Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id$ >> 28 // >> 29 // >> 30 // 26 // G4 Polyhedron library 31 // G4 Polyhedron library 27 // 32 // 28 // History: 33 // History: 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce 34 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version 30 // 35 // 31 // 30.09.96 E.Chernyaev 36 // 30.09.96 E.Chernyaev 32 // - added GetNextVertexIndex, GetVertex by Ya 37 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada 33 // - added GetNextUnitNormal, GetNextEdgeIndic << 38 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge 34 // 39 // 35 // 15.12.96 E.Chernyaev 40 // 15.12.96 E.Chernyaev 36 // - added GetNumberOfRotationSteps, RotateEdg 41 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences 37 // - rewritten G4PolyhedronCons; 42 // - rewritten G4PolyhedronCons; 38 // - added G4PolyhedronPara, ...Trap, ...Pgon, 43 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus 39 // 44 // 40 // 01.06.97 E.Chernyaev 45 // 01.06.97 E.Chernyaev 41 // - modified RotateAroundZ, added SetSideFace 46 // - modified RotateAroundZ, added SetSideFacets 42 // 47 // 43 // 19.03.00 E.Chernyaev 48 // 19.03.00 E.Chernyaev 44 // - implemented boolean operations (add, subt 49 // - implemented boolean operations (add, subtract, intersect) on polyhedra; 45 // 50 // 46 // 25.05.01 E.Chernyaev 51 // 25.05.01 E.Chernyaev 47 // - added GetSurfaceArea() and GetVolume() << 52 // - added GetSurfaceArea() and GetVolume(); 48 // 53 // 49 // 05.11.02 E.Chernyaev 54 // 05.11.02 E.Chernyaev 50 // - added createTwistedTrap() and createPolyh << 55 // - added createTwistedTrap() and createPolyhedron(); 51 // 56 // 52 // 20.06.05 G.Cosmo 57 // 20.06.05 G.Cosmo 53 // - added HepPolyhedronEllipsoid << 58 // - added HepPolyhedronEllipsoid; 54 // << 55 // 18.07.07 T.Nikitina << 56 // - added HepPolyhedronParaboloid << 57 // << 58 // 22.02.20 E.Chernyaev << 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 60 // << 61 // 12.05.21 E.Chernyaev << 62 // - added TriangulatePolygon(), RotateContour << 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 64 // << 65 // 26.03.22 E.Chernyaev << 66 // - added SetVertex(), SetFacet() << 67 // - added HepPolyhedronTetMesh << 68 // << 69 // 04.04.22 E.Chernyaev << 70 // - added JoinCoplanarFacets() << 71 // 59 // 72 // 07.04.22 E.Chernyaev << 60 // 18.07.07 T.Nikitin 73 // - added HepPolyhedronBoxMesh << 61 // - added HepParaboloid; 74 << 62 75 #include "HepPolyhedron.h" 63 #include "HepPolyhedron.h" 76 #include "G4PhysicalConstants.hh" 64 #include "G4PhysicalConstants.hh" 77 #include "G4Vector3D.hh" 65 #include "G4Vector3D.hh" 78 66 79 #include <cstdlib> // Required on some compil 67 #include <cstdlib> // Required on some compilers for std::abs(int) ... 80 #include <cmath> 68 #include <cmath> 81 #include <algorithm> << 82 69 83 using CLHEP::perMillion; 70 using CLHEP::perMillion; 84 using CLHEP::deg; 71 using CLHEP::deg; 85 using CLHEP::pi; 72 using CLHEP::pi; 86 using CLHEP::twopi; 73 using CLHEP::twopi; 87 using CLHEP::nm; << 88 const G4double spatialTolerance = 0.01*nm; << 89 74 90 /********************************************* 75 /*********************************************************************** 91 * 76 * * 92 * Name: HepPolyhedron operator << 77 * Name: HepPolyhedron operator << Date: 09.05.96 * 93 * Author: E.Chernyaev (IHEP/Protvino) 78 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 94 * 79 * * 95 * Function: Print contents of G4 polyhedron 80 * Function: Print contents of G4 polyhedron * 96 * 81 * * 97 ********************************************* 82 ***********************************************************************/ 98 std::ostream & operator<<(std::ostream & ostr, 83 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) { 99 for (const auto& edge : facet.edge) { << 84 for (G4int k=0; k<4; k++) { 100 ostr << " " << edge.v << "/" << edge.f; << 85 ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f; 101 } 86 } 102 return ostr; 87 return ostr; 103 } 88 } 104 89 105 std::ostream & operator<<(std::ostream & ostr, 90 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) { 106 ostr << std::endl; 91 ostr << std::endl; 107 ostr << "Nvertices=" << ph.nvert << ", Nface << 92 ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl; 108 G4int i; 93 G4int i; 109 for (i=1; i<=ph.nvert; i++) { 94 for (i=1; i<=ph.nvert; i++) { 110 ostr << "xyz(" << i << ")=" 95 ostr << "xyz(" << i << ")=" 111 << ph.pV[i].x() << ' ' << ph.pV[i].y 96 << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z() 112 << std::endl; 97 << std::endl; 113 } 98 } 114 for (i=1; i<=ph.nface; i++) { 99 for (i=1; i<=ph.nface; i++) { 115 ostr << "face(" << i << ")=" << ph.pF[i] < 100 ostr << "face(" << i << ")=" << ph.pF[i] << std::endl; 116 } 101 } 117 return ostr; 102 return ostr; 118 } 103 } 119 104 120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 121 /********************************************* << 122 * << 123 * Name: HepPolyhedron constructor with << 124 * allocation of memory << 125 * Author: E.Tcherniaev (E.Chernyaev) << 126 * << 127 ********************************************* << 128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 129 { << 130 AllocateMemory(Nvert, Nface); << 131 } << 132 << 133 HepPolyhedron::HepPolyhedron(const HepPolyhedr 105 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from) 134 /********************************************* 106 /*********************************************************************** 135 * 107 * * 136 * Name: HepPolyhedron copy constructor 108 * Name: HepPolyhedron copy constructor Date: 23.07.96 * 137 * Author: E.Chernyaev (IHEP/Protvino) 109 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 138 * 110 * * 139 ********************************************* 111 ***********************************************************************/ 140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 112 : nvert(0), nface(0), pV(0), pF(0) 141 { 113 { 142 AllocateMemory(from.nvert, from.nface); 114 AllocateMemory(from.nvert, from.nface); 143 for (G4int i=1; i<=nvert; i++) pV[i] = from. 115 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 144 for (G4int k=1; k<=nface; k++) pF[k] = from. 116 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 145 } 117 } 146 118 147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 148 /********************************************* << 149 * << 150 * Name: HepPolyhedron move constructor << 151 * Author: E.Tcherniaev (E.Chernyaev) << 152 * << 153 ********************************************* << 154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 155 { << 156 nvert = from.nvert; << 157 nface = from.nface; << 158 pV = from.pV; << 159 pF = from.pF; << 160 << 161 // Release the data from the source object << 162 from.nvert = 0; << 163 from.nface = 0; << 164 from.pV = nullptr; << 165 from.pF = nullptr; << 166 } << 167 << 168 HepPolyhedron & HepPolyhedron::operator=(const 119 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from) 169 /********************************************* 120 /*********************************************************************** 170 * 121 * * 171 * Name: HepPolyhedron operator = 122 * Name: HepPolyhedron operator = Date: 23.07.96 * 172 * Author: E.Chernyaev (IHEP/Protvino) 123 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 173 * 124 * * 174 * Function: Copy contents of one polyhedron t 125 * Function: Copy contents of one polyhedron to another * 175 * 126 * * 176 ********************************************* 127 ***********************************************************************/ 177 { 128 { 178 if (this != &from) { 129 if (this != &from) { 179 AllocateMemory(from.nvert, from.nface); 130 AllocateMemory(from.nvert, from.nface); 180 for (G4int i=1; i<=nvert; i++) pV[i] = fro 131 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 181 for (G4int k=1; k<=nface; k++) pF[k] = fro 132 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 182 } 133 } 183 return *this; 134 return *this; 184 } 135 } 185 136 186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 187 /********************************************* << 188 * << 189 * Name: HepPolyhedron move operator = << 190 * Author: E.Tcherniaev (E.Chernyaev) << 191 * << 192 * Function: Move contents of one polyhedron t << 193 * << 194 ********************************************* << 195 { << 196 if (this != &from) { << 197 delete [] pV; << 198 delete [] pF; << 199 nvert = from.nvert; << 200 nface = from.nface; << 201 pV = from.pV; << 202 pF = from.pF; << 203 << 204 // Release the data from the source object << 205 from.nvert = 0; << 206 from.nface = 0; << 207 from.pV = nullptr; << 208 from.pF = nullptr; << 209 } << 210 return *this; << 211 } << 212 << 213 G4int 137 G4int 214 HepPolyhedron::FindNeighbour(G4int iFace, G4in 138 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const 215 /********************************************* 139 /*********************************************************************** 216 * 140 * * 217 * Name: HepPolyhedron::FindNeighbour 141 * Name: HepPolyhedron::FindNeighbour Date: 22.11.99 * 218 * Author: E.Chernyaev 142 * Author: E.Chernyaev Revised: * 219 * 143 * * 220 * Function: Find neighbouring face 144 * Function: Find neighbouring face * 221 * 145 * * 222 ********************************************* 146 ***********************************************************************/ 223 { 147 { 224 G4int i; 148 G4int i; 225 for (i=0; i<4; i++) { 149 for (i=0; i<4; i++) { 226 if (iNode == std::abs(pF[iFace].edge[i].v) 150 if (iNode == std::abs(pF[iFace].edge[i].v)) break; 227 } 151 } 228 if (i == 4) { 152 if (i == 4) { 229 std::cerr 153 std::cerr 230 << "HepPolyhedron::FindNeighbour: face " 154 << "HepPolyhedron::FindNeighbour: face " << iFace 231 << " has no node " << iNode 155 << " has no node " << iNode 232 << std::endl; << 156 << std::endl; 233 return 0; 157 return 0; 234 } 158 } 235 if (iOrder < 0) { 159 if (iOrder < 0) { 236 if ( --i < 0) i = 3; 160 if ( --i < 0) i = 3; 237 if (pF[iFace].edge[i].v == 0) i = 2; 161 if (pF[iFace].edge[i].v == 0) i = 2; 238 } 162 } 239 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF 163 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f; 240 } 164 } 241 165 242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int 166 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const 243 /********************************************* 167 /*********************************************************************** 244 * 168 * * 245 * Name: HepPolyhedron::FindNodeNormal 169 * Name: HepPolyhedron::FindNodeNormal Date: 22.11.99 * 246 * Author: E.Chernyaev 170 * Author: E.Chernyaev Revised: * 247 * 171 * * 248 * Function: Find normal at given node 172 * Function: Find normal at given node * 249 * 173 * * 250 ********************************************* 174 ***********************************************************************/ 251 { 175 { 252 G4Normal3D normal = GetUnitNormal(iFace); << 176 G4Normal3D normal = GetUnitNormal(iFace); 253 G4int k = iFace, iOrder = 1; << 177 G4int k = iFace, iOrder = 1, n = 1; 254 178 255 for(;;) { 179 for(;;) { 256 k = FindNeighbour(k, iNode, iOrder); 180 k = FindNeighbour(k, iNode, iOrder); 257 if (k == iFace) break; << 181 if (k == iFace) break; 258 if (k > 0) { 182 if (k > 0) { >> 183 n++; 259 normal += GetUnitNormal(k); 184 normal += GetUnitNormal(k); 260 }else{ 185 }else{ 261 if (iOrder < 0) break; 186 if (iOrder < 0) break; 262 k = iFace; 187 k = iFace; 263 iOrder = -iOrder; 188 iOrder = -iOrder; 264 } 189 } 265 } 190 } 266 return normal.unit(); 191 return normal.unit(); 267 } 192 } 268 193 269 G4int HepPolyhedron::GetNumberOfRotationSteps( 194 G4int HepPolyhedron::GetNumberOfRotationSteps() 270 /********************************************* 195 /*********************************************************************** 271 * 196 * * 272 * Name: HepPolyhedron::GetNumberOfRotationSte 197 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 273 * Author: J.Allison (Manchester University) 198 * Author: J.Allison (Manchester University) Revised: * 274 * 199 * * 275 * Function: Get number of steps for whole cir 200 * Function: Get number of steps for whole circle * 276 * 201 * * 277 ********************************************* 202 ***********************************************************************/ 278 { 203 { 279 return fNumberOfRotationSteps; 204 return fNumberOfRotationSteps; 280 } 205 } 281 206 282 void HepPolyhedron::SetVertex(G4int index, con << 283 /********************************************* << 284 * << 285 * Name: HepPolyhedron::SetVertex << 286 * Author: E.Tcherniaev (E.Chernyaev) << 287 * << 288 * Function: Set vertex << 289 * << 290 ********************************************* << 291 { << 292 if (index < 1 || index > nvert) << 293 { << 294 std::cerr << 295 << "HepPolyhedron::SetVertex: vertex ind << 296 << " is out of range\n" << 297 << " N. of vertices = " << nvert << "\ << 298 << " N. of facets = " << nface << std: << 299 return; << 300 } << 301 pV[index] = v; << 302 } << 303 << 304 void << 305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 306 /********************************************* << 307 * << 308 * Name: HepPolyhedron::SetFacet << 309 * Author: E.Tcherniaev (E.Chernyaev) << 310 * << 311 * Function: Set facet << 312 * << 313 ********************************************* << 314 { << 315 if (index < 1 || index > nface) << 316 { << 317 std::cerr << 318 << "HepPolyhedron::SetFacet: facet index << 319 << " is out of range\n" << 320 << " N. of vertices = " << nvert << "\ << 321 << " N. of facets = " << nface << std: << 322 return; << 323 } << 324 if (iv1 < 1 || iv1 > nvert || << 325 iv2 < 1 || iv2 > nvert || << 326 iv3 < 1 || iv3 > nvert || << 327 iv4 < 0 || iv4 > nvert) << 328 { << 329 std::cerr << 330 << "HepPolyhedron::SetFacet: incorrectly << 331 << " (" << iv1 << ", " << iv2 << ", " << << 332 << " N. of vertices = " << nvert << "\ << 333 << " N. of facets = " << nface << std: << 334 return; << 335 } << 336 pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0, << 337 } << 338 << 339 void HepPolyhedron::SetNumberOfRotationSteps(G 207 void HepPolyhedron::SetNumberOfRotationSteps(G4int n) 340 /********************************************* 208 /*********************************************************************** 341 * 209 * * 342 * Name: HepPolyhedron::SetNumberOfRotationSte 210 * Name: HepPolyhedron::SetNumberOfRotationSteps Date: 24.06.97 * 343 * Author: J.Allison (Manchester University) 211 * Author: J.Allison (Manchester University) Revised: * 344 * 212 * * 345 * Function: Set number of steps for whole cir 213 * Function: Set number of steps for whole circle * 346 * 214 * * 347 ********************************************* 215 ***********************************************************************/ 348 { 216 { 349 const G4int nMin = 3; 217 const G4int nMin = 3; 350 if (n < nMin) { 218 if (n < nMin) { 351 std::cerr << 219 std::cerr 352 << "HepPolyhedron::SetNumberOfRotationSt 220 << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n" 353 << "number of steps per circle < " << nM 221 << "number of steps per circle < " << nMin << "; forced to " << nMin 354 << std::endl; 222 << std::endl; 355 fNumberOfRotationSteps = nMin; 223 fNumberOfRotationSteps = nMin; 356 }else{ 224 }else{ 357 fNumberOfRotationSteps = n; 225 fNumberOfRotationSteps = n; 358 } << 226 } 359 } 227 } 360 228 361 void HepPolyhedron::ResetNumberOfRotationSteps 229 void HepPolyhedron::ResetNumberOfRotationSteps() 362 /********************************************* 230 /*********************************************************************** 363 * 231 * * 364 * Name: HepPolyhedron::GetNumberOfRotationSte 232 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 365 * Author: J.Allison (Manchester University) 233 * Author: J.Allison (Manchester University) Revised: * 366 * 234 * * 367 * Function: Reset number of steps for whole c 235 * Function: Reset number of steps for whole circle to default value * 368 * 236 * * 369 ********************************************* 237 ***********************************************************************/ 370 { 238 { 371 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S 239 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 372 } 240 } 373 241 374 void HepPolyhedron::AllocateMemory(G4int Nvert 242 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface) 375 /********************************************* 243 /*********************************************************************** 376 * 244 * * 377 * Name: HepPolyhedron::AllocateMemory 245 * Name: HepPolyhedron::AllocateMemory Date: 19.06.96 * 378 * Author: E.Chernyaev (IHEP/Protvino) 246 * Author: E.Chernyaev (IHEP/Protvino) Revised: 05.11.02 * 379 * 247 * * 380 * Function: Allocate memory for GEANT4 polyhe 248 * Function: Allocate memory for GEANT4 polyhedron * 381 * 249 * * 382 * Input: Nvert - number of nodes 250 * Input: Nvert - number of nodes * 383 * Nface - number of faces 251 * Nface - number of faces * 384 * 252 * * 385 ********************************************* 253 ***********************************************************************/ 386 { 254 { 387 if (nvert == Nvert && nface == Nface) return 255 if (nvert == Nvert && nface == Nface) return; 388 delete [] pV; << 256 if (pV != 0) delete [] pV; 389 delete [] pF; << 257 if (pF != 0) delete [] pF; 390 if (Nvert > 0 && Nface > 0) { 258 if (Nvert > 0 && Nface > 0) { 391 nvert = Nvert; 259 nvert = Nvert; 392 nface = Nface; 260 nface = Nface; 393 pV = new G4Point3D[nvert+1]; 261 pV = new G4Point3D[nvert+1]; 394 pF = new G4Facet[nface+1]; 262 pF = new G4Facet[nface+1]; 395 }else{ 263 }else{ 396 nvert = 0; nface = 0; pV = nullptr; pF = n << 264 nvert = 0; nface = 0; pV = 0; pF = 0; 397 } 265 } 398 } 266 } 399 267 400 void HepPolyhedron::CreatePrism() 268 void HepPolyhedron::CreatePrism() 401 /********************************************* 269 /*********************************************************************** 402 * 270 * * 403 * Name: HepPolyhedron::CreatePrism 271 * Name: HepPolyhedron::CreatePrism Date: 15.07.96 * 404 * Author: E.Chernyaev (IHEP/Protvino) 272 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 405 * 273 * * 406 * Function: Set facets for a prism 274 * Function: Set facets for a prism * 407 * 275 * * 408 ********************************************* 276 ***********************************************************************/ 409 { 277 { 410 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON 278 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP}; 411 279 412 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 280 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 2,FRONT); 413 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 281 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 1,FRONT); 414 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 282 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 4,LEFT); 415 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 283 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 3,BACK); 416 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 284 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 2,RIGHT); 417 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 285 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 8,LEFT); 418 } 286 } 419 287 420 void HepPolyhedron::RotateEdge(G4int k1, G4int 288 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2, 421 G4int v1, G4int 289 G4int v1, G4int v2, G4int vEdge, 422 G4bool ifWholeCi 290 G4bool ifWholeCircle, G4int nds, G4int &kface) 423 /********************************************* 291 /*********************************************************************** 424 * 292 * * 425 * Name: HepPolyhedron::RotateEdge 293 * Name: HepPolyhedron::RotateEdge Date: 05.12.96 * 426 * Author: E.Chernyaev (IHEP/Protvino) 294 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 427 * 295 * * 428 * Function: Create set of facets by rotation 296 * Function: Create set of facets by rotation of an edge around Z-axis * 429 * 297 * * 430 * Input: k1, k2 - end vertices of the edge 298 * Input: k1, k2 - end vertices of the edge * 431 * r1, r2 - radiuses of the end vertice 299 * r1, r2 - radiuses of the end vertices * 432 * v1, v2 - visibility of edges produce 300 * v1, v2 - visibility of edges produced by rotation of the end * 433 * vertices 301 * vertices * 434 * vEdge - visibility of the edge 302 * vEdge - visibility of the edge * 435 * ifWholeCircle - is true in case of w 303 * ifWholeCircle - is true in case of whole circle rotation * 436 * nds - number of discrete steps 304 * nds - number of discrete steps * 437 * r[] - r-coordinates 305 * r[] - r-coordinates * 438 * kface - current free cell in the pF 306 * kface - current free cell in the pF array * 439 * 307 * * 440 ********************************************* 308 ***********************************************************************/ 441 { 309 { 442 if (r1 == 0. && r2 == 0.) return; << 310 if (r1 == 0. && r2 == 0) return; 443 311 444 G4int i; 312 G4int i; 445 G4int i1 = k1; 313 G4int i1 = k1; 446 G4int i2 = k2; 314 G4int i2 = k2; 447 G4int ii1 = ifWholeCircle ? i1 : i1+nds; 315 G4int ii1 = ifWholeCircle ? i1 : i1+nds; 448 G4int ii2 = ifWholeCircle ? i2 : i2+nds; 316 G4int ii2 = ifWholeCircle ? i2 : i2+nds; 449 G4int vv = ifWholeCircle ? vEdge : 1; 317 G4int vv = ifWholeCircle ? vEdge : 1; 450 318 451 if (nds == 1) { 319 if (nds == 1) { 452 if (r1 == 0.) { 320 if (r1 == 0.) { 453 pF[kface++] = G4Facet(i1,0, v2*i2,0 321 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0); 454 }else if (r2 == 0.) { 322 }else if (r2 == 0.) { 455 pF[kface++] = G4Facet(i1,0, i2,0, 323 pF[kface++] = G4Facet(i1,0, i2,0, v1*(i1+1),0); 456 }else{ 324 }else{ 457 pF[kface++] = G4Facet(i1,0, v2*i2,0 325 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0, v1*(i1+1),0); 458 } 326 } 459 }else{ 327 }else{ 460 if (r1 == 0.) { 328 if (r1 == 0.) { 461 pF[kface++] = G4Facet(vv*i1,0, v2*i 329 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0); 462 for (i2++,i=1; i<nds-1; i2++,i++) { 330 for (i2++,i=1; i<nds-1; i2++,i++) { 463 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 331 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0); 464 } 332 } 465 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 333 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0); 466 }else if (r2 == 0.) { 334 }else if (r2 == 0.) { 467 pF[kface++] = G4Facet(vv*i1,0, vEdg 335 pF[kface++] = G4Facet(vv*i1,0, vEdge*i2,0, v1*(i1+1),0); 468 for (i1++,i=1; i<nds-1; i1++,i++) { 336 for (i1++,i=1; i<nds-1; i1++,i++) { 469 pF[kface++] = G4Facet(vEdge*i1,0, vEdg 337 pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0); 470 } 338 } 471 pF[kface++] = G4Facet(vEdge*i1,0, vv*i 339 pF[kface++] = G4Facet(vEdge*i1,0, vv*i2,0, v1*ii1,0); 472 }else{ 340 }else{ 473 pF[kface++] = G4Facet(vv*i1,0, v2*i 341 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 474 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i 342 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) { 475 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 343 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 476 } << 344 } 477 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 345 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0, v1*ii1,0); 478 } 346 } 479 } 347 } 480 } 348 } 481 349 482 void HepPolyhedron::SetSideFacets(G4int ii[4], 350 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4], 483 G4int *kk, G4 351 G4int *kk, G4double *r, 484 G4double dphi 352 G4double dphi, G4int nds, G4int &kface) 485 /********************************************* 353 /*********************************************************************** 486 * 354 * * 487 * Name: HepPolyhedron::SetSideFacets 355 * Name: HepPolyhedron::SetSideFacets Date: 20.05.97 * 488 * Author: E.Chernyaev (IHEP/Protvino) 356 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 489 * 357 * * 490 * Function: Set side facets for the case of i 358 * Function: Set side facets for the case of incomplete rotation * 491 * 359 * * 492 * Input: ii[4] - indices of original vertices << 360 * Input: ii[4] - indeces of original verteces * 493 * vv[4] - visibility of edges 361 * vv[4] - visibility of edges * 494 * kk[] - indices of nodes << 362 * kk[] - indeces of nodes * 495 * r[] - radiuses 363 * r[] - radiuses * 496 * dphi - delta phi 364 * dphi - delta phi * 497 * nds - number of discrete steps 365 * nds - number of discrete steps * 498 * kface - current free cell in the pF 366 * kface - current free cell in the pF array * 499 * 367 * * 500 ********************************************* 368 ***********************************************************************/ 501 { 369 { 502 G4int k1, k2, k3, k4; 370 G4int k1, k2, k3, k4; 503 << 371 504 if (std::abs(dphi-pi) < perMillion) { // hal << 372 if (std::abs((G4double)(dphi-pi)) < perMillion) { // half a circle 505 for (G4int i=0; i<4; i++) { 373 for (G4int i=0; i<4; i++) { 506 k1 = ii[i]; 374 k1 = ii[i]; 507 k2 = ii[(i+1)%4]; << 375 k2 = (i == 3) ? ii[0] : ii[i+1]; 508 if (r[k1] == 0. && r[k2] == 0.) vv[i] = << 376 if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1; 509 } 377 } 510 } 378 } 511 379 512 if (ii[1] == ii[2]) { 380 if (ii[1] == ii[2]) { 513 k1 = kk[ii[0]]; 381 k1 = kk[ii[0]]; 514 k2 = kk[ii[2]]; 382 k2 = kk[ii[2]]; 515 k3 = kk[ii[3]]; 383 k3 = kk[ii[3]]; 516 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2 384 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 517 if (r[ii[0]] != 0.) k1 += nds; 385 if (r[ii[0]] != 0.) k1 += nds; 518 if (r[ii[2]] != 0.) k2 += nds; 386 if (r[ii[2]] != 0.) k2 += nds; 519 if (r[ii[3]] != 0.) k3 += nds; 387 if (r[ii[3]] != 0.) k3 += nds; 520 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2 388 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 521 }else if (kk[ii[0]] == kk[ii[1]]) { 389 }else if (kk[ii[0]] == kk[ii[1]]) { 522 k1 = kk[ii[0]]; 390 k1 = kk[ii[0]]; 523 k2 = kk[ii[2]]; 391 k2 = kk[ii[2]]; 524 k3 = kk[ii[3]]; 392 k3 = kk[ii[3]]; 525 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2 393 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 526 if (r[ii[0]] != 0.) k1 += nds; 394 if (r[ii[0]] != 0.) k1 += nds; 527 if (r[ii[2]] != 0.) k2 += nds; 395 if (r[ii[2]] != 0.) k2 += nds; 528 if (r[ii[3]] != 0.) k3 += nds; 396 if (r[ii[3]] != 0.) k3 += nds; 529 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2 397 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0); 530 }else if (kk[ii[2]] == kk[ii[3]]) { 398 }else if (kk[ii[2]] == kk[ii[3]]) { 531 k1 = kk[ii[0]]; 399 k1 = kk[ii[0]]; 532 k2 = kk[ii[1]]; 400 k2 = kk[ii[1]]; 533 k3 = kk[ii[2]]; 401 k3 = kk[ii[2]]; 534 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 402 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0); 535 if (r[ii[0]] != 0.) k1 += nds; 403 if (r[ii[0]] != 0.) k1 += nds; 536 if (r[ii[1]] != 0.) k2 += nds; 404 if (r[ii[1]] != 0.) k2 += nds; 537 if (r[ii[2]] != 0.) k3 += nds; 405 if (r[ii[2]] != 0.) k3 += nds; 538 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2 406 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 539 }else{ 407 }else{ 540 k1 = kk[ii[0]]; 408 k1 = kk[ii[0]]; 541 k2 = kk[ii[1]]; 409 k2 = kk[ii[1]]; 542 k3 = kk[ii[2]]; 410 k3 = kk[ii[2]]; 543 k4 = kk[ii[3]]; 411 k4 = kk[ii[3]]; 544 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 412 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0); 545 if (r[ii[0]] != 0.) k1 += nds; 413 if (r[ii[0]] != 0.) k1 += nds; 546 if (r[ii[1]] != 0.) k2 += nds; 414 if (r[ii[1]] != 0.) k2 += nds; 547 if (r[ii[2]] != 0.) k3 += nds; 415 if (r[ii[2]] != 0.) k3 += nds; 548 if (r[ii[3]] != 0.) k4 += nds; 416 if (r[ii[3]] != 0.) k4 += nds; 549 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3 417 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 550 } 418 } 551 } 419 } 552 420 553 void HepPolyhedron::RotateAroundZ(G4int nstep, 421 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi, 554 G4int np1, G4 422 G4int np1, G4int np2, 555 const G4doubl 423 const G4double *z, G4double *r, 556 G4int nodeVis 424 G4int nodeVis, G4int edgeVis) 557 /********************************************* 425 /*********************************************************************** 558 * 426 * * 559 * Name: HepPolyhedron::RotateAroundZ 427 * Name: HepPolyhedron::RotateAroundZ Date: 27.11.96 * 560 * Author: E.Chernyaev (IHEP/Protvino) 428 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 561 * 429 * * 562 * Function: Create HepPolyhedron for a solid 430 * Function: Create HepPolyhedron for a solid produced by rotation of * 563 * two polylines around Z-axis 431 * two polylines around Z-axis * 564 * 432 * * 565 * Input: nstep - number of discrete steps, if 433 * Input: nstep - number of discrete steps, if 0 then default * 566 * phi - starting phi angle 434 * phi - starting phi angle * 567 * dphi - delta phi 435 * dphi - delta phi * 568 * np1 - number of points in external 436 * np1 - number of points in external polyline * 569 * (must be negative in case of 437 * (must be negative in case of closed polyline) * 570 * np2 - number of points in internal 438 * np2 - number of points in internal polyline (may be 1) * 571 * z[] - z-coordinates (+z >>> -z for 439 * z[] - z-coordinates (+z >>> -z for both polylines) * 572 * r[] - r-coordinates 440 * r[] - r-coordinates * 573 * nodeVis - how to Draw edges joing co 441 * nodeVis - how to Draw edges joing consecutive positions of * 574 * node during rotation 442 * node during rotation * 575 * edgeVis - how to Draw edges 443 * edgeVis - how to Draw edges * 576 * 444 * * 577 ********************************************* 445 ***********************************************************************/ 578 { 446 { 579 static const G4double wholeCircle = twopi; << 447 static G4double wholeCircle = twopi; 580 << 448 581 // S E T R O T A T I O N P A R A M E T 449 // S E T R O T A T I O N P A R A M E T E R S 582 450 583 G4bool ifWholeCircle = std::abs(dphi-wholeCi << 451 G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false; 584 G4double delPhi = ifWholeCircle ? wholeCircl << 452 G4double delPhi = ifWholeCircle ? wholeCircle : dphi; 585 G4int nSphi = nstep; << 453 G4int nSphi = (nstep > 0) ? 586 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 454 nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5); 587 if (nSphi == 0) nSphi = 1; 455 if (nSphi == 0) nSphi = 1; 588 G4int nVphi = ifWholeCircle ? nSphi : nSphi << 456 G4int nVphi = ifWholeCircle ? nSphi : nSphi+1; 589 G4bool ifClosed = np1 <= 0; // true if exter << 457 G4bool ifClosed = np1 > 0 ? false : true; 590 << 458 591 // C O U N T V E R T I C E S << 459 // C O U N T V E R T E C E S 592 460 593 G4int absNp1 = std::abs(np1); 461 G4int absNp1 = std::abs(np1); 594 G4int absNp2 = std::abs(np2); 462 G4int absNp2 = std::abs(np2); 595 G4int i1beg = 0; 463 G4int i1beg = 0; 596 G4int i1end = absNp1-1; 464 G4int i1end = absNp1-1; 597 G4int i2beg = absNp1; 465 G4int i2beg = absNp1; 598 G4int i2end = absNp1+absNp2-1; << 466 G4int i2end = absNp1+absNp2-1; 599 G4int i, j, k; 467 G4int i, j, k; 600 468 601 for(i=i1beg; i<=i2end; i++) { 469 for(i=i1beg; i<=i2end; i++) { 602 if (std::abs(r[i]) < spatialTolerance) r[i << 470 if (std::abs(r[i]) < perMillion) r[i] = 0.; 603 } 471 } 604 472 605 // external polyline - check position of nod << 473 j = 0; // external nodes 606 // << 607 G4int Nverts = 0; << 608 for (i=i1beg; i<=i1end; i++) { 474 for (i=i1beg; i<=i1end; i++) { 609 Nverts += (r[i] == 0.) ? 1 : nVphi; << 475 j += (r[i] == 0.) ? 1 : nVphi; 610 } 476 } 611 477 612 // internal polyline << 478 G4bool ifSide1 = false; // internal nodes 613 // << 479 G4bool ifSide2 = false; 614 G4bool ifSide1 = false; // whether to create << 615 G4bool ifSide2 = false; // whether to create << 616 480 617 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 481 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) { 618 Nverts += (r[i2beg] == 0.) ? 1 : nVphi; << 482 j += (r[i2beg] == 0.) ? 1 : nVphi; 619 ifSide1 = true; 483 ifSide1 = true; 620 } 484 } 621 485 622 for(i=i2beg+1; i<i2end; i++) { // intermedia << 486 for(i=i2beg+1; i<i2end; i++) { 623 Nverts += (r[i] == 0.) ? 1 : nVphi; << 487 j += (r[i] == 0.) ? 1 : nVphi; 624 } 488 } 625 << 489 626 if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 490 if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) { 627 if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 491 if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi; 628 ifSide2 = true; 492 ifSide2 = true; 629 } 493 } 630 494 631 // C O U N T F A C E S 495 // C O U N T F A C E S 632 496 633 // external lateral faces << 497 k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi; // external faces 634 // << 635 G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 636 498 637 // internal lateral faces << 499 if (absNp2 > 1) { // internal faces 638 // << 639 if (absNp2 > 1) { << 640 for(i=i2beg; i<i2end; i++) { 500 for(i=i2beg; i<i2end; i++) { 641 if (r[i] > 0. || r[i+1] > 0.) Nfaces += << 501 if (r[i] > 0. || r[i+1] > 0.) k += nSphi; 642 } 502 } 643 503 644 if (ifClosed) { 504 if (ifClosed) { 645 if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 505 if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi; 646 } 506 } 647 } 507 } 648 508 649 // bottom and top faces << 509 if (!ifClosed) { // side faces 650 // << 510 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi; 651 if (!ifClosed) { << 511 if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi; 652 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] << 653 if (ifSide2 && (r[i1end] > 0. || r[i2end] << 654 } 512 } 655 513 656 // phi_wedge faces << 514 if (!ifWholeCircle) { // phi_side faces 657 // << 515 k += ifClosed ? 2*absNp1 : 2*(absNp1-1); 658 if (!ifWholeCircle) { << 659 Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 660 } 516 } 661 517 662 // A L L O C A T E M E M O R Y 518 // A L L O C A T E M E M O R Y 663 519 664 AllocateMemory(Nverts, Nfaces); << 520 AllocateMemory(j, k); 665 if (pV == nullptr || pF == nullptr) return; << 666 521 667 // G E N E R A T E V E R T I C E S << 522 // G E N E R A T E V E R T E C E S 668 523 669 G4int *kk; // array of start indices along p << 524 G4int *kk; 670 kk = new G4int[absNp1+absNp2]; 525 kk = new G4int[absNp1+absNp2]; 671 526 672 // external polyline << 527 k = 1; 673 // << 674 k = 1; // free position in array of vertices << 675 for(i=i1beg; i<=i1end; i++) { 528 for(i=i1beg; i<=i1end; i++) { 676 kk[i] = k; 529 kk[i] = k; 677 if (r[i] == 0.) 530 if (r[i] == 0.) 678 { pV[k++] = G4Point3D(0, 0, z[i]); } else 531 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 679 } 532 } 680 533 681 // first point of internal polyline << 682 // << 683 i = i2beg; 534 i = i2beg; 684 if (ifSide1) { 535 if (ifSide1) { 685 kk[i] = k; 536 kk[i] = k; 686 if (r[i] == 0.) 537 if (r[i] == 0.) 687 { pV[k++] = G4Point3D(0, 0, z[i]); } else 538 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 688 }else{ 539 }else{ 689 kk[i] = kk[i1beg]; 540 kk[i] = kk[i1beg]; 690 } 541 } 691 542 692 // intermediate points of internal polyline << 693 // << 694 for(i=i2beg+1; i<i2end; i++) { 543 for(i=i2beg+1; i<i2end; i++) { 695 kk[i] = k; 544 kk[i] = k; 696 if (r[i] == 0.) 545 if (r[i] == 0.) 697 { pV[k++] = G4Point3D(0, 0, z[i]); } else 546 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 698 } 547 } 699 548 700 // last point of internal polyline << 701 // << 702 if (absNp2 > 1) { 549 if (absNp2 > 1) { 703 i = i2end; 550 i = i2end; 704 if (ifSide2) { 551 if (ifSide2) { 705 kk[i] = k; 552 kk[i] = k; 706 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, 553 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]); 707 }else{ 554 }else{ 708 kk[i] = kk[i1end]; 555 kk[i] = kk[i1end]; 709 } 556 } 710 } 557 } 711 558 712 // set vertices << 713 // << 714 G4double cosPhi, sinPhi; 559 G4double cosPhi, sinPhi; 715 560 716 for(j=0; j<nVphi; j++) { 561 for(j=0; j<nVphi; j++) { 717 cosPhi = std::cos(phi+j*delPhi/nSphi); 562 cosPhi = std::cos(phi+j*delPhi/nSphi); 718 sinPhi = std::sin(phi+j*delPhi/nSphi); 563 sinPhi = std::sin(phi+j*delPhi/nSphi); 719 for(i=i1beg; i<=i2end; i++) { 564 for(i=i1beg; i<=i2end; i++) { 720 if (r[i] != 0.) 565 if (r[i] != 0.) 721 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[ 566 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]); 722 } 567 } 723 } 568 } 724 569 725 // G E N E R A T E F A C E S << 570 // G E N E R A T E E X T E R N A L F A C E S 726 571 727 // external faces << 728 // << 729 G4int v1,v2; 572 G4int v1,v2; 730 573 731 k = 1; // free position in array of faces pF << 574 k = 1; 732 v2 = ifClosed ? nodeVis : 1; 575 v2 = ifClosed ? nodeVis : 1; 733 for(i=i1beg; i<i1end; i++) { 576 for(i=i1beg; i<i1end; i++) { 734 v1 = v2; 577 v1 = v2; 735 if (!ifClosed && i == i1end-1) { 578 if (!ifClosed && i == i1end-1) { 736 v2 = 1; 579 v2 = 1; 737 }else{ 580 }else{ 738 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2] 581 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 739 } 582 } 740 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v 583 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2, 741 edgeVis, ifWholeCircle, nSphi, 584 edgeVis, ifWholeCircle, nSphi, k); 742 } 585 } 743 if (ifClosed) { 586 if (ifClosed) { 744 RotateEdge(kk[i1end], kk[i1beg], r[i1end], 587 RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis, 745 edgeVis, ifWholeCircle, nSphi, 588 edgeVis, ifWholeCircle, nSphi, k); 746 } 589 } 747 590 748 // internal faces << 591 // G E N E R A T E I N T E R N A L F A C E S 749 // << 592 750 if (absNp2 > 1) { 593 if (absNp2 > 1) { 751 v2 = ifClosed ? nodeVis : 1; 594 v2 = ifClosed ? nodeVis : 1; 752 for(i=i2beg; i<i2end; i++) { 595 for(i=i2beg; i<i2end; i++) { 753 v1 = v2; 596 v1 = v2; 754 if (!ifClosed && i==i2end-1) { 597 if (!ifClosed && i==i2end-1) { 755 v2 = 1; 598 v2 = 1; 756 }else{ 599 }else{ 757 v2 = (r[i] == r[i+1] && r[i+1] == r[i+ 600 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 758 } 601 } 759 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], 602 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1, 760 edgeVis, ifWholeCircle, nSphi 603 edgeVis, ifWholeCircle, nSphi, k); 761 } 604 } 762 if (ifClosed) { 605 if (ifClosed) { 763 RotateEdge(kk[i2beg], kk[i2end], r[i2beg 606 RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis, 764 edgeVis, ifWholeCircle, nSphi 607 edgeVis, ifWholeCircle, nSphi, k); 765 } 608 } 766 } 609 } 767 610 768 // bottom and top faces << 611 // G E N E R A T E S I D E F A C E S 769 // << 612 770 if (!ifClosed) { 613 if (!ifClosed) { 771 if (ifSide1) { 614 if (ifSide1) { 772 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg 615 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1, 773 -1, ifWholeCircle, nSphi, k); 616 -1, ifWholeCircle, nSphi, k); 774 } 617 } 775 if (ifSide2) { 618 if (ifSide2) { 776 RotateEdge(kk[i1end], kk[i2end], r[i1end 619 RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1, 777 -1, ifWholeCircle, nSphi, k); 620 -1, ifWholeCircle, nSphi, k); 778 } 621 } 779 } 622 } 780 623 781 // phi_wedge faces in case of incomplete cir << 624 // G E N E R A T E S I D E F A C E S for the case of incomplete circle 782 // << 625 783 if (!ifWholeCircle) { 626 if (!ifWholeCircle) { 784 627 785 G4int ii[4], vv[4]; 628 G4int ii[4], vv[4]; 786 629 787 if (ifClosed) { 630 if (ifClosed) { 788 for (i=i1beg; i<=i1end; i++) { 631 for (i=i1beg; i<=i1end; i++) { 789 ii[0] = i; 632 ii[0] = i; 790 ii[3] = (i == i1end) ? i1beg : i+1; 633 ii[3] = (i == i1end) ? i1beg : i+1; 791 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 634 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 792 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 635 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 793 vv[0] = -1; 636 vv[0] = -1; 794 vv[1] = 1; 637 vv[1] = 1; 795 vv[2] = -1; 638 vv[2] = -1; 796 vv[3] = 1; 639 vv[3] = 1; 797 SetSideFacets(ii, vv, kk, r, delPhi, n << 640 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 798 } 641 } 799 }else{ 642 }else{ 800 for (i=i1beg; i<i1end; i++) { 643 for (i=i1beg; i<i1end; i++) { 801 ii[0] = i; 644 ii[0] = i; 802 ii[3] = i+1; 645 ii[3] = i+1; 803 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 646 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 804 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 647 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 805 vv[0] = (i == i1beg) ? 1 : -1; 648 vv[0] = (i == i1beg) ? 1 : -1; 806 vv[1] = 1; 649 vv[1] = 1; 807 vv[2] = (i == i1end-1) ? 1 : -1; 650 vv[2] = (i == i1end-1) ? 