Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/graphics_reps/src/HepPolyhedron.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /graphics_reps/src/HepPolyhedron.cc (Version 11.3.0) and /graphics_reps/src/HepPolyhedron.cc (Version 9.5.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: HepPolyhedron.cc,v 1.35 2010-12-07 09:36:59 allison Exp $
                                                   >>  28 // GEANT4 tag $Name: not supported by cvs2svn $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 //
 26 // G4 Polyhedron library                           32 // G4 Polyhedron library
 27 //                                                 33 //
 28 // History:                                        34 // History:
 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce     35 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version
 30 //                                                 36 //
 31 // 30.09.96 E.Chernyaev                            37 // 30.09.96 E.Chernyaev
 32 // - added GetNextVertexIndex, GetVertex by Ya     38 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada
 33 // - added GetNextUnitNormal, GetNextEdgeIndic <<  39 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge
 34 //                                                 40 //
 35 // 15.12.96 E.Chernyaev                            41 // 15.12.96 E.Chernyaev
 36 // - added GetNumberOfRotationSteps, RotateEdg     42 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences
 37 // - rewritten G4PolyhedronCons;                   43 // - rewritten G4PolyhedronCons;
 38 // - added G4PolyhedronPara, ...Trap, ...Pgon,     44 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus
 39 //                                                 45 //
 40 // 01.06.97 E.Chernyaev                            46 // 01.06.97 E.Chernyaev
 41 // - modified RotateAroundZ, added SetSideFace     47 // - modified RotateAroundZ, added SetSideFacets
 42 //                                                 48 //
 43 // 19.03.00 E.Chernyaev                            49 // 19.03.00 E.Chernyaev
 44 // - implemented boolean operations (add, subt     50 // - implemented boolean operations (add, subtract, intersect) on polyhedra;
 45 //                                                 51 //
 46 // 25.05.01 E.Chernyaev                            52 // 25.05.01 E.Chernyaev
 47 // - added GetSurfaceArea() and GetVolume()    <<  53 // - added GetSurfaceArea() and GetVolume();
 48 //                                                 54 //
 49 // 05.11.02 E.Chernyaev                            55 // 05.11.02 E.Chernyaev
 50 // - added createTwistedTrap() and createPolyh <<  56 // - added createTwistedTrap() and createPolyhedron();
 51 //                                                 57 //
 52 // 20.06.05 G.Cosmo                                58 // 20.06.05 G.Cosmo
 53 // - added HepPolyhedronEllipsoid              <<  59 // - added HepPolyhedronEllipsoid;
 54 //                                             << 
 55 // 18.07.07 T.Nikitina                         << 
 56 // - added HepPolyhedronParaboloid             << 
 57 //                                             << 
 58 // 22.02.20 E.Chernyaev                        << 
 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 
 60 //                                             << 
 61 // 12.05.21 E.Chernyaev                        << 
 62 // - added TriangulatePolygon(), RotateContour << 
 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 
 64 //                                             << 
 65 // 26.03.22 E.Chernyaev                        << 
 66 // - added SetVertex(), SetFacet()             << 
 67 // - added HepPolyhedronTetMesh                << 
 68 //                                             << 
 69 // 04.04.22 E.Chernyaev                        << 
 70 // - added JoinCoplanarFacets()                << 
 71 //                                                 60 //
 72 // 07.04.22 E.Chernyaev                        <<  61 // 18.07.07 T.Nikitin
 73 // - added HepPolyhedronBoxMesh                <<  62 // - added HepParaboloid;
 74                                                <<  63   
 75 #include "HepPolyhedron.h"                         64 #include "HepPolyhedron.h"
 76 #include "G4PhysicalConstants.hh"                  65 #include "G4PhysicalConstants.hh"
 77 #include "G4Vector3D.hh"                           66 #include "G4Vector3D.hh"
 78                                                    67 
 79 #include <cstdlib>  // Required on some compil     68 #include <cstdlib>  // Required on some compilers for std::abs(int) ...
 80 #include <cmath>                                   69 #include <cmath>
 81 #include <algorithm>                           << 
 82                                                    70 
 83 using CLHEP::perMillion;                           71 using CLHEP::perMillion;
 84 using CLHEP::deg;                                  72 using CLHEP::deg;
 85 using CLHEP::pi;                                   73 using CLHEP::pi;
 86 using CLHEP::twopi;                                74 using CLHEP::twopi;
 87 using CLHEP::nm;                               << 
 88 const G4double spatialTolerance = 0.01*nm;     << 
 89                                                    75 
 90 /*********************************************     76 /***********************************************************************
 91  *                                                 77  *                                                                     *
 92  * Name: HepPolyhedron operator <<                 78  * Name: HepPolyhedron operator <<                   Date:    09.05.96 *
 93  * Author: E.Chernyaev (IHEP/Protvino)             79  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
 94  *                                                 80  *                                                                     *
 95  * Function: Print contents of G4 polyhedron       81  * Function: Print contents of G4 polyhedron                           *
 96  *                                                 82  *                                                                     *
 97  *********************************************     83  ***********************************************************************/
 98 std::ostream & operator<<(std::ostream & ostr,     84 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) {
 99   for (const auto& edge : facet.edge) {        <<  85   for (G4int k=0; k<4; k++) {
100     ostr << " " << edge.v << "/" << edge.f;    <<  86     ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f;
101   }                                                87   }
102   return ostr;                                     88   return ostr;
103 }                                                  89 }
104                                                    90 
105 std::ostream & operator<<(std::ostream & ostr,     91 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) {
106   ostr << std::endl;                               92   ostr << std::endl;
107   ostr << "Nvertices=" << ph.nvert << ", Nface <<  93   ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl;
108   G4int i;                                         94   G4int i;
109   for (i=1; i<=ph.nvert; i++) {                    95   for (i=1; i<=ph.nvert; i++) {
110      ostr << "xyz(" << i << ")="                   96      ostr << "xyz(" << i << ")="
111           << ph.pV[i].x() << ' ' << ph.pV[i].y     97           << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z()
112           << std::endl;                            98           << std::endl;
113   }                                                99   }
114   for (i=1; i<=ph.nface; i++) {                   100   for (i=1; i<=ph.nface; i++) {
115     ostr << "face(" << i << ")=" << ph.pF[i] <    101     ostr << "face(" << i << ")=" << ph.pF[i] << std::endl;
116   }                                               102   }
117   return ostr;                                    103   return ostr;
118 }                                                 104 }
119                                                   105 
120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 
121 /********************************************* << 
122  *                                             << 
123  * Name: HepPolyhedron constructor with        << 
124  *       allocation of memory                  << 
125  * Author: E.Tcherniaev (E.Chernyaev)          << 
126  *                                             << 
127  ********************************************* << 
128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
129 {                                              << 
130   AllocateMemory(Nvert, Nface);                << 
131 }                                              << 
132                                                << 
133 HepPolyhedron::HepPolyhedron(const HepPolyhedr    106 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from)
134 /*********************************************    107 /***********************************************************************
135  *                                                108  *                                                                     *
136  * Name: HepPolyhedron copy constructor           109  * Name: HepPolyhedron copy constructor             Date:    23.07.96  *
137  * Author: E.Chernyaev (IHEP/Protvino)            110  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
138  *                                                111  *                                                                     *
139  *********************************************    112  ***********************************************************************/
140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 113 : nvert(0), nface(0), pV(0), pF(0)
141 {                                                 114 {
142   AllocateMemory(from.nvert, from.nface);         115   AllocateMemory(from.nvert, from.nface);
143   for (G4int i=1; i<=nvert; i++) pV[i] = from.    116   for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
144   for (G4int k=1; k<=nface; k++) pF[k] = from.    117   for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
145 }                                                 118 }
146                                                   119 
147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 
148 /********************************************* << 
149  *                                             << 
150  * Name: HepPolyhedron move constructor        << 
151  * Author: E.Tcherniaev (E.Chernyaev)          << 
152  *                                             << 
153  ********************************************* << 
154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
155 {                                              << 
156   nvert = from.nvert;                          << 
157   nface = from.nface;                          << 
158   pV = from.pV;                                << 
159   pF = from.pF;                                << 
160                                                << 
161   // Release the data from the source object   << 
162   from.nvert = 0;                              << 
163   from.nface = 0;                              << 
164   from.pV = nullptr;                           << 
165   from.pF = nullptr;                           << 
166 }                                              << 
167                                                << 
168 HepPolyhedron & HepPolyhedron::operator=(const    120 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from)
169 /*********************************************    121 /***********************************************************************
170  *                                                122  *                                                                     *
171  * Name: HepPolyhedron operator =                 123  * Name: HepPolyhedron operator =                   Date:    23.07.96  *
172  * Author: E.Chernyaev (IHEP/Protvino)            124  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
173  *                                                125  *                                                                     *
174  * Function: Copy contents of one polyhedron t    126  * Function: Copy contents of one polyhedron to another                *
175  *                                                127  *                                                                     *
176  *********************************************    128  ***********************************************************************/
177 {                                                 129 {
178   if (this != &from) {                            130   if (this != &from) {
179     AllocateMemory(from.nvert, from.nface);       131     AllocateMemory(from.nvert, from.nface);
180     for (G4int i=1; i<=nvert; i++) pV[i] = fro    132     for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
181     for (G4int k=1; k<=nface; k++) pF[k] = fro    133     for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
182   }                                               134   }
183   return *this;                                   135   return *this;
184 }                                                 136 }
185                                                   137 
186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 
187 /********************************************* << 
188  *                                             << 
189  * Name: HepPolyhedron move operator =         << 
190  * Author: E.Tcherniaev (E.Chernyaev)          << 
191  *                                             << 
192  * Function: Move contents of one polyhedron t << 
193  *                                             << 
194  ********************************************* << 
195 {                                              << 
196   if (this != &from) {                         << 
197     delete [] pV;                              << 
198     delete [] pF;                              << 
199     nvert = from.nvert;                        << 
200     nface = from.nface;                        << 
201     pV = from.pV;                              << 
202     pF = from.pF;                              << 
203                                                << 
204     // Release the data from the source object << 
205     from.nvert = 0;                            << 
206     from.nface = 0;                            << 
207     from.pV = nullptr;                         << 
208     from.pF = nullptr;                         << 
209   }                                            << 
210   return *this;                                << 
211 }                                              << 
212                                                << 
213 G4int                                             138 G4int
214 HepPolyhedron::FindNeighbour(G4int iFace, G4in    139 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const
215 /*********************************************    140 /***********************************************************************
216  *                                                141  *                                                                     *
217  * Name: HepPolyhedron::FindNeighbour             142  * Name: HepPolyhedron::FindNeighbour                Date:    22.11.99 *
218  * Author: E.Chernyaev                            143  * Author: E.Chernyaev                               Revised:          *
219  *                                                144  *                                                                     *
220  * Function: Find neighbouring face               145  * Function: Find neighbouring face                                    *
221  *                                                146  *                                                                     *
222  *********************************************    147  ***********************************************************************/
223 {                                                 148 {
224   G4int i;                                        149   G4int i;
225   for (i=0; i<4; i++) {                           150   for (i=0; i<4; i++) {
226     if (iNode == std::abs(pF[iFace].edge[i].v)    151     if (iNode == std::abs(pF[iFace].edge[i].v)) break;
227   }                                               152   }
228   if (i == 4) {                                   153   if (i == 4) {
229     std::cerr                                     154     std::cerr
230       << "HepPolyhedron::FindNeighbour: face "    155       << "HepPolyhedron::FindNeighbour: face " << iFace
231       << " has no node " << iNode                 156       << " has no node " << iNode
232       << std::endl;                            << 157       << std::endl; 
233     return 0;                                     158     return 0;
234   }                                               159   }
235   if (iOrder < 0) {                               160   if (iOrder < 0) {
236     if ( --i < 0) i = 3;                          161     if ( --i < 0) i = 3;
237     if (pF[iFace].edge[i].v == 0) i = 2;          162     if (pF[iFace].edge[i].v == 0) i = 2;
238   }                                               163   }
239   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF    164   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f;
240 }                                                 165 }
241                                                   166 
242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int    167 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const
243 /*********************************************    168 /***********************************************************************
244  *                                                169  *                                                                     *
245  * Name: HepPolyhedron::FindNodeNormal            170  * Name: HepPolyhedron::FindNodeNormal               Date:    22.11.99 *
246  * Author: E.Chernyaev                            171  * Author: E.Chernyaev                               Revised:          *
247  *                                                172  *                                                                     *
248  * Function: Find normal at given node            173  * Function: Find normal at given node                                 *
249  *                                                174  *                                                                     *
250  *********************************************    175  ***********************************************************************/
251 {                                                 176 {
252   G4Normal3D normal = GetUnitNormal(iFace);    << 177   G4Normal3D   normal = GetUnitNormal(iFace);
253   G4int      k = iFace, iOrder = 1;            << 178   G4int          k = iFace, iOrder = 1, n = 1;
254                                                   179 
255   for(;;) {                                       180   for(;;) {
256     k = FindNeighbour(k, iNode, iOrder);          181     k = FindNeighbour(k, iNode, iOrder);
257     if (k == iFace) break;                     << 182     if (k == iFace) break; 
258     if (k > 0) {                                  183     if (k > 0) {
                                                   >> 184       n++;
259       normal += GetUnitNormal(k);                 185       normal += GetUnitNormal(k);
260     }else{                                        186     }else{
261       if (iOrder < 0) break;                      187       if (iOrder < 0) break;
262       k = iFace;                                  188       k = iFace;
263       iOrder = -iOrder;                           189       iOrder = -iOrder;
264     }                                             190     }
265   }                                               191   }
266   return normal.unit();                           192   return normal.unit();
267 }                                                 193 }
268                                                   194 
269 G4int HepPolyhedron::GetNumberOfRotationSteps(    195 G4int HepPolyhedron::GetNumberOfRotationSteps()
270 /*********************************************    196 /***********************************************************************
271  *                                                197  *                                                                     *
272  * Name: HepPolyhedron::GetNumberOfRotationSte    198  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
273  * Author: J.Allison (Manchester University)      199  * Author: J.Allison (Manchester University)         Revised:          *
274  *                                                200  *                                                                     *
275  * Function: Get number of steps for whole cir    201  * Function: Get number of steps for whole circle                      *
276  *                                                202  *                                                                     *
277  *********************************************    203  ***********************************************************************/
278 {                                                 204 {
279   return fNumberOfRotationSteps;                  205   return fNumberOfRotationSteps;
280 }                                                 206 }
281                                                   207 
282 void HepPolyhedron::SetVertex(G4int index, con << 
283 /********************************************* << 
284  *                                             << 
285  * Name: HepPolyhedron::SetVertex              << 
286  * Author: E.Tcherniaev (E.Chernyaev)          << 
287  *                                             << 
288  * Function: Set vertex                        << 
289  *                                             << 
290  ********************************************* << 
291 {                                              << 
292   if (index < 1 || index > nvert)              << 
293   {                                            << 
294     std::cerr                                  << 
295       << "HepPolyhedron::SetVertex: vertex ind << 
296       << " is out of range\n"                  << 
297       << "   N. of vertices = " << nvert << "\ << 
298       << "   N. of facets = " << nface << std: << 
299     return;                                    << 
300   }                                            << 
301   pV[index] = v;                               << 
302 }                                              << 
303                                                << 
304 void                                           << 
305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 
306 /********************************************* << 
307  *                                             << 
308  * Name: HepPolyhedron::SetFacet               << 
309  * Author: E.Tcherniaev (E.Chernyaev)          << 
310  *                                             << 
311  * Function: Set facet                         << 
312  *                                             << 
313  ********************************************* << 
314 {                                              << 
315   if (index < 1 || index > nface)              << 
316   {                                            << 
317     std::cerr                                  << 
318       << "HepPolyhedron::SetFacet: facet index << 
319       << " is out of range\n"                  << 
320       << "   N. of vertices = " << nvert << "\ << 
321       << "   N. of facets = " << nface << std: << 
322     return;                                    << 
323   }                                            << 
324   if (iv1 < 1 || iv1 > nvert ||                << 
325       iv2 < 1 || iv2 > nvert ||                << 
326       iv3 < 1 || iv3 > nvert ||                << 
327       iv4 < 0 || iv4 > nvert)                  << 
328   {                                            << 
329     std::cerr                                  << 
330       << "HepPolyhedron::SetFacet: incorrectly << 
331       << " (" << iv1 << ", " << iv2 << ", " << << 
332       << "   N. of vertices = " << nvert << "\ << 
333       << "   N. of facets = " << nface << std: << 
334     return;                                    << 
335   }                                            << 
336   pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0,  << 
337 }                                              << 
338                                                << 
339 void HepPolyhedron::SetNumberOfRotationSteps(G    208 void HepPolyhedron::SetNumberOfRotationSteps(G4int n)
340 /*********************************************    209 /***********************************************************************
341  *                                                210  *                                                                     *
