+                   << 
3167     //      |   |   |   |                     << 
3168     //      +---|---+   |                     << 
3169     //    010   |   110 |                     << 
3170     //          +-------+                     << 
3171     //        000       100                   << 
3172     //                                        << 
3173     G4int vcheck = 0;                         << 
3174     // check (ix - 1) side                    << 
3175     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3176     if (vcheck == 0)                          << 
3177     {                                         << 
3178       nfac++;                                 << 
3179       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3180       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3181       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3182       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3183       if (indices[i1] == 0) indices[i1] = ++n << 
3184       if (indices[i2] == 0) indices[i2] = ++n << 
3185       if (indices[i3] == 0) indices[i3] = ++n << 
3186       if (indices[i4] == 0) indices[i4] = ++n << 
3187     }                                         << 
3188     // check (ix + 1) side                    << 
3189     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3190     if (vcheck == 0)                          << 
3191     {                                         << 
3192       nfac++;                                 << 
3193       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3194       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3195       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3196       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3197       if (indices[i1] == 0) indices[i1] = ++n << 
3198       if (indices[i2] == 0) indices[i2] = ++n << 
3199       if (indices[i3] == 0) indices[i3] = ++n << 
3200       if (indices[i4] == 0) indices[i4] = ++n << 
3201     }                                         << 
3202     // check (iy - 1) side                    << 
3203     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3204     if (vcheck == 0)                          << 
3205     {                                         << 
3206       nfac++;                                 << 
3207       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3208       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3209       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3210       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3211       if (indices[i1] == 0) indices[i1] = ++n << 
3212       if (indices[i2] == 0) indices[i2] = ++n << 
3213       if (indices[i3] == 0) indices[i3] = ++n << 
3214       if (indices[i4] == 0) indices[i4] = ++n << 
3215     }                                         << 
3216     // check (iy + 1) side                    << 
3217     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3218     if (vcheck == 0)                          << 
3219     {                                         << 
3220       nfac++;                                 << 
3221       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3222       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3223       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3224       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3225       if (indices[i1] == 0) indices[i1] = ++n << 
3226       if (indices[i2] == 0) indices[i2] = ++n << 
3227       if (indices[i3] == 0) indices[i3] = ++n << 
3228       if (indices[i4] == 0) indices[i4] = ++n << 
3229     }                                         << 
3230     // check (iz - 1) side                    << 
3231     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3232     if (vcheck == 0)                          << 
3233     {                                         << 
3234       nfac++;                                 << 
3235       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3236       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3237       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3238       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3239       if (indices[i1] == 0) indices[i1] = ++n << 
3240       if (indices[i2] == 0) indices[i2] = ++n << 
3241       if (indices[i3] == 0) indices[i3] = ++n << 
3242       if (indices[i4] == 0) indices[i4] = ++n << 
3243     }                                         << 
3244     // check (iz + 1) side                    << 
3245     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3246     if (vcheck == 0)                          << 
3247     {                                         << 
3248       nfac++;                                 << 
3249       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3250       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3251       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3252       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3253       if (indices[i1] == 0) indices[i1] = ++n << 
3254       if (indices[i2] == 0) indices[i2] = ++n << 
3255       if (indices[i3] == 0) indices[i3] = ++n << 
3256       if (indices[i4] == 0) indices[i4] = ++n << 
3257     }                                         << 
3258   }                                           << 
3259   // Construct polyhedron                     << 
3260   AllocateMemory(nver, nfac);                 << 
3261   G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 
3262   for (G4int ix = 0; ix <= nx; ++ix)          << 
3263   {                                           << 
3264     for (G4int iy = 0; iy <= ny; ++iy)        << 
3265     {                                         << 
3266       for (G4int iz = 0; iz <= nz; ++iz)      << 
3267       {                                       << 
3268   G4int i = ix*kvx + iy*kvy + iz;             << 
3269   if (indices[i] == 0) continue;              << 
3270   SetVertex(indices[i], p0 + G4ThreeVector(ix << 
3271       }                                       << 
3272     }                                         << 
3273   }                                           << 
3274   nfac = 0;                                   << 
3275   for (const auto& p: positions)              << 
3276   {                                           << 
3277     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3278     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3279     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3280     G4int vcheck = 0;                         << 
3281     // check (ix - 1) side                    << 
3282     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3283     if (vcheck == 0)                          << 
3284     {                                         << 
3285       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3286       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3287       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3288       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3289       SetFacet(++nfac, indices[i1], indices[i << 
3290     }                                         << 
3291     // check (ix + 1) side                    << 
3292     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3293     if (vcheck == 0)                          << 
3294     {                                         << 
3295       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3296       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3297       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3298       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3299       SetFacet(++nfac, indices[i1], indices[i << 
3300                                               << 
3301     }                                         << 
3302     // check (iy - 1) side                    << 
3303     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3304     if (vcheck == 0)                          << 
3305     {                                         << 
3306       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3307       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3308       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3309       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3310       SetFacet(++nfac, indices[i1], indices[i << 
3311     }                                         << 
3312     // check (iy + 1) side                    << 
3313     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3314     if (vcheck == 0)                          << 
3315     {                                         << 