1 : -1; 808 vv[3] = 1; 651 vv[3] = 1; 809 SetSideFacets(ii, vv, kk, r, delPhi, n << 652 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 810 } 653 } 811 } << 654 } 812 } 655 } 813 656 814 delete [] kk; // free memory << 657 delete [] kk; 815 658 816 // final check << 817 // << 818 if (k-1 != nface) { 659 if (k-1 != nface) { 819 std::cerr 660 std::cerr 820 << "HepPolyhedron::RotateAroundZ: number << 661 << "Polyhedron::RotateAroundZ: number of generated faces (" 821 << k-1 << ") is not equal to the number 662 << k-1 << ") is not equal to the number of allocated faces (" 822 << nface << ")" 663 << nface << ")" 823 << std::endl; 664 << std::endl; 824 } 665 } 825 } 666 } 826 667 827 void << 828 HepPolyhedron::RotateContourAroundZ(G4int nste << 829 G4double p << 830 G4double d << 831 const std: << 832 G4int node << 833 G4int edge << 834 /********************************************* << 835 * << 836 * Name: HepPolyhedron::RotateContourAroundZ << 837 * Author: E.Tcherniaev (E.Chernyaev) << 838 * << 839 * Function: Create HepPolyhedron for a solid << 840 * a closed polyline (rz-contour) ar << 841 * << 842 * Input: nstep - number of discrete steps, if << 843 * phi - starting phi angle << 844 * dphi - delta phi << 845 * rz - rz-contour << 846 * nodeVis - how to Draw edges joing co << 847 * node during rotation << 848 * edgeVis - how to Draw edges << 849 * << 850 ********************************************* << 851 { << 852 // S E T R O T A T I O N P A R A M E T << 853 << 854 G4bool ifWholeCircle = std::abs(dphi - twopi << 855 G4double delPhi = (ifWholeCircle) ? twopi : << 856 G4int nSphi = nstep; << 857 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 858 if (nSphi == 0) nSphi = 1; << 859 G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 860 << 861 // C A L C U L A T E A R E A << 862 << 863 G4int Nrz = (G4int)rz.size(); << 864 G4double area = 0; << 865 for (G4int i = 0; i < Nrz; ++i) << 866 { << 867 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 868 area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 869 } << 870 << 871 // P R E P A R E P O L Y L I N E << 872 << 873 auto r = new G4double[Nrz]; << 874 auto z = new G4double[Nrz]; << 875 for (G4int i = 0; i < Nrz; ++i) << 876 { << 877 r[i] = rz[i].x(); << 878 z[i] = rz[i].y(); << 879 if (std::abs(r[i]) < spatialTolerance) r[i << 880 } << 881 << 882 // C O U N T V E R T I C E S A N D F << 883 << 884 G4int Nverts = 0; << 885 for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 886 << 887 G4int Nedges = Nrz; << 888 for (G4int i = 0; i < Nrz; ++i) << 889 { << 890 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 891 Nedges -= static_cast<int>(r[k] == 0 && r[ << 892 } << 893 << 894 G4int Nfaces = Nedges*nSphi; / << 895 if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 896 << 897 // A L L O C A T E M E M O R Y << 898 << 899 AllocateMemory(Nverts, Nfaces); << 900 if (pV == nullptr || pF == nullptr) << 901 { << 902 delete [] r; << 903 delete [] z; << 904 return; << 905 } << 906 << 907 // S E T V E R T I C E S << 908 << 909 auto kk = new G4int[Nrz]; // start indices a << 910 G4int kfree = 1; // current free position in << 911 << 912 // set start indices, set vertices for nodes << 913 for(G4int i = 0; i < Nrz; ++i) << 914 { << 915 kk[i] = kfree; << 916 if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 917 if (r[i] != 0.) kfree += nVphi; << 918 } << 919 << 920 // set vertices by rotating r << 921 for(G4int j = 0; j < nVphi; ++j) << 922 { << 923 G4double cosPhi = std::cos(phi + j*delPhi/ << 924 G4double sinPhi = std::sin(phi + j*delPhi/ << 925 for(G4int i = 0; i < Nrz; ++i) << 926 { << 927 if (r[i] != 0.) << 928 pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 929 } << 930 } << 931 << 932 // S E T F A C E S << 933 << 934 kfree = 1; // current free position in array << 935 for(G4int i = 0; i < Nrz; ++i) << 936 { << 937 G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 938 G4int i2 = i; << 939 if (area < 0.) std::swap(i1, i2); << 940 RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 941 edgeVis, ifWholeCircle, nSphi, << 942 } << 943 << 944 // S E T P H I _ W E D G E F A C E S << 945 << 946 if (!ifWholeCircle) << 947 { << 948 std::vector<G4int> triangles; << 949 TriangulatePolygon(rz, triangles); << 950 << 951 G4int ii[4], vv[4]; << 952 G4int ntria = G4int(triangles.size()/3); << 953 for (G4int i = 0; i < ntria; ++i) << 954 { << 955 G4int i1 = triangles[0 + i*3]; << 956 G4int i2 = triangles[1 + i*3]; << 957 G4int i3 = triangles[2 + i*3]; << 958 if (area < 0.) std::swap(i1, i3); << 959 G4int v1 = (std::abs(i2-i1) == 1 || std: << 960 G4int v2 = (std::abs(i3-i2) == 1 || std: << 961 G4int v3 = (std::abs(i1-i3) == 1 || std: << 962 ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 963 vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 964 SetSideFacets(ii, vv, kk, r, delPhi, nSp << 965 } << 966 } << 967 << 968 // free memory << 969 delete [] r; << 970 delete [] z; << 971 delete [] kk; << 972 << 973 // final check << 974 if (kfree - 1 != nface) << 975 { << 976 std::cerr << 977 << "HepPolyhedron::RotateContourAroundZ: << 978 << kfree-1 << ") is not equal to the num << 979 << nface << ")" << 980 << std::endl; << 981 } << 982 } << 983 << 984 G4bool << 985 HepPolyhedron::TriangulatePolygon(const std::v << 986 std::vector< << 987 /********************************************* << 988 * << 989 * Name: HepPolyhedron::TriangulatePolygon << 990 * Author: E.Tcherniaev (E.Chernyaev) << 991 * << 992 * Function: Simple implementation of "ear cli << 993 * triangulation of a simple contour << 994 * the result in a std::vector as tr << 995 * << 996 * If triangulation is sucsessfull t << 997 * returns true, otherwise false << 998 * << 999 * Remark: It's a copy of G4GeomTools::Trian << 1000 * << 1001 ******************************************** << 1002 { << 1003 result.resize(0); << 1004 G4int n = (G4int)polygon.size(); << 1005 if (n < 3) return false; << 1006 << 1007 // calculate area << 1008 // << 1009 G4double area = 0.; << 1010 for(G4int i = 0; i < n; ++i) << 1011 { << 1012 G4int k = (i == 0) ? n - 1 : i - 1; << 1013 area += polygon[k].x()*polygon[i].y() - p << 1014 } << 1015 << 1016 // allocate and initialize list of Vertices << 1017 // we want a counter-clockwise polygon in V << 1018 // << 1019 auto V = new G4int[n]; << 1020 if (area > 0.) << 1021 for (G4int i = 0; i < n; ++i) V[i] = i; << 1022 else << 1023 for (G4int i = 0; i < n; ++i) V[i] = (n - << 1024 << 1025 // Triangulation: remove nv-2 Vertices, cr << 1026 // << 1027 G4int nv = n; << 1028 G4int count = 2*nv; // error detection coun << 1029 for(G4int b = nv - 1; nv > 2; ) << 1030 { << 1031 // ERROR: if we loop, it is probably a no << 1032 if ((count--) <= 0) << 1033 { << 1034 delete [] V; << 1035 if (area < 0.) std::reverse(result.begi << 1036 return false; << 1037 } << 1038 << 1039 // three consecutive vertices in current << 1040 G4int a = (b < nv) ? b : 0; // previo << 1041 b = (a+1 < nv) ? a+1 : 0; // curren << 1042 G4int c = (b+1 < nv) ? b+1 : 0; // next << 1043 << 1044 if (CheckSnip(polygon, a,b,c, nv,V)) << 1045 { << 1046 // output Triangle << 1047 result.push_back(V[a]); << 1048 result.push_back(V[b]); << 1049 result.push_back(V[c]); << 1050 << 1051 // remove vertex b from remaining polyg << 1052 nv--; << 1053 for(G4int i = b; i < nv; ++i) V[i] = V[ << 1054 << 1055 count = 2*nv; // resest error detection << 1056 } << 1057 } << 1058 delete [] V; << 1059 if (area < 0.) std::reverse(result.begin(), << 1060 return true; << 1061 } << 1062 << 1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 1064 G4int a, G4in << 1065 G4int n, cons << 1066 /******************************************** << 1067 * << 1068 * Name: HepPolyhedron::CheckSnip << 1069 * Author: E.Tcherniaev (E.Chernyaev) << 1070 * << 1071 * Function: Check for a valid snip, << 1072 * it is a helper functionfor Trian << 1073 * << 1074 ******************************************** << 1075 { << 1076 static const G4double kCarTolerance = 1.e-9 << 1077 << 1078 // check orientation of Triangle << 1079 G4double Ax = contour[V[a]].x(), Ay = conto << 1080 G4double Bx = contour[V[b]].x(), By = conto << 1081 G4double Cx = contour[V[c]].x(), Cy = conto << 1082 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 1083 << 1084 // check that there is no point inside Tria << 1085 G4double xmin = std::min(std::min(Ax,Bx),Cx << 1086 G4double xmax = std::max(std::max(Ax,Bx),Cx << 1087 G4double ymin = std::min(std::min(Ay,By),Cy << 1088 G4double ymax = std::max(std::max(Ay,By),Cy << 1089 << 1090 for (G4int i=0; i<n; ++i) << 1091 { << 1092 if((i == a) || (i == b) || (i == c)) cont << 1093 G4double Px = contour[V[i]].x(); << 1094 if (Px < xmin || Px > xmax) continue; << 1095 G4double Py = contour[V[i]].y(); << 1096 if (Py < ymin || Py > ymax) continue; << 1097 // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 1098 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 1099 { << 1100 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 1101 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 1102 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 1103 } << 1104 else << 1105 { << 1106 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 1107 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 1108 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 1109 } << 1110 return false; << 1111 } << 1112 return true; << 1113 } << 1114 << 1115 void HepPolyhedron::SetReferences() 668 void HepPolyhedron::SetReferences() 1116 /******************************************** 669 /*********************************************************************** 1117 * 670 * * 1118 * Name: HepPolyhedron::SetReferences 671 * Name: HepPolyhedron::SetReferences Date: 04.12.96 * 1119 * Author: E.Chernyaev (IHEP/Protvino) 672 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1120 * 673 * * 1121 * Function: For each edge set reference to n 674 * Function: For each edge set reference to neighbouring facet * 1122 * 675 * * 1123 ******************************************** 676 ***********************************************************************/ 1124 { 677 { 1125 if (nface <= 0) return; 678 if (nface <= 0) return; 1126 679 1127 struct edgeListMember { 680 struct edgeListMember { 1128 edgeListMember *next; 681 edgeListMember *next; 1129 G4int v2; 682 G4int v2; 1130 G4int iface; 683 G4int iface; 1131 G4int iedge; 684 G4int iedge; 1132 } *edgeList, *freeList, **headList; 685 } *edgeList, *freeList, **headList; 1133 686 1134 << 687 1135 // A L L O C A T E A N D I N I T I A 688 // A L L O C A T E A N D I N I T I A T E L I S T S 1136 689 1137 edgeList = new edgeListMember[2*nface]; 690 edgeList = new edgeListMember[2*nface]; 1138 headList = new edgeListMember*[nvert]; 691 headList = new edgeListMember*[nvert]; 1139 << 692 1140 G4int i; 693 G4int i; 1141 for (i=0; i<nvert; i++) { 694 for (i=0; i<nvert; i++) { 1142 headList[i] = nullptr; << 695 headList[i] = 0; 1143 } 696 } 1144 freeList = edgeList; 697 freeList = edgeList; 1145 for (i=0; i<2*nface-1; i++) { 698 for (i=0; i<2*nface-1; i++) { 1146 edgeList[i].next = &edgeList[i+1]; 699 edgeList[i].next = &edgeList[i+1]; 1147 } 700 } 1148 edgeList[2*nface-1].next = nullptr; << 701 edgeList[2*nface-1].next = 0; 1149 702 1150 // L O O P A L O N G E D G E S 703 // L O O P A L O N G E D G E S 1151 704 1152 G4int iface, iedge, nedge, i1, i2, k1, k2; 705 G4int iface, iedge, nedge, i1, i2, k1, k2; 1153 edgeListMember *prev, *cur; 706 edgeListMember *prev, *cur; 1154 << 707 1155 for(iface=1; iface<=nface; iface++) { 708 for(iface=1; iface<=nface; iface++) { 1156 nedge = (pF[iface].edge[3].v == 0) ? 3 : 709 nedge = (pF[iface].edge[3].v == 0) ? 3 : 4; 1157 for (iedge=0; iedge<nedge; iedge++) { 710 for (iedge=0; iedge<nedge; iedge++) { 1158 i1 = iedge; 711 i1 = iedge; 1159 i2 = (iedge < nedge-1) ? iedge+1 : 0; 712 i2 = (iedge < nedge-1) ? iedge+1 : 0; 1160 i1 = std::abs(pF[iface].edge[i1].v); 713 i1 = std::abs(pF[iface].edge[i1].v); 1161 i2 = std::abs(pF[iface].edge[i2].v); 714 i2 = std::abs(pF[iface].edge[i2].v); 1162 k1 = (i1 < i2) ? i1 : i2; // k 715 k1 = (i1 < i2) ? i1 : i2; // k1 = ::min(i1,i2); 1163 k2 = (i1 > i2) ? i1 : i2; // k 716 k2 = (i1 > i2) ? i1 : i2; // k2 = ::max(i1,i2); 1164 << 717 1165 // check head of the List corresponding 718 // check head of the List corresponding to k1 1166 cur = headList[k1]; 719 cur = headList[k1]; 1167 if (cur == nullptr) { << 720 if (cur == 0) { 1168 headList[k1] = freeList; 721 headList[k1] = freeList; 1169 if (freeList == nullptr) { << 1170 std::cerr << 1171 << "Polyhedron::SetReferences: bad << 1172 << std::endl; << 1173 break; << 1174 } << 1175 freeList = freeList->next; 722 freeList = freeList->next; 1176 cur = headList[k1]; 723 cur = headList[k1]; 1177 cur->next = nullptr; << 724 cur->next = 0; 1178 cur->v2 = k2; 725 cur->v2 = k2; 1179 cur->iface = iface; 726 cur->iface = iface; 1180 cur->iedge = iedge; 727 cur->iedge = iedge; 1181 continue; 728 continue; 1182 } 729 } 1183 730 1184 if (cur->v2 == k2) { 731 if (cur->v2 == k2) { 1185 headList[k1] = cur->next; 732 headList[k1] = cur->next; 1186 cur->next = freeList; 733 cur->next = freeList; 1187 freeList = cur; << 734 freeList = cur; 1188 pF[iface].edge[iedge].f = cur->iface; 735 pF[iface].edge[iedge].f = cur->iface; 1189 pF[cur->iface].edge[cur->iedge].f = i 736 pF[cur->iface].edge[cur->iedge].f = iface; 1190 i1 = (pF[iface].edge[iedge].v < 0) ? 737 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1191 i2 = (pF[cur->iface].edge[cur->iedge] 738 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1192 if (i1 != i2) { 739 if (i1 != i2) { 1193 std::cerr 740 std::cerr 1194 << "Polyhedron::SetReferences: di 741 << "Polyhedron::SetReferences: different edge visibility " 1195 << iface << "/" << iedge << "/" 742 << iface << "/" << iedge << "/" 1196 << pF[iface].edge[iedge].v << " a 743 << pF[iface].edge[iedge].v << " and " 1197 << cur->iface << "/" << cur->iedg 744 << cur->iface << "/" << cur->iedge << "/" 1198 << pF[cur->iface].edge[cur->iedge 745 << pF[cur->iface].edge[cur->iedge].v 1199 << std::endl; 746 << std::endl; 1200 } 747 } 1201 continue; 748 continue; 1202 } 749 } 1203 750 1204 // check List itself 751 // check List itself 1205 for (;;) { 752 for (;;) { 1206 prev = cur; 753 prev = cur; 1207 cur = prev->next; 754 cur = prev->next; 1208 if (cur == nullptr) { << 755 if (cur == 0) { 1209 prev->next = freeList; 756 prev->next = freeList; 1210 if (freeList == nullptr) { << 1211 std::cerr << 1212 << "Polyhedron::SetReferences: ba << 1213 << std::endl; << 1214 break; << 1215 } << 1216 freeList = freeList->next; 757 freeList = freeList->next; 1217 cur = prev->next; 758 cur = prev->next; 1218 cur->next = nullptr; << 759 cur->next = 0; 1219 cur->v2 = k2; 760 cur->v2 = k2; 1220 cur->iface = iface; 761 cur->iface = iface; 1221 cur->iedge = iedge; 762 cur->iedge = iedge; 1222 break; 763 break; 1223 } 764 } 1224 765 1225 if (cur->v2 == k2) { 766 if (cur->v2 == k2) { 1226 prev->next = cur->next; 767 prev->next = cur->next; 1227 cur->next = freeList; 768 cur->next = freeList; 1228 freeList = cur; << 769 freeList = cur; 1229 pF[iface].edge[iedge].f = cur->ifac 770 pF[iface].edge[iedge].f = cur->iface; 1230 pF[cur->iface].edge[cur->iedge].f = 771 pF[cur->iface].edge[cur->iedge].f = iface; 1231 i1 = (pF[iface].edge[iedge].v < 0) 772 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1232 i2 = (pF[cur->iface].edge[cur->iedg 773 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1233 if (i1 != i2) { 774 if (i1 != i2) { 1234 std::cerr 775 std::cerr 1235 << "Polyhedron::SetReferences 776 << "Polyhedron::SetReferences: different edge visibility " 1236 << iface << "/" << iedge << " 777 << iface << "/" << iedge << "/" 1237 << pF[iface].edge[iedge].v << 778 << pF[iface].edge[iedge].v << " and " 1238 << cur->iface << "/" << cur-> 779 << cur->iface << "/" << cur->iedge << "/" 1239 << pF[cur->iface].edge[cur->i 780 << pF[cur->iface].edge[cur->iedge].v 1240 << std::endl; 781 << std::endl; 1241 } 782 } 1242 break; 783 break; 1243 } 784 } 1244 } 785 } 1245 } 786 } 1246 } 787 } 1247 788 1248 // C H E C K T H A T A L L L I S T S 789 // C H E C K T H A T A L L L I S T S A R E E M P T Y 1249 790 1250 for (i=0; i<nvert; i++) { 791 for (i=0; i<nvert; i++) { 1251 if (headList[i] != nullptr) { << 792 if (headList[i] != 0) { 1252 std::cerr 793 std::cerr 1253 << "Polyhedron::SetReferences: List " 794 << "Polyhedron::SetReferences: List " << i << " is not empty" 1254 << std::endl; 795 << std::endl; 1255 } 796 } 1256 } 797 } 1257 798 1258 // F R E E M E M O R Y 799 // F R E E M E M O R Y 1259 800 1260 delete [] edgeList; 801 delete [] edgeList; 1261 delete [] headList; 802 delete [] headList; 1262 } 803 } 1263 804 1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 1265 /******************************************** << 1266 * << 1267 * Name: HepPolyhedron::JoinCoplanarFacets << 1268 * Author: E.Tcherniaev (E.Chernyaev) << 1269 * << 1270 * Function: Join couples of triangular facet << 1271 * where it is possible << 1272 * << 1273 ******************************************** << 1274 { << 1275 G4int njoin = 0; << 1276 for (G4int icur = 1; icur <= nface; ++icur) << 1277 { << 1278 // skip if already joined or quadrangle << 1279 if (pF[icur].edge[0].v == 0) continue; << 1280 if (pF[icur].edge[3].v != 0) continue; << 1281 // skip if all references point to alread << 1282 if (pF[icur].edge[0].f < icur && << 1283 pF[icur].edge[1].f < icur && << 1284 pF[icur].edge[2].f < icur) continue; << 1285 // compute plane equation << 1286 G4Normal3D norm = GetUnitNormal(icur); << 1287 G4double dd = norm.dot(pV[pF[icur].edge[0 << 1288 G4int vcur0 = std::abs(pF[icur].edge[0].v << 1289 G4int vcur1 = std::abs(pF[icur].edge[1].v << 1290 G4int vcur2 = std::abs(pF[icur].edge[2].v << 1291 // select neighbouring facet << 1292 G4int kcheck = 0, icheck = 0, vcheck = 0; << 1293 G4double dist = DBL_MAX; << 1294 for (G4int k = 0; k < 3; ++k) << 1295 { << 1296 G4int itmp = pF[icur].edge[k].f; << 1297 // skip if already checked, joined or q << 1298 if (itmp < icur) continue; << 1299 if (pF[itmp].edge[0].v == 0 || << 1300 pF[itmp].edge[3].v != 0) continue; << 1301 // get candidate vertex << 1302 G4int vtmp = 0; << 1303 for (G4int j = 0; j < 3; ++j) << 1304 { << 1305 vtmp = std::abs(pF[itmp].edge[j].v); << 1306 if (vtmp != vcur0 && vtmp != vcur1 && vtmp << 1307 } << 1308 // check distance to the plane << 1309 G4double dtmp = std::abs(norm.dot(pV[vt << 1310 if (dtmp > tolerance || dtmp >= dist) c << 1311 dist = dtmp; << 1312 kcheck = k; << 1313 icheck = itmp; << 1314 vcheck = vtmp; << 1315 } << 1316 if (icheck == 0) continue; // no facet se << 1317 // join facets << 1318 njoin++; << 1319 pF[icheck].edge[0].v = 0; // mark facet a << 1320 if (kcheck == 0) << 1321 { << 1322 pF[icur].edge[3].v = pF[icur].edge[2].v << 1323 pF[icur].edge[2].v = pF[icur].edge[1].v << 1324 pF[icur].edge[1].v = vcheck; << 1325 } << 1326 else if (kcheck == 1) << 1327 { << 1328 pF[icur].edge[3].v = pF[icur].edge[2].v << 1329 pF[icur].edge[2].v = vcheck; << 1330 } << 1331 else << 1332 { << 1333 pF[icur].edge[3].v = vcheck; << 1334 } << 1335 } << 1336 if (njoin == 0) return; // no joined facets << 1337 << 1338 // restructure facets << 1339 G4int nnew = 0; << 1340 for (G4int icur = 1; icur <= nface; ++icur) << 1341 { << 1342 if (pF[icur].edge[0].v == 0) continue; << 1343 nnew++; << 1344 pF[nnew].edge[0].v = pF[icur].edge[0].v; << 1345 pF[nnew].edge[1].v = pF[icur].edge[1].v; << 1346 pF[nnew].edge[2].v = pF[icur].edge[2].v; << 1347 pF[nnew].edge[3].v = pF[icur].edge[3].v; << 1348 } << 1349 nface = nnew; << 1350 SetReferences(); << 1351 } << 1352 << 1353 void HepPolyhedron::InvertFacets() 805 void HepPolyhedron::InvertFacets() 1354 /******************************************** 806 /*********************************************************************** 1355 * 807 * * 1356 * Name: HepPolyhedron::InvertFacets 808 * Name: HepPolyhedron::InvertFacets Date: 01.12.99 * 1357 * Author: E.Chernyaev 809 * Author: E.Chernyaev Revised: * 1358 * 810 * * 1359 * Function: Invert the order of the nodes in 811 * Function: Invert the order of the nodes in the facets * 1360 * 812 * * 1361 ******************************************** 813 ***********************************************************************/ 1362 { 814 { 1363 if (nface <= 0) return; 815 if (nface <= 0) return; 1364 G4int i, k, nnode, v[4],f[4]; 816 G4int i, k, nnode, v[4],f[4]; 1365 for (i=1; i<=nface; i++) { 817 for (i=1; i<=nface; i++) { 1366 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 818 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 1367 for (k=0; k<nnode; k++) { 819 for (k=0; k<nnode; k++) { 1368 v[k] = (k+1 == nnode) ? pF[i].edge[0].v 820 v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v; 1369 if (v[k] * pF[i].edge[k].v < 0) v[k] = 821 if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k]; 1370 f[k] = pF[i].edge[k].f; 822 f[k] = pF[i].edge[k].f; 1371 } 823 } 1372 for (k=0; k<nnode; k++) { 824 for (k=0; k<nnode; k++) { 1373 pF[i].edge[nnode-1-k].v = v[k]; 825 pF[i].edge[nnode-1-k].v = v[k]; 1374 pF[i].edge[nnode-1-k].f = f[k]; 826 pF[i].edge[nnode-1-k].f = f[k]; 1375 } 827 } 1376 } 828 } 1377 } 829 } 1378 830 1379 HepPolyhedron & HepPolyhedron::Transform(cons 831 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t) 1380 /******************************************** 832 /*********************************************************************** 1381 * 833 * * 1382 * Name: HepPolyhedron::Transform 834 * Name: HepPolyhedron::Transform Date: 01.12.99 * 1383 * Author: E.Chernyaev 835 * Author: E.Chernyaev Revised: * 1384 * 836 * * 1385 * Function: Make transformation of the polyh 837 * Function: Make transformation of the polyhedron * 1386 * 838 * * 1387 ******************************************** 839 ***********************************************************************/ 1388 { 840 { 1389 if (nvert > 0) { 841 if (nvert > 0) { 1390 for (G4int i=1; i<=nvert; i++) { pV[i] = 842 for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; } 1391 843 1392 // C H E C K D E T E R M I N A N T A 844 // C H E C K D E T E R M I N A N T A N D 1393 // I N V E R T F A C E T S I F I T 845 // I N V E R T F A C E T S I F I T I S N E G A T I V E 1394 846 1395 G4Vector3D d = t * G4Vector3D(0,0,0); 847 G4Vector3D d = t * G4Vector3D(0,0,0); 1396 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 848 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 1397 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 849 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 1398 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 850 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 1399 if ((x.cross(y))*z < 0) InvertFacets(); 851 if ((x.cross(y))*z < 0) InvertFacets(); 1400 } 852 } 1401 return *this; 853 return *this; 1402 } 854 } 1403 855 1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in 856 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const 1405 /******************************************** 857 /*********************************************************************** 1406 * 858 * * 1407 * Name: HepPolyhedron::GetNextVertexIndex 859 * Name: HepPolyhedron::GetNextVertexIndex Date: 03.09.96 * 1408 * Author: Yasuhide Sawada 860 * Author: Yasuhide Sawada Revised: * 1409 * 861 * * 1410 * Function: 862 * Function: * 1411 * 863 * * 1412 ******************************************** 864 ***********************************************************************/ 1413 { 865 { 1414 static G4ThreadLocal G4int iFace = 1; << 866 static G4int iFace = 1; 1415 static G4ThreadLocal G4int iQVertex = 0; << 867 static G4int iQVertex = 0; 1416 G4int vIndex = pF[iFace].edge[iQVertex].v; 868 G4int vIndex = pF[iFace].edge[iQVertex].v; 1417 869 1418 edgeFlag = (vIndex > 0) ? 