342  * Name: HepPolyhedron::SetNumberOfRotationSte    211  * Name: HepPolyhedron::SetNumberOfRotationSteps     Date:    24.06.97 *
343  * Author: J.Allison (Manchester University)      212  * Author: J.Allison (Manchester University)         Revised:          *
344  *                                                213  *                                                                     *
345  * Function: Set number of steps for whole cir    214  * Function: Set number of steps for whole circle                      *
346  *                                                215  *                                                                     *
347  *********************************************    216  ***********************************************************************/
348 {                                                 217 {
349   const G4int nMin = 3;                           218   const G4int nMin = 3;
350   if (n < nMin) {                                 219   if (n < nMin) {
351     std::cerr                                  << 220     std::cerr 
352       << "HepPolyhedron::SetNumberOfRotationSt    221       << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n"
353       << "number of steps per circle < " << nM    222       << "number of steps per circle < " << nMin << "; forced to " << nMin
354       << std::endl;                               223       << std::endl;
355     fNumberOfRotationSteps = nMin;                224     fNumberOfRotationSteps = nMin;
356   }else{                                          225   }else{
357     fNumberOfRotationSteps = n;                   226     fNumberOfRotationSteps = n;
358   }                                            << 227   }    
359 }                                                 228 }
360                                                   229 
361 void HepPolyhedron::ResetNumberOfRotationSteps    230 void HepPolyhedron::ResetNumberOfRotationSteps()
362 /*********************************************    231 /***********************************************************************
363  *                                                232  *                                                                     *
364  * Name: HepPolyhedron::GetNumberOfRotationSte    233  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
365  * Author: J.Allison (Manchester University)      234  * Author: J.Allison (Manchester University)         Revised:          *
366  *                                                235  *                                                                     *
367  * Function: Reset number of steps for whole c    236  * Function: Reset number of steps for whole circle to default value   *
368  *                                                237  *                                                                     *
369  *********************************************    238  ***********************************************************************/
370 {                                                 239 {
371   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S    240   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
372 }                                                 241 }
373                                                   242 
374 void HepPolyhedron::AllocateMemory(G4int Nvert    243 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface)
375 /*********************************************    244 /***********************************************************************
376  *                                                245  *                                                                     *
377  * Name: HepPolyhedron::AllocateMemory            246  * Name: HepPolyhedron::AllocateMemory               Date:    19.06.96 *
378  * Author: E.Chernyaev (IHEP/Protvino)            247  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 05.11.02 *
379  *                                                248  *                                                                     *
380  * Function: Allocate memory for GEANT4 polyhe    249  * Function: Allocate memory for GEANT4 polyhedron                     *
381  *                                                250  *                                                                     *
382  * Input: Nvert - number of nodes                 251  * Input: Nvert - number of nodes                                      *
383  *        Nface - number of faces                 252  *        Nface - number of faces                                      *
384  *                                                253  *                                                                     *
385  *********************************************    254  ***********************************************************************/
386 {                                                 255 {
387   if (nvert == Nvert && nface == Nface) return    256   if (nvert == Nvert && nface == Nface) return;
388   delete [] pV;                                << 257   if (pV != 0) delete [] pV;
389   delete [] pF;                                << 258   if (pF != 0) delete [] pF;
390   if (Nvert > 0 && Nface > 0) {                   259   if (Nvert > 0 && Nface > 0) {
391     nvert = Nvert;                                260     nvert = Nvert;
392     nface = Nface;                                261     nface = Nface;
393     pV    = new G4Point3D[nvert+1];               262     pV    = new G4Point3D[nvert+1];
394     pF    = new G4Facet[nface+1];                 263     pF    = new G4Facet[nface+1];
395   }else{                                          264   }else{
396     nvert = 0; nface = 0; pV = nullptr; pF = n << 265     nvert = 0; nface = 0; pV = 0; pF = 0;
397   }                                               266   }
398 }                                                 267 }
399                                                   268 
400 void HepPolyhedron::CreatePrism()                 269 void HepPolyhedron::CreatePrism()
401 /*********************************************    270 /***********************************************************************
402  *                                                271  *                                                                     *
403  * Name: HepPolyhedron::CreatePrism               272  * Name: HepPolyhedron::CreatePrism                  Date:    15.07.96 *
404  * Author: E.Chernyaev (IHEP/Protvino)            273  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
405  *                                                274  *                                                                     *
406  * Function: Set facets for a prism               275  * Function: Set facets for a prism                                    *
407  *                                                276  *                                                                     *
408  *********************************************    277  ***********************************************************************/
409 {                                                 278 {
410   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON    279   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP};
411                                                   280 
412   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,      281   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,  2,FRONT);
413   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM,     282   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM, 1,FRONT);
414   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM,     283   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM, 4,LEFT);
415   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM,     284   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM, 3,BACK);
416   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM,     285   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM, 2,RIGHT);
417   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,       286   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,   8,LEFT);
418 }                                                 287 }
419                                                   288 
420 void HepPolyhedron::RotateEdge(G4int k1, G4int    289 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2,
421                               G4int v1, G4int     290                               G4int v1, G4int v2, G4int vEdge,
422                               G4bool ifWholeCi << 291                               G4bool ifWholeCircle, G4int ns, G4int &kface)
423 /*********************************************    292 /***********************************************************************
424  *                                                293  *                                                                     *
425  * Name: HepPolyhedron::RotateEdge                294  * Name: HepPolyhedron::RotateEdge                   Date:    05.12.96 *
426  * Author: E.Chernyaev (IHEP/Protvino)            295  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
427  *                                                296  *                                                                     *
428  * Function: Create set of facets by rotation     297  * Function: Create set of facets by rotation of an edge around Z-axis *
429  *                                                298  *                                                                     *
430  * Input: k1, k2 - end vertices of the edge       299  * Input: k1, k2 - end vertices of the edge                            *
431  *        r1, r2 - radiuses of the end vertice    300  *        r1, r2 - radiuses of the end vertices                        *
432  *        v1, v2 - visibility of edges produce    301  *        v1, v2 - visibility of edges produced by rotation of the end *
433  *                 vertices                       302  *                 vertices                                            *
434  *        vEdge  - visibility of the edge         303  *        vEdge  - visibility of the edge                              *
435  *        ifWholeCircle - is true in case of w    304  *        ifWholeCircle - is true in case of whole circle rotation     *
436  *        nds    - number of discrete steps    << 305  *        ns     - number of discrete steps                            *
437  *        r[]    - r-coordinates                  306  *        r[]    - r-coordinates                                       *
438  *        kface  - current free cell in the pF    307  *        kface  - current free cell in the pF array                   *
439  *                                                308  *                                                                     *
440  *********************************************    309  ***********************************************************************/
441 {                                                 310 {
442   if (r1 == 0. && r2 == 0.) return;            << 311   if (r1 == 0. && r2 == 0) return;
443                                                   312 
444   G4int i;                                        313   G4int i;
445   G4int i1  = k1;                                 314   G4int i1  = k1;
446   G4int i2  = k2;                                 315   G4int i2  = k2;
447   G4int ii1 = ifWholeCircle ? i1 : i1+nds;     << 316   G4int ii1 = ifWholeCircle ? i1 : i1+ns;
448   G4int ii2 = ifWholeCircle ? i2 : i2+nds;     << 317   G4int ii2 = ifWholeCircle ? i2 : i2+ns;
449   G4int vv  = ifWholeCircle ? vEdge : 1;          318   G4int vv  = ifWholeCircle ? vEdge : 1;
450                                                   319 
451   if (nds == 1) {                              << 320   if (ns == 1) {
452     if (r1 == 0.) {                               321     if (r1 == 0.) {
453       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    322       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0);
454     }else if (r2 == 0.) {                         323     }else if (r2 == 0.) {
455       pF[kface++]   = G4Facet(i1,0,    i2,0,      324       pF[kface++]   = G4Facet(i1,0,    i2,0,    v1*(i1+1),0);
456     }else{                                        325     }else{
457       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    326       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0, v1*(i1+1),0);
458     }                                             327     }
459   }else{                                          328   }else{
460     if (r1 == 0.) {                               329     if (r1 == 0.) {
461       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    330       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0);
462       for (i2++,i=1; i<nds-1; i2++,i++) {      << 331       for (i2++,i=1; i<ns-1; i2++,i++) {
463         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    332         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0);
464       }                                           333       }
465       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    334       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0);
466     }else if (r2 == 0.) {                         335     }else if (r2 == 0.) {
467       pF[kface++]   = G4Facet(vv*i1,0,    vEdg    336       pF[kface++]   = G4Facet(vv*i1,0,    vEdge*i2,0, v1*(i1+1),0);
468       for (i1++,i=1; i<nds-1; i1++,i++) {      << 337       for (i1++,i=1; i<ns-1; i1++,i++) {
469         pF[kface++] = G4Facet(vEdge*i1,0, vEdg    338         pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0);
470       }                                           339       }
471       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i    340       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i2,0,    v1*ii1,0);
472     }else{                                        341     }else{
473       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    342       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
474       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i << 343       for (i1++,i2++,i=1; i<ns-1; i1++,i2++,i++) {
475         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    344         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
476       }                                        << 345       }  
477       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    346       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0,      v1*ii1,0);
478     }                                             347     }
479   }                                               348   }
480 }                                                 349 }
481                                                   350 
482 void HepPolyhedron::SetSideFacets(G4int ii[4],    351 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4],
483                                  G4int *kk, G4    352                                  G4int *kk, G4double *r,
484                                  G4double dphi << 353                                  G4double dphi, G4int ns, G4int &kface)
485 /*********************************************    354 /***********************************************************************
486  *                                                355  *                                                                     *
487  * Name: HepPolyhedron::SetSideFacets             356  * Name: HepPolyhedron::SetSideFacets                Date:    20.05.97 *
488  * Author: E.Chernyaev (IHEP/Protvino)            357  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
489  *                                                358  *                                                                     *
490  * Function: Set side facets for the case of i    359  * Function: Set side facets for the case of incomplete rotation       *
491  *                                                360  *                                                                     *
492  * Input: ii[4] - indices of original vertices << 361  * Input: ii[4] - indeces of original verteces                         *
493  *        vv[4] - visibility of edges             362  *        vv[4] - visibility of edges                                  *
494  *        kk[]  - indices of nodes             << 363  *        kk[]  - indeces of nodes                                     *
495  *        r[]   - radiuses                        364  *        r[]   - radiuses                                             *
496  *        dphi  - delta phi                       365  *        dphi  - delta phi                                            *
497  *        nds    - number of discrete steps    << 366  *        ns     - number of discrete steps                            *
498  *        kface  - current free cell in the pF    367  *        kface  - current free cell in the pF array                   *
499  *                                                368  *                                                                     *
500  *********************************************    369  ***********************************************************************/
501 {                                                 370 {
502   G4int k1, k2, k3, k4;                           371   G4int k1, k2, k3, k4;
503                                                << 372   
504   if (std::abs(dphi-pi) < perMillion) { // hal << 373   if (std::abs((G4double)(dphi-pi)) < perMillion) {          // half a circle
505     for (G4int i=0; i<4; i++) {                   374     for (G4int i=0; i<4; i++) {
506       k1 = ii[i];                                 375       k1 = ii[i];
507       k2 = ii[(i+1)%4];                        << 376       k2 = (i == 3) ? ii[0] : ii[i+1];
508       if (r[k1] == 0. && r[k2] == 0.) vv[i] =  << 377       if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1;      
509     }                                             378     }
510   }                                               379   }
511                                                   380 
512   if (ii[1] == ii[2]) {                           381   if (ii[1] == ii[2]) {
513     k1 = kk[ii[0]];                               382     k1 = kk[ii[0]];
514     k2 = kk[ii[2]];                               383     k2 = kk[ii[2]];
515     k3 = kk[ii[3]];                               384     k3 = kk[ii[3]];
516     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2    385     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
517     if (r[ii[0]] != 0.) k1 += nds;             << 386     if (r[ii[0]] != 0.) k1 += ns;
518     if (r[ii[2]] != 0.) k2 += nds;             << 387     if (r[ii[2]] != 0.) k2 += ns;
519     if (r[ii[3]] != 0.) k3 += nds;             << 388     if (r[ii[3]] != 0.) k3 += ns;
520     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2    389     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
521   }else if (kk[ii[0]] == kk[ii[1]]) {             390   }else if (kk[ii[0]] == kk[ii[1]]) {
522     k1 = kk[ii[0]];                               391     k1 = kk[ii[0]];
523     k2 = kk[ii[2]];                               392     k2 = kk[ii[2]];
524     k3 = kk[ii[3]];                               393     k3 = kk[ii[3]];
525     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2    394     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
526     if (r[ii[0]] != 0.) k1 += nds;             << 395     if (r[ii[0]] != 0.) k1 += ns;
527     if (r[ii[2]] != 0.) k2 += nds;             << 396     if (r[ii[2]] != 0.) k2 += ns;
528     if (r[ii[3]] != 0.) k3 += nds;             << 397     if (r[ii[3]] != 0.) k3 += ns;
529     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2    398     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0);
530   }else if (kk[ii[2]] == kk[ii[3]]) {             399   }else if (kk[ii[2]] == kk[ii[3]]) {
531     k1 = kk[ii[0]];                               400     k1 = kk[ii[0]];
532     k2 = kk[ii[1]];                               401     k2 = kk[ii[1]];
533     k3 = kk[ii[2]];                               402     k3 = kk[ii[2]];
534     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    403     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0);
535     if (r[ii[0]] != 0.) k1 += nds;             << 404     if (r[ii[0]] != 0.) k1 += ns;
536     if (r[ii[1]] != 0.) k2 += nds;             << 405     if (r[ii[1]] != 0.) k2 += ns;
537     if (r[ii[2]] != 0.) k3 += nds;             << 406     if (r[ii[2]] != 0.) k3 += ns;
538     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2    407     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
539   }else{                                          408   }else{
540     k1 = kk[ii[0]];                               409     k1 = kk[ii[0]];
541     k2 = kk[ii[1]];                               410     k2 = kk[ii[1]];
542     k3 = kk[ii[2]];                               411     k3 = kk[ii[2]];
543     k4 = kk[ii[3]];                               412     k4 = kk[ii[3]];
544     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    413     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0);
545     if (r[ii[0]] != 0.) k1 += nds;             << 414     if (r[ii[0]] != 0.) k1 += ns;
546     if (r[ii[1]] != 0.) k2 += nds;             << 415     if (r[ii[1]] != 0.) k2 += ns;
547     if (r[ii[2]] != 0.) k3 += nds;             << 416     if (r[ii[2]] != 0.) k3 += ns;
548     if (r[ii[3]] != 0.) k4 += nds;             << 417     if (r[ii[3]] != 0.) k4 += ns;
549     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3    418     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
550   }                                               419   }
551 }                                                 420 }
552                                                   421 
553 void HepPolyhedron::RotateAroundZ(G4int nstep,    422 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi,
554                                  G4int np1, G4    423                                  G4int np1, G4int np2,
555                                  const G4doubl    424                                  const G4double *z, G4double *r,
556                                  G4int nodeVis    425                                  G4int nodeVis, G4int edgeVis)
557 /*********************************************    426 /***********************************************************************
558  *                                                427  *                                                                     *
559  * Name: HepPolyhedron::RotateAroundZ             428  * Name: HepPolyhedron::RotateAroundZ                Date:    27.11.96 *
560  * Author: E.Chernyaev (IHEP/Protvino)            429  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
561  *                                                430  *                                                                     *
562  * Function: Create HepPolyhedron for a solid     431  * Function: Create HepPolyhedron for a solid produced by rotation of  *
563  *           two polylines around Z-axis          432  *           two polylines around Z-axis                               *
564  *                                                433  *                                                                     *
565  * Input: nstep - number of discrete steps, if    434  * Input: nstep - number of discrete steps, if 0 then default          *
566  *        phi   - starting phi angle              435  *        phi   - starting phi angle                                   *
567  *        dphi  - delta phi                       436  *        dphi  - delta phi                                            *
568  *        np1   - number of points in external    437  *        np1   - number of points in external polyline                *
569  *                (must be negative in case of    438  *                (must be negative in case of closed polyline)        *
570  *        np2   - number of points in internal    439  *        np2   - number of points in internal polyline (may be 1)     *
571  *        z[]   - z-coordinates (+z >>> -z for    440  *        z[]   - z-coordinates (+z >>> -z for both polylines)         *
572  *        r[]   - r-coordinates                   441  *        r[]   - r-coordinates                                        *
573  *        nodeVis - how to Draw edges joing co    442  *        nodeVis - how to Draw edges joing consecutive positions of   *
574  *                  node during rotation          443  *                  node during rotation                               *
575  *        edgeVis - how to Draw edges             444  *        edgeVis - how to Draw edges                                  *
576  *                                                445  *                                                                     *
577  *********************************************    446  ***********************************************************************/
578 {                                                 447 {
579   static const G4double wholeCircle   = twopi; << 448   static G4double wholeCircle   = twopi;