3316       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3317       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3318       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3319       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3320       SetFacet(++nfac, indices[i1], indices[i << 
3321     }                                         << 
3322     // check (iz - 1) side                    << 
3323     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3324     if (vcheck == 0)                          << 
3325     {                                         << 
3326       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3327       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3328       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3329       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3330       SetFacet(++nfac, indices[i1], indices[i << 
3331     }                                         << 
3332     // check (iz + 1) side                    << 
3333     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3334     if (vcheck == 0)                          << 
3335     {                                         << 
3336       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3337       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3338       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3339       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3340       SetFacet(++nfac, indices[i1], indices[i << 
3341     }                                         << 
3342   }                                           << 
3343   SetReferences();                            << 
3344 }                                             << 
3345                                               << 
3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 
3347                                               << 
3348 G4ThreadLocal                                 << 
3349 G4int HepPolyhedron::fNumberOfRotationSteps =    2247 G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
3350 /********************************************    2248 /***********************************************************************
3351  *                                               2249  *                                                                     *
3352  * Name: HepPolyhedron::fNumberOfRotationStep    2250  * Name: HepPolyhedron::fNumberOfRotationSteps       Date:    24.06.97 *
3353  * Author: J.Allison (Manchester University)     2251  * Author: J.Allison (Manchester University)         Revised:          *
3354  *                                               2252  *                                                                     *
3355  * Function: Number of steps for whole circle    2253  * Function: Number of steps for whole circle                          *
3356  *                                               2254  *                                                                     *
3357  ********************************************    2255  ***********************************************************************/
3358                                                  2256 
3359 #include "BooleanProcessor.src"                  2257 #include "BooleanProcessor.src"
3360                                                  2258 
3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2259 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 
3362 /********************************************    2260 /***********************************************************************
3363  *                                               2261  *                                                                     *
3364  * Name: HepPolyhedron::add                      2262  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3365  * Author: E.Chernyaev                           2263  * Author: E.Chernyaev                               Revised:          *
3366  *                                               2264  *                                                                     *
3367  * Function: Boolean "union" of two polyhedra    2265  * Function: Boolean "union" of two polyhedra                          *
3368  *                                               2266  *                                                                     *
3369  ********************************************    2267  ***********************************************************************/
3370 {                                                2268 {
3371   G4int ierr;                                    2269   G4int ierr;
3372   BooleanProcessor processor;                    2270   BooleanProcessor processor;
3373   return processor.execute(OP_UNION, *this, p    2271   return processor.execute(OP_UNION, *this, p,ierr);
3374 }                                                2272 }
3375                                                  2273 
3376 HepPolyhedron HepPolyhedron::intersect(const  << 2274 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 
3377 /********************************************    2275 /***********************************************************************
3378  *                                               2276  *                                                                     *
3379  * Name: HepPolyhedron::intersect                2277  * Name: HepPolyhedron::intersect                    Date:    19.03.00 *
3380  * Author: E.Chernyaev                           2278  * Author: E.Chernyaev                               Revised:          *
3381  *                                               2279  *                                                                     *
3382  * Function: Boolean "intersection" of two po    2280  * Function: Boolean "intersection" of two polyhedra                   *
3383  *                                               2281  *                                                                     *
3384  ********************************************    2282  ***********************************************************************/
3385 {                                                2283 {
3386   G4int ierr;                                    2284   G4int ierr;
3387   BooleanProcessor processor;                    2285   BooleanProcessor processor;
3388   return processor.execute(OP_INTERSECTION, *    2286   return processor.execute(OP_INTERSECTION, *this, p,ierr);
3389 }                                                2287 }
3390                                                  2288 
3391 HepPolyhedron HepPolyhedron::subtract(const H << 2289 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 
3392 /********************************************    2290 /***********************************************************************
3393  *                                               2291  *                                                                     *
3394  * Name: HepPolyhedron::add                      2292  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3395  * Author: E.Chernyaev                           2293  * Author: E.Chernyaev                               Revised:          *
3396  *                                               2294  *                                                                     *
3397  * Function: Boolean "subtraction" of "p" fro    2295  * Function: Boolean "subtraction" of "p" from "this"                  *
3398  *                                               2296  *                                                                     *
3399  ********************************************    2297  ***********************************************************************/
3400 {                                                2298 {
3401   G4int ierr;                                    2299   G4int ierr;
3402   BooleanProcessor processor;                    2300   BooleanProcessor processor;
3403   return processor.execute(OP_SUBTRACTION, *t    2301   return processor.execute(OP_SUBTRACTION, *this, p,ierr);
3404 }                                                2302 }
3405                                                  2303 
3406 //NOTE : include the code of HepPolyhedronPro    2304 //NOTE : include the code of HepPolyhedronProcessor here
3407 //       since there is no BooleanProcessor.h    2305 //       since there is no BooleanProcessor.h
3408                                                  2306 
3409 #undef INTERSECTION                              2307 #undef INTERSECTION
3410                                                  2308 
3411 #include "HepPolyhedronProcessor.src"            2309 #include "HepPolyhedronProcessor.src"
                                                   >> 2310 
3412                                                  2311