1 : 0; 870 edgeFlag = (vIndex > 0) ? 1 : 0; 1419 index = std::abs(vIndex); 871 index = std::abs(vIndex); 1420 872 1421 if (iQVertex >= 3 || pF[iFace].edge[iQVerte 873 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1422 iQVertex = 0; 874 iQVertex = 0; 1423 if (++iFace > nface) iFace = 1; 875 if (++iFace > nface) iFace = 1; 1424 return false; // Last Edge 876 return false; // Last Edge >> 877 }else{ >> 878 ++iQVertex; >> 879 return true; // not Last Edge 1425 } 880 } 1426 << 1427 ++iQVertex; << 1428 return true; // not Last Edge << 1429 } 881 } 1430 882 1431 G4Point3D HepPolyhedron::GetVertex(G4int inde 883 G4Point3D HepPolyhedron::GetVertex(G4int index) const 1432 /******************************************** 884 /*********************************************************************** 1433 * 885 * * 1434 * Name: HepPolyhedron::GetVertex 886 * Name: HepPolyhedron::GetVertex Date: 03.09.96 * 1435 * Author: Yasuhide Sawada 887 * Author: Yasuhide Sawada Revised: 17.11.99 * 1436 * 888 * * 1437 * Function: Get vertex of the index. 889 * Function: Get vertex of the index. * 1438 * 890 * * 1439 ******************************************** 891 ***********************************************************************/ 1440 { 892 { 1441 if (index <= 0 || index > nvert) { 893 if (index <= 0 || index > nvert) { 1442 std::cerr 894 std::cerr 1443 << "HepPolyhedron::GetVertex: irrelevan 895 << "HepPolyhedron::GetVertex: irrelevant index " << index 1444 << std::endl; 896 << std::endl; 1445 return G4Point3D(); 897 return G4Point3D(); 1446 } 898 } 1447 return pV[index]; 899 return pV[index]; 1448 } 900 } 1449 901 1450 G4bool 902 G4bool 1451 HepPolyhedron::GetNextVertex(G4Point3D &verte 903 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const 1452 /******************************************** 904 /*********************************************************************** 1453 * 905 * * 1454 * Name: HepPolyhedron::GetNextVertex 906 * Name: HepPolyhedron::GetNextVertex Date: 22.07.96 * 1455 * Author: John Allison 907 * Author: John Allison Revised: * 1456 * 908 * * 1457 * Function: Get vertices of the quadrilatera 909 * Function: Get vertices of the quadrilaterals in order for each * 1458 * face in face order. Returns fal 910 * face in face order. Returns false when finished each * 1459 * face. 911 * face. * 1460 * 912 * * 1461 ******************************************** 913 ***********************************************************************/ 1462 { 914 { 1463 G4int index; 915 G4int index; 1464 G4bool rep = GetNextVertexIndex(index, edge 916 G4bool rep = GetNextVertexIndex(index, edgeFlag); 1465 vertex = pV[index]; 917 vertex = pV[index]; 1466 return rep; 918 return rep; 1467 } 919 } 1468 920 1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D 921 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag, 1470 G4Normal3D 922 G4Normal3D &normal) const 1471 /******************************************** 923 /*********************************************************************** 1472 * 924 * * 1473 * Name: HepPolyhedron::GetNextVertex 925 * Name: HepPolyhedron::GetNextVertex Date: 26.11.99 * 1474 * Author: E.Chernyaev 926 * Author: E.Chernyaev Revised: * 1475 * 927 * * 1476 * Function: Get vertices with normals of the 928 * Function: Get vertices with normals of the quadrilaterals in order * 1477 * for each face in face order. 929 * for each face in face order. * 1478 * Returns false when finished each 930 * Returns false when finished each face. * 1479 * 931 * * 1480 ******************************************** 932 ***********************************************************************/ 1481 { 933 { 1482 static G4ThreadLocal G4int iFace = 1; << 934 static G4int iFace = 1; 1483 static G4ThreadLocal G4int iNode = 0; << 935 static G4int iNode = 0; 1484 936 1485 if (nface == 0) return false; // empty pol 937 if (nface == 0) return false; // empty polyhedron 1486 938 1487 G4int k = pF[iFace].edge[iNode].v; 939 G4int k = pF[iFace].edge[iNode].v; 1488 if (k > 0) { edgeFlag = 1; } else { edgeFla 940 if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; } 1489 vertex = pV[k]; 941 vertex = pV[k]; 1490 normal = FindNodeNormal(iFace,k); 942 normal = FindNodeNormal(iFace,k); 1491 if (iNode >= 3 || pF[iFace].edge[iNode+1].v 943 if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) { 1492 iNode = 0; 944 iNode = 0; 1493 if (++iFace > nface) iFace = 1; 945 if (++iFace > nface) iFace = 1; 1494 return false; // last node 946 return false; // last node >> 947 }else{ >> 948 ++iNode; >> 949 return true; // not last node 1495 } 950 } 1496 ++iNode; << 1497 return true; // not last no << 1498 } 951 } 1499 952 1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 953 G4bool HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag, 1501 G4int 954 G4int &iface1, G4int &iface2) const 1502 /******************************************** 955 /*********************************************************************** 1503 * 956 * * 1504 * Name: HepPolyhedron::GetNextEdgeIndices << 957 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 30.09.96 * 1505 * Author: E.Chernyaev 958 * Author: E.Chernyaev Revised: 17.11.99 * 1506 * 959 * * 1507 * Function: Get indices of the next edge tog << 960 * Function: Get indeces of the next edge together with indeces of * 1508 * of the faces which share the edg 961 * of the faces which share the edge. * 1509 * Returns false when the last edge 962 * Returns false when the last edge. * 1510 * 963 * * 1511 ******************************************** 964 ***********************************************************************/ 1512 { 965 { 1513 static G4ThreadLocal G4int iFace = 1; << 966 static G4int iFace = 1; 1514 static G4ThreadLocal G4int iQVertex = 0; << 967 static G4int iQVertex = 0; 1515 static G4ThreadLocal G4int iOrder = 1; << 968 static G4int iOrder = 1; 1516 G4int k1, k2, kflag, kface1, kface2; 969 G4int k1, k2, kflag, kface1, kface2; 1517 970 1518 if (iFace == 1 && iQVertex == 0) { 971 if (iFace == 1 && iQVertex == 0) { 1519 k2 = pF[nface].edge[0].v; 972 k2 = pF[nface].edge[0].v; 1520 k1 = pF[nface].edge[3].v; 973 k1 = pF[nface].edge[3].v; 1521 if (k1 == 0) k1 = pF[nface].edge[2].v; 974 if (k1 == 0) k1 = pF[nface].edge[2].v; 1522 if (std::abs(k1) > std::abs(k2)) iOrder = 975 if (std::abs(k1) > std::abs(k2)) iOrder = -1; 1523 } 976 } 1524 977 1525 do { 978 do { 1526 k1 = pF[iFace].edge[iQVertex].v; 979 k1 = pF[iFace].edge[iQVertex].v; 1527 kflag = k1; 980 kflag = k1; 1528 k1 = std::abs(k1); 981 k1 = std::abs(k1); 1529 kface1 = iFace; << 982 kface1 = iFace; 1530 kface2 = pF[iFace].edge[iQVertex].f; 983 kface2 = pF[iFace].edge[iQVertex].f; 1531 if (iQVertex >= 3 || pF[iFace].edge[iQVer 984 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1532 iQVertex = 0; 985 iQVertex = 0; 1533 k2 = std::abs(pF[iFace].edge[iQVertex]. 986 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1534 iFace++; 987 iFace++; 1535 }else{ 988 }else{ 1536 iQVertex++; 989 iQVertex++; 1537 k2 = std::abs(pF[iFace].edge[iQVertex]. 990 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1538 } 991 } 1539 } while (iOrder*k1 > iOrder*k2); 992 } while (iOrder*k1 > iOrder*k2); 1540 993 1541 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 994 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0; 1542 iface1 = kface1; iface2 = kface2; << 995 iface1 = kface1; iface2 = kface2; 1543 996 1544 if (iFace > nface) { 997 if (iFace > nface) { 1545 iFace = 1; iOrder = 1; 998 iFace = 1; iOrder = 1; 1546 return false; 999 return false; >> 1000 }else{ >> 1001 return true; 1547 } 1002 } 1548 << 1549 return true; << 1550 } 1003 } 1551 1004 1552 G4bool 1005 G4bool 1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1, << 1006 HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag) const 1554 /******************************************** 1007 /*********************************************************************** 1555 * 1008 * * 1556 * Name: HepPolyhedron::GetNextEdgeIndices << 1009 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 17.11.99 * 1557 * Author: E.Chernyaev 1010 * Author: E.Chernyaev Revised: * 1558 * 1011 * * 1559 * Function: Get indices of the next edge. << 1012 * Function: Get indeces of the next edge. * 1560 * Returns false when the last edge 1013 * Returns false when the last edge. * 1561 * 1014 * * 1562 ******************************************** 1015 ***********************************************************************/ 1563 { 1016 { 1564 G4int kface1, kface2; 1017 G4int kface1, kface2; 1565 return GetNextEdgeIndices(i1, i2, edgeFlag, << 1018 return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2); 1566 } 1019 } 1567 1020 1568 G4bool 1021 G4bool 1569 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1022 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1570 G4Point3D &p2, 1023 G4Point3D &p2, 1571 G4int &edgeFlag) c 1024 G4int &edgeFlag) const 1572 /******************************************** 1025 /*********************************************************************** 1573 * 1026 * * 1574 * Name: HepPolyhedron::GetNextEdge 1027 * Name: HepPolyhedron::GetNextEdge Date: 30.09.96 * 1575 * Author: E.Chernyaev 1028 * Author: E.Chernyaev Revised: * 1576 * 1029 * * 1577 * Function: Get next edge. 1030 * Function: Get next edge. * 1578 * Returns false when the last edge 1031 * Returns false when the last edge. * 1579 * 1032 * * 1580 ******************************************** 1033 ***********************************************************************/ 1581 { 1034 { 1582 G4int i1,i2; 1035 G4int i1,i2; 1583 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1036 G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag); 1584 p1 = pV[i1]; 1037 p1 = pV[i1]; 1585 p2 = pV[i2]; 1038 p2 = pV[i2]; 1586 return rep; 1039 return rep; 1587 } 1040 } 1588 1041 1589 G4bool 1042 G4bool 1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P 1043 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2, 1591 G4int &edgeFlag, G4 1044 G4int &edgeFlag, G4int &iface1, G4int &iface2) const 1592 /******************************************** 1045 /*********************************************************************** 1593 * 1046 * * 1594 * Name: HepPolyhedron::GetNextEdge 1047 * Name: HepPolyhedron::GetNextEdge Date: 17.11.99 * 1595 * Author: E.Chernyaev 1048 * Author: E.Chernyaev Revised: * 1596 * 1049 * * 1597 * Function: Get next edge with indices of th << 1050 * Function: Get next edge with indeces of the faces which share * 1598 * the edge. 1051 * the edge. * 1599 * Returns false when the last edge 1052 * Returns false when the last edge. * 1600 * 1053 * * 1601 ******************************************** 1054 ***********************************************************************/ 1602 { 1055 { 1603 G4int i1,i2; 1056 G4int i1,i2; 1604 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1057 G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2); 1605 p1 = pV[i1]; 1058 p1 = pV[i1]; 1606 p2 = pV[i2]; 1059 p2 = pV[i2]; 1607 return rep; 1060 return rep; 1608 } 1061 } 1609 1062 1610 void HepPolyhedron::GetFacet(G4int iFace, G4i 1063 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes, 1611 G4int *edgeFlags, 1064 G4int *edgeFlags, G4int *iFaces) const 1612 /******************************************** 1065 /*********************************************************************** 1613 * 1066 * * 1614 * Name: HepPolyhedron::GetFacet 1067 * Name: HepPolyhedron::GetFacet Date: 15.12.99 * 1615 * Author: E.Chernyaev 1068 * Author: E.Chernyaev Revised: * 1616 * 1069 * * 1617 * Function: Get face by index 1070 * Function: Get face by index * 1618 * 1071 * * 1619 ******************************************** 1072 ***********************************************************************/ 1620 { 1073 { 1621 if (iFace < 1 || iFace > nface) { 1074 if (iFace < 1 || iFace > nface) { 1622 std::cerr << 1075 std::cerr 1623 << "HepPolyhedron::GetFacet: irrelevant 1076 << "HepPolyhedron::GetFacet: irrelevant index " << iFace 1624 << std::endl; 1077 << std::endl; 1625 n = 0; 1078 n = 0; 1626 }else{ 1079 }else{ 1627 G4int i, k; 1080 G4int i, k; 1628 for (i=0; i<4; i++) { << 1081 for (i=0; i<4; i++) { 1629 k = pF[iFace].edge[i].v; 1082 k = pF[iFace].edge[i].v; 1630 if (k == 0) break; 1083 if (k == 0) break; 1631 if (iFaces != nullptr) iFaces[i] = pF[i << 1084 if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f; 1632 if (k > 0) { << 1085 if (k > 0) { 1633 iNodes[i] = k; 1086 iNodes[i] = k; 1634 if (edgeFlags != nullptr) edgeFlags[i << 1087 if (edgeFlags != 0) edgeFlags[i] = 1; 1635 }else{ 1088 }else{ 1636 iNodes[i] = -k; 1089 iNodes[i] = -k; 1637 if (edgeFlags != nullptr) edgeFlags[i << 1090 if (edgeFlags != 0) edgeFlags[i] = -1; 1638 } 1091 } 1639 } 1092 } 1640 n = i; 1093 n = i; 1641 } 1094 } 1642 } 1095 } 1643 1096 1644 void HepPolyhedron::GetFacet(G4int index, G4i 1097 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes, 1645 G4int *edgeFlags 1098 G4int *edgeFlags, G4Normal3D *normals) const 1646 /******************************************** 1099 /*********************************************************************** 1647 * 1100 * * 1648 * Name: HepPolyhedron::GetFacet 1101 * Name: HepPolyhedron::GetFacet Date: 17.11.99 * 1649 * Author: E.Chernyaev 1102 * Author: E.Chernyaev Revised: * 1650 * 1103 * * 1651 * Function: Get face by index 1104 * Function: Get face by index * 1652 * 1105 * * 1653 ******************************************** 1106 ***********************************************************************/ 1654 { 1107 { 1655 G4int iNodes[4]; 1108 G4int iNodes[4]; 1656 GetFacet(index, n, iNodes, edgeFlags); 1109 GetFacet(index, n, iNodes, edgeFlags); 1657 if (n != 0) { 1110 if (n != 0) { 1658 for (G4int i=0; i<n; i++) { 1111 for (G4int i=0; i<n; i++) { 1659 nodes[i] = pV[iNodes[i]]; 1112 nodes[i] = pV[iNodes[i]]; 1660 if (normals != nullptr) normals[i] = Fi << 1113 if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]); 1661 } 1114 } 1662 } 1115 } 1663 } 1116 } 1664 1117 1665 G4bool 1118 G4bool 1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point 1119 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes, 1667 G4int *edgeFlags, 1120 G4int *edgeFlags, G4Normal3D *normals) const 1668 /******************************************** 1121 /*********************************************************************** 1669 * 1122 * * 1670 * Name: HepPolyhedron::GetNextFacet 1123 * Name: HepPolyhedron::GetNextFacet Date: 19.11.99 * 1671 * Author: E.Chernyaev 1124 * Author: E.Chernyaev Revised: * 1672 * 1125 * * 1673 * Function: Get next face with normals of un 1126 * Function: Get next face with normals of unit length at the nodes. * 1674 * Returns false when finished all 1127 * Returns false when finished all faces. * 1675 * 1128 * * 1676 ******************************************** 1129 ***********************************************************************/ 1677 { 1130 { 1678 static G4ThreadLocal G4int iFace = 1; << 1131 static G4int iFace = 1; 1679 1132 1680 if (edgeFlags == nullptr) { << 1133 if (edgeFlags == 0) { 1681 GetFacet(iFace, n, nodes); 1134 GetFacet(iFace, n, nodes); 1682 }else if (normals == nullptr) { << 1135 }else if (normals == 0) { 1683 GetFacet(iFace, n, nodes, edgeFlags); 1136 GetFacet(iFace, n, nodes, edgeFlags); 1684 }else{ 1137 }else{ 1685 GetFacet(iFace, n, nodes, edgeFlags, norm 1138 GetFacet(iFace, n, nodes, edgeFlags, normals); 1686 } 1139 } 1687 1140 1688 if (++iFace > nface) { 1141 if (++iFace > nface) { 1689 iFace = 1; 1142 iFace = 1; 1690 return false; 1143 return false; >> 1144 }else{ >> 1145 return true; 1691 } 1146 } 1692 << 1693 return true; << 1694 } 1147 } 1695 1148 1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa 1149 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const 1697 /******************************************** 1150 /*********************************************************************** 1698 * 1151 * * 1699 * Name: HepPolyhedron::GetNormal 1152 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1700 * Author: E.Chernyaev 1153 * Author: E.Chernyaev Revised: * 1701 * 1154 * * 1702 * Function: Get normal of the face given by 1155 * Function: Get normal of the face given by index * 1703 * 1156 * * 1704 ******************************************** 1157 ***********************************************************************/ 1705 { 1158 { 1706 if (iFace < 1 || iFace > nface) { 1159 if (iFace < 1 || iFace > nface) { 1707 std::cerr << 1160 std::cerr 1708 << "HepPolyhedron::GetNormal: irrelevan << 1161 << "HepPolyhedron::GetNormal: irrelevant index " << iFace 1709 << std::endl; 1162 << std::endl; 1710 return G4Normal3D(); 1163 return G4Normal3D(); 1711 } 1164 } 1712 1165 1713 G4int i0 = std::abs(pF[iFace].edge[0].v); 1166 G4int i0 = std::abs(pF[iFace].edge[0].v); 1714 G4int i1 = std::abs(pF[iFace].edge[1].v); 1167 G4int i1 = std::abs(pF[iFace].edge[1].v); 1715 G4int i2 = std::abs(pF[iFace].edge[2].v); 1168 G4int i2 = std::abs(pF[iFace].edge[2].v); 1716 G4int i3 = std::abs(pF[iFace].edge[3].v); 1169 G4int i3 = std::abs(pF[iFace].edge[3].v); 1717 if (i3 == 0) i3 = i0; 1170 if (i3 == 0) i3 = i0; 1718 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[ 1171 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]); 1719 } 1172 } 1720 1173 1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int 1174 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const 1722 /******************************************** 1175 /*********************************************************************** 1723 * 1176 * * 1724 * Name: HepPolyhedron::GetNormal 1177 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1725 * Author: E.Chernyaev 1178 * Author: E.Chernyaev Revised: * 1726 * 1179 * * 1727 * Function: Get unit normal of the face give 1180 * Function: Get unit normal of the face given by index * 1728 * 1181 * * 1729 ******************************************** 1182 ***********************************************************************/ 1730 { 1183 { 1731 if (iFace < 1 || iFace > nface) { 1184 if (iFace < 1 || iFace > nface) { 1732 std::cerr << 1185 std::cerr 1733 << "HepPolyhedron::GetUnitNormal: irrel 1186 << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace 1734 << std::endl; 1187 << std::endl; 1735 return G4Normal3D(); 1188 return G4Normal3D(); 1736 } 1189 } 1737 1190 1738 G4int i0 = std::abs(pF[iFace].edge[0].v); 1191 G4int i0 = std::abs(pF[iFace].edge[0].v); 1739 G4int i1 = std::abs(pF[iFace].edge[1].v); 1192 G4int i1 = std::abs(pF[iFace].edge[1].v); 1740 G4int i2 = std::abs(pF[iFace].edge[2].v); 1193 G4int i2 = std::abs(pF[iFace].edge[2].v); 1741 G4int i3 = std::abs(pF[iFace].edge[3].v); 1194 G4int i3 = std::abs(pF[iFace].edge[3].v); 1742 if (i3 == 0) i3 = i0; 1195 if (i3 == 0) i3 = i0; 1743 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1196 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit(); 1744 } 1197 } 1745 1198 1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3 1199 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const 1747 /******************************************** 1200 /*********************************************************************** 1748 * 1201 * * 1749 * Name: HepPolyhedron::GetNextNormal 1202 * Name: HepPolyhedron::GetNextNormal Date: 22.07.96 * 1750 * Author: John Allison 1203 * Author: John Allison Revised: 19.11.99 * 1751 * 1204 * * 1752 * Function: Get normals of each face in face 1205 * Function: Get normals of each face in face order. Returns false * 1753 * when finished all faces. 