580                                                << 449     
581   //   S E T   R O T A T I O N   P A R A M E T    450   //   S E T   R O T A T I O N   P A R A M E T E R S
582                                                   451 
583   G4bool ifWholeCircle = std::abs(dphi-wholeCi << 452   G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false;
584   G4double delPhi = ifWholeCircle ? wholeCircl << 453   G4double   delPhi  = ifWholeCircle ? wholeCircle : dphi;  
585   G4int nSphi = nstep;                         << 454   G4int        nSphi    = (nstep > 0) ?
586   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 455     nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5);
587   if (nSphi == 0) nSphi = 1;                      456   if (nSphi == 0) nSphi = 1;
588   G4int nVphi = ifWholeCircle ? nSphi : nSphi  << 457   G4int        nVphi    = ifWholeCircle ? nSphi : nSphi+1;
589   G4bool ifClosed = np1 <= 0; // true if exter << 458   G4bool ifClosed = np1 > 0 ? false : true;
590                                                << 459   
591   //   C O U N T   V E R T I C E S             << 460   //   C O U N T   V E R T E C E S
592                                                   461 
593   G4int absNp1 = std::abs(np1);                   462   G4int absNp1 = std::abs(np1);
594   G4int absNp2 = std::abs(np2);                   463   G4int absNp2 = std::abs(np2);
595   G4int i1beg = 0;                                464   G4int i1beg = 0;
596   G4int i1end = absNp1-1;                         465   G4int i1end = absNp1-1;
597   G4int i2beg = absNp1;                           466   G4int i2beg = absNp1;
598   G4int i2end = absNp1+absNp2-1;               << 467   G4int i2end = absNp1+absNp2-1; 
599   G4int i, j, k;                                  468   G4int i, j, k;
600                                                   469 
601   for(i=i1beg; i<=i2end; i++) {                   470   for(i=i1beg; i<=i2end; i++) {
602     if (std::abs(r[i]) < spatialTolerance) r[i << 471     if (std::abs(r[i]) < perMillion) r[i] = 0.;
603   }                                               472   }
604                                                   473 
605   // external polyline - check position of nod << 474   j = 0;                                                // external nodes
606   //                                           << 
607   G4int Nverts = 0;                            << 
608   for (i=i1beg; i<=i1end; i++) {                  475   for (i=i1beg; i<=i1end; i++) {
609     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 476     j += (r[i] == 0.) ? 1 : nVphi;
610   }                                               477   }
611                                                   478 
612   // internal polyline                         << 479   G4bool ifSide1 = false;                           // internal nodes
613   //                                           << 480   G4bool ifSide2 = false;
614   G4bool ifSide1 = false; // whether to create << 
615   G4bool ifSide2 = false; // whether to create << 
616                                                   481 
617   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 482   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) {
618     Nverts += (r[i2beg] == 0.) ? 1 : nVphi;    << 483     j += (r[i2beg] == 0.) ? 1 : nVphi;
619     ifSide1 = true;                               484     ifSide1 = true;
620   }                                               485   }
621                                                   486 
622   for(i=i2beg+1; i<i2end; i++) { // intermedia << 487   for(i=i2beg+1; i<i2end; i++) {
623     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 488     j += (r[i] == 0.) ? 1 : nVphi;
624   }                                               489   }
625                                                << 490   
626   if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 491   if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) {
627     if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 492     if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi;
628     ifSide2 = true;                               493     ifSide2 = true;
629   }                                               494   }
630                                                   495 
631   //   C O U N T   F A C E S                      496   //   C O U N T   F A C E S
632                                                   497 
633   // external lateral faces                    << 498   k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi;       // external faces
634   //                                           << 
635   G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 
636                                                   499 
637   // internal lateral faces                    << 500   if (absNp2 > 1) {                                     // internal faces
638   //                                           << 
639   if (absNp2 > 1) {                            << 
640     for(i=i2beg; i<i2end; i++) {                  501     for(i=i2beg; i<i2end; i++) {
641       if (r[i] > 0. || r[i+1] > 0.) Nfaces +=  << 502       if (r[i] > 0. || r[i+1] > 0.)       k += nSphi;
642     }                                             503     }
643                                                   504 
644     if (ifClosed) {                               505     if (ifClosed) {
645       if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 506       if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi;
646     }                                             507     }
647   }                                               508   }
648                                                   509 
649   // bottom and top faces                      << 510   if (!ifClosed) {                                      // side faces
650   //                                           << 511     if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi;
651   if (!ifClosed) {                             << 512     if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi;
652     if (ifSide1 && (r[i1beg] > 0. || r[i2beg]  << 
653     if (ifSide2 && (r[i1end] > 0. || r[i2end]  << 
654   }                                               513   }
655                                                   514 
656   // phi_wedge faces                           << 515   if (!ifWholeCircle) {                                 // phi_side faces
657   //                                           << 516     k += ifClosed ? 2*absNp1 : 2*(absNp1-1);
658   if (!ifWholeCircle) {                        << 
659     Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 
660   }                                               517   }
661                                                   518 
662   //   A L L O C A T E   M E M O R Y              519   //   A L L O C A T E   M E M O R Y
663                                                   520 
664   AllocateMemory(Nverts, Nfaces);              << 521   AllocateMemory(j, k);
665   if (pV == nullptr || pF == nullptr) return;  << 
666                                                   522 
667   //   G E N E R A T E   V E R T I C E S       << 523   //   G E N E R A T E   V E R T E C E S
668                                                   524 
669   G4int *kk; // array of start indices along p << 525   G4int *kk;
670   kk = new G4int[absNp1+absNp2];                  526   kk = new G4int[absNp1+absNp2];
671                                                   527 
672   // external polyline                         << 528   k = 1;
673   //                                           << 
674   k = 1; // free position in array of vertices << 
675   for(i=i1beg; i<=i1end; i++) {                   529   for(i=i1beg; i<=i1end; i++) {
676     kk[i] = k;                                    530     kk[i] = k;
677     if (r[i] == 0.)                               531     if (r[i] == 0.)
678     { pV[k++] = G4Point3D(0, 0, z[i]); } else     532     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
679   }                                               533   }
680                                                   534 
681   // first point of internal polyline          << 
682   //                                           << 
683   i = i2beg;                                      535   i = i2beg;
684   if (ifSide1) {                                  536   if (ifSide1) {
685     kk[i] = k;                                    537     kk[i] = k;
686     if (r[i] == 0.)                               538     if (r[i] == 0.)
687     { pV[k++] = G4Point3D(0, 0, z[i]); } else     539     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
688   }else{                                          540   }else{
689     kk[i] = kk[i1beg];                            541     kk[i] = kk[i1beg];
690   }                                               542   }
691                                                   543 
692   // intermediate points of internal polyline  << 
693   //                                           << 
694   for(i=i2beg+1; i<i2end; i++) {                  544   for(i=i2beg+1; i<i2end; i++) {
695     kk[i] = k;                                    545     kk[i] = k;
696     if (r[i] == 0.)                               546     if (r[i] == 0.)
697     { pV[k++] = G4Point3D(0, 0, z[i]); } else     547     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
698   }                                               548   }
699                                                   549 
700   // last point of internal polyline           << 
701   //                                           << 
702   if (absNp2 > 1) {                               550   if (absNp2 > 1) {
703     i = i2end;                                    551     i = i2end;
704     if (ifSide2) {                                552     if (ifSide2) {
705       kk[i] = k;                                  553       kk[i] = k;
706       if (r[i] == 0.) pV[k] = G4Point3D(0, 0,     554       if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]);
707     }else{                                        555     }else{
708       kk[i] = kk[i1end];                          556       kk[i] = kk[i1end];
709     }                                             557     }
710   }                                               558   }
711                                                   559 
712   // set vertices                              << 
713   //                                           << 
714   G4double cosPhi, sinPhi;                        560   G4double cosPhi, sinPhi;
715                                                   561 
716   for(j=0; j<nVphi; j++) {                        562   for(j=0; j<nVphi; j++) {
717     cosPhi = std::cos(phi+j*delPhi/nSphi);        563     cosPhi = std::cos(phi+j*delPhi/nSphi);
718     sinPhi = std::sin(phi+j*delPhi/nSphi);        564     sinPhi = std::sin(phi+j*delPhi/nSphi);
719     for(i=i1beg; i<=i2end; i++) {                 565     for(i=i1beg; i<=i2end; i++) {
720       if (r[i] != 0.)                             566       if (r[i] != 0.)
721         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[    567         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]);
722     }                                             568     }
723   }                                               569   }
724                                                   570 
725   //   G E N E R A T E   F A C E S             << 571   //   G E N E R A T E   E X T E R N A L   F A C E S
726                                                   572 
727   //  external faces                           << 
728   //                                           << 
729   G4int v1,v2;                                    573   G4int v1,v2;
730                                                   574 
731   k = 1; // free position in array of faces pF << 575   k = 1;
732   v2 = ifClosed ? nodeVis : 1;                    576   v2 = ifClosed ? nodeVis : 1;
733   for(i=i1beg; i<i1end; i++) {                    577   for(i=i1beg; i<i1end; i++) {
734     v1 = v2;                                      578     v1 = v2;
735     if (!ifClosed && i == i1end-1) {              579     if (!ifClosed && i == i1end-1) {
736       v2 = 1;                                     580       v2 = 1;
737     }else{                                        581     }else{
738       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]    582       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis;
739     }                                             583     }
740     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v    584     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2,
741                edgeVis, ifWholeCircle, nSphi,     585                edgeVis, ifWholeCircle, nSphi, k);
742   }                                               586   }
743   if (ifClosed) {                                 587   if (ifClosed) {
744     RotateEdge(kk[i1end], kk[i1beg], r[i1end],    588     RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis,
745                edgeVis, ifWholeCircle, nSphi,     589                edgeVis, ifWholeCircle, nSphi, k);
746   }                                               590   }
747                                                   591 
748   // internal faces                            << 592   //   G E N E R A T E   I N T E R N A L   F A C E S
749   //                                           << 593 
750   if (absNp2 > 1) {                               594   if (absNp2 > 1) {
751     v2 = ifClosed ? nodeVis : 1;                  595     v2 = ifClosed ? nodeVis : 1;
752     for(i=i2beg; i<i2end; i++) {                  596     for(i=i2beg; i<i2end; i++) {
753       v1 = v2;                                    597       v1 = v2;
754       if (!ifClosed && i==i2end-1) {              598       if (!ifClosed && i==i2end-1) {
755         v2 = 1;                                   599         v2 = 1;
756       }else{                                      600       }else{
757         v2 = (r[i] == r[i+1] && r[i+1] == r[i+    601         v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 :  nodeVis;
758       }                                           602       }
759       RotateEdge(kk[i+1], kk[i], r[i+1], r[i],    603       RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1,
760                  edgeVis, ifWholeCircle, nSphi    604                  edgeVis, ifWholeCircle, nSphi, k);
761     }                                             605     }
762     if (ifClosed) {                               606     if (ifClosed) {
763       RotateEdge(kk[i2beg], kk[i2end], r[i2beg    607       RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis,
764                  edgeVis, ifWholeCircle, nSphi    608                  edgeVis, ifWholeCircle, nSphi, k);
765     }                                             609     }
766   }                                               610   }
767                                                   611 
768   // bottom and top faces                      << 612   //   G E N E R A T E   S I D E   F A C E S
769   //                                           << 613 
770   if (!ifClosed) {                                614   if (!ifClosed) {
771     if (ifSide1) {                                615     if (ifSide1) {
772       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg    616       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1,
773                  -1, ifWholeCircle, nSphi, k);    617                  -1, ifWholeCircle, nSphi, k);
774     }                                             618     }
775     if (ifSide2) {                                619     if (ifSide2) {
776       RotateEdge(kk[i1end], kk[i2end], r[i1end    620       RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1,
777                  -1, ifWholeCircle, nSphi, k);    621                  -1, ifWholeCircle, nSphi, k);
778     }                                             622     }
779   }                                               623   }
780                                                   624 
781   // phi_wedge faces in case of incomplete cir << 625   //   G E N E R A T E   S I D E   F A C E S  for the case of incomplete circle
782   //                                           << 626 
783   if (!ifWholeCircle) {                           627   if (!ifWholeCircle) {
784                                                   628 
785     G4int  ii[4], vv[4];                          629     G4int  ii[4], vv[4];
786                                                   630 
787     if (ifClosed) {                               631     if (ifClosed) {
788       for (i=i1beg; i<=i1end; i++) {              632       for (i=i1beg; i<=i1end; i++) {
789         ii[0] = i;                                633         ii[0] = i;
790         ii[3] = (i == i1end) ? i1beg : i+1;       634         ii[3] = (i == i1end) ? i1beg : i+1;
791         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    635         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
792         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    636         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
793         vv[0] = -1;                               637         vv[0] = -1;
794         vv[1] = 1;                                638         vv[1] = 1;
795         vv[2] = -1;                               639         vv[2] = -1;
796         vv[3] = 1;                                640         vv[3] = 1;
797         SetSideFacets(ii, vv, kk, r, delPhi, n << 641         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
798       }                                           642       }
799     }else{                                        643     }else{
800       for (i=i1beg; i<i1end; i++) {               644       for (i=i1beg; i<i1end; i++) {
801         ii[0] = i;                                645         ii[0] = i;
802         ii[3] = i+1;                              646         ii[3] = i+1;
803         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    647         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
804         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    648         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
805         vv[0] = (i == i1beg)   ? 1 : -1;          649         vv[0] = (i == i1beg)   ? 1 : -1;
806         vv[1] = 1;                                650         vv[1] = 1;
807         vv[2] = (i == i1end-1) ? 1 : -1;          651         vv[2] = (i == i1end-1) ? 1 : -1;
808         vv[3] = 1;                                652         vv[3] = 1;
809         SetSideFacets(ii, vv, kk, r, delPhi, n << 653         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
810       }                                           654       }
811     }                                          << 655     }      
812   }                                               656   }
813                                                   657 
814   delete [] kk; // free memory                 << 658   delete [] kk;
815                                                   659 
816   // final check                               << 
817   //                                           << 
818   if (k-1 != nface) {                             660   if (k-1 != nface) {
819     std::cerr                                     661     std::cerr
820       << "HepPolyhedron::RotateAroundZ: number << 662       << "Polyhedron::RotateAroundZ: number of generated faces ("
821       << k-1 << ") is not equal to the number     663       << k-1 << ") is not equal to the number of allocated faces ("
822       << nface << ")"                             664       << nface << ")"
823       << std::endl;                               665       << std::endl;
824   }                                               666   }
825 }                                                 667 }
826                                                   668 
827 void                                           << 
828 HepPolyhedron::RotateContourAroundZ(G4int nste << 
829                                     G4double p << 
830                                     G4double d << 
831                                     const std: << 
832                                     G4int node << 
833                                     G4int edge << 
834 /********************************************* << 
835  *                                             << 
836  * Name: HepPolyhedron::RotateContourAroundZ   << 
837  * Author: E.Tcherniaev (E.Chernyaev)          << 
838  *                                             << 
839  * Function: Create HepPolyhedron for a solid  << 
840  *           a closed polyline (rz-contour) ar << 
841  *                                             << 
842  * Input: nstep - number of discrete steps, if << 
843  *        phi   - starting phi angle           << 
844  *        dphi  - delta phi                    << 
845  *        rz    - rz-contour                   << 
846  *        nodeVis - how to Draw edges joing co << 
847  *                  node during rotation       << 
848  *        edgeVis - how to Draw edges          << 
849  *                                             << 
850  ********************************************* << 
851 {                                              << 
852   //   S E T   R O T A T I O N   P A R A M E T << 
853                                                << 
854   G4bool ifWholeCircle = std::abs(dphi - twopi << 
855   G4double delPhi = (ifWholeCircle) ? twopi :  << 
856   G4int nSphi = nstep;                         << 
857   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 
858   if (nSphi == 0) nSphi = 1;                   << 
859   G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 
860                                                << 
861   //   C A L C U L A T E   A R E A             << 
862                                                << 
863   G4int Nrz = (G4int)rz.size();                << 
864   G4double area = 0;                           << 
865   for (G4int i = 0; i < Nrz; ++i)              << 
866   {                                            << 
867     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
868     area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 
869   }                                            << 
870                                                << 
871   //   P R E P A R E   P O L Y L I N E         << 
872                                                << 
873   auto r = new G4double[Nrz];                  << 
874   auto z = new G4double[Nrz];                  << 
875   for (G4int i = 0; i < Nrz; ++i)              << 
876   {                                            << 
877     r[i] = rz[i].x();                          << 
878     z[i] = rz[i].y();                          << 
879     if (std::abs(r[i]) < spatialTolerance) r[i << 
880   }                                            << 
881                                                << 
882   //   C O U N T   V E R T I C E S   A N D   F << 
883                                                << 
884   G4int Nverts = 0;                            << 
885   for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 
886                                                << 
887   G4int Nedges = Nrz;                          << 
888   for (G4int i = 0; i < Nrz; ++i)              << 
889   {                                            << 
890     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
891     Nedges -= static_cast<int>(r[k] == 0 && r[ << 
892   }                                            << 
893                                                << 
894   G4int Nfaces = Nedges*nSphi;               / << 
895   if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 
896                                                << 
897   //   A L L O C A T E   M E M O R Y           << 
898                                                << 
899   AllocateMemory(Nverts, Nfaces);              << 
900   if (pV == nullptr || pF == nullptr)          << 
901   {                                            << 
902     delete [] r;                               << 
903     delete [] z;                               << 
904     return;                                    << 
905   }                                            << 
906                                                << 
907   //   S E T   V E R T I C E S                 << 
908                                                << 
909   auto kk = new G4int[Nrz]; // start indices a << 
910   G4int kfree = 1; // current free position in << 
911                                                << 
912   // set start indices, set vertices for nodes << 
913   for(G4int i = 0; i < Nrz; ++i)               << 
914   {                                            << 
915     kk[i] = kfree;                             << 
916     if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 
917     if (r[i] != 0.) kfree += nVphi;            << 
918   }                                            << 
919                                                << 
920   // set vertices by rotating r                << 
921   for(G4int j = 0; j < nVphi; ++j)             << 
922   {                                            << 
923     G4double cosPhi = std::cos(phi + j*delPhi/ << 
924     G4double sinPhi = std::sin(phi + j*delPhi/ << 
925     for(G4int i = 0; i < Nrz; ++i)             << 
926     {                                          << 
927       if (r[i] != 0.)                          << 
928         pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 
929     }                                          << 
930   }                                            << 
931                                                << 
932   //   S E T   F A C E S                       << 
933                                                << 
934   kfree = 1; // current free position in array << 
935   for(G4int i = 0; i < Nrz; ++i)               << 
936   {                                            << 
937     G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 
938     G4int i2 = i;                              << 
939     if (area < 0.) std::swap(i1, i2);          << 
940     RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 
941                edgeVis, ifWholeCircle, nSphi,  << 
942   }                                            << 
943                                                << 
944   //    S E T   P H I _ W E D G E   F A C E S  << 
945                                                << 
946   if (!ifWholeCircle)                          << 
947   {                                            << 
948     std::vector<G4int> triangles;              << 
949     TriangulatePolygon(rz, triangles);         << 
950                                                << 
951     G4int ii[4], vv[4];                        << 
952     G4int ntria = G4int(triangles.size()/3);   << 
953     for (G4int i = 0; i < ntria; ++i)          << 
954     {                                          << 
955       G4int i1 = triangles[0 + i*3];           << 
956       G4int i2 = triangles[1 + i*3];           << 
957       G4int i3 = triangles[2 + i*3];           << 
958       if (area < 0.) std::swap(i1, i3);        << 
959       G4int v1 = (std::abs(i2-i1) == 1 || std: << 
960       G4int v2 = (std::abs(i3-i2) == 1 || std: << 
961       G4int v3 = (std::abs(i1-i3) == 1 || std: << 
962       ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 
963       vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 
964       SetSideFacets(ii, vv, kk, r, delPhi, nSp << 
965     }                                          << 
966   }                                            << 
967                                                << 
968   // free memory                               << 
969   delete [] r;                                 << 
970   delete [] z;                                 << 
971   delete [] kk;                                << 
972                                                << 
973   // final check                               << 
974   if (kfree - 1 != nface)                      << 
975   {                                            << 
976     std::cerr                                  << 
977       << "HepPolyhedron::RotateContourAroundZ: << 
978       << kfree-1 << ") is not equal to the num << 
979       << nface << ")"                          << 
980       << std::endl;                            << 
981   }                                            << 
982 }                                              << 
983                                                << 
984 G4bool                                         << 
985 HepPolyhedron::TriangulatePolygon(const std::v << 
986                                   std::vector< << 
987 /********************************************* << 
988  *                                             << 
989  * Name: HepPolyhedron::TriangulatePolygon     << 
990  * Author: E.Tcherniaev (E.Chernyaev)          << 
991  *                                             << 
992  * Function: Simple implementation of "ear cli << 
993  *           triangulation of a simple contour << 
994  *           the result in a std::vector as tr << 
995  *                                             << 
996  *           If triangulation is sucsessfull t << 
997  *           returns true, otherwise false     << 
998  *                                             << 
999  * Remark:   It's a copy of G4GeomTools::Trian << 
1000  *                                            << 
1001  ******************************************** << 
1002 {                                             << 
1003   result.resize(0);                           << 
1004   G4int n = (G4int)polygon.size();            << 
1005   if (n < 3) return false;                    << 
1006                                               << 
1007   // calculate area                           << 
1008   //                                          << 
1009   G4double area = 0.;                         << 
1010   for(G4int i = 0; i < n; ++i)                << 
1011   {                                           << 
1012     G4int k = (i == 0) ? n - 1 : i - 1;       << 
1013     area += polygon[k].x()*polygon[i].y() - p << 
1014   }                                           << 
1015                                               << 
1016   // allocate and initialize list of Vertices << 
1017   // we want a counter-clockwise polygon in V << 
1018   //                                          << 
1019   auto  V = new G4int[n];                     << 
1020   if (area > 0.)                              << 
1021     for (G4int i = 0; i < n; ++i) V[i] = i;   << 
1022   else                                        << 
1023     for (G4int i = 0; i < n; ++i) V[i] = (n - << 
1024                                               << 
1025   //  Triangulation: remove nv-2 Vertices, cr << 
1026   //                                          << 
1027   G4int nv = n;                               << 
1028   G4int count = 2*nv; // error detection coun << 
1029   for(G4int b = nv - 1; nv > 2; )             << 
1030   {                                           << 
1031     // ERROR: if we loop, it is probably a no << 
1032     if ((count--) <= 0)                       << 
1033     {                                         << 
1034       delete [] V;                            << 
1035       if (area < 0.) std::reverse(result.begi << 
1036       return false;                           << 
1037     }                                         << 
1038                                               << 
1039     // three consecutive vertices in current  << 
1040     G4int a = (b   < nv) ? b   : 0; // previo << 
1041           b = (a+1 < nv) ? a+1 : 0; // curren << 
1042     G4int c = (b+1 < nv) ? b+1 : 0; // next   << 
1043                                               << 
1044     if (CheckSnip(polygon, a,b,c, nv,V))      << 
1045     {                                         << 
1046       // output Triangle                      << 
1047       result.push_back(V[a]);                 << 
1048       result.push_back(V[b]);                 << 
1049       result.push_back(V[c]);                 << 
1050                                               << 
1051       // remove vertex b from remaining polyg << 
1052       nv--;                                   << 
1053       for(G4int i = b; i < nv; ++i) V[i] = V[ << 
1054                                               << 
1055       count = 2*nv; // resest error detection << 
1056     }                                         << 
1057   }                                           << 
1058   delete [] V;                                << 
1059   if (area < 0.) std::reverse(result.begin(), << 
1060   return true;                                << 
1061 }                                             << 
1062                                               << 
1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 
1064                                 G4int a, G4in << 
1065                                 G4int n, cons << 
1066 /******************************************** << 
1067  *                                            << 
1068  * Name: HepPolyhedron::CheckSnip             << 
1069  * Author: E.Tcherniaev (E.Chernyaev)         << 
1070  *                                            << 
1071  * Function: Check for a valid snip,          << 
1072  *           it is a helper functionfor Trian << 
1073  *                                            << 
1074  ******************************************** << 
1075 {                                             << 
1076   static const G4double kCarTolerance = 1.e-9 << 
1077                                               << 
1078   // check orientation of Triangle            << 
1079   G4double Ax = contour[V[a]].x(), Ay = conto << 
1080   G4double Bx = contour[V[b]].x(), By = conto << 
1081   G4double Cx = contour[V[c]].x(), Cy = conto << 
1082   if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 
1083                                               << 
1084   // check that there is no point inside Tria << 
1085   G4double xmin = std::min(std::min(Ax,Bx),Cx << 
1086   G4double xmax = std::max(std::max(Ax,Bx),Cx << 
1087   G4double ymin = std::min(std::min(Ay,By),Cy << 
1088   G4double ymax = std::max(std::max(Ay,By),Cy << 
1089                                               << 
1090   for (G4int i=0; i<n; ++i)                   << 
1091   {                                           << 
1092     if((i == a) || (i == b) || (i == c)) cont << 
1093     G4double Px = contour[V[i]].x();          << 
1094     if (Px < xmin || Px > xmax) continue;     << 
1095     G4double Py = contour[V[i]].y();          << 
1096     if (Py < ymin || Py > ymax) continue;     << 
1097     // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 
1098     if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 
1099     {                                         << 
1100       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 
1101       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 
1102       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 
1103     }                                         << 
1104     else                                      << 
1105     {                                         << 
1106       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 
1107       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 
1108       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 
1109     }                                         << 
1110     return false;                             << 
1111   }                                           << 
1112   return true;                                << 
1113 }                                             << 
1114                                               << 
1115 void HepPolyhedron::SetReferences()              669 void HepPolyhedron::SetReferences()
1116 /********************************************    670 /***********************************************************************
1117  *                                               671  *                                                                     *
1118  * Name: HepPolyhedron::SetReferences            672  * Name: HepPolyhedron::SetReferences                Date:    04.12.96 *
1119  * Author: E.Chernyaev (IHEP/Protvino)           673  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1120  *                                               674  *                                                                     *
1121  * Function: For each edge set reference to n    675  * Function: For each edge set reference to neighbouring facet         *
1122  *                                               676  *                                                                     *
1123  ********************************************    677  ***********************************************************************/
1124 {                                                678 {
1125   if (nface <= 0) return;                        679   if (nface <= 0) return;
1126                                                  680 
1127   struct edgeListMember {                        681   struct edgeListMember {
1128     edgeListMember *next;                        682     edgeListMember *next;
1129     G4int v2;                                    683     G4int v2;
1130     G4int iface;                                 684     G4int iface;
1131     G4int iedge;                                 685     G4int iedge;
1132   } *edgeList, *freeList, **headList;            686   } *edgeList, *freeList, **headList;
1133                                                  687 
1134                                               << 688   
1135   //   A L L O C A T E   A N D   I N I T I A     689   //   A L L O C A T E   A N D   I N I T I A T E   L I S T S
1136                                                  690 
1137   edgeList = new edgeListMember[2*nface];        691   edgeList = new edgeListMember[2*nface];
1138   headList = new edgeListMember*[nvert];         692   headList = new edgeListMember*[nvert];
1139                                               << 693   
1140   G4int i;                                       694   G4int i;
1141   for (i=0; i<nvert; i++) {                      695   for (i=0; i<nvert; i++) {
1142     headList[i] = nullptr;                    << 696     headList[i] = 0;
1143   }                                              697   }
1144   freeList = edgeList;                           698   freeList = edgeList;
1145   for (i=0; i<2*nface-1; i++) {                  699   for (i=0; i<2*nface-1; i++) {
1146     edgeList[i].next = &edgeList[i+1];           700     edgeList[i].next = &edgeList[i+1];
1147   }                                              701   }
1148   edgeList[2*nface-1].next = nullptr;         << 702   edgeList[2*nface-1].next = 0;
1149                                                  703 
1150   //   L O O P   A L O N G   E D G E S           704   //   L O O P   A L O N G   E D G E S
1151                                                  705 
1152   G4int iface, iedge, nedge, i1, i2, k1, k2;     706   G4int iface, iedge, nedge, i1, i2, k1, k2;
1153   edgeListMember *prev, *cur;                    707   edgeListMember *prev, *cur;
1154                                               << 708   
1155   for(iface=1; iface<=nface; iface++) {          709   for(iface=1; iface<=nface; iface++) {
1156     nedge = (pF[iface].edge[3].v == 0) ? 3 :     710     nedge = (pF[iface].edge[3].v == 0) ? 3 : 4;
1157     for (iedge=0; iedge<nedge; iedge++) {        711     for (iedge=0; iedge<nedge; iedge++) {
1158       i1 = iedge;                                712       i1 = iedge;
1159       i2 = (iedge < nedge-1) ? iedge+1 : 0;      713       i2 = (iedge < nedge-1) ? iedge+1 : 0;
1160       i1 = std::abs(pF[iface].edge[i1].v);       714       i1 = std::abs(pF[iface].edge[i1].v);
1161       i2 = std::abs(pF[iface].edge[i2].v);       715       i2 = std::abs(pF[iface].edge[i2].v);
1162       k1 = (i1 < i2) ? i1 : i2;          // k    716       k1 = (i1 < i2) ? i1 : i2;          // k1 = ::min(i1,i2);
1163       k2 = (i1 > i2) ? i1 : i2;          // k    717       k2 = (i1 > i2) ? i1 : i2;          // k2 = ::max(i1,i2);
1164                                               << 718       
1165       // check head of the List corresponding    719       // check head of the List corresponding to k1
1166       cur = headList[k1];                        720       cur = headList[k1];
1167       if (cur == nullptr) {                   << 721       if (cur == 0) {
1168         headList[k1] = freeList;                 722         headList[k1] = freeList;
1169         if (freeList == nullptr) {            << 
1170           std::cerr                           << 
1171           << "Polyhedron::SetReferences: bad  << 
1172           << std::endl;                       << 
1173           break;                              << 
1174         }                                     << 
1175         freeList = freeList->next;               723         freeList = freeList->next;
1176         cur = headList[k1];                      724         cur = headList[k1];
1177         cur->next = nullptr;                  << 725         cur->next = 0;
1178         cur->v2 = k2;                            726         cur->v2 = k2;
1179         cur->iface = iface;                      727         cur->iface = iface;
1180         cur->iedge = iedge;                      728         cur->iedge = iedge;
1181         continue;                                729         continue;
1182       }                                          730       }
1183                                                  731 
1184       if (cur->v2 == k2) {                       732       if (cur->v2 == k2) {
1185         headList[k1] = cur->next;                733         headList[k1] = cur->next;
1186         cur->next = freeList;                    734         cur->next = freeList;
1187         freeList = cur;                       << 735         freeList = cur;      
1188         pF[iface].edge[iedge].f = cur->iface;    736         pF[iface].edge[iedge].f = cur->iface;
1189         pF[cur->iface].edge[cur->iedge].f = i    737         pF[cur->iface].edge[cur->iedge].f = iface;
1190         i1 = (pF[iface].edge[iedge].v < 0) ?     738         i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1191         i2 = (pF[cur->iface].edge[cur->iedge]    739         i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1192         if (i1 != i2) {                          740         if (i1 != i2) {
1193           std::cerr                              741           std::cerr
1194             << "Polyhedron::SetReferences: di    742             << "Polyhedron::SetReferences: different edge visibility "
1195             << iface << "/" << iedge << "/"      743             << iface << "/" << iedge << "/"
1196             << pF[iface].edge[iedge].v << " a    744             << pF[iface].edge[iedge].v << " and "
1197             << cur->iface << "/" << cur->iedg    745             << cur->iface << "/" << cur->iedge << "/"
1198             << pF[cur->iface].edge[cur->iedge    746             << pF[cur->iface].edge[cur->iedge].v
1199             << std::endl;                        747             << std::endl;
1200         }                                        748         }
1201         continue;                                749         continue;
1202       }                                          750       }
1203                                                  751 
1204       // check List itself                       752       // check List itself
1205       for (;;) {                                 753       for (;;) {
1206         prev = cur;                              754         prev = cur;
1207         cur = prev->next;                        755         cur = prev->next;
1208         if (cur == nullptr) {                 << 756         if (cur == 0) {
1209           prev->next = freeList;                 757           prev->next = freeList;
1210           if (freeList == nullptr) {          << 
1211             std::cerr                         << 
1212             << "Polyhedron::SetReferences: ba << 
1213             << std::endl;                     << 
1214             break;                            << 
1215           }                                   << 
1216           freeList = freeList->next;             758           freeList = freeList->next;
1217           cur = prev->next;                      759           cur = prev->next;
1218           cur->next = nullptr;                << 760           cur->next = 0;
1219           cur->v2 = k2;                          761           cur->v2 = k2;
1220           cur->iface = iface;                    762           cur->iface = iface;
1221           cur->iedge = iedge;                    763           cur->iedge = iedge;
1222           break;                                 764           break;
1223         }                                        765         }
1224                                                  766 
1225         if (cur->v2 == k2) {                     767         if (cur->v2 == k2) {
1226           prev->next = cur->next;                768           prev->next = cur->next;
1227           cur->next = freeList;                  769           cur->next = freeList;
1228           freeList = cur;                     << 770           freeList = cur;      
1229           pF[iface].edge[iedge].f = cur->ifac    771           pF[iface].edge[iedge].f = cur->iface;
1230           pF[cur->iface].edge[cur->iedge].f =    772           pF[cur->iface].edge[cur->iedge].f = iface;
1231           i1 = (pF[iface].edge[iedge].v < 0)     773           i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1232           i2 = (pF[cur->iface].edge[cur->iedg    774           i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1233             if (i1 != i2) {                      775             if (i1 != i2) {
1234               std::cerr                          776               std::cerr
1235                 << "Polyhedron::SetReferences    777                 << "Polyhedron::SetReferences: different edge visibility "
1236                 << iface << "/" << iedge << "    778                 << iface << "/" << iedge << "/"
1237                 << pF[iface].edge[iedge].v <<    779                 << pF[iface].edge[iedge].v << " and "
1238                 << cur->iface << "/" << cur->    780                 << cur->iface << "/" << cur->iedge << "/"
1239                 << pF[cur->iface].edge[cur->i    781                 << pF[cur->iface].edge[cur->iedge].v
1240                 << std::endl;                    782                 << std::endl;
1241             }                                    783             }
1242           break;                                 784           break;
1243         }                                        785         }
1244       }                                          786       }
1245     }                                            787     }
1246   }                                              788   }
1247                                                  789 
1248   //  C H E C K   T H A T   A L L   L I S T S    790   //  C H E C K   T H A T   A L L   L I S T S   A R E   E M P T Y
1249                                                  791 