1206 * when finished all faces. * 1754 * 1207 * * 1755 ******************************************** 1208 ***********************************************************************/ 1756 { 1209 { 1757 static G4ThreadLocal G4int iFace = 1; << 1210 static G4int iFace = 1; 1758 normal = GetNormal(iFace); 1211 normal = GetNormal(iFace); 1759 if (++iFace > nface) { 1212 if (++iFace > nface) { 1760 iFace = 1; 1213 iFace = 1; 1761 return false; 1214 return false; >> 1215 }else{ >> 1216 return true; 1762 } 1217 } 1763 return true; << 1764 } 1218 } 1765 1219 1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor 1220 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const 1767 /******************************************** 1221 /*********************************************************************** 1768 * 1222 * * 1769 * Name: HepPolyhedron::GetNextUnitNormal 1223 * Name: HepPolyhedron::GetNextUnitNormal Date: 16.09.96 * 1770 * Author: E.Chernyaev 1224 * Author: E.Chernyaev Revised: * 1771 * 1225 * * 1772 * Function: Get normals of unit length of ea 1226 * Function: Get normals of unit length of each face in face order. * 1773 * Returns false when finished all 1227 * Returns false when finished all faces. * 1774 * 1228 * * 1775 ******************************************** 1229 ***********************************************************************/ 1776 { 1230 { 1777 G4bool rep = GetNextNormal(normal); 1231 G4bool rep = GetNextNormal(normal); 1778 normal = normal.unit(); 1232 normal = normal.unit(); 1779 return rep; 1233 return rep; 1780 } 1234 } 1781 1235 1782 G4double HepPolyhedron::GetSurfaceArea() cons 1236 G4double HepPolyhedron::GetSurfaceArea() const 1783 /******************************************** 1237 /*********************************************************************** 1784 * 1238 * * 1785 * Name: HepPolyhedron::GetSurfaceArea 1239 * Name: HepPolyhedron::GetSurfaceArea Date: 25.05.01 * 1786 * Author: E.Chernyaev 1240 * Author: E.Chernyaev Revised: * 1787 * 1241 * * 1788 * Function: Returns area of the surface of t 1242 * Function: Returns area of the surface of the polyhedron. * 1789 * 1243 * * 1790 ******************************************** 1244 ***********************************************************************/ 1791 { 1245 { 1792 G4double srf = 0.; 1246 G4double srf = 0.; 1793 for (G4int iFace=1; iFace<=nface; iFace++) 1247 for (G4int iFace=1; iFace<=nface; iFace++) { 1794 G4int i0 = std::abs(pF[iFace].edge[0].v); 1248 G4int i0 = std::abs(pF[iFace].edge[0].v); 1795 G4int i1 = std::abs(pF[iFace].edge[1].v); 1249 G4int i1 = std::abs(pF[iFace].edge[1].v); 1796 G4int i2 = std::abs(pF[iFace].edge[2].v); 1250 G4int i2 = std::abs(pF[iFace].edge[2].v); 1797 G4int i3 = std::abs(pF[iFace].edge[3].v); 1251 G4int i3 = std::abs(pF[iFace].edge[3].v); 1798 if (i3 == 0) i3 = i0; 1252 if (i3 == 0) i3 = i0; 1799 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - 1253 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag(); 1800 } 1254 } 1801 return srf/2.; 1255 return srf/2.; 1802 } 1256 } 1803 1257 1804 G4double HepPolyhedron::GetVolume() const 1258 G4double HepPolyhedron::GetVolume() const 1805 /******************************************** 1259 /*********************************************************************** 1806 * 1260 * * 1807 * Name: HepPolyhedron::GetVolume 1261 * Name: HepPolyhedron::GetVolume Date: 25.05.01 * 1808 * Author: E.Chernyaev 1262 * Author: E.Chernyaev Revised: * 1809 * 1263 * * 1810 * Function: Returns volume of the polyhedron 1264 * Function: Returns volume of the polyhedron. * 1811 * 1265 * * 1812 ******************************************** 1266 ***********************************************************************/ 1813 { 1267 { 1814 G4double v = 0.; 1268 G4double v = 0.; 1815 for (G4int iFace=1; iFace<=nface; iFace++) 1269 for (G4int iFace=1; iFace<=nface; iFace++) { 1816 G4int i0 = std::abs(pF[iFace].edge[0].v); 1270 G4int i0 = std::abs(pF[iFace].edge[0].v); 1817 G4int i1 = std::abs(pF[iFace].edge[1].v); 1271 G4int i1 = std::abs(pF[iFace].edge[1].v); 1818 G4int i2 = std::abs(pF[iFace].edge[2].v); 1272 G4int i2 = std::abs(pF[iFace].edge[2].v); 1819 G4int i3 = std::abs(pF[iFace].edge[3].v); 1273 G4int i3 = std::abs(pF[iFace].edge[3].v); 1820 G4Point3D pt; 1274 G4Point3D pt; 1821 if (i3 == 0) { 1275 if (i3 == 0) { 1822 i3 = i0; 1276 i3 = i0; 1823 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1277 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1824 }else{ 1278 }else{ 1825 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0. 1279 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25; 1826 } 1280 } 1827 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1281 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt); 1828 } 1282 } 1829 return v/6.; 1283 return v/6.; 1830 } 1284 } 1831 1285 1832 G4int 1286 G4int 1833 HepPolyhedron::createTwistedTrap(G4double Dz, 1287 HepPolyhedron::createTwistedTrap(G4double Dz, 1834 const G4doub 1288 const G4double xy1[][2], 1835 const G4doub 1289 const G4double xy2[][2]) 1836 /******************************************** 1290 /*********************************************************************** 1837 * 1291 * * 1838 * Name: createTwistedTrap 1292 * Name: createTwistedTrap Date: 05.11.02 * 1839 * Author: E.Chernyaev (IHEP/Protvino) 1293 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1840 * 1294 * * 1841 * Function: Creates polyhedron for twisted t 1295 * Function: Creates polyhedron for twisted trapezoid * 1842 * 1296 * * 1843 * Input: Dz - half-length along Z 1297 * Input: Dz - half-length along Z 8----7 * 1844 * xy1[2,4] - quadrilateral at Z=-Dz 1298 * xy1[2,4] - quadrilateral at Z=-Dz 5----6 ! * 1845 * xy2[2,4] - quadrilateral at Z=+Dz 1299 * xy2[2,4] - quadrilateral at Z=+Dz ! 4-!--3 * 1846 * 1300 * 1----2 * 1847 * 1301 * * 1848 ******************************************** 1302 ***********************************************************************/ 1849 { 1303 { 1850 AllocateMemory(12,18); 1304 AllocateMemory(12,18); 1851 1305 1852 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz) 1306 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz); 1853 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz) 1307 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz); 1854 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz) 1308 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz); 1855 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz) 1309 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz); 1856 1310 1857 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz) 1311 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz); 1858 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz) 1312 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz); 1859 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz) 1313 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz); 1860 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz) 1314 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz); 1861 1315 1862 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1316 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1863 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1317 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1864 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1318 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1865 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1319 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1866 1320 1867 enum {DUMMY, BOTTOM, 1321 enum {DUMMY, BOTTOM, 1868 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, 1322 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, LEFT_BACK, 1869 BACK_BOTTOM, BACK_LEFT, BACK_TOP, 1323 BACK_BOTTOM, BACK_LEFT, BACK_TOP, BACK_RIGHT, 1870 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP 1324 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP, RIGHT_FRONT, 1871 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP 1325 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP, FRONT_LEFT, 1872 TOP}; 1326 TOP}; 1873 1327 1874 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM 1328 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM); 1875 1329 1876 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, 1330 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, -12,LEFT_BACK, 0,0); 1877 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, 1331 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, -12,LEFT_BOTTOM, 0,0); 1878 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, 1332 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, -12,LEFT_FRONT, 0,0); 1879 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM 1333 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM, -12,LEFT_TOP, 0,0); 1880 1334 1881 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, 1335 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, -11,BACK_RIGHT, 0,0); 1882 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, 1336 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, -11,BACK_BOTTOM, 0,0); 1883 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, 1337 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, -11,BACK_LEFT, 0,0); 1884 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM 1338 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP, 0,0); 1885 1339 1886 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, 1340 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, -10,RIGHT_FRONT, 0,0); 1887 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, 1341 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, -10,RIGHT_BOTTOM, 0,0); 1888 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT 1342 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT, -10,RIGHT_BACK, 0,0); 1889 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO 1343 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP, 0,0); 1890 1344 1891 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT 1345 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT, -9,FRONT_LEFT, 0,0); 1892 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, 1346 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, -9,FRONT_BOTTOM, 0,0); 1893 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, 1347 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, -9,FRONT_RIGHT, 0,0); 1894 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO 1348 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP, 0,0); 1895 << 1349 1896 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7, 1350 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP); 1897 1351 1898 return 0; 1352 return 0; 1899 } 1353 } 1900 1354 1901 G4int 1355 G4int 1902 HepPolyhedron::createPolyhedron(G4int Nnodes, 1356 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces, 1903 const G4doubl 1357 const G4double xyz[][3], 1904 const G4int 1358 const G4int faces[][4]) 1905 /******************************************** 1359 /*********************************************************************** 1906 * 1360 * * 1907 * Name: createPolyhedron 1361 * Name: createPolyhedron Date: 05.11.02 * 1908 * Author: E.Chernyaev (IHEP/Protvino) 1362 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1909 * 1363 * * 1910 * Function: Creates user defined polyhedron 1364 * Function: Creates user defined polyhedron * 1911 * 1365 * * 1912 * Input: Nnodes - number of nodes 1366 * Input: Nnodes - number of nodes * 1913 * Nfaces - number of faces 1367 * Nfaces - number of faces * 1914 * nodes[][3] - node coordinates 1368 * nodes[][3] - node coordinates * 1915 * faces[][4] - faces 1369 * faces[][4] - faces * 1916 * 1370 * * 1917 ******************************************** 1371 ***********************************************************************/ 1918 { 1372 { 1919 AllocateMemory(Nnodes, Nfaces); 1373 AllocateMemory(Nnodes, Nfaces); 1920 if (nvert == 0) return 1; 1374 if (nvert == 0) return 1; 1921 1375 1922 for (G4int i=0; i<Nnodes; i++) { 1376 for (G4int i=0; i<Nnodes; i++) { 1923 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], 1377 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]); 1924 } 1378 } 1925 for (G4int k=0; k<Nfaces; k++) { 1379 for (G4int k=0; k<Nfaces; k++) { 1926 pF[k+1] = G4Facet(faces[k][0],0,faces[k][ 1380 pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0); 1927 } 1381 } 1928 SetReferences(); 1382 SetReferences(); 1929 return 0; 1383 return 0; 1930 } 1384 } 1931 1385 1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 1933 /****************************************** << 1934 * << 1935 * Name: vertexUnweightedMean << 1936 * Author: S. Boogert (Manchester) << 1937 * << 1938 * Function: Calculate the unweighted mean << 1939 * in the polyhedron. Not to be confused wi << 1940 * centre of mass << 1941 ****************************************** << 1942 << 1943 auto centre = G4Point3D(); << 1944 for(int i=1;i<=nvert;i++) { << 1945 centre += pV[i]; << 1946 } << 1947 centre = centre/nvert; << 1948 return centre; << 1949 } << 1950 << 1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double 1386 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2, 1952 G4double 1387 G4double Dy1, G4double Dy2, 1953 G4double 1388 G4double Dz) 1954 /******************************************** 1389 /*********************************************************************** 1955 * 1390 * * 1956 * Name: HepPolyhedronTrd2 1391 * Name: HepPolyhedronTrd2 Date: 22.07.96 * 1957 * Author: E.Chernyaev (IHEP/Protvino) 1392 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1958 * 1393 * * 1959 * Function: Create GEANT4 TRD2-trapezoid 1394 * Function: Create GEANT4 TRD2-trapezoid * 1960 * 1395 * * 1961 * Input: Dx1 - half-length along X at -Dz 1396 * Input: Dx1 - half-length along X at -Dz 8----7 * 1962 * Dx2 - half-length along X ay +Dz 1397 * Dx2 - half-length along X ay +Dz 5----6 ! * 1963 * Dy1 - half-length along Y ay -Dz 1398 * Dy1 - half-length along Y ay -Dz ! 4-!--3 * 1964 * Dy2 - half-length along Y ay +Dz 1399 * Dy2 - half-length along Y ay +Dz 1----2 * 1965 * Dz - half-length along Z 1400 * Dz - half-length along Z * 1966 * 1401 * * 1967 ******************************************** 1402 ***********************************************************************/ 1968 { 1403 { 1969 AllocateMemory(8,6); 1404 AllocateMemory(8,6); 1970 1405 1971 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1406 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1972 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1407 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1973 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1408 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1974 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1409 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1975 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1410 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1976 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1411 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1977 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1412 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1978 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1413 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1979 1414 1980 CreatePrism(); 1415 CreatePrism(); 1981 } 1416 } 1982 1417 1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1418 HepPolyhedronTrd2::~HepPolyhedronTrd2() {} 1984 1419 1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double 1420 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2, 1986 G4double 1421 G4double Dy, G4double Dz) 1987 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) { 1422 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {} 1988 1423 1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1424 HepPolyhedronTrd1::~HepPolyhedronTrd1() {} 1990 1425 1991 HepPolyhedronBox::HepPolyhedronBox(G4double D 1426 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz) 1992 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1427 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1993 1428 1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1429 HepPolyhedronBox::~HepPolyhedronBox() {} 1995 1430 1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double 1431 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz, 1997 G4double 1432 G4double Theta, 1998 G4double 1433 G4double Phi, 1999 G4double 1434 G4double Dy1, 2000 G4double 1435 G4double Dx1, 2001 G4double 1436 G4double Dx2, 2002 G4double 1437 G4double Alp1, 2003 G4double 1438 G4double Dy2, 2004 G4double 1439 G4double Dx3, 2005 G4double 1440 G4double Dx4, 2006 G4double 1441 G4double Alp2) 2007 /******************************************** 1442 /*********************************************************************** 2008 * 1443 * * 2009 * Name: HepPolyhedronTrap 1444 * Name: HepPolyhedronTrap Date: 20.11.96 * 2010 * Author: E.Chernyaev 1445 * Author: E.Chernyaev Revised: * 2011 * 1446 * * 2012 * Function: Create GEANT4 TRAP-trapezoid 1447 * Function: Create GEANT4 TRAP-trapezoid * 2013 * 1448 * * 2014 * Input: DZ - half-length in Z 1449 * Input: DZ - half-length in Z * 2015 * Theta,Phi - polar angles of the lin 1450 * Theta,Phi - polar angles of the line joining centres of the * 2016 * faces at Z=-Dz and Z=+D 1451 * faces at Z=-Dz and Z=+Dz * 2017 * Dy1 - half-length in Y of the face 1452 * Dy1 - half-length in Y of the face at Z=-Dz * 2018 * Dx1 - half-length in X of low edge 1453 * Dx1 - half-length in X of low edge of the face at Z=-Dz * 2019 * Dx2 - half-length in X of top edge 1454 * Dx2 - half-length in X of top edge of the face at Z=-Dz * 2020 * Alp1 - angle between Y-axis and the 1455 * Alp1 - angle between Y-axis and the median joining top and * 2021 * low edges of the face at Z=- 1456 * low edges of the face at Z=-Dz * 2022 * Dy2 - half-length in Y of the face 1457 * Dy2 - half-length in Y of the face at Z=+Dz * 2023 * Dx3 - half-length in X of low edge 1458 * Dx3 - half-length in X of low edge of the face at Z=+Dz * 2024 * Dx4 - half-length in X of top edge 1459 * Dx4 - half-length in X of top edge of the face at Z=+Dz * 2025 * Alp2 - angle between Y-axis and the 1460 * Alp2 - angle between Y-axis and the median joining top and * 2026 * low edges of the face at Z=+ 1461 * low edges of the face at Z=+Dz * 2027 * 1462 * * 2028 ******************************************** 1463 ***********************************************************************/ 2029 { 1464 { 2030 G4double DzTthetaCphi = Dz*std::tan(Theta)* 1465 G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi); 2031 G4double DzTthetaSphi = Dz*std::tan(Theta)* 1466 G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi); 2032 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 1467 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 2033 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 1468 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 2034 << 1469 2035 AllocateMemory(8,6); 1470 AllocateMemory(8,6); 2036 1471 2037 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx 1472 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz); 2038 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx 1473 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz); 2039 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx 1474 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz); 2040 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx 1475 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz); 2041 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx 1476 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz); 2042 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx 1477 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz); 2043 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx 1478 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz); 2044 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx 1479 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz); 2045 1480 2046 CreatePrism(); 1481 CreatePrism(); 2047 } 1482 } 2048 1483 2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1484 HepPolyhedronTrap::~HepPolyhedronTrap() {} 2050 1485 2051 HepPolyhedronPara::HepPolyhedronPara(G4double 1486 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz, 2052 G4double 1487 G4double Alpha, G4double Theta, 2053 G4double 1488 G4double Phi) 2054 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, 1489 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {} 2055 1490 2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1491 HepPolyhedronPara::~HepPolyhedronPara() {} 2057 1492 2058 HepPolyhedronParaboloid::HepPolyhedronParabol 1493 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1, 2059 1494 G4double r2, 2060 1495 G4double dz, 2061 1496 G4double sPhi, 2062 << 1497 G4double dPhi) 2063 /******************************************** 1498 /*********************************************************************** 2064 * 1499 * * 2065 * Name: HepPolyhedronParaboloid 1500 * Name: HepPolyhedronParaboloid Date: 28.06.07 * 2066 * Author: L.Lindroos, T.Nikitina (CERN), Jul 1501 * Author: L.Lindroos, T.Nikitina (CERN), July 2007 Revised: 28.06.07 * 2067 * 1502 * * 2068 * Function: Constructor for paraboloid 1503 * Function: Constructor for paraboloid * 2069 * 1504 * * 2070 * Input: r1 - inside and outside radiuses 1505 * Input: r1 - inside and outside radiuses at -Dz * 2071 * r2 - inside and outside radiuses 1506 * r2 - inside and outside radiuses at +Dz * 2072 * dz - half length in Z 1507 * dz - half length in Z * 2073 * sPhi - starting angle of the segme 1508 * sPhi - starting angle of the segment * 2074 * dPhi - segment range 1509 * dPhi - segment range * 2075 * 1510 * * 2076 ******************************************** 1511 ***********************************************************************/ 2077 { 1512 { 2078 static const G4double wholeCircle=twopi; << 1513 static G4double wholeCircle=twopi; 2079 1514 2080 // C H E C K I N P U T P A R A M E T 1515 // C H E C K I N P U T P A R A M E T E R S 2081 1516 2082 G4int k = 0; 1517 G4int k = 0; 2083 if (r1 < 0. || r2 <= 0.) k = 1; 1518 if (r1 < 0. || r2 <= 0.) k = 1; 2084 1519 2085 if (dz <= 0.) k += 2; 1520 if (dz <= 0.) k += 2; 2086 1521 2087 G4double phi1, phi2, dphi; 1522 G4double phi1, phi2, dphi; 2088 1523 2089 if(dPhi < 0.) 