1250   for (i=0; i<nvert; i++) {                      792   for (i=0; i<nvert; i++) {
1251     if (headList[i] != nullptr) {             << 793     if (headList[i] != 0) {
1252       std::cerr                                  794       std::cerr
1253         << "Polyhedron::SetReferences: List "    795         << "Polyhedron::SetReferences: List " << i << " is not empty"
1254         << std::endl;                            796         << std::endl;
1255     }                                            797     }
1256   }                                              798   }
1257                                                  799 
1258   //   F R E E   M E M O R Y                     800   //   F R E E   M E M O R Y
1259                                                  801 
1260   delete [] edgeList;                            802   delete [] edgeList;
1261   delete [] headList;                            803   delete [] headList;
1262 }                                                804 }
1263                                                  805 
1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 
1265 /******************************************** << 
1266  *                                            << 
1267  * Name: HepPolyhedron::JoinCoplanarFacets    << 
1268  * Author: E.Tcherniaev (E.Chernyaev)         << 
1269  *                                            << 
1270  * Function: Join couples of triangular facet << 
1271  *           where it is possible             << 
1272  *                                            << 
1273  ******************************************** << 
1274 {                                             << 
1275   G4int njoin = 0;                            << 
1276   for (G4int icur = 1; icur <= nface; ++icur) << 
1277   {                                           << 
1278     // skip if already joined or quadrangle   << 
1279     if (pF[icur].edge[0].v == 0) continue;    << 
1280     if (pF[icur].edge[3].v != 0) continue;    << 
1281     // skip if all references point to alread << 
1282     if (pF[icur].edge[0].f < icur &&          << 
1283         pF[icur].edge[1].f < icur &&          << 
1284         pF[icur].edge[2].f < icur) continue;  << 
1285     // compute plane equation                 << 
1286     G4Normal3D norm = GetUnitNormal(icur);    << 
1287     G4double dd = norm.dot(pV[pF[icur].edge[0 << 
1288     G4int vcur0 = std::abs(pF[icur].edge[0].v << 
1289     G4int vcur1 = std::abs(pF[icur].edge[1].v << 
1290     G4int vcur2 = std::abs(pF[icur].edge[2].v << 
1291     // select neighbouring facet              << 
1292     G4int kcheck = 0, icheck = 0, vcheck = 0; << 
1293     G4double dist = DBL_MAX;                  << 
1294     for (G4int k = 0; k < 3; ++k)             << 
1295     {                                         << 
1296       G4int itmp = pF[icur].edge[k].f;        << 
1297       // skip if already checked, joined or q << 
1298       if (itmp < icur) continue;              << 
1299       if (pF[itmp].edge[0].v == 0 ||          << 
1300           pF[itmp].edge[3].v != 0) continue;  << 
1301       // get candidate vertex                 << 
1302       G4int vtmp = 0;                         << 
1303       for (G4int j = 0; j < 3; ++j)           << 
1304       {                                       << 
1305         vtmp = std::abs(pF[itmp].edge[j].v);  << 
1306   if (vtmp != vcur0 && vtmp != vcur1 && vtmp  << 
1307       }                                       << 
1308       // check distance to the plane          << 
1309       G4double dtmp = std::abs(norm.dot(pV[vt << 
1310       if (dtmp > tolerance || dtmp >= dist) c << 
1311       dist = dtmp;                            << 
1312       kcheck = k;                             << 
1313       icheck = itmp;                          << 
1314       vcheck = vtmp;                          << 
1315     }                                         << 
1316     if (icheck == 0) continue; // no facet se << 
1317     // join facets                            << 
1318     njoin++;                                  << 
1319     pF[icheck].edge[0].v = 0; // mark facet a << 
1320     if (kcheck == 0)                          << 
1321     {                                         << 
1322       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1323       pF[icur].edge[2].v = pF[icur].edge[1].v << 
1324       pF[icur].edge[1].v = vcheck;            << 
1325     }                                         << 
1326     else if (kcheck == 1)                     << 
1327     {                                         << 
1328       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1329       pF[icur].edge[2].v = vcheck;            << 
1330     }                                         << 
1331     else                                      << 
1332     {                                         << 
1333       pF[icur].edge[3].v = vcheck;            << 
1334     }                                         << 
1335   }                                           << 
1336   if (njoin == 0) return; // no joined facets << 
1337                                               << 
1338   // restructure facets                       << 
1339   G4int nnew = 0;                             << 
1340   for (G4int icur = 1; icur <= nface; ++icur) << 
1341   {                                           << 
1342     if (pF[icur].edge[0].v == 0) continue;    << 
1343     nnew++;                                   << 
1344     pF[nnew].edge[0].v = pF[icur].edge[0].v;  << 
1345     pF[nnew].edge[1].v = pF[icur].edge[1].v;  << 
1346     pF[nnew].edge[2].v = pF[icur].edge[2].v;  << 
1347     pF[nnew].edge[3].v = pF[icur].edge[3].v;  << 
1348   }                                           << 
1349   nface = nnew;                               << 
1350   SetReferences();                            << 
1351 }                                             << 
1352                                               << 
1353 void HepPolyhedron::InvertFacets()               806 void HepPolyhedron::InvertFacets()
1354 /********************************************    807 /***********************************************************************
1355  *                                               808  *                                                                     *
1356  * Name: HepPolyhedron::InvertFacets             809  * Name: HepPolyhedron::InvertFacets                Date:    01.12.99  *
1357  * Author: E.Chernyaev                           810  * Author: E.Chernyaev                              Revised:           *
1358  *                                               811  *                                                                     *
1359  * Function: Invert the order of the nodes in    812  * Function: Invert the order of the nodes in the facets               *
1360  *                                               813  *                                                                     *
1361  ********************************************    814  ***********************************************************************/
1362 {                                                815 {
1363   if (nface <= 0) return;                        816   if (nface <= 0) return;
1364   G4int i, k, nnode, v[4],f[4];                  817   G4int i, k, nnode, v[4],f[4];
1365   for (i=1; i<=nface; i++) {                     818   for (i=1; i<=nface; i++) {
1366     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;     819     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;
1367     for (k=0; k<nnode; k++) {                    820     for (k=0; k<nnode; k++) {
1368       v[k] = (k+1 == nnode) ? pF[i].edge[0].v    821       v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v;
1369       if (v[k] * pF[i].edge[k].v < 0) v[k] =     822       if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k];
1370       f[k] = pF[i].edge[k].f;                    823       f[k] = pF[i].edge[k].f;
1371     }                                            824     }
1372     for (k=0; k<nnode; k++) {                    825     for (k=0; k<nnode; k++) {
1373       pF[i].edge[nnode-1-k].v = v[k];            826       pF[i].edge[nnode-1-k].v = v[k];
1374       pF[i].edge[nnode-1-k].f = f[k];            827       pF[i].edge[nnode-1-k].f = f[k];
1375     }                                            828     }
1376   }                                              829   }
1377 }                                                830 }
1378                                                  831 
1379 HepPolyhedron & HepPolyhedron::Transform(cons    832 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t)
1380 /********************************************    833 /***********************************************************************
1381  *                                               834  *                                                                     *
1382  * Name: HepPolyhedron::Transform                835  * Name: HepPolyhedron::Transform                    Date:    01.12.99  *
1383  * Author: E.Chernyaev                           836  * Author: E.Chernyaev                              Revised:           *
1384  *                                               837  *                                                                     *
1385  * Function: Make transformation of the polyh    838  * Function: Make transformation of the polyhedron                     *
1386  *                                               839  *                                                                     *
1387  ********************************************    840  ***********************************************************************/
1388 {                                                841 {
1389   if (nvert > 0) {                               842   if (nvert > 0) {
1390     for (G4int i=1; i<=nvert; i++) { pV[i] =     843     for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; }
1391                                                  844 
1392     //  C H E C K   D E T E R M I N A N T   A    845     //  C H E C K   D E T E R M I N A N T   A N D
1393     //  I N V E R T   F A C E T S   I F   I T    846     //  I N V E R T   F A C E T S   I F   I T   I S   N E G A T I V E
1394                                                  847 
1395     G4Vector3D d = t * G4Vector3D(0,0,0);        848     G4Vector3D d = t * G4Vector3D(0,0,0);
1396     G4Vector3D x = t * G4Vector3D(1,0,0) - d;    849     G4Vector3D x = t * G4Vector3D(1,0,0) - d;
1397     G4Vector3D y = t * G4Vector3D(0,1,0) - d;    850     G4Vector3D y = t * G4Vector3D(0,1,0) - d;
1398     G4Vector3D z = t * G4Vector3D(0,0,1) - d;    851     G4Vector3D z = t * G4Vector3D(0,0,1) - d;
1399     if ((x.cross(y))*z < 0) InvertFacets();      852     if ((x.cross(y))*z < 0) InvertFacets();
1400   }                                              853   }
1401   return *this;                                  854   return *this;
1402 }                                                855 }
1403                                                  856 
1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in    857 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const
1405 /********************************************    858 /***********************************************************************
1406  *                                               859  *                                                                     *
1407  * Name: HepPolyhedron::GetNextVertexIndex       860  * Name: HepPolyhedron::GetNextVertexIndex          Date:    03.09.96  *
1408  * Author: Yasuhide Sawada                       861  * Author: Yasuhide Sawada                          Revised:           *
1409  *                                               862  *                                                                     *
1410  * Function:                                     863  * Function:                                                           *
1411  *                                               864  *                                                                     *
1412  ********************************************    865  ***********************************************************************/
1413 {                                                866 {
1414   static G4ThreadLocal G4int iFace = 1;       << 867   static G4int iFace = 1;
1415   static G4ThreadLocal G4int iQVertex = 0;    << 868   static G4int iQVertex = 0;
1416   G4int vIndex = pF[iFace].edge[iQVertex].v;     869   G4int vIndex = pF[iFace].edge[iQVertex].v;
1417                                                  870 
1418   edgeFlag = (vIndex > 0) ? 1 : 0;               871   edgeFlag = (vIndex > 0) ? 1 : 0;
1419   index = std::abs(vIndex);                      872   index = std::abs(vIndex);
1420                                                  873 
1421   if (iQVertex >= 3 || pF[iFace].edge[iQVerte    874   if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1422     iQVertex = 0;                                875     iQVertex = 0;
1423     if (++iFace > nface) iFace = 1;              876     if (++iFace > nface) iFace = 1;
1424     return false;  // Last Edge                  877     return false;  // Last Edge
                                                   >> 878   }else{
                                                   >> 879     ++iQVertex;
                                                   >> 880     return true;  // not Last Edge
1425   }                                              881   }
1426                                               << 
1427   ++iQVertex;                                 << 
1428   return true;  // not Last Edge              << 
1429 }                                                882 }
1430                                                  883 
1431 G4Point3D HepPolyhedron::GetVertex(G4int inde    884 G4Point3D HepPolyhedron::GetVertex(G4int index) const
1432 /********************************************    885 /***********************************************************************
1433  *                                               886  *                                                                     *
1434  * Name: HepPolyhedron::GetVertex                887  * Name: HepPolyhedron::GetVertex                   Date:    03.09.96  *
1435  * Author: Yasuhide Sawada                       888  * Author: Yasuhide Sawada                          Revised: 17.11.99  *
1436  *                                               889  *                                                                     *
1437  * Function: Get vertex of the index.            890  * Function: Get vertex of the index.                                  *
1438  *                                               891  *                                                                     *
1439  ********************************************    892  ***********************************************************************/
1440 {                                                893 {
1441   if (index <= 0 || index > nvert) {             894   if (index <= 0 || index > nvert) {
1442     std::cerr                                    895     std::cerr
1443       << "HepPolyhedron::GetVertex: irrelevan    896       << "HepPolyhedron::GetVertex: irrelevant index " << index
1444       << std::endl;                              897       << std::endl;
1445     return G4Point3D();                          898     return G4Point3D();
1446   }                                              899   }
1447   return pV[index];                              900   return pV[index];
1448 }                                                901 }
1449                                                  902 
1450 G4bool                                           903 G4bool
1451 HepPolyhedron::GetNextVertex(G4Point3D &verte    904 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const
1452 /********************************************    905 /***********************************************************************
1453  *                                               906  *                                                                     *
1454  * Name: HepPolyhedron::GetNextVertex            907  * Name: HepPolyhedron::GetNextVertex               Date:    22.07.96  *
1455  * Author: John Allison                          908  * Author: John Allison                             Revised:           *
1456  *                                               909  *                                                                     *
1457  * Function: Get vertices of the quadrilatera    910  * Function: Get vertices of the quadrilaterals in order for each      *
1458  *           face in face order.  Returns fal    911  *           face in face order.  Returns false when finished each     *
1459  *           face.                               912  *           face.                                                     *
1460  *                                               913  *                                                                     *
1461  ********************************************    914  ***********************************************************************/
1462 {                                                915 {
1463   G4int index;                                   916   G4int index;
1464   G4bool rep = GetNextVertexIndex(index, edge    917   G4bool rep = GetNextVertexIndex(index, edgeFlag);
1465   vertex = pV[index];                            918   vertex = pV[index];
1466   return rep;                                    919   return rep;
1467 }                                                920 }
1468                                                  921 
1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D    922 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag,
1470                                   G4Normal3D     923                                   G4Normal3D &normal) const
1471 /********************************************    924 /***********************************************************************
1472  *                                               925  *                                                                     *
1473  * Name: HepPolyhedron::GetNextVertex            926  * Name: HepPolyhedron::GetNextVertex               Date:    26.11.99  *
1474  * Author: E.Chernyaev                           927  * Author: E.Chernyaev                              Revised:           *
1475  *                                               928  *                                                                     *
1476  * Function: Get vertices with normals of the    929  * Function: Get vertices with normals of the quadrilaterals in order  *
1477  *           for each face in face order.        930  *           for each face in face order.                              *
1478  *           Returns false when finished each    931  *           Returns false when finished each face.                    *
1479  *                                               932  *                                                                     *
1480  ********************************************    933  ***********************************************************************/
1481 {                                                934 {
1482   static G4ThreadLocal G4int iFace = 1;       << 935   static G4int iFace = 1;
1483   static G4ThreadLocal G4int iNode = 0;       << 936   static G4int iNode = 0;
1484                                                  937 
1485   if (nface == 0) return false;  // empty pol    938   if (nface == 0) return false;  // empty polyhedron
1486                                                  939 
1487   G4int k = pF[iFace].edge[iNode].v;             940   G4int k = pF[iFace].edge[iNode].v;
1488   if (k > 0) { edgeFlag = 1; } else { edgeFla    941   if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; }
1489   vertex = pV[k];                                942   vertex = pV[k];
1490   normal = FindNodeNormal(iFace,k);              943   normal = FindNodeNormal(iFace,k);
1491   if (iNode >= 3 || pF[iFace].edge[iNode+1].v    944   if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) {
1492     iNode = 0;                                   945     iNode = 0;
1493     if (++iFace > nface) iFace = 1;              946     if (++iFace > nface) iFace = 1;
1494     return false;                // last node    947     return false;                // last node
                                                   >> 948   }else{
                                                   >> 949     ++iNode;
                                                   >> 950     return true;                 // not last node
1495   }                                              951   }
1496   ++iNode;                                    << 
1497   return true;                 // not last no << 
1498 }                                                952 }
1499                                                  953 
1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 954 G4bool HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag,
1501                                        G4int     955                                        G4int &iface1, G4int &iface2) const
1502 /********************************************    956 /***********************************************************************
1503  *                                               957  *                                                                     *
1504  * Name: HepPolyhedron::GetNextEdgeIndices    << 958  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    30.09.96  *
1505  * Author: E.Chernyaev                           959  * Author: E.Chernyaev                              Revised: 17.11.99  *
1506  *                                               960  *                                                                     *
1507  * Function: Get indices of the next edge tog << 961  * Function: Get indeces of the next edge together with indeces of     *
1508  *           of the faces which share the edg    962  *           of the faces which share the edge.                        *
1509  *           Returns false when the last edge    963  *           Returns false when the last edge.                         *
1510  *                                               964  *                                                                     *
1511  ********************************************    965  ***********************************************************************/
1512 {                                                966 {
1513   static G4ThreadLocal G4int iFace    = 1;    << 967   static G4int iFace    = 1;
1514   static G4ThreadLocal G4int iQVertex = 0;    << 968   static G4int iQVertex = 0;
1515   static G4ThreadLocal G4int iOrder   = 1;    << 969   static G4int iOrder   = 1;
1516   G4int  k1, k2, kflag, kface1, kface2;          970   G4int  k1, k2, kflag, kface1, kface2;
1517                                                  971 
1518   if (iFace == 1 && iQVertex == 0) {             972   if (iFace == 1 && iQVertex == 0) {
1519     k2 = pF[nface].edge[0].v;                    973     k2 = pF[nface].edge[0].v;
1520     k1 = pF[nface].edge[3].v;                    974     k1 = pF[nface].edge[3].v;
1521     if (k1 == 0) k1 = pF[nface].edge[2].v;       975     if (k1 == 0) k1 = pF[nface].edge[2].v;
1522     if (std::abs(k1) > std::abs(k2)) iOrder =    976     if (std::abs(k1) > std::abs(k2)) iOrder = -1;
1523   }                                              977   }
1524                                                  978 
1525   do {                                           979   do {
1526     k1     = pF[iFace].edge[iQVertex].v;         980     k1     = pF[iFace].edge[iQVertex].v;
1527     kflag  = k1;                                 981     kflag  = k1;
1528     k1     = std::abs(k1);                       982     k1     = std::abs(k1);
1529     kface1 = iFace;                           << 983     kface1 = iFace; 
1530     kface2 = pF[iFace].edge[iQVertex].f;         984     kface2 = pF[iFace].edge[iQVertex].f;
1531     if (iQVertex >= 3 || pF[iFace].edge[iQVer    985     if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1532       iQVertex = 0;                              986       iQVertex = 0;
1533       k2 = std::abs(pF[iFace].edge[iQVertex].    987       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1534       iFace++;                                   988       iFace++;
1535     }else{                                       989     }else{
1536       iQVertex++;                                990       iQVertex++;
1537       k2 = std::abs(pF[iFace].edge[iQVertex].    991       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1538     }                                            992     }
1539   } while (iOrder*k1 > iOrder*k2);               993   } while (iOrder*k1 > iOrder*k2);
1540                                                  994 
1541   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ?     995   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0;
1542   iface1 = kface1; iface2 = kface2;           << 996   iface1 = kface1; iface2 = kface2; 
1543                                                  997 
1544   if (iFace > nface) {                           998   if (iFace > nface) {
1545     iFace  = 1; iOrder = 1;                      999     iFace  = 1; iOrder = 1;
1546     return false;                                1000     return false;
                                                   >> 1001   }else{
                                                   >> 1002     return true;
1547   }                                              1003   }
1548                                               << 
1549   return true;                                << 
1550 }                                                1004 }
1551                                                  1005 
1552 G4bool                                           1006 G4bool
1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1,  << 1007 HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag) const
1554 /********************************************    1008 /***********************************************************************
1555  *                                               1009  *                                                                     *
1556  * Name: HepPolyhedron::GetNextEdgeIndices    << 1010  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    17.11.99  *
1557  * Author: E.Chernyaev                           1011  * Author: E.Chernyaev                              Revised:           *
1558  *                                               1012  *                                                                     *
1559  * Function: Get indices of the next edge.    << 1013  * Function: Get indeces of the next edge.                             *
1560  *           Returns false when the last edge    1014  *           Returns false when the last edge.                         *
1561  *                                               1015  *                                                                     *
1562  ********************************************    1016  ***********************************************************************/
1563 {                                                1017 {
1564   G4int kface1, kface2;                          1018   G4int kface1, kface2;
1565   return GetNextEdgeIndices(i1, i2, edgeFlag, << 1019   return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2);
1566 }                                                1020 }
1567                                                  1021 
1568 G4bool                                           1022 G4bool
1569 HepPolyhedron::GetNextEdge(G4Point3D &p1,        1023 HepPolyhedron::GetNextEdge(G4Point3D &p1,
1570                            G4Point3D &p2,        1024                            G4Point3D &p2,
1571                            G4int &edgeFlag) c    1025                            G4int &edgeFlag) const
1572 /********************************************    1026 /***********************************************************************
1573  *                                               1027  *                                                                     *
1574  * Name: HepPolyhedron::GetNextEdge              1028  * Name: HepPolyhedron::GetNextEdge                 Date:    30.09.96  *
1575  * Author: E.Chernyaev                           1029  * Author: E.Chernyaev                              Revised:           *
1576  *                                               1030  *                                                                     *
1577  * Function: Get next edge.                      1031  * Function: Get next edge.                                            *
1578  *           Returns false when the last edge    1032  *           Returns false when the last edge.                         *
1579  *                                               1033  *                                                                     *
1580  ********************************************    1034  ***********************************************************************/
1581 {                                                1035 {
1582   G4int i1,i2;                                   1036   G4int i1,i2;
1583   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1037   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag);
1584   p1 = pV[i1];                                   1038   p1 = pV[i1];
1585   p2 = pV[i2];                                   1039   p2 = pV[i2];
1586   return rep;                                    1040   return rep;
1587 }                                                1041 }
1588                                                  1042 
1589 G4bool                                           1043 G4bool
1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P    1044 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2,
1591                           G4int &edgeFlag, G4    1045                           G4int &edgeFlag, G4int &iface1, G4int &iface2) const
1592 /********************************************    1046 /***********************************************************************
1593  *                                               1047  *                                                                     *
1594  * Name: HepPolyhedron::GetNextEdge              1048  * Name: HepPolyhedron::GetNextEdge                 Date:    17.11.99  *
1595  * Author: E.Chernyaev                           1049  * Author: E.Chernyaev                              Revised:           *
1596  *                                               1050  *                                                                     *
1597  * Function: Get next edge with indices of th << 1051  * Function: Get next edge with indeces of the faces which share       *
1598  *           the edge.                           1052  *           the edge.                                                 *
1599  *           Returns false when the last edge    1053  *           Returns false when the last edge.                         *
1600  *                                               1054  *                                                                     *
1601  ********************************************    1055  ***********************************************************************/
1602 {                                                1056 {
1603   G4int i1,i2;                                   1057   G4int i1,i2;
1604   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1058   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2);
1605   p1 = pV[i1];                                   1059   p1 = pV[i1];
1606   p2 = pV[i2];                                   1060   p2 = pV[i2];
1607   return rep;                                    1061   return rep;
1608 }                                                1062 }
1609                                                  1063 
1610 void HepPolyhedron::GetFacet(G4int iFace, G4i    1064 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes,
1611                             G4int *edgeFlags,    1065                             G4int *edgeFlags, G4int *iFaces) const
1612 /********************************************    1066 /***********************************************************************
1613  *                                               1067  *                                                                     *
1614  * Name: HepPolyhedron::GetFacet                 1068  * Name: HepPolyhedron::GetFacet                    Date:    15.12.99  *
1615  * Author: E.Chernyaev                           1069  * Author: E.Chernyaev                              Revised:           *
1616  *                                               1070  *                                                                     *
1617  * Function: Get face by index                   1071  * Function: Get face by index                                         *
1618  *                                               1072  *                                                                     *
1619  ********************************************    1073  ***********************************************************************/
1620 {                                                1074 {
1621   if (iFace < 1 || iFace > nface) {              1075   if (iFace < 1 || iFace > nface) {
1622     std::cerr                                 << 1076     std::cerr 
1623       << "HepPolyhedron::GetFacet: irrelevant    1077       << "HepPolyhedron::GetFacet: irrelevant index " << iFace
1624       << std::endl;                              1078       << std::endl;
1625     n = 0;                                       1079     n = 0;
1626   }else{                                         1080   }else{
1627     G4int i, k;                                  1081     G4int i, k;
1628     for (i=0; i<4; i++) {                     << 1082     for (i=0; i<4; i++) { 
1629       k = pF[iFace].edge[i].v;                   1083       k = pF[iFace].edge[i].v;
1630       if (k == 0) break;                         1084       if (k == 0) break;
1631       if (iFaces != nullptr) iFaces[i] = pF[i << 1085       if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f;
1632       if (k > 0) {                            << 1086       if (k > 0) { 
1633         iNodes[i] = k;                           1087         iNodes[i] = k;
1634         if (edgeFlags != nullptr) edgeFlags[i << 1088         if (edgeFlags != 0) edgeFlags[i] = 1;
1635       }else{                                     1089       }else{
1636         iNodes[i] = -k;                          1090         iNodes[i] = -k;
1637         if (edgeFlags != nullptr) edgeFlags[i << 1091         if (edgeFlags != 0) edgeFlags[i] = -1;
1638       }                                          1092       }
1639     }                                            1093     }
1640     n = i;                                       1094     n = i;
1641   }                                              1095   }
1642 }                                                1096 }
1643                                                  1097 
1644 void HepPolyhedron::GetFacet(G4int index, G4i    1098 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes,
1645                              G4int *edgeFlags    1099                              G4int *edgeFlags, G4Normal3D *normals) const
1646 /********************************************    1100 /***********************************************************************
1647  *                                               1101  *                                                                     *
1648  * Name: HepPolyhedron::GetFacet                 1102  * Name: HepPolyhedron::GetFacet                    Date:    17.11.99  *
1649  * Author: E.Chernyaev                           1103  * Author: E.Chernyaev                              Revised:           *
1650  *                                               1104  *                                                                     *
1651  * Function: Get face by index                   1105  * Function: Get face by index                                         *
1652  *                                               1106  *                                                                     *
1653  ********************************************    1107  ***********************************************************************/
1654 {                                                1108 {
1655   G4int iNodes[4];                               1109   G4int iNodes[4];
1656   GetFacet(index, n, iNodes, edgeFlags);         1110   GetFacet(index, n, iNodes, edgeFlags);
1657   if (n != 0) {                                  1111   if (n != 0) {
1658     for (G4int i=0; i<n; i++) {                  1112     for (G4int i=0; i<n; i++) {
1659       nodes[i] = pV[iNodes[i]];                  1113       nodes[i] = pV[iNodes[i]];
1660       if (normals != nullptr) normals[i] = Fi << 1114       if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]);
1661     }                                            1115     }
1662   }                                              1116   }
1663 }                                                1117 }
1664                                                  1118 
1665 G4bool                                           1119 G4bool
1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point    1120 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes,
1667                            G4int *edgeFlags,     1121                            G4int *edgeFlags, G4Normal3D *normals) const
1668 /********************************************    1122 /***********************************************************************
1669  *                                               1123  *                                                                     *
1670  * Name: HepPolyhedron::GetNextFacet             1124  * Name: HepPolyhedron::GetNextFacet                Date:    19.11.99  *
1671  * Author: E.Chernyaev                           1125  * Author: E.Chernyaev                              Revised:           *
1672  *                                               1126  *                                                                     *
1673  * Function: Get next face with normals of un    1127  * Function: Get next face with normals of unit length at the nodes.   *
1674  *           Returns false when finished all     1128  *           Returns false when finished all faces.                    *
1675  *                                               1129  *                                                                     *
1676  ********************************************    1130  ***********************************************************************/
1677 {                                                1131 {
1678   static G4ThreadLocal G4int iFace = 1;       << 1132   static G4int iFace = 1;
1679                                                  1133 
1680   if (edgeFlags == nullptr) {                 << 1134   if (edgeFlags == 0) {
1681     GetFacet(iFace, n, nodes);                   1135     GetFacet(iFace, n, nodes);
1682   }else if (normals == nullptr) {             << 1136   }else if (normals == 0) {
1683     GetFacet(iFace, n, nodes, edgeFlags);        1137     GetFacet(iFace, n, nodes, edgeFlags);
1684   }else{                                         1138   }else{
1685     GetFacet(iFace, n, nodes, edgeFlags, norm    1139     GetFacet(iFace, n, nodes, edgeFlags, normals);
1686   }                                              1140   }
1687                                                  1141 
1688   if (++iFace > nface) {                         1142   if (++iFace > nface) {
1689     iFace  = 1;                                  1143     iFace  = 1;
1690     return false;                                1144     return false;
                                                   >> 1145   }else{
                                                   >> 1146     return true;
1691   }                                              1147   }
1692                                               << 
1693   return true;                                << 
1694 }                                                1148 }
1695                                                  1149 
1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa    1150 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const
1697 /********************************************    1151 /***********************************************************************
1698  *                                               1152  *                                                                     *
1699  * Name: HepPolyhedron::GetNormal                1153  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1700  * Author: E.Chernyaev                           1154  * Author: E.Chernyaev                               Revised:          *
1701  *                                               1155  *                                                                     *
1702  * Function: Get normal of the face given by     1156  * Function: Get normal of the face given by index                     *
1703  *                                               1157  *                                                                     *
1704  ********************************************    1158  ***********************************************************************/
1705 {                                                1159 {
1706   if (iFace < 1 || iFace > nface) {              1160   if (iFace < 1 || iFace > nface) {
1707     std::cerr                                 << 1161     std::cerr 
1708       << "HepPolyhedron::GetNormal: irrelevan << 1162       << "HepPolyhedron::GetNormal: irrelevant index " << iFace 
1709       << std::endl;                              1163       << std::endl;
1710     return G4Normal3D();                         1164     return G4Normal3D();
1711   }                                              1165   }
1712                                                  1166 
1713   G4int i0  = std::abs(pF[iFace].edge[0].v);     1167   G4int i0  = std::abs(pF[iFace].edge[0].v);
1714   G4int i1  = std::abs(pF[iFace].edge[1].v);     1168   G4int i1  = std::abs(pF[iFace].edge[1].v);
1715   G4int i2  = std::abs(pF[iFace].edge[2].v);     1169   G4int i2  = std::abs(pF[iFace].edge[2].v);
1716   G4int i3  = std::abs(pF[iFace].edge[3].v);     1170   G4int i3  = std::abs(pF[iFace].edge[3].v);
1717   if (i3 == 0) i3 = i0;                          1171   if (i3 == 0) i3 = i0;
1718   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[    1172   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]);
1719 }                                                1173 }
1720                                                  1174 
1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int    1175 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const
1722 /********************************************    1176 /***********************************************************************
1723  *                                               1177  *                                                                     *
1724  * Name: HepPolyhedron::GetNormal                1178  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1725  * Author: E.Chernyaev                           1179  * Author: E.Chernyaev                               Revised:          *
1726  *                                               1180  *                                                                     *
1727  * Function: Get unit normal of the face give    1181  * Function: Get unit normal of the face given by index                *
1728  *                                               1182  *                                                                     *
1729  ********************************************    1183  ***********************************************************************/
1730 {                                                1184 {
1731   if (iFace < 1 || iFace > nface) {              1185   if (iFace < 1 || iFace > nface) {
1732     std::cerr                                 << 1186     std::cerr 
1733       << "HepPolyhedron::GetUnitNormal: irrel    1187       << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace
1734       << std::endl;                              1188       << std::endl;
1735     return G4Normal3D();                         1189     return G4Normal3D();
1736   }                                              1190   }
1737                                                  1191 
1738   G4int i0  = std::abs(pF[iFace].edge[0].v);     1192   G4int i0  = std::abs(pF[iFace].edge[0].v);
1739   G4int i1  = std::abs(pF[iFace].edge[1].v);     1193   G4int i1  = std::abs(pF[iFace].edge[1].v);
1740   G4int i2  = std::abs(pF[iFace].edge[2].v);     1194   G4int i2  = std::abs(pF[iFace].edge[2].v);
1741   G4int i3  = std::abs(pF[iFace].edge[3].v);     1195   G4int i3  = std::abs(pF[iFace].edge[3].v);
1742   if (i3 == 0) i3 = i0;                          1196   if (i3 == 0) i3 = i0;
1743   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1197   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit();
1744 }                                                1198 }
1745                                                  1199 
1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3    1200 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const
1747 /********************************************    1201 /***********************************************************************
1748  *                                               1202  *                                                                     *
1749  * Name: HepPolyhedron::GetNextNormal            1203  * Name: HepPolyhedron::GetNextNormal               Date:    22.07.96  *
1750  * Author: John Allison                          1204  * Author: John Allison                             Revised: 19.11.99  *
1751  *                                               1205  *                                                                     *
1752  * Function: Get normals of each face in face    1206  * Function: Get normals of each face in face order.  Returns false    *
1753  *           when finished all faces.            1207  *           when finished all faces.                                  *
1754  *                                               1208  *                                                                     *
1755  ********************************************    1209  ***********************************************************************/
1756 {                                                1210 {
1757   static G4ThreadLocal G4int iFace = 1;       << 1211   static G4int iFace = 1;
1758   normal = GetNormal(iFace);                     1212   normal = GetNormal(iFace);
1759   if (++iFace > nface) {                         1213   if (++iFace > nface) {
1760     iFace = 1;                                   1214     iFace = 1;
1761     return false;                                1215     return false;
                                                   >> 1216   }else{
                                                   >> 1217     return true;