1524 if(dPhi < 0.) 2090 { 1525 { 2091 phi2 = sPhi; phi1 = phi2 + dPhi; 1526 phi2 = sPhi; phi1 = phi2 + dPhi; 2092 } 1527 } 2093 else if(dPhi == 0.) << 1528 else if(dPhi == 0.) 2094 { 1529 { 2095 phi1 = sPhi; phi2 = phi1 + wholeCircle; 1530 phi1 = sPhi; phi2 = phi1 + wholeCircle; 2096 } 1531 } 2097 else 1532 else 2098 { 1533 { 2099 phi1 = sPhi; phi2 = phi1 + dPhi; 1534 phi1 = sPhi; phi2 = phi1 + dPhi; 2100 } 1535 } 2101 dphi = phi2 - phi1; 1536 dphi = phi2 - phi1; 2102 1537 2103 if (std::abs(dphi-wholeCircle) < perMillion 1538 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2104 if (dphi > wholeCircle) k += 4; << 1539 if (dphi > wholeCircle) k += 4; 2105 1540 2106 if (k != 0) { 1541 if (k != 0) { 2107 std::cerr << "HepPolyhedronParaboloid: er 1542 std::cerr << "HepPolyhedronParaboloid: error in input parameters"; 2108 if ((k & 1) != 0) std::cerr << " (radiuse 1543 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2109 if ((k & 2) != 0) std::cerr << " (half-le 1544 if ((k & 2) != 0) std::cerr << " (half-length)"; 2110 if ((k & 4) != 0) std::cerr << " (angles) 1545 if ((k & 4) != 0) std::cerr << " (angles)"; 2111 std::cerr << std::endl; 1546 std::cerr << std::endl; 2112 std::cerr << " r1=" << r1; 1547 std::cerr << " r1=" << r1; 2113 std::cerr << " r2=" << r2; 1548 std::cerr << " r2=" << r2; 2114 std::cerr << " dz=" << dz << " sPhi=" << 1549 std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi 2115 << std::endl; 1550 << std::endl; 2116 return; 1551 return; 2117 } 1552 } 2118 << 1553 2119 // P R E P A R E T W O P O L Y L I N 1554 // P R E P A R E T W O P O L Y L I N E S 2120 1555 2121 G4int n = GetNumberOfRotationSteps(); 1556 G4int n = GetNumberOfRotationSteps(); 2122 G4double dl = (r2 - r1) / n; 1557 G4double dl = (r2 - r1) / n; 2123 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 1558 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 2124 G4double k2 = (r2*r2 + r1*r1) / 2; 1559 G4double k2 = (r2*r2 + r1*r1) / 2; 2125 1560 2126 auto zz = new G4double[n + 2], rr = new G4d << 1561 G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2]; 2127 1562 2128 zz[0] = dz; 1563 zz[0] = dz; 2129 rr[0] = r2; 1564 rr[0] = r2; 2130 1565 2131 for(G4int i = 1; i < n - 1; i++) 1566 for(G4int i = 1; i < n - 1; i++) 2132 { 1567 { 2133 rr[i] = rr[i-1] - dl; 1568 rr[i] = rr[i-1] - dl; 2134 zz[i] = (rr[i]*rr[i] - k2) / k1; 1569 zz[i] = (rr[i]*rr[i] - k2) / k1; 2135 if(rr[i] < 0) 1570 if(rr[i] < 0) 2136 { 1571 { 2137 rr[i] = 0; 1572 rr[i] = 0; 2138 zz[i] = 0; 1573 zz[i] = 0; 2139 } 1574 } 2140 } 1575 } 2141 1576 2142 zz[n-1] = -dz; 1577 zz[n-1] = -dz; 2143 rr[n-1] = r1; 1578 rr[n-1] = r1; 2144 1579 2145 zz[n] = dz; 1580 zz[n] = dz; 2146 rr[n] = 0; 1581 rr[n] = 0; 2147 1582 2148 zz[n+1] = -dz; 1583 zz[n+1] = -dz; 2149 rr[n+1] = 0; 1584 rr[n+1] = 0; 2150 1585 2151 // R O T A T E P O L Y L I N E S 1586 // R O T A T E P O L Y L I N E S 2152 1587 2153 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, << 1588 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 2154 SetReferences(); 1589 SetReferences(); 2155 1590 2156 delete [] zz; 1591 delete [] zz; 2157 delete [] rr; 1592 delete [] rr; 2158 } 1593 } 2159 1594 2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1595 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {} 2161 1596 2162 HepPolyhedronHype::HepPolyhedronHype(G4double 1597 HepPolyhedronHype::HepPolyhedronHype(G4double r1, 2163 G4double 1598 G4double r2, 2164 G4double 1599 G4double sqrtan1, 2165 G4double 1600 G4double sqrtan2, 2166 G4double << 1601 G4double halfZ) 2167 /******************************************** 1602 /*********************************************************************** 2168 * 1603 * * 2169 * Name: HepPolyhedronHype 1604 * Name: HepPolyhedronHype Date: 14.04.08 * 2170 * Author: Tatiana Nikitina (CERN) 1605 * Author: Tatiana Nikitina (CERN) Revised: 14.04.08 * 2171 * Evgueni Tcherniaev << 2172 * 1606 * * 2173 * Function: Constructor for Hype 1607 * Function: Constructor for Hype * 2174 * 1608 * * 2175 * Input: r1 - inside radius at z=0 1609 * Input: r1 - inside radius at z=0 * 2176 * r2 - outside radiuses at z=0 1610 * r2 - outside radiuses at z=0 * 2177 * sqrtan1 - sqr of tan of Inner Ster 1611 * sqrtan1 - sqr of tan of Inner Stereo Angle * 2178 * sqrtan2 - sqr of tan of Outer Ster 1612 * sqrtan2 - sqr of tan of Outer Stereo Angle * 2179 * halfZ - half length in Z 1613 * halfZ - half length in Z * 2180 * 1614 * * 2181 ******************************************** 1615 ***********************************************************************/ 2182 { 1616 { 2183 static const G4double wholeCircle = twopi; << 1617 static G4double wholeCircle=twopi; 2184 1618 2185 // C H E C K I N P U T P A R A M E T 1619 // C H E C K I N P U T P A R A M E T E R S 2186 1620 2187 G4int k = 0; 1621 G4int k = 0; 2188 if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1; << 1622 if (r2 < 0. || r1 < 0. ) k = 1; 2189 if (halfZ <= 0.) k += 2; << 1623 if (r1 > r2 ) k = 1; 2190 if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4; << 1624 if (r1 == r2) k = 1; 2191 1625 >> 1626 if (halfZ <= 0.) k += 2; >> 1627 >> 1628 if (sqrtan1<0.||sqrtan2<0.) k += 4; >> 1629 2192 if (k != 0) 1630 if (k != 0) 2193 { 1631 { 2194 std::cerr << "HepPolyhedronHype: error in 1632 std::cerr << "HepPolyhedronHype: error in input parameters"; 2195 if ((k & 1) != 0) std::cerr << " (radiuse 1633 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2196 if ((k & 2) != 0) std::cerr << " (half-le 1634 if ((k & 2) != 0) std::cerr << " (half-length)"; 2197 if ((k & 4) != 0) std::cerr << " (angles) 1635 if ((k & 4) != 0) std::cerr << " (angles)"; 2198 std::cerr << std::endl; 1636 std::cerr << std::endl; 2199 std::cerr << " r1=" << r1 << " r2=" << r2 1637 std::cerr << " r1=" << r1 << " r2=" << r2; 2200 std::cerr << " halfZ=" << halfZ << " sqrT 1638 std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1 2201 << " sqrTan2=" << sqrtan2 1639 << " sqrTan2=" << sqrtan2 2202 << std::endl; 1640 << std::endl; 2203 return; 1641 return; 2204 } 1642 } 2205 << 1643 2206 // P R E P A R E T W O P O L Y L I N 1644 // P R E P A R E T W O P O L Y L I N E S 2207 1645 2208 G4int ns = std::max(3, GetNumberOfRotationS << 1646 G4int n = GetNumberOfRotationSteps(); 2209 G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1; << 1647 G4double dz = 2.*halfZ / n; 2210 G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1; << 1648 G4double k1 = r1*r1; 2211 auto zz = new G4double[nz1 + nz2]; << 1649 G4double k2 = r2*r2; 2212 auto rr = new G4double[nz1 + nz2]; << 1650 2213 << 1651 G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1]; 2214 // external polyline << 1652 2215 G4double dz2 = 2.*halfZ/(nz2 - 1); << 1653 zz[0] = halfZ; 2216 for(G4int i = 0; i < nz2; ++i) << 1654 rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2); >> 1655 >> 1656 for(G4int i = 1; i < n-1; i++) 2217 { 1657 { 2218 zz[i] = halfZ - dz2*i; << 1658 zz[i] = zz[i-1] - dz; 2219 rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1659 rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2); 2220 } 1660 } 2221 1661 2222 // internal polyline << 1662 zz[n-1] = -halfZ; 2223 G4double dz1 = 2.*halfZ/(nz1 - 1); << 1663 rr[n-1] = rr[0]; 2224 for(G4int i = 0; i < nz1; ++i) << 1664 >> 1665 zz[n] = halfZ; >> 1666 rr[n] = std::sqrt(sqrtan1*halfZ*halfZ+k1); >> 1667 >> 1668 for(G4int i = n+1; i < n+n; i++) 2225 { 1669 { 2226 G4int j = nz2 + i; << 1670 zz[i] = zz[i-1] - dz; 2227 zz[j] = halfZ - dz1*i; << 1671 rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1); 2228 rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 2229 } 1672 } >> 1673 zz[n+n] = -halfZ; >> 1674 rr[n+n] = rr[n]; 2230 1675 2231 // R O T A T E P O L Y L I N E S 1676 // R O T A T E P O L Y L I N E S 2232 1677 2233 RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1678 RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 2234 SetReferences(); 1679 SetReferences(); 2235 1680 2236 delete [] zz; 1681 delete [] zz; 2237 delete [] rr; 1682 delete [] rr; 2238 } 1683 } 2239 1684 2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1685 HepPolyhedronHype::~HepPolyhedronHype() {} 2241 1686 2242 HepPolyhedronCons::HepPolyhedronCons(G4double 1687 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1, 2243 G4double 1688 G4double Rmx1, 2244 G4double 1689 G4double Rmn2, 2245 G4double << 1690 G4double Rmx2, 2246 G4double 1691 G4double Dz, 2247 G4double 1692 G4double Phi1, 2248 G4double << 1693 G4double Dphi) 2249 /******************************************** 1694 /*********************************************************************** 2250 * 1695 * * 2251 * Name: HepPolyhedronCons::HepPolyhedronCons 1696 * Name: HepPolyhedronCons::HepPolyhedronCons Date: 15.12.96 * 2252 * Author: E.Chernyaev (IHEP/Protvino) 1697 * Author: E.Chernyaev (IHEP/Protvino) Revised: 15.12.96 * 2253 * 1698 * * 2254 * Function: Constructor for CONS, TUBS, CONE 1699 * Function: Constructor for CONS, TUBS, CONE, TUBE * 2255 * 1700 * * 2256 * Input: Rmn1, Rmx1 - inside and outside rad 1701 * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz * 2257 * Rmn2, Rmx2 - inside and outside rad 1702 * Rmn2, Rmx2 - inside and outside radiuses at +Dz * 2258 * Dz - half length in Z 1703 * Dz - half length in Z * 2259 * Phi1 - starting angle of the 1704 * Phi1 - starting angle of the segment * 2260 * Dphi - segment range 1705 * Dphi - segment range * 2261 * 1706 * * 2262 ******************************************** 1707 ***********************************************************************/ 2263 { 1708 { 2264 static const G4double wholeCircle=twopi; << 1709 static G4double wholeCircle=twopi; 2265 1710 2266 // C H E C K I N P U T P A R A M E T 1711 // C H E C K I N P U T P A R A M E T E R S 2267 1712 2268 G4int k = 0; 1713 G4int k = 0; 2269 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || 1714 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.) k = 1; 2270 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) 1715 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) k = 1; 2271 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) 1716 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) k = 1; 2272 1717 2273 if (Dz <= 0.) k += 2; 1718 if (Dz <= 0.) k += 2; 2274 << 1719 2275 G4double phi1, phi2, dphi; 1720 G4double phi1, phi2, dphi; 2276 if (Dphi < 0.) { 1721 if (Dphi < 0.) { 2277 phi2 = Phi1; phi1 = phi2 - Dphi; 1722 phi2 = Phi1; phi1 = phi2 - Dphi; 2278 }else if (Dphi == 0.) { 1723 }else if (Dphi == 0.) { 2279 phi1 = Phi1; phi2 = phi1 + wholeCircle; 1724 phi1 = Phi1; phi2 = phi1 + wholeCircle; 2280 }else{ 1725 }else{ 2281 phi1 = Phi1; phi2 = phi1 + Dphi; 1726 phi1 = Phi1; phi2 = phi1 + Dphi; 2282 } 1727 } 2283 dphi = phi2 - phi1; 1728 dphi = phi2 - phi1; 2284 if (std::abs(dphi-wholeCircle) < perMillion 1729 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2285 if (dphi > wholeCircle) k += 4; << 1730 if (dphi > wholeCircle) k += 4; 2286 1731 2287 if (k != 0) { 1732 if (k != 0) { 2288 std::cerr << "HepPolyhedronCone(s)/Tube(s 1733 std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters"; 2289 if ((k & 1) != 0) std::cerr << " (radiuse 1734 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2290 if ((k & 2) != 0) std::cerr << " (half-le 1735 if ((k & 2) != 0) std::cerr << " (half-length)"; 2291 if ((k & 4) != 0) std::cerr << " (angles) 1736 if ((k & 4) != 0) std::cerr << " (angles)"; 2292 std::cerr << std::endl; 1737 std::cerr << std::endl; 2293 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" 1738 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1; 2294 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" 1739 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2; 2295 std::cerr << " Dz=" << Dz << " Phi1=" << 1740 std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi 2296 << std::endl; 1741 << std::endl; 2297 return; 1742 return; 2298 } 1743 } 2299 << 1744 2300 // P R E P A R E T W O P O L Y L I N 1745 // P R E P A R E T W O P O L Y L I N E S 2301 1746 2302 G4double zz[4], rr[4]; 1747 G4double zz[4], rr[4]; 2303 zz[0] = Dz; << 1748 zz[0] = Dz; 2304 zz[1] = -Dz; << 1749 zz[1] = -Dz; 2305 zz[2] = Dz; << 1750 zz[2] = Dz; 2306 zz[3] = -Dz; << 1751 zz[3] = -Dz; 2307 rr[0] = Rmx2; 1752 rr[0] = Rmx2; 2308 rr[1] = Rmx1; 1753 rr[1] = Rmx1; 2309 rr[2] = Rmn2; 1754 rr[2] = Rmn2; 2310 rr[3] = Rmn1; 1755 rr[3] = Rmn1; 2311 1756 2312 // R O T A T E P O L Y L I N E S 1757 // R O T A T E P O L Y L I N E S 2313 1758 2314 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, << 1759 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 2315 SetReferences(); 1760 SetReferences(); 2316 } 1761 } 2317 1762 2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1763 HepPolyhedronCons::~HepPolyhedronCons() {} 2319 1764 2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1765 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 2321 G4double 1766 G4double Rmn2, G4double Rmx2, 2322 G4double 1767 G4double Dz) : 2323 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D 1768 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {} 2324 1769 2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1770 HepPolyhedronCone::~HepPolyhedronCone() {} 2326 1771 2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double 1772 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax, 2328 G4double << 1773 G4double Dz, 2329 G4double 1774 G4double Phi1, G4double Dphi) 2330 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rma 1775 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {} 2331 1776 2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1777 HepPolyhedronTubs::~HepPolyhedronTubs() {} 2333 1778 2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl 1779 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax, 2335 G4doubl 1780 G4double Dz) 2336 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, 1781 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {} 2337 1782 2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1783 HepPolyhedronTube::~HepPolyhedronTube () {} 2339 1784 2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double 1785 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi, 2341 G4double 1786 G4double dphi, 2342 G4int np << 1787 G4int npdv, 2343 G4int nz << 1788 G4int nz, 2344 const G4 1789 const G4double *z, 2345 const G4 1790 const G4double *rmin, 2346 const G4 1791 const G4double *rmax) 2347 /******************************************** 1792 /*********************************************************************** 2348 * 1793 * * 2349 * Name: HepPolyhedronPgon 1794 * Name: HepPolyhedronPgon Date: 09.12.96 * 2350 * Author: E.Chernyaev 1795 * Author: E.Chernyaev Revised: * 2351 * 1796 * * 2352 * Function: Constructor of polyhedron for PG 1797 * Function: Constructor of polyhedron for PGON, PCON * 2353 * 1798 * * 2354 * Input: phi - initial phi 1799 * Input: phi - initial phi * 2355 * dphi - delta phi 1800 * dphi - delta phi * 2356 * npdv - number of steps along phi 1801 * npdv - number of steps along phi * 2357 * nz - number of z-planes (at least 1802 * nz - number of z-planes (at least two) * 2358 * z[] - z coordinates of the slices 1803 * z[] - z coordinates of the slices * 2359 * rmin[] - smaller r at the slices 1804 * rmin[] - smaller r at the slices * 2360 * rmax[] - bigger r at the slices 1805 * rmax[] - bigger r at the slices * 2361 * 1806 * * 2362 ******************************************** 1807 ***********************************************************************/ 2363 { 1808 { 2364 // C H E C K I N P U T P A R A M E T 1809 // C H E C K I N P U T P A R A M E T E R S 2365 1810 2366 if (dphi <= 0. || dphi > twopi) { 1811 if (dphi <= 0. || dphi > twopi) { 2367 std::cerr 1812 std::cerr 2368 << "HepPolyhedronPgon/Pcon: wrong delta 1813 << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi 2369 << std::endl; 1814 << std::endl; 2370 return; 1815 return; 2371 } << 1816 } 2372 << 1817 2373 if (nz < 2) { 1818 if (nz < 2) { 2374 std::cerr 1819 std::cerr 2375 << "HepPolyhedronPgon/Pcon: number of z 1820 << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz 2376 << std::endl; 1821 << std::endl; 2377 return; 1822 return; 2378 } 1823 } 2379 1824 2380 if (npdv < 0) { 1825 if (npdv < 0) { 2381 std::cerr 1826 std::cerr 2382 << "HepPolyhedronPgon/Pcon: error in nu 1827 << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv 2383 << std::endl; 1828 << std::endl; 2384 return; 1829 return; 2385 } 1830 } 2386 1831 2387 G4int i; 1832 G4int i; 2388 for (i=0; i<nz; i++) { 1833 for (i=0; i<nz; i++) { 2389 if (rmin[i] < 0. || rmax[i] < 0. || rmin[ 1834 if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) { 2390 std::cerr 1835 std::cerr 2391 << "HepPolyhedronPgon: error in radiu 1836 << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]=" 2392 << rmin[i] << " rmax[" << i << "]=" < 1837 << rmin[i] << " rmax[" << i << "]=" << rmax[i] 2393 << std::endl; 1838 << std::endl; 2394 return; 1839 return; 2395 } 1840 } 2396 } 1841 } 2397 1842 2398 // P R E P A R E T W O P O L Y L I N 1843 // P R E P A R E T W O P O L Y L I N E S 2399 1844 2400 G4double *zz, *rr; 1845 G4double *zz, *rr; 2401 zz = new G4double[2*nz]; 1846 zz = new G4double[2*nz]; 2402 rr = new G4double[2*nz]; 1847 rr = new G4double[2*nz]; 2403 1848 2404 if (z[0] > z[nz-1]) { 1849 if (z[0] > z[nz-1]) { 2405 for (i=0; i<nz; i++) { 1850 for (i=0; i<nz; i++) { 2406 zz[i] = z[i]; 1851 zz[i] = z[i]; 2407 rr[i] = rmax[i]; 1852 rr[i] = rmax[i]; 2408 zz[i+nz] = z[i]; 1853 zz[i+nz] = z[i]; 2409 rr[i+nz] = rmin[i]; 1854 rr[i+nz] = rmin[i]; 2410 } 1855 } 2411 }else{ 1856 }else{ 2412 for (i=0; i<nz; i++) { 1857 for (i=0; i<nz; i++) { 2413 zz[i] = z[nz-i-1]; 1858 zz[i] = z[nz-i-1]; 2414 rr[i] = rmax[nz-i-1]; 1859 rr[i] = rmax[nz-i-1]; 2415 zz[i+nz] = z[nz-i-1]; 1860 zz[i+nz] = z[nz-i-1]; 2416 