1762   }                                              1218   }
1763   return true;                                << 
1764 }                                                1219 }
1765                                                  1220 
1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor    1221 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const
1767 /********************************************    1222 /***********************************************************************
1768  *                                               1223  *                                                                     *
1769  * Name: HepPolyhedron::GetNextUnitNormal        1224  * Name: HepPolyhedron::GetNextUnitNormal           Date:    16.09.96  *
1770  * Author: E.Chernyaev                           1225  * Author: E.Chernyaev                              Revised:           *
1771  *                                               1226  *                                                                     *
1772  * Function: Get normals of unit length of ea    1227  * Function: Get normals of unit length of each face in face order.    *
1773  *           Returns false when finished all     1228  *           Returns false when finished all faces.                    *
1774  *                                               1229  *                                                                     *
1775  ********************************************    1230  ***********************************************************************/
1776 {                                                1231 {
1777   G4bool rep = GetNextNormal(normal);            1232   G4bool rep = GetNextNormal(normal);
1778   normal = normal.unit();                        1233   normal = normal.unit();
1779   return rep;                                    1234   return rep;
1780 }                                                1235 }
1781                                                  1236 
1782 G4double HepPolyhedron::GetSurfaceArea() cons    1237 G4double HepPolyhedron::GetSurfaceArea() const
1783 /********************************************    1238 /***********************************************************************
1784  *                                               1239  *                                                                     *
1785  * Name: HepPolyhedron::GetSurfaceArea           1240  * Name: HepPolyhedron::GetSurfaceArea              Date:    25.05.01  *
1786  * Author: E.Chernyaev                           1241  * Author: E.Chernyaev                              Revised:           *
1787  *                                               1242  *                                                                     *
1788  * Function: Returns area of the surface of t    1243  * Function: Returns area of the surface of the polyhedron.            *
1789  *                                               1244  *                                                                     *
1790  ********************************************    1245  ***********************************************************************/
1791 {                                                1246 {
1792   G4double srf = 0.;                          << 1247   G4double s = 0.;
1793   for (G4int iFace=1; iFace<=nface; iFace++)     1248   for (G4int iFace=1; iFace<=nface; iFace++) {
1794     G4int i0 = std::abs(pF[iFace].edge[0].v);    1249     G4int i0 = std::abs(pF[iFace].edge[0].v);
1795     G4int i1 = std::abs(pF[iFace].edge[1].v);    1250     G4int i1 = std::abs(pF[iFace].edge[1].v);
1796     G4int i2 = std::abs(pF[iFace].edge[2].v);    1251     G4int i2 = std::abs(pF[iFace].edge[2].v);
1797     G4int i3 = std::abs(pF[iFace].edge[3].v);    1252     G4int i3 = std::abs(pF[iFace].edge[3].v);
1798     if (i3 == 0) i3 = i0;                        1253     if (i3 == 0) i3 = i0;
1799     srf += ((pV[i2] - pV[i0]).cross(pV[i3] -  << 1254     s += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag();
1800   }                                              1255   }
1801   return srf/2.;                              << 1256   return s/2.;
1802 }                                                1257 }
1803                                                  1258 
1804 G4double HepPolyhedron::GetVolume() const        1259 G4double HepPolyhedron::GetVolume() const
1805 /********************************************    1260 /***********************************************************************
1806  *                                               1261  *                                                                     *
1807  * Name: HepPolyhedron::GetVolume                1262  * Name: HepPolyhedron::GetVolume                   Date:    25.05.01  *
1808  * Author: E.Chernyaev                           1263  * Author: E.Chernyaev                              Revised:           *
1809  *                                               1264  *                                                                     *
1810  * Function: Returns volume of the polyhedron    1265  * Function: Returns volume of the polyhedron.                         *
1811  *                                               1266  *                                                                     *
1812  ********************************************    1267  ***********************************************************************/
1813 {                                                1268 {
1814   G4double v = 0.;                               1269   G4double v = 0.;
1815   for (G4int iFace=1; iFace<=nface; iFace++)     1270   for (G4int iFace=1; iFace<=nface; iFace++) {
1816     G4int i0 = std::abs(pF[iFace].edge[0].v);    1271     G4int i0 = std::abs(pF[iFace].edge[0].v);
1817     G4int i1 = std::abs(pF[iFace].edge[1].v);    1272     G4int i1 = std::abs(pF[iFace].edge[1].v);
1818     G4int i2 = std::abs(pF[iFace].edge[2].v);    1273     G4int i2 = std::abs(pF[iFace].edge[2].v);
1819     G4int i3 = std::abs(pF[iFace].edge[3].v);    1274     G4int i3 = std::abs(pF[iFace].edge[3].v);
1820     G4Point3D pt;                             << 1275     G4Point3D g;
1821     if (i3 == 0) {                               1276     if (i3 == 0) {
1822       i3 = i0;                                   1277       i3 = i0;
1823       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);  << 1278       g  = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);
1824     }else{                                       1279     }else{
1825       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0. << 1280       g  = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25;
1826     }                                            1281     }
1827     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV << 1282     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(g);
1828   }                                              1283   }
1829   return v/6.;                                   1284   return v/6.;
1830 }                                                1285 }
1831                                                  1286 
1832 G4int                                            1287 G4int
1833 HepPolyhedron::createTwistedTrap(G4double Dz,    1288 HepPolyhedron::createTwistedTrap(G4double Dz,
1834                                  const G4doub    1289                                  const G4double xy1[][2],
1835                                  const G4doub    1290                                  const G4double xy2[][2])
1836 /********************************************    1291 /***********************************************************************
1837  *                                               1292  *                                                                     *
1838  * Name: createTwistedTrap                       1293  * Name: createTwistedTrap                           Date:    05.11.02 *
1839  * Author: E.Chernyaev (IHEP/Protvino)           1294  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1840  *                                               1295  *                                                                     *
1841  * Function: Creates polyhedron for twisted t    1296  * Function: Creates polyhedron for twisted trapezoid                  *
1842  *                                               1297  *                                                                     *
1843  * Input: Dz       - half-length along Z         1298  * Input: Dz       - half-length along Z             8----7            *
1844  *        xy1[2,4] - quadrilateral at Z=-Dz      1299  *        xy1[2,4] - quadrilateral at Z=-Dz       5----6  !            *
1845  *        xy2[2,4] - quadrilateral at Z=+Dz      1300  *        xy2[2,4] - quadrilateral at Z=+Dz       !  4-!--3            *
1846  *                                               1301  *                                                1----2               *
1847  *                                               1302  *                                                                     *
1848  ********************************************    1303  ***********************************************************************/
1849 {                                                1304 {
1850   AllocateMemory(12,18);                         1305   AllocateMemory(12,18);
1851                                                  1306 
1852   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz)    1307   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz);
1853   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz)    1308   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz);
1854   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz)    1309   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz);
1855   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz)    1310   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz);
1856                                                  1311 
1857   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz)    1312   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz);
1858   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz)    1313   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz);
1859   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz)    1314   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz);
1860   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz)    1315   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz);
1861                                                  1316 
1862   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;         1317   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;
1863   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;         1318   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;
1864   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;         1319   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;
1865   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;         1320   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;
1866                                                  1321 
1867   enum {DUMMY, BOTTOM,                           1322   enum {DUMMY, BOTTOM,
1868         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,    1323         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,  LEFT_BACK,
1869         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,    1324         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,  BACK_RIGHT,
1870         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP    1325         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP, RIGHT_FRONT,
1871         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP    1326         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP, FRONT_LEFT,
1872         TOP};                                    1327         TOP};
1873                                                  1328 
1874   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM    1329   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM);
1875                                                  1330 
1876   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,    1331   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,  -12,LEFT_BACK,    0,0);
1877   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,      1332   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,    -12,LEFT_BOTTOM,  0,0);
1878   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,     1333   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,   -12,LEFT_FRONT,   0,0);
1879   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM    1334   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM, -12,LEFT_TOP,     0,0);
1880                                                  1335 
1881   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,     1336   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,   -11,BACK_RIGHT,   0,0);
1882   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,      1337   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,    -11,BACK_BOTTOM,  0,0);
1883   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,    1338   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,  -11,BACK_LEFT,    0,0);
1884   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM    1339   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP,     0,0);
1885                                                  1340 
1886   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,    1341   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,  -10,RIGHT_FRONT,  0,0);
1887   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,     1342   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,   -10,RIGHT_BOTTOM, 0,0);
1888   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT    1343   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT, -10,RIGHT_BACK,   0,0);
1889   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO    1344   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP,    0,0);
1890                                                  1345 
1891   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT    1346   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT,  -9,FRONT_LEFT,   0,0);
1892   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,     1347   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,    -9,FRONT_BOTTOM, 0,0);
1893   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,    1348   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,   -9,FRONT_RIGHT,  0,0);
1894   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO    1349   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP,    0,0);
1895                                               << 1350  
1896   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,    1351   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP);
1897                                                  1352 
1898   return 0;                                      1353   return 0;
1899 }                                                1354 }
1900                                                  1355 
1901 G4int                                            1356 G4int
1902 HepPolyhedron::createPolyhedron(G4int Nnodes,    1357 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces,
1903                                 const G4doubl    1358                                 const G4double xyz[][3],
1904                                 const G4int      1359                                 const G4int  faces[][4])
1905 /********************************************    1360 /***********************************************************************
1906  *                                               1361  *                                                                     *
1907  * Name: createPolyhedron                        1362  * Name: createPolyhedron                            Date:    05.11.02 *
1908  * Author: E.Chernyaev (IHEP/Protvino)           1363  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1909  *                                               1364  *                                                                     *
1910  * Function: Creates user defined polyhedron     1365  * Function: Creates user defined polyhedron                           *
1911  *                                               1366  *                                                                     *
1912  * Input: Nnodes  - number of nodes              1367  * Input: Nnodes  - number of nodes                                    *
1913  *        Nfaces  - number of faces              1368  *        Nfaces  - number of faces                                    *
1914  *        nodes[][3] - node coordinates          1369  *        nodes[][3] - node coordinates                                *
1915  *        faces[][4] - faces                     1370  *        faces[][4] - faces                                           *
1916  *                                               1371  *                                                                     *
1917  ********************************************    1372  ***********************************************************************/
1918 {                                                1373 {
1919   AllocateMemory(Nnodes, Nfaces);                1374   AllocateMemory(Nnodes, Nfaces);
1920   if (nvert == 0) return 1;                      1375   if (nvert == 0) return 1;
1921                                                  1376 
1922   for (G4int i=0; i<Nnodes; i++) {               1377   for (G4int i=0; i<Nnodes; i++) {
1923     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1],    1378     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]);
1924   }                                              1379   }
1925   for (G4int k=0; k<Nfaces; k++) {               1380   for (G4int k=0; k<Nfaces; k++) {
1926     pF[k+1] = G4Facet(faces[k][0],0,faces[k][    1381     pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0);
1927   }                                              1382   }
1928   SetReferences();                               1383   SetReferences();
1929   return 0;                                      1384   return 0;
1930 }                                                1385 }
1931                                                  1386 
1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 
1933   /****************************************** << 
1934    *                                          << 
1935    * Name: vertexUnweightedMean               << 
1936    * Author: S. Boogert (Manchester)          << 
1937    *                                          << 
1938    * Function: Calculate the unweighted mean  << 
1939    * in the polyhedron. Not to be confused wi << 
1940    * centre of mass                           << 
1941    ****************************************** << 
1942                                               << 
1943   auto centre = G4Point3D();                  << 
1944   for(int i=1;i<=nvert;i++) {                 << 
1945     centre += pV[i];                          << 
1946   }                                           << 
1947   centre = centre/nvert;                      << 
1948   return centre;                              << 
1949 }                                             << 
1950                                               << 
1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double    1387 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2,
1952                                      G4double    1388                                      G4double Dy1, G4double Dy2,
1953                                      G4double    1389                                      G4double Dz)
1954 /********************************************    1390 /***********************************************************************
1955  *                                               1391  *                                                                     *
1956  * Name: HepPolyhedronTrd2                       1392  * Name: HepPolyhedronTrd2                           Date:    22.07.96 *
1957  * Author: E.Chernyaev (IHEP/Protvino)           1393  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1958  *                                               1394  *                                                                     *
1959  * Function: Create GEANT4 TRD2-trapezoid        1395  * Function: Create GEANT4 TRD2-trapezoid                              *
1960  *                                               1396  *                                                                     *
1961  * Input: Dx1 - half-length along X at -Dz       1397  * Input: Dx1 - half-length along X at -Dz           8----7            *
1962  *        Dx2 - half-length along X ay +Dz       1398  *        Dx2 - half-length along X ay +Dz        5----6  !            *
1963  *        Dy1 - half-length along Y ay -Dz       1399  *        Dy1 - half-length along Y ay -Dz        !  4-!--3            *
1964  *        Dy2 - half-length along Y ay +Dz       1400  *        Dy2 - half-length along Y ay +Dz        1----2               *
1965  *        Dz  - half-length along Z              1401  *        Dz  - half-length along Z                                    *
1966  *                                               1402  *                                                                     *
1967  ********************************************    1403  ***********************************************************************/
1968 {                                                1404 {
1969   AllocateMemory(8,6);                           1405   AllocateMemory(8,6);
1970                                                  1406 
1971   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);              1407   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);
1972   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);              1408   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);
1973   pV[3] = G4Point3D( Dx1, Dy1,-Dz);              1409   pV[3] = G4Point3D( Dx1, Dy1,-Dz);
1974   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);              1410   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);
1975   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);              1411   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);
1976   pV[6] = G4Point3D( Dx2,-Dy2, Dz);              1412   pV[6] = G4Point3D( Dx2,-Dy2, Dz);
1977   pV[7] = G4Point3D( Dx2, Dy2, Dz);              1413   pV[7] = G4Point3D( Dx2, Dy2, Dz);
1978   pV[8] = G4Point3D(-Dx2, Dy2, Dz);              1414   pV[8] = G4Point3D(-Dx2, Dy2, Dz);
1979                                                  1415 
1980   CreatePrism();                                 1416   CreatePrism();
1981 }                                                1417 }
1982                                                  1418 
1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1419 HepPolyhedronTrd2::~HepPolyhedronTrd2() {}
1984                                                  1420 
1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double    1421 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2,
1986                                      G4double    1422                                      G4double Dy, G4double Dz)
1987   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {    1423   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {}
1988                                                  1424 
1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1425 HepPolyhedronTrd1::~HepPolyhedronTrd1() {}
1990                                                  1426 