rr[i+nz] = rmin[nz-i-1]; 1861 rr[i+nz] = rmin[nz-i-1]; 2417 } 1862 } 2418 } 1863 } 2419 1864 2420 // R O T A T E P O L Y L I N E S 1865 // R O T A T E P O L Y L I N E S 2421 1866 2422 G4int nodeVis = 1; << 1867 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 2423 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2424 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, << 2425 SetReferences(); 1868 SetReferences(); 2426 << 1869 2427 delete [] zz; 1870 delete [] zz; 2428 delete [] rr; 1871 delete [] rr; 2429 } 1872 } 2430 1873 2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1874 HepPolyhedronPgon::~HepPolyhedronPgon() {} 2432 G4double << 2433 G4int np << 2434 const st << 2435 /******************************************** << 2436 * << 2437 * Name: HepPolyhedronPgon << 2438 * Author: E.Tcherniaev (E.Chernyaev) << 2439 * << 2440 * Function: Constructor of polyhedron for PG << 2441 * << 2442 * Input: phi - initial phi << 2443 * dphi - delta phi << 2444 * npdv - number of steps along phi << 2445 * rz - rz-contour << 2446 * << 2447 ******************************************** << 2448 { << 2449 // C H E C K I N P U T P A R A M E T << 2450 << 2451 if (dphi <= 0. || dphi > twopi) { << 2452 std::cerr << 2453 << "HepPolyhedronPgon/Pcon: wrong delta << 2454 << std::endl; << 2455 return; << 2456 } << 2457 << 2458 if (npdv < 0) { << 2459 std::cerr << 2460 << "HepPolyhedronPgon/Pcon: error in nu << 2461 << std::endl; << 2462 return; << 2463 } << 2464 << 2465 G4int nrz = (G4int)rz.size(); << 2466 if (nrz < 3) { << 2467 std::cerr << 2468 << "HepPolyhedronPgon/Pcon: invalid num << 2469 << std::endl; << 2470 return; << 2471 } << 2472 << 2473 // R O T A T E P O L Y L I N E << 2474 << 2475 G4int nodeVis = 1; << 2476 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2477 RotateContourAroundZ(npdv, phi, dphi, rz, n << 2478 SetReferences(); << 2479 } << 2480 << 2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 2482 1875 2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double 1876 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz, 2484 const G4 1877 const G4double *z, 2485 const G4 1878 const G4double *rmin, 2486 const G4 1879 const G4double *rmax) 2487 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm 1880 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {} 2488 1881 2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1882 HepPolyhedronPcon::~HepPolyhedronPcon() {} 2490 const st << 2491 : HepPolyhedronPgon(phi, dphi, 0, rz) {} << 2492 << 2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 2494 1883 2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do 1884 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax, 2496 G4do 1885 G4double phi, G4double dphi, 2497 G4do 1886 G4double the, G4double dthe) 2498 /******************************************** 1887 /*********************************************************************** 2499 * 1888 * * 2500 * Name: HepPolyhedronSphere 1889 * Name: HepPolyhedronSphere Date: 11.12.96 * 2501 * Author: E.Chernyaev (IHEP/Protvino) 1890 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2502 * 1891 * * 2503 * Function: Constructor of polyhedron for SP 1892 * Function: Constructor of polyhedron for SPHERE * 2504 * 1893 * * 2505 * Input: rmin - internal radius 1894 * Input: rmin - internal radius * 2506 * rmax - external radius 1895 * rmax - external radius * 2507 * phi - initial phi 1896 * phi - initial phi * 2508 * dphi - delta phi 1897 * dphi - delta phi * 2509 * the - initial theta 1898 * the - initial theta * 2510 * dthe - delta theta 1899 * dthe - delta theta * 2511 * 1900 * * 2512 ******************************************** 1901 ***********************************************************************/ 2513 { 1902 { 2514 // C H E C K I N P U T P A R A M E T 1903 // C H E C K I N P U T P A R A M E T E R S 2515 1904 2516 if (dphi <= 0. || dphi > twopi) { 1905 if (dphi <= 0. || dphi > twopi) { 2517 std::cerr 1906 std::cerr 2518 << "HepPolyhedronSphere: wrong delta ph 1907 << "HepPolyhedronSphere: wrong delta phi = " << dphi 2519 << std::endl; 1908 << std::endl; 2520 return; 1909 return; 2521 } << 1910 } 2522 1911 2523 if (the < 0. || the > pi) { 1912 if (the < 0. || the > pi) { 2524 std::cerr 1913 std::cerr 2525 << "HepPolyhedronSphere: wrong theta = 1914 << "HepPolyhedronSphere: wrong theta = " << the 2526 << std::endl; 1915 << std::endl; 2527 return; 1916 return; 2528 } << 1917 } 2529 << 1918 2530 if (dthe <= 0. || dthe > pi) { 1919 if (dthe <= 0. || dthe > pi) { 2531 std::cerr 1920 std::cerr 2532 << "HepPolyhedronSphere: wrong delta th 1921 << "HepPolyhedronSphere: wrong delta theta = " << dthe 2533 << std::endl; 1922 << std::endl; 2534 return; 1923 return; 2535 } << 1924 } 2536 1925 2537 if (the+dthe > pi) { 1926 if (the+dthe > pi) { 2538 std::cerr 1927 std::cerr 2539 << "HepPolyhedronSphere: wrong theta + 1928 << "HepPolyhedronSphere: wrong theta + delta theta = " 2540 << the << " " << dthe 1929 << the << " " << dthe 2541 << std::endl; 1930 << std::endl; 2542 return; 1931 return; 2543 } << 1932 } 2544 << 1933 2545 if (rmin < 0. || rmin >= rmax) { 1934 if (rmin < 0. || rmin >= rmax) { 2546 std::cerr 1935 std::cerr 2547 << "HepPolyhedronSphere: error in radiu 1936 << "HepPolyhedronSphere: error in radiuses" 2548 << " rmin=" << rmin << " rmax=" << rmax 1937 << " rmin=" << rmin << " rmax=" << rmax 2549 << std::endl; 1938 << std::endl; 2550 return; 1939 return; 2551 } 1940 } 2552 1941 2553 // P R E P A R E T W O P O L Y L I N 1942 // P R E P A R E T W O P O L Y L I N E S 2554 1943 2555 G4int nds = (GetNumberOfRotationSteps() + 1 1944 G4int nds = (GetNumberOfRotationSteps() + 1) / 2; 2556 G4int np1 = G4int(dthe*nds/pi+.5) + 1; 1945 G4int np1 = G4int(dthe*nds/pi+.5) + 1; 2557 if (np1 <= 1) np1 = 2; 1946 if (np1 <= 1) np1 = 2; 2558 G4int np2 = rmin < spatialTolerance ? 1 : n << 1947 G4int np2 = rmin < perMillion ? 1 : np1; 2559 1948 2560 G4double *zz, *rr; 1949 G4double *zz, *rr; 2561 zz = new G4double[np1+np2]; 1950 zz = new G4double[np1+np2]; 2562 rr = new G4double[np1+np2]; 1951 rr = new G4double[np1+np2]; 2563 1952 2564 G4double a = dthe/(np1-1); 1953 G4double a = dthe/(np1-1); 2565 G4double cosa, sina; 1954 G4double cosa, sina; 2566 for (G4int i=0; i<np1; i++) { 1955 for (G4int i=0; i<np1; i++) { 2567 cosa = std::cos(the+i*a); 1956 cosa = std::cos(the+i*a); 2568 sina = std::sin(the+i*a); 1957 sina = std::sin(the+i*a); 2569 zz[i] = rmax*cosa; 1958 zz[i] = rmax*cosa; 2570 rr[i] = rmax*sina; 1959 rr[i] = rmax*sina; 2571 if (np2 > 1) { 1960 if (np2 > 1) { 2572 zz[i+np1] = rmin*cosa; 1961 zz[i+np1] = rmin*cosa; 2573 rr[i+np1] = rmin*sina; 1962 rr[i+np1] = rmin*sina; 2574 } 1963 } 2575 } 1964 } 2576 if (np2 == 1) { 1965 if (np2 == 1) { 2577 zz[np1] = 0.; 1966 zz[np1] = 0.; 2578 rr[np1] = 0.; 1967 rr[np1] = 0.; 2579 } 1968 } 2580 1969 2581 // R O T A T E P O L Y L I N E S 1970 // R O T A T E P O L Y L I N E S 2582 1971 2583 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1972 RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 2584 SetReferences(); 1973 SetReferences(); 2585 << 1974 2586 delete [] zz; 1975 delete [] zz; 2587 delete [] rr; 1976 delete [] rr; 2588 } 1977 } 2589 1978 2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1979 HepPolyhedronSphere::~HepPolyhedronSphere() {} 2591 1980 2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub 1981 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin, 2593 G4doub 1982 G4double rmax, 2594 G4doub 1983 G4double rtor, 2595 G4doub 1984 G4double phi, 2596 G4doub 1985 G4double dphi) 2597 /******************************************** 1986 /*********************************************************************** 2598 * 1987 * * 2599 * Name: HepPolyhedronTorus 1988 * Name: HepPolyhedronTorus Date: 11.12.96 * 2600 * Author: E.Chernyaev (IHEP/Protvino) 1989 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2601 * 1990 * * 2602 * Function: Constructor of polyhedron for TO 1991 * Function: Constructor of polyhedron for TORUS * 2603 * 1992 * * 2604 * Input: rmin - internal radius 1993 * Input: rmin - internal radius * 2605 * rmax - external radius 1994 * rmax - external radius * 2606 * rtor - radius of torus 1995 * rtor - radius of torus * 2607 * phi - initial phi 1996 * phi - initial phi * 2608 * dphi - delta phi 1997 * dphi - delta phi * 2609 * 1998 * * 2610 ******************************************** 1999 ***********************************************************************/ 2611 { 2000 { 2612 // C H E C K I N P U T P A R A M E T 2001 // C H E C K I N P U T P A R A M E T E R S 2613 2002 2614 if (dphi <= 0. || dphi > twopi) { 2003 if (dphi <= 0. || dphi > twopi) { 2615 std::cerr 2004 std::cerr 2616 << "HepPolyhedronTorus: wrong delta phi 2005 << "HepPolyhedronTorus: wrong delta phi = " << dphi 2617 << std::endl; 2006 << std::endl; 2618 return; 2007 return; 2619 } 2008 } 2620 2009 2621 if (rmin < 0. || rmin >= rmax || rmax >= rt 2010 if (rmin < 0. || rmin >= rmax || rmax >= rtor) { 2622 std::cerr 2011 std::cerr 2623 << "HepPolyhedronTorus: error in radius 2012 << "HepPolyhedronTorus: error in radiuses" 2624 << " rmin=" << rmin << " rmax=" << rmax 2013 << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor 2625 << std::endl; 2014 << std::endl; 2626 return; 2015 return; 2627 } 2016 } 2628 2017 2629 // P R E P A R E T W O P O L Y L I N 2018 // P R E P A R E T W O P O L Y L I N E S 2630 2019 2631 G4int np1 = GetNumberOfRotationSteps(); 2020 G4int np1 = GetNumberOfRotationSteps(); 2632 G4int np2 = rmin < spatialTolerance ? 1 : n << 2021 G4int np2 = rmin < perMillion ? 1 : np1; 2633 2022 2634 G4double *zz, *rr; 2023 G4double *zz, *rr; 2635 zz = new G4double[np1+np2]; 2024 zz = new G4double[np1+np2]; 2636 rr = new G4double[np1+np2]; 2025 rr = new G4double[np1+np2]; 2637 2026 2638 G4double a = twopi/np1; 2027 G4double a = twopi/np1; 2639 G4double cosa, sina; 2028 G4double cosa, sina; 2640 for (G4int i=0; i<np1; i++) { 2029 for (G4int i=0; i<np1; i++) { 2641 cosa = std::cos(i*a); 2030 cosa = std::cos(i*a); 2642 sina = std::sin(i*a); 2031 sina = std::sin(i*a); 2643 zz[i] = rmax*cosa; 2032 zz[i] = rmax*cosa; 2644 rr[i] = rtor+rmax*sina; 2033 rr[i] = rtor+rmax*sina; 2645 if (np2 > 1) { 2034 if (np2 > 1) { 2646 zz[i+np1] = rmin*cosa; 2035 zz[i+np1] = rmin*cosa; 2647 rr[i+np1] = rtor+rmin*sina; 2036 rr[i+np1] = rtor+rmin*sina; 2648 } 2037 } 2649 } 2038 } 2650 if (np2 == 1) { 2039 if (np2 == 1) { 2651 zz[np1] = 0.; 2040 zz[np1] = 0.; 2652 rr[np1] = rtor; 2041 rr[np1] = rtor; 2653 np2 = -1; 2042 np2 = -1; 2654 } 2043 } 2655 2044 2656 // R O T A T E P O L Y L I N E S 2045 // R O T A T E P O L Y L I N E S 2657 2046 2658 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2047 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 2659 SetReferences(); 2048 SetReferences(); 2660 << 2049 2661 delete [] zz; 2050 delete [] zz; 2662 delete [] rr; 2051 delete [] rr; 2663 } 2052 } 2664 2053 2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2054 HepPolyhedronTorus::~HepPolyhedronTorus() {} 2666 << 2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 2668 const G4do << 2669 const G4do << 2670 const G4do << 2671 /******************************************** << 2672 * << 2673 * Name: HepPolyhedronTet << 2674 * Author: E.Tcherniaev (E.Chernyaev) << 2675 * << 2676 * Function: Constructor of polyhedron for TE << 2677 * << 2678 * Input: p0,p1,p2,p3 - vertices << 2679 * << 2680 ******************************************** << 2681 { << 2682 AllocateMemory(4,4); << 2683 << 2684 pV[1].set(p0[0], p0[1], p0[2]); << 2685 pV[2].set(p1[0], p1[1], p1[2]); << 2686 pV[3].set(p2[0], p2[1], p2[2]); << 2687 pV[4].set(p3[0], p3[1], p3[2]); << 2688 << 2689 G4Vector3D v1(pV[2] - pV[1]); << 2690 G4Vector3D v2(pV[3] - pV[1]); << 2691 G4Vector3D v3(pV[4] - pV[1]); << 2692 << 2693 if (v1.cross(v2).dot(v3) < 0.) << 2694 { << 2695 pV[3].set(p3[0], p3[1], p3[2]); << 2696 pV[4].set(p2[0], p2[1], p2[2]); << 2697 } << 2698 << 2699 pF[1] = G4Facet(1,2, 3,4, 2,3); << 2700 pF[2] = G4Facet(1,3, 4,4, 3,1); << 2701 pF[3] = G4Facet(1,1, 2,4, 4,2); << 2702 pF[4] = G4Facet(2,1, 3,2, 4,3); << 2703 } << 2704 << 2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 2706 2055 2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi 2056 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by, 2708 2057 G4double cz, G4double zCut1, 2709 2058 G4double zCut2) 2710 /******************************************** 2059 /*********************************************************************** 2711 * 2060 * * 2712 * Name: HepPolyhedronEllipsoid 2061 * Name: HepPolyhedronEllipsoid Date: 25.02.05 * 2713 * Author: G.Guerrieri 2062 * Author: G.Guerrieri Revised: * 2714 * Evgueni Tcherniaev << 2715 * 2063 * * 2716 * Function: Constructor of polyhedron for EL 2064 * Function: Constructor of polyhedron for ELLIPSOID * 2717 * 2065 * * 2718 * Input: ax - semiaxis x 2066 * Input: ax - semiaxis x * 2719 * by - semiaxis y 2067 * by - semiaxis y * 2720 * cz - semiaxis z 2068 * cz - semiaxis z * 2721 * zCut1 - lower cut plane level (soli 2069 * zCut1 - lower cut plane level (solid lies above this plane) * 2722 * zCut2 - upper cut plane level (soli 2070 * zCut2 - upper cut plane level (solid lies below this plane) * 2723 * 2071 * * 2724 ******************************************** 2072 ***********************************************************************/ 2725 { 2073 { 2726 // C H E C K I N P U T P A R A M E T 2074 // C H E C K I N P U T P A R A M E T E R S 2727 2075 2728 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > 2076 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) { 2729 std::cerr << "HepPolyhedronEllipsoid: wro 2077 std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1 2730 << " zCut2 = " << zCut2 2078 << " zCut2 = " << zCut2 2731 << " for given cz = " << cz << std 2079 << " for given cz = " << cz << std::endl; 2732 return; 2080 return; 2733 } 2081 } 2734 if (cz <= 0.0) { 2082 if (cz <= 0.0) { 2735 std::cerr << "HepPolyhedronEllipsoid: bad 2083 std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz 2736 << std::endl; 2084 << std::endl; 2737 return; 2085 return; 2738 } 2086 } 2739 2087 >> 2088 G4double dthe; >> 2089 G4double sthe; >> 2090 G4int cutflag; >> 2091 cutflag= 0; >> 2092 if (zCut2 >= cz) >> 2093 { >> 2094 sthe= 0.0; >> 2095 } >> 2096 else >> 2097 { >> 2098 sthe= std::acos(zCut2/cz); >> 2099 cutflag++; >> 2100 } >> 2101 if (zCut1 <= -cz) >> 2102 { >> 2103 dthe= pi - sthe; >> 2104 } >> 2105 else >> 2106 { >> 2107 dthe= std::acos(zCut1/cz)-sthe; >> 2108 cutflag++; >> 2109 } >> 2110 2740 // P R E P A R E T W O P O L Y L I N 2111 // P R E P A R E T W O P O L Y L I N E S 2741 // generate sphere of radius cz first, th 2112 // generate sphere of radius cz first, then rescale x and y later 2742 2113 2743 G4double sthe = std::acos(zCut2/cz); << 2114 G4int nds = (GetNumberOfRotationSteps() + 1) / 2; 2744 G4double dthe = std::acos(zCut1/cz) - sthe; << 2115 G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag; 2745 G4int nds = (GetNumberOfRotationSteps() + 1 << 2746 G4int np1 = G4int(dthe*nds/pi + 0.5) + 1; << 2747 if (np1 <= 1) np1 = 2; << 2748 G4int np2 = 2; << 2749 2116 2750 G4double *zz, *rr; 2117 G4double *zz, *rr; 2751 zz = new G4double[np1 + np2]; << 2118 zz = new G4double[np1+1]; 2752 rr = new G4double[np1 + np2]; << 2119 rr = new G4double[np1+1]; 2753 if ((zz == nullptr) || (rr == nullptr)) << 2120 if (!zz || !rr) 2754 { << 2121 { 2755 G4Exception("HepPolyhedronEllipsoid::HepP << 2122 G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid", 2756 "greps1002", FatalException, << 2123 "greps1002", FatalException, "Out of memory"); 2757 } << 2124 } 2758 2125 2759 G4double a = dthe/(np1 - 1); << 2126 G4double a = dthe/(np1-cutflag-1); 2760 G4double cosa, sina; 2127 G4double cosa, sina; 2761 for (G4int i = 0; i < np1; ++i) << 2128 G4int j=0; 2762 { << 2129 if (sthe > 0.0) 2763 cosa = std::cos(sthe + i*a); << 2130 { 2764 sina = std::sin(sthe + i*a); << 2131 zz[j]= zCut2; 2765 zz[i] = cz*cosa; << 2132 rr[j]= 0.; 2766 rr[i] = cz*sina; << 2133 j++; 2767 } << 2134 } 2768 zz[np1 + 0] = zCut2; << 2135 for (G4int i=0; i<np1-cutflag; i++) { 2769 rr[np1 + 0] = 0.; << 2136 cosa = std::cos(sthe+i*a); 2770 zz[np1 + 1] = zCut1; << 2137 sina = std::sin(sthe+i*a); 2771 rr[np1 + 1] = 0.; << 2138 zz[j] = cz*cosa; >> 2139 rr[j] = cz*sina; >> 2140 j++; >> 2141 } >> 2142 if (j < np1) >> 2143 { >> 2144 zz[j]= zCut1; >> 2145 rr[j]= 0.; >> 2146 j++; >> 2147 } >> 2148 if (j > np1) >> 2149 { >> 2150 std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!" >> 2151 << std::endl; >> 2152 } >> 2153 if (j < np1) >> 2154 { >> 2155 std::cerr << "Warning: logic error in HepPolyhedronEllipsoid." >> 2156 << std::endl; >> 2157 np1= j; >> 2158 } >> 2159 zz[j] = 0.; >> 2160 rr[j] = 0.; 2772 2161 >> 2162 2773 // R O T A T E P O L Y L I N E S 2163 // R O T A T E P O L Y L I N E S 2774 2164 2775 RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2165 RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 2776 SetReferences(); 2166 SetReferences(); 2777 2167 2778 delete [] zz; 2168 delete [] zz; 2779 delete [] rr; 2169 delete [] rr; 2780 2170 2781 // rescale x and y vertex coordinates 2171 // rescale x and y vertex coordinates 2782 G4double kx = ax/cz; << 2783 G4double ky = by/cz; << 2784 G4Point3D* p = pV; << 2785 for (G4int i = 0; i < nvert; ++i, ++p) << 2786 { 2172 { 2787 p->setX(p->x()*kx); << 2173 G4Point3D * p= pV; 2788 p->setY(p->y()*ky); << 2174 for (G4int i=0; i<nvert; i++, p++) { >> 2175 p->setX( p->x() * ax/cz ); >> 2176 p->setY( p->y() * by/cz ); >> 2177 } 2789 } 2178 } 2790 } 2179 } 2791 2180 2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2181 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {} 2793 2182 2794 HepPolyhedronEllipticalCone::HepPolyhedronEll 2183 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax, 2795 2184 G4double ay, 2796 2185 G4double h, 2797 << 2186 G4double zTopCut) 2798 /******************************************** 2187 /*********************************************************************** 2799 * 2188 * * 2800 * Name: HepPolyhedronEllipticalCone 2189 * Name: HepPolyhedronEllipticalCone Date: 8.9.2005 * 2801 * Author: D.Anninos 2190 * Author: D.Anninos Revised: 9.9.2005 * 2802 * 2191 * * 2803 * Function: Constructor for EllipticalCone 2192 * Function: Constructor for EllipticalCone * 2804 * 2193 * * 2805 * Input: ax, ay - X & Y semi axes at z = 2194 * Input: ax, ay - X & Y semi axes at z = 0 * 2806 * h - height of full cone 2195 * h - height of full cone * 2807 * zTopCut - Top Cut in Z Axis 2196 * zTopCut - Top Cut in Z Axis * 2808 * 2197 * * 2809 ******************************************** 2198 ***********************************************************************/ 2810 { 2199 { 2811 // C H E C K I N P U T P A R A M E T 2200 // C H E C K I N P U T P A R A M E T E R S 2812 2201 2813 G4int k = 0; 2202 G4int k = 0; 2814 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) 2203 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; } 2815 2204 2816 if (k != 0) { 2205 if (k != 0) { 2817 std::cerr << "HepPolyhedronCone: error in 2206 std::cerr << "HepPolyhedronCone: error in input parameters"; 2818 std::cerr << std::endl; 2207 std::cerr << std::endl; 2819 return; 2208 return; 2820 } 2209 } 2821 << 2210 2822 // P R E P A R E T W O P O L Y L I N 2211 // P R E P A R E T W O P O L Y L I N E S 2823 2212 2824 zTopCut = (h >= zTopCut ? zTopCut : h); 2213 zTopCut = (h >= zTopCut ? zTopCut : h); 2825 2214 2826 G4double *zz, *rr; 2215 G4double *zz, *rr; 2827 zz = new G4double[4]; 2216 zz = new G4double[4]; 2828 rr = new G4double[4]; 2217 rr = new G4double[4]; 2829 zz[0] = zTopCut; << 2218 zz[0] = zTopCut; 2830 zz[1] = -zTopCut; << 2219 zz[1] = -zTopCut; 2831 zz[2] = zTopCut; << 2220 zz[2] = zTopCut; 2832 zz[3] = -zTopCut; << 2221 zz[3] = -zTopCut; 2833 rr[0] = (h-zTopCut); 2222 rr[0] = (h-zTopCut); 2834 rr[1] = (h+zTopCut); 2223 rr[1] = (h+zTopCut); 2835 rr[2] = 0.; 2224 rr[2] = 0.; 2836 rr[3] = 0.; 2225 rr[3] = 0.; 2837 2226 2838 // R O T A T E P O L Y L I N E S 2227 // R O T A T E P O L Y L I N E S 2839 2228 2840 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2229 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 2841 SetReferences(); 2230 SetReferences(); 2842 2231 2843 delete [] zz; 2232 delete [] zz; 2844 delete [] rr; 2233 delete [] rr; 2845 2234 2846 // rescale x and y vertex coordinates 2235 // rescale x and y vertex coordinates 2847 { 2236 { 2848 G4Point3D * p= pV; 2237 G4Point3D * p= pV; 2849 for (G4int i=0; i<nvert; i++, p++) { 2238 for (G4int i=0; i<nvert; i++, p++) { 2850 p->setX( p->x() * ax ); 2239 p->setX( p->x() * ax ); 2851 p->setY( p->y() * ay ); 2240 p->setY( p->y() * ay ); 2852 } 2241 } 2853 } 2242 } 2854 } 2243 } 2855 2244 2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2245 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {} 2857 << 2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 2859 << 2860 << 2861 /******************************************** << 2862 * << 2863 * Name: HepPolyhedronHyperbolicMirror << 2864 * Author: E.Tcherniaev (E.Chernyaev) << 2865 * << 2866 * Function: Create polyhedron for Hyperbolic << 2867 * << 2868 * Input: a - half-separation << 2869 * h - height << 2870 * r - radius << 2871 * << 2872 ******************************************** << 2873 { << 2874 G4double H = std::abs(h); << 2875 G4double R = std::abs(r); << 2876 G4double A = std::abs(a); << 2877 G4double B = A*R/std::sqrt(2*A*H + H*H); << 2878 << 2879 // P R E P A R E T W O P O L Y L I N << 2880 << 2881 G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 2882 G4int np2 = 2; << 2883 G4double maxAng = (A == 0.) ? 0. : std::aco << 2884 G4double delAng = maxAng/(np1 - 1); << 2885 << 2886 auto zz = new G4double[np1 + np2]; << 2887 auto rr = new G4double[np1 + np2]; << 2888 << 2889 // 1st polyline << 2890 zz[0] = H; << 2891 rr[0] = R; << 2892 for (G4int iz = 1; iz < np1 - 1; ++iz) << 2893 { << 2894 G4double ang = maxAng - iz*delAng; << 2895 zz[iz] = A*std::cosh(ang) - A; << 2896 rr[iz] = B*std::sinh(ang); << 2897 } << 2898 zz[np1 - 1] = 0.; << 2899 rr[np1 - 1] = 0.; << 2900 << 2901 // 2nd polyline << 2902 zz[np1] = H; << 2903 rr[np1] = 0.; << 2904 zz[np1 + 1] = 0.; << 2905 rr[np1 + 1] = 0.; << 2906 << 2907 // R O T A T E P O L Y L I N E S << 2908 << 2909 G4double phi = 0.; << 2910 G4double dphi = CLHEP::twopi; << 2911 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 2912 SetReferences(); << 2913 << 2914 delete [] zz; << 2915 delete [] rr; << 2916 } << 2917 << 2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 2919 << 2920 HepPolyhedronTetMesh:: << 2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 2922 /******************************************** << 2923 * << 2924 * Name: HepPolyhedronTetMesh << 2925 * Author: E.Tcherniaev (E.Chernyaev) << 2926 * << 2927 * Function: Create polyhedron for tetrahedro << 2928 * << 2929 * Input: tetrahedra - array of tetrahedron v << 2930 * per tetrahedron << 2931 * << 2932 ******************************************** << 2933 { << 2934 // Check size of input vector << 2935 G4int nnodes = (G4int)tetrahedra.size(); << 2936 if (nnodes == 0) << 2937 { << 2938 std::cerr << 2939 << "HepPolyhedronTetMesh: Empty tetrahe << 2940 return; << 2941 } << 2942 G4int ntet = nnodes/4; << 2943 if (nnodes != ntet*4) << 2944 { << 2945 std::cerr << "HepPolyhedronTetMesh: Numbe << 2946 << " in tetrahedron mesh is NOT << 2947 << std::endl; << 2948 return; << 2949 } << 2950 2246 2951 // Find coincident vertices using hash tabl << 2952 // This could be done using std::unordered_ << 2953 // below runs faster. << 2954 std::vector<G4int> iheads(nnodes, -1); << 2955 std::vector<std::pair<G4int,G4int>> ipairs( << 2956 for (G4int i = 0; i < nnodes; ++i) << 2957 { << 2958 // Generate hash key << 2959 G4ThreeVector point = tetrahedra[i]; << 2960 auto key = std::hash<G4double>()(point.x( << 2961 key ^= std::hash<G4double>()(point.y()); << 2962 key ^= std::hash<G4double>()(point.z()); << 2963 key %= nnodes; << 2964 // Check head of the list << 2965 if (iheads[key] < 0) << 2966 { << 2967 iheads[key] = i; << 2968 ipairs[i].first = i; << 2969 continue; << 2970 } << 2971 // Loop along the list << 2972 for (G4int icur = iheads[key], iprev = 0; << 2973 { << 2974 G4int icheck = ipairs[icur].first; << 2975 if (tetrahedra[icheck] == point) << 2976 { << 2977 ipairs[i].first = icheck; // coincide << 2978 break; << 2979 } << 2980 iprev = icur; << 2981 icur = ipairs[icur].second; << 2982 // Append vertex to the list << 2983 if (icur < 0) << 2984 { << 2985 ipairs[i].first = i; << 2986 ipairs[iprev].second = i; << 2987 break; << 2988 } << 2989 } << 2990 } << 2991 << 2992 // Create vector of original facets << 2993 struct facet << 2994 { << 2995 G4int i1, i2, i3; << 2996 facet() : i1(0), i2(0), i3(0) {}; << 2997 facet(G4int k1, G4int k2, G4int k3) : i1( << 2998 }; << 2999 G4int nfacets = nnodes; << 3000 std::vector<facet> ifacets(nfacets); << 3001 for (G4int i = 0; i < nfacets; i += 4) << 3002 { << 3003 G4int i0 = ipairs[i + 0].first; << 3004 G4int i1 = ipairs[i + 1].first; << 3005 G4int i2 = ipairs[i + 2].first; << 3006 G4int i3 = ipairs[i + 3].first; << 3007 if (i0 > i1) std::swap(i0, i1); << 3008 if (i0 > i2) std::swap(i0, i2); << 3009 if (i0 > i3) std::swap(i0, i3); << 3010 if (i1 > i2) std::swap(i1, i2); << 3011 if (i1 > i3) std::swap(i1, i3); << 3012 G4ThreeVector e1 = tetrahedra[i1] - tetra << 3013 G4ThreeVector e2 = tetrahedra[i2] - tetra << 3014 G4ThreeVector e3 = tetrahedra[i3] - tetra << 3015 G4double volume = (e1.cross(e2)).dot(e3); << 3016 if (volume > 0.) std::swap(i2, i3); << 3017 ifacets[i + 0] = facet(i0, i1, i2); << 3018 ifacets[i + 1] = facet(i0, i2, i3); << 3019 ifacets[i + 2] = facet(i0, i3, i1); << 3020 ifacets[i + 3] = facet(i1, i3, i2); << 3021 } << 3022 << 3023 // Find shared facets << 3024 std::fill(iheads.begin(), iheads.end(), -1) << 3025 std::fill(ipairs.begin(), ipairs.end(), std << 3026 for (G4int i = 0; i < nfacets; ++i) << 3027 { << 3028 // Check head of the list << 3029 G4int key = ifacets[i].i1; << 3030 if (iheads[key] < 0) << 3031 { << 3032 iheads[key] = i; << 3033 ipairs[i].first = i; << 3034 continue; << 3035 } << 3036 // Loop along the list << 3037 G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 3038 for (G4int icur = iheads[key], iprev = -1 << 3039 { << 3040 G4int icheck = ipairs[icur].first; << 3041 if (ifacets[icheck].i2 == i3 && ifacets << 3042 { << 3043 if (iprev < 0) << 3044 { << 3045 iheads[key] = ipairs[icur].second; << 3046 } << 3047 else << 3048 { << 3049 ipairs[iprev].second = ipairs[icur] << 3050 } << 3051 ipairs[icur].first = -1; // shared fa << 3052 ipairs[icur].second = -1; << 3053 break; << 3054 } << 3055 iprev = icur; << 3056 icur = ipairs[icur].second; << 3057 // Append facet to the list << 3058 if (icur < 0) << 3059 { << 3060 ipairs[i].first = i; << 3061 ipairs[iprev].second = i; << 3062 break; << 3063 } << 3064 } << 3065 } << 3066 << 3067 // Count vertices and facets skipping share << 3068 std::fill(iheads.begin(), iheads.end(), -1) << 3069 G4int nver = 0, nfac = 0; << 3070 for (G4int i = 0; i < nfacets; ++i) << 3071 { << 3072 if (ipairs[i].first < 0) continue; << 3073 G4int i1 = ifacets[i].i1; << 3074 G4int i2 = ifacets[i].i2; << 3075 G4int i3 = ifacets[i].i3; << 3076 if (iheads[i1] < 0) iheads[i1] = nver++; << 3077 if (iheads[i2] < 0) iheads[i2] = nver++; << 3078 if (iheads[i3] < 0) iheads[i3] = nver++; << 3079 nfac++; << 3080 } << 3081 << 3082 // Construct polyhedron << 3083 AllocateMemory(nver, nfac); << 3084 for (G4int i = 0; i < nnodes; ++i) << 3085 { << 3086 G4int k = iheads[i]; << 3087 if (k >= 0) SetVertex(k + 1, tetrahedra[i << 3088 } << 3089 for (G4int i = 0, k = 0; i < nfacets; ++i) << 3090 { << 3091 if (ipairs[i].first < 0) continue; << 3092 G4int i1 = iheads[ifacets[i].i1] + 1; << 3093 G4int i2 = iheads[ifacets[i].i2] + 1; << 3094 G4int i3 = iheads[ifacets[i].i3] + 1; << 3095 SetFacet(++k, i1, i2, i3); << 3096 } << 3097 SetReferences(); << 3098 } << 3099 << 3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 3101 << 3102 HepPolyhedronBoxMesh:: << 3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 3104 const std::vector<G4Thre << 3105 /******************************************** << 3106 * << 3107 * Name: HepPolyhedronBoxMesh << 3108 * Author: E.Tcherniaev (E.Chernyaev) << 3109 * << 3110 * Function: Create polyhedron for box mesh << 3111 * << 3112 * Input: sizeX, sizeY, sizeZ - dimensions of << 3113 * positions - vector of cell centres << 3114 * << 3115 ******************************************** << 3116 { << 3117 G4int nbox = (G4int)positions.size(); << 3118 if (nbox == 0) << 3119 { << 3120 std::cerr << "HepPolyhedronBoxMesh: Empty << 3121 return; << 3122 } << 3123 // compute inverse dimensions << 3124 G4double invx = 1./sizeX, invy = 1./sizeY, << 3125 // find mesh bounding box << 3126 G4ThreeVector pmin = positions[0], pmax = p << 3127 for (const auto& p: positions) << 3128 { << 3129 if (pmin.x() > p.x()) pmin.setX(p.x()); << 3130 if (pmin.y() > p.y()) pmin.setY(p.y()); << 3131 if (pmin.z() > p.z()) pmin.setZ(p.z()); << 3132 if (pmax.x() < p.x()) pmax.setX(p.x()); << 3133 if (pmax.y() < p.y()) pmax.setY(p.y()); << 3134 if (pmax.z() < p.z()) pmax.setZ(p.z()); << 3135 } << 3136 // find number of voxels << 3137 G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 3138 G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 3139 G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 3140 // create structures for voxels and node in << 3141 std::vector<char> voxels(nx*ny*nz, 0); << 3142 std::vector<G4int> indices((nx+1)*(ny+1)*(n << 3143 // mark voxels listed in positions << 3144 G4int kx = ny*nz, ky = nz; << 3145 for (const auto& p: positions) << 3146 { << 3147 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3148 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3149 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3150 G4int i = ix*kx + iy*ky + iz; << 3151 voxels[i] = 1; << 3152 } << 3153 // count number of vertices and facets << 3154 // set indices << 3155 G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 3156 G4int nver = 0, nfac = 0; << 3157 for (const auto& p: positions) << 3158 { << 3159 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3160 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3161 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3162 // << 3163 // 011 111 << 3164 // +---–---+ << 3165 // | 001 | 101 << 3166 // | +---–---+ << 3167 // | | | | << 3168 // +---|---+ | << 3169 // 010 | 110 | << 3170 // +-------+ << 3171 // 000 100 << 3172 // << 3173 G4int vcheck = 0; << 3174 // check (ix - 1) side << 3175 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3176 if (vcheck == 0) << 3177 { << 3178 nfac++; << 3179 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3180 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3181 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3182 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3183 if (indices[i1] == 0) indices[i1] = ++n << 3184 if (indices[i2] == 0) indices[i2] = ++n << 3185 if (indices[i3] == 0) indices[i3] = ++n << 3186 if (indices[i4] == 0) indices[i4] = ++n << 3187 } << 3188 // check (ix + 1) side << 3189 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3190 if (vcheck == 0) << 3191 { << 3192 nfac++; << 3193 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3194 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3195 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3196 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3197 if (indices[i1] == 0) indices[i1] = ++n << 3198 if (indices[i2] == 0) indices[i2] = ++n << 3199 if (indices[i3] == 0) indices[i3] = ++n << 3200 if (indices[i4] == 0) indices[i4] = ++n << 3201 } << 3202 // check (iy - 1) side << 3203 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3204 if (vcheck == 0) << 3205 { << 3206 nfac++; << 3207 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3208 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3209 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3210 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3211 if (indices[i1] == 0) indices[i1] = ++n << 3212 if (indices[i2] == 0) indices[i2] = ++n << 3213 if (indices[i3] == 0) indices[i3] = ++n << 3214 if (indices[i4] == 0) indices[i4] = ++n << 3215 } << 3216 // check (iy + 1) side << 3217 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3218 if (vcheck == 0) << 3219 { << 3220 nfac++; << 3221 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3222 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3223 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3224 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3225 if (indices[i1] == 0) indices[i1] = ++n << 3226 if (indices[i2] == 0) indices[i2] = ++n << 3227 if (indices[i3] == 0) indices[i3] = ++n << 3228 if (indices[i4] == 0) indices[i4] = ++n << 3229 } << 3230 // check (iz - 1) side << 3231 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3232 if (vcheck == 0) << 3233 { << 3234 nfac++; << 3235 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3236 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3237 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3238 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3239 if (indices[i1] == 0) indices[i1] = ++n << 3240 if (indices[i2] == 0) indices[i2] = ++n << 3241 if (indices[i3] == 0) indices[i3] = ++n << 3242 if (indices[i4] == 0) indices[i4] = ++n << 3243 } << 3244 // check (iz + 1) side << 3245 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3246 if (vcheck == 0) << 3247 { << 3248 nfac++; << 3249 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3250 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3251 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3252 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3253 if (indices[i1] == 0) indices[i1] = ++n << 3254 if (indices[i2] == 0) indices[i2] = ++n << 3255 if (indices[i3] == 0) indices[i3] = ++n << 3256 if (indices[i4] == 0) indices[i4] = ++n << 3257 } << 3258 } << 3259 // Construct polyhedron << 3260 AllocateMemory(nver, nfac); << 3261 G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 3262 for (G4int ix = 0; ix <= nx; ++ix) << 3263 { << 3264 for (G4int iy = 0; iy <= ny; ++iy) << 3265 { << 3266 for (G4int iz = 0; iz <= nz; ++iz) << 3267 { << 3268 G4int i = ix*kvx + iy*kvy + iz; << 3269 if (indices[i] == 0) continue; << 3270 SetVertex(indices[i], p0 + G4ThreeVector(ix << 3271 } << 3272 } << 3273 } << 3274 nfac = 0; << 3275 for (const auto& p: positions) << 3276 { << 3277 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3278 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3279 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3280 G4int vcheck = 0; << 3281 // check (ix - 1) side << 3282 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3283 if (vcheck == 0) << 3284 { << 3285 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3286 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3287 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3288 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3289 SetFacet(++nfac, indices[i1], indices[i << 3290 } << 3291 // check (ix + 1) side << 3292 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3293 if (vcheck == 0) << 3294 { << 3295 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3296 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3297 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3298 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3299 SetFacet(++nfac, indices[i1], indices[i << 3300 << 3301 } << 3302 // check (iy - 1) side << 3303 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3304 if (vcheck == 0) << 3305 { << 3306 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3307 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3308 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3309 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3310 SetFacet(++nfac, indices[i1], indices[i << 3311 } << 3312 // check (iy + 1) side << 3313 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3314 if (vcheck == 0) << 3315 { << 3316 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3317 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3318 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3319 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3320 SetFacet(++nfac, indices[i1], indices[i << 3321 } << 3322 // check (iz - 1) side << 3323 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3324 if (vcheck == 0) << 3325 { << 3326 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3327 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3328 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3329 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3330 SetFacet(++nfac, indices[i1], indices[i << 3331 } << 3332 // check (iz + 1) side << 3333 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3334 if (vcheck == 0) << 3335 { << 3336 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3337 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3338 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3339 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3340 SetFacet(++nfac, indices[i1], indices[i << 3341 } << 3342 } << 3343 SetReferences(); << 3344 } << 3345 << 3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 3347 << 3348 G4ThreadLocal << 3349 G4int HepPolyhedron::fNumberOfRotationSteps = 2247 G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 3350 /******************************************** 2248 /*********************************************************************** 3351 * 2249 * * 3352 * Name: HepPolyhedron::fNumberOfRotationStep 2250 * Name: HepPolyhedron::fNumberOfRotationSteps Date: 24.06.97 * 3353 * Author: J.Allison (Manchester University) 2251 * Author: J.Allison (Manchester University) Revised: * 3354 * 2252 * * 3355 * Function: Number of steps for whole circle 2253 * Function: Number of steps for whole circle * 3356 * 2254 * * 3357 ******************************************** 2255 ***********************************************************************/ 3358 2256 3359 #include "BooleanProcessor.src" 2257 #include "BooleanProcessor.src" 3360 2258 3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2259 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 3362 /******************************************** 2260 /*********************************************************************** 3363 * 2261 * * 3364 * Name: HepPolyhedron::add 2262 * Name: HepPolyhedron::add Date: 19.03.00 * 3365 * Author: E.Chernyaev 2263 * Author: E.Chernyaev Revised: * 3366 * 2264 * * 3367 * Function: Boolean "union" of two polyhedra 2265 * Function: Boolean "union" of two polyhedra * 3368 * 2266 * * 3369 ******************************************** 2267 ***********************************************************************/ 3370 { 2268 { 3371 G4int ierr; 2269 G4int ierr; 3372 BooleanProcessor processor; 2270 BooleanProcessor processor; 3373 return processor.execute(OP_UNION, *this, p 2271 return processor.execute(OP_UNION, *this, p,ierr); 3374 } 2272 } 3375 2273 3376 HepPolyhedron HepPolyhedron::intersect(const << 2274 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 3377 /******************************************** 2275 /*********************************************************************** 3378 * 2276 * * 3379 * Name: HepPolyhedron::intersect 2277 * Name: HepPolyhedron::intersect Date: 19.03.00 * 3380 * Author: E.Chernyaev 2278 * Author: E.Chernyaev Revised: * 3381 * 2279 * * 3382 * Function: Boolean "intersection" of two po 2280 * Function: Boolean "intersection" of two polyhedra * 3383 * 2281 * * 3384 ******************************************** 2282 ***********************************************************************/ 3385 { 2283 { 3386 G4int ierr; 2284 G4int ierr; 3387 BooleanProcessor processor; 2285 BooleanProcessor processor; 3388 return processor.execute(OP_INTERSECTION, * 2286 return processor.execute(OP_INTERSECTION, *this, p,ierr); 3389 } 2287 } 3390 2288 3391 HepPolyhedron HepPolyhedron::subtract(const H << 2289 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 3392 /******************************************** 2290 /*********************************************************************** 3393 * 2291 * * 3394 * Name: HepPolyhedron::add 2292 * Name: HepPolyhedron::add Date: 19.03.00 * 3395 * Author: E.Chernyaev 2293 * Author: E.Chernyaev Revised: * 3396 * 2294 * * 3397 * Function: Boolean "subtraction" of "p" fro 2295 * Function: Boolean "subtraction" of "p" from "this" * 3398 * 2296 * * 3399 ******************************************** 2297 ***********************************************************************/ 3400 { 2298 { 3401 G4int ierr; 2299 G4int ierr; 3402 BooleanProcessor processor; 2300 BooleanProcessor processor; 3403 return processor.execute(OP_SUBTRACTION, *t 2301 return processor.execute(OP_SUBTRACTION, *this, p,ierr); 3404 } 2302 } 3405 2303 3406 //NOTE : include the code of HepPolyhedronPro 2304 //NOTE : include the code of HepPolyhedronProcessor here 3407 // since there is no BooleanProcessor.h 2305 // since there is no BooleanProcessor.h 3408 2306 3409 #undef INTERSECTION 2307 #undef INTERSECTION 3410 2308 3411 #include "HepPolyhedronProcessor.src" 2309 #include "HepPolyhedronProcessor.src" >> 2310 3412 2311