1991 HepPolyhedronBox::HepPolyhedronBox(G4double D    1427 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz)
1992   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}     1428   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}
1993                                                  1429 
1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1430 HepPolyhedronBox::~HepPolyhedronBox() {}
1995                                                  1431 
1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double    1432 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz,
1997                                      G4double    1433                                      G4double Theta,
1998                                      G4double    1434                                      G4double Phi,
1999                                      G4double    1435                                      G4double Dy1,
2000                                      G4double    1436                                      G4double Dx1,
2001                                      G4double    1437                                      G4double Dx2,
2002                                      G4double    1438                                      G4double Alp1,
2003                                      G4double    1439                                      G4double Dy2,
2004                                      G4double    1440                                      G4double Dx3,
2005                                      G4double    1441                                      G4double Dx4,
2006                                      G4double    1442                                      G4double Alp2)
2007 /********************************************    1443 /***********************************************************************
2008  *                                               1444  *                                                                     *
2009  * Name: HepPolyhedronTrap                       1445  * Name: HepPolyhedronTrap                           Date:    20.11.96 *
2010  * Author: E.Chernyaev                           1446  * Author: E.Chernyaev                               Revised:          *
2011  *                                               1447  *                                                                     *
2012  * Function: Create GEANT4 TRAP-trapezoid        1448  * Function: Create GEANT4 TRAP-trapezoid                              *
2013  *                                               1449  *                                                                     *
2014  * Input: DZ   - half-length in Z                1450  * Input: DZ   - half-length in Z                                      *
2015  *        Theta,Phi - polar angles of the lin    1451  *        Theta,Phi - polar angles of the line joining centres of the  *
2016  *                    faces at Z=-Dz and Z=+D    1452  *                    faces at Z=-Dz and Z=+Dz                         *
2017  *        Dy1  - half-length in Y of the face    1453  *        Dy1  - half-length in Y of the face at Z=-Dz                 *
2018  *        Dx1  - half-length in X of low edge    1454  *        Dx1  - half-length in X of low edge of the face at Z=-Dz     *
2019  *        Dx2  - half-length in X of top edge    1455  *        Dx2  - half-length in X of top edge of the face at Z=-Dz     *
2020  *        Alp1 - angle between Y-axis and the    1456  *        Alp1 - angle between Y-axis and the median joining top and   *
2021  *               low edges of the face at Z=-    1457  *               low edges of the face at Z=-Dz                        *
2022  *        Dy2  - half-length in Y of the face    1458  *        Dy2  - half-length in Y of the face at Z=+Dz                 *
2023  *        Dx3  - half-length in X of low edge    1459  *        Dx3  - half-length in X of low edge of the face at Z=+Dz     *
2024  *        Dx4  - half-length in X of top edge    1460  *        Dx4  - half-length in X of top edge of the face at Z=+Dz     *
2025  *        Alp2 - angle between Y-axis and the    1461  *        Alp2 - angle between Y-axis and the median joining top and   *
2026  *               low edges of the face at Z=+    1462  *               low edges of the face at Z=+Dz                        *
2027  *                                               1463  *                                                                     *
2028  ********************************************    1464  ***********************************************************************/
2029 {                                                1465 {
2030   G4double DzTthetaCphi = Dz*std::tan(Theta)*    1466   G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi);
2031   G4double DzTthetaSphi = Dz*std::tan(Theta)*    1467   G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi);
2032   G4double Dy1Talp1 = Dy1*std::tan(Alp1);        1468   G4double Dy1Talp1 = Dy1*std::tan(Alp1);
2033   G4double Dy2Talp2 = Dy2*std::tan(Alp2);        1469   G4double Dy2Talp2 = Dy2*std::tan(Alp2);
2034                                               << 1470   
2035   AllocateMemory(8,6);                           1471   AllocateMemory(8,6);
2036                                                  1472 
2037   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx    1473   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz);
2038   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx    1474   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz);
2039   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx    1475   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz);
2040   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx    1476   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz);
2041   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx    1477   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz);
2042   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx    1478   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz);
2043   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx    1479   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz);
2044   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx    1480   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz);
2045                                                  1481 
2046   CreatePrism();                                 1482   CreatePrism();
2047 }                                                1483 }
2048                                                  1484 
2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1485 HepPolyhedronTrap::~HepPolyhedronTrap() {}
2050                                                  1486 
2051 HepPolyhedronPara::HepPolyhedronPara(G4double    1487 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz,
2052                                      G4double    1488                                      G4double Alpha, G4double Theta,
2053                                      G4double    1489                                      G4double Phi)
2054   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx,    1490   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {}
2055                                                  1491 
2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1492 HepPolyhedronPara::~HepPolyhedronPara() {}
2057                                                  1493 
2058 HepPolyhedronParaboloid::HepPolyhedronParabol    1494 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1,
2059                                                  1495                                                  G4double r2,
2060                                                  1496                                                  G4double dz,
2061                                                  1497                                                  G4double sPhi,
2062                                               << 1498                                                  G4double dPhi) 
2063 /********************************************    1499 /***********************************************************************
2064  *                                               1500  *                                                                     *
2065  * Name: HepPolyhedronParaboloid                 1501  * Name: HepPolyhedronParaboloid                     Date:    28.06.07 *
2066  * Author: L.Lindroos, T.Nikitina (CERN), Jul    1502  * Author: L.Lindroos, T.Nikitina (CERN), July 2007  Revised: 28.06.07 *
2067  *                                               1503  *                                                                     *
2068  * Function: Constructor for paraboloid          1504  * Function: Constructor for paraboloid                                *
2069  *                                               1505  *                                                                     *
2070  * Input: r1    - inside and outside radiuses    1506  * Input: r1    - inside and outside radiuses at -Dz                   *
2071  *        r2    - inside and outside radiuses    1507  *        r2    - inside and outside radiuses at +Dz                   *
2072  *        dz    - half length in Z               1508  *        dz    - half length in Z                                     *
2073  *        sPhi  - starting angle of the segme    1509  *        sPhi  - starting angle of the segment                        *
2074  *        dPhi  - segment range                  1510  *        dPhi  - segment range                                        *
2075  *                                               1511  *                                                                     *
2076  ********************************************    1512  ***********************************************************************/
2077 {                                                1513 {
2078   static const G4double wholeCircle=twopi;    << 1514   static G4double wholeCircle=twopi;
2079                                                  1515 
2080   //   C H E C K   I N P U T   P A R A M E T     1516   //   C H E C K   I N P U T   P A R A M E T E R S
2081                                                  1517 
2082   G4int k = 0;                                   1518   G4int k = 0;
2083   if (r1 < 0. || r2 <= 0.)        k = 1;         1519   if (r1 < 0. || r2 <= 0.)        k = 1;
2084                                                  1520 
2085   if (dz <= 0.) k += 2;                          1521   if (dz <= 0.) k += 2;
2086                                                  1522 
2087   G4double phi1, phi2, dphi;                     1523   G4double phi1, phi2, dphi;
2088                                                  1524 
2089   if(dPhi < 0.)                                  1525   if(dPhi < 0.)
2090   {                                              1526   {
2091     phi2 = sPhi; phi1 = phi2 + dPhi;             1527     phi2 = sPhi; phi1 = phi2 + dPhi;
2092   }                                              1528   }
2093   else if(dPhi == 0.)                         << 1529   else if(dPhi == 0.) 
2094   {                                              1530   {
2095     phi1 = sPhi; phi2 = phi1 + wholeCircle;      1531     phi1 = sPhi; phi2 = phi1 + wholeCircle;
2096   }                                              1532   }
2097   else                                           1533   else
2098   {                                              1534   {
2099     phi1 = sPhi; phi2 = phi1 + dPhi;             1535     phi1 = sPhi; phi2 = phi1 + dPhi;
2100   }                                              1536   }
2101   dphi  = phi2 - phi1;                           1537   dphi  = phi2 - phi1;
2102                                                  1538 
2103   if (std::abs(dphi-wholeCircle) < perMillion    1539   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2104   if (dphi > wholeCircle) k += 4;             << 1540   if (dphi > wholeCircle) k += 4; 
2105                                                  1541 
2106   if (k != 0) {                                  1542   if (k != 0) {
2107     std::cerr << "HepPolyhedronParaboloid: er    1543     std::cerr << "HepPolyhedronParaboloid: error in input parameters";
2108     if ((k & 1) != 0) std::cerr << " (radiuse    1544     if ((k & 1) != 0) std::cerr << " (radiuses)";
2109     if ((k & 2) != 0) std::cerr << " (half-le    1545     if ((k & 2) != 0) std::cerr << " (half-length)";
2110     if ((k & 4) != 0) std::cerr << " (angles)    1546     if ((k & 4) != 0) std::cerr << " (angles)";
2111     std::cerr << std::endl;                      1547     std::cerr << std::endl;
2112     std::cerr << " r1=" << r1;                   1548     std::cerr << " r1=" << r1;
2113     std::cerr << " r2=" << r2;                   1549     std::cerr << " r2=" << r2;
2114     std::cerr << " dz=" << dz << " sPhi=" <<     1550     std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi
2115               << std::endl;                      1551               << std::endl;
2116     return;                                      1552     return;
2117   }                                              1553   }
2118                                               << 1554   
2119   //   P R E P A R E   T W O   P O L Y L I N     1555   //   P R E P A R E   T W O   P O L Y L I N E S
2120                                                  1556 
2121   G4int n = GetNumberOfRotationSteps();          1557   G4int n = GetNumberOfRotationSteps();
2122   G4double dl = (r2 - r1) / n;                   1558   G4double dl = (r2 - r1) / n;
2123   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;        1559   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;
2124   G4double k2 = (r2*r2 + r1*r1) / 2;             1560   G4double k2 = (r2*r2 + r1*r1) / 2;
2125                                                  1561 
2126   auto zz = new G4double[n + 2], rr = new G4d << 1562   G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2];
2127                                                  1563 
2128   zz[0] = dz;                                    1564   zz[0] = dz;
2129   rr[0] = r2;                                    1565   rr[0] = r2;
2130                                                  1566 
2131   for(G4int i = 1; i < n - 1; i++)               1567   for(G4int i = 1; i < n - 1; i++)
2132   {                                              1568   {
2133     rr[i] = rr[i-1] - dl;                        1569     rr[i] = rr[i-1] - dl;
2134     zz[i] = (rr[i]*rr[i] - k2) / k1;             1570     zz[i] = (rr[i]*rr[i] - k2) / k1;
2135     if(rr[i] < 0)                                1571     if(rr[i] < 0)
2136     {                                            1572     {
2137       rr[i] = 0;                                 1573       rr[i] = 0;
2138       zz[i] = 0;                                 1574       zz[i] = 0;
2139     }                                            1575     }
2140   }                                              1576   }
2141                                                  1577 
2142   zz[n-1] = -dz;                                 1578   zz[n-1] = -dz;
2143   rr[n-1] = r1;                                  1579   rr[n-1] = r1;
2144                                                  1580 
2145   zz[n] = dz;                                    1581   zz[n] = dz;
2146   rr[n] = 0;                                     1582   rr[n] = 0;
2147                                                  1583 
2148   zz[n+1] = -dz;                                 1584   zz[n+1] = -dz;
2149   rr[n+1] = 0;                                   1585   rr[n+1] = 0;
2150                                                  1586 
2151   //   R O T A T E    P O L Y L I N E S          1587   //   R O T A T E    P O L Y L I N E S
2152                                                  1588 
2153   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr,  << 1589   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 
2154   SetReferences();                               1590   SetReferences();
2155                                                  1591 
2156   delete [] zz;                                  1592   delete [] zz;
2157   delete [] rr;                                  1593   delete [] rr;
2158 }                                                1594 }
2159                                                  1595 
2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1596 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {}
2161                                                  1597 
2162 HepPolyhedronHype::HepPolyhedronHype(G4double    1598 HepPolyhedronHype::HepPolyhedronHype(G4double r1,
2163                                      G4double    1599                                      G4double r2,
2164                                      G4double    1600                                      G4double sqrtan1,
2165                                      G4double    1601                                      G4double sqrtan2,
2166                                      G4double << 1602                                      G4double halfZ) 
2167 /********************************************    1603 /***********************************************************************
2168  *                                               1604  *                                                                     *
2169  * Name: HepPolyhedronHype                       1605  * Name: HepPolyhedronHype                           Date:    14.04.08 *
2170  * Author: Tatiana Nikitina (CERN)               1606  * Author: Tatiana Nikitina (CERN)                   Revised: 14.04.08 *
2171  *         Evgueni Tcherniaev                 << 
2172  *                                               1607  *                                                                     *
2173  * Function: Constructor for Hype                1608  * Function: Constructor for Hype                                      *
2174  *                                               1609  *                                                                     *
2175  * Input: r1       - inside radius at z=0        1610  * Input: r1       - inside radius at z=0                              *
2176  *        r2       - outside radiuses at z=0     1611  *        r2       - outside radiuses at z=0                           *
2177  *        sqrtan1  - sqr of tan of Inner Ster    1612  *        sqrtan1  - sqr of tan of Inner Stereo Angle                  *
2178  *        sqrtan2  - sqr of tan of Outer Ster    1613  *        sqrtan2  - sqr of tan of Outer Stereo Angle                  *
2179  *        halfZ    - half length in Z            1614  *        halfZ    - half length in Z                                  *
2180  *                                               1615  *                                                                     *
2181  ********************************************    1616  ***********************************************************************/
2182 {                                                1617 {
2183   static const G4double wholeCircle = twopi;  << 1618   static G4double wholeCircle=twopi;
2184                                                  1619 
2185   //   C H E C K   I N P U T   P A R A M E T     1620   //   C H E C K   I N P U T   P A R A M E T E R S
2186                                                  1621 
2187   G4int k = 0;                                   1622   G4int k = 0;
2188   if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1;  << 1623   if (r2 < 0. || r1 < 0. )        k = 1;
2189   if (halfZ <= 0.) k += 2;                    << 1624   if (r1 > r2 )                   k = 1;
2190   if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4;    << 1625   if (r1 == r2)                   k = 1;
2191                                                  1626 
                                                   >> 1627   if (halfZ <= 0.) k += 2;
                                                   >> 1628  
                                                   >> 1629   if (sqrtan1<0.||sqrtan2<0.) k += 4;  
                                                   >> 1630  
2192   if (k != 0)                                    1631   if (k != 0)
2193   {                                              1632   {
2194     std::cerr << "HepPolyhedronHype: error in    1633     std::cerr << "HepPolyhedronHype: error in input parameters";
2195     if ((k & 1) != 0) std::cerr << " (radiuse    1634     if ((k & 1) != 0) std::cerr << " (radiuses)";
2196     if ((k & 2) != 0) std::cerr << " (half-le    1635     if ((k & 2) != 0) std::cerr << " (half-length)";
2197     if ((k & 4) != 0) std::cerr << " (angles)    1636     if ((k & 4) != 0) std::cerr << " (angles)";
2198     std::cerr << std::endl;                      1637     std::cerr << std::endl;
2199     std::cerr << " r1=" << r1 << " r2=" << r2    1638     std::cerr << " r1=" << r1 << " r2=" << r2;
2200     std::cerr << " halfZ=" << halfZ << " sqrT    1639     std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1
2201               << " sqrTan2=" << sqrtan2          1640               << " sqrTan2=" << sqrtan2
2202               << std::endl;                      1641               << std::endl;
2203     return;                                      1642     return;
2204   }                                              1643   }
2205                                               << 1644   
2206   //   P R E P A R E   T W O   P O L Y L I N     1645   //   P R E P A R E   T W O   P O L Y L I N E S
2207                                                  1646 
2208   G4int ns = std::max(3, GetNumberOfRotationS << 1647   G4int n = GetNumberOfRotationSteps();
2209   G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1;   << 1648   G4double dz = 2.*halfZ / n;
2210   G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1;   << 1649   G4double k1 = r1*r1;
2211   auto  zz = new G4double[nz1 + nz2];         << 1650   G4double k2 = r2*r2;
2212   auto  rr = new G4double[nz1 + nz2];         << 1651 
2213                                               << 1652   G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1];
2214   // external polyline                        << 1653 
2215   G4double dz2 = 2.*halfZ/(nz2 - 1);          << 1654   zz[0] = halfZ;
2216   for(G4int i = 0; i < nz2; ++i)              << 1655   rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2);
                                                   >> 1656 
                                                   >> 1657   for(G4int i = 1; i < n-1; i++)
2217   {                                              1658   {
2218     zz[i] = halfZ - dz2*i;                    << 1659     zz[i] = zz[i-1] - dz;
2219     rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1660     rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2);
2220   }                                              1661   }
2221                                                  1662 
2222   // internal polyline                        << 1663   zz[n-1] = -halfZ;
2223   G4double dz1 = 2.*halfZ/(nz1 - 1);          << 1664   rr[n-1] = rr[0];
2224   for(G4int i = 0; i < nz1; ++i)              << 1665 
                                                   >> 1666   zz[n] = halfZ;
                                                   >> 1667   rr[n] =  std::sqrt(sqrtan1*halfZ*halfZ+k1);
                                                   >> 1668 
                                                   >> 1669   for(G4int i = n+1; i < n+n; i++)
2225   {                                              1670   {
2226     G4int j = nz2 + i;                        << 1671     zz[i] = zz[i-1] - dz;
2227     zz[j] = halfZ - dz1*i;                    << 1672     rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1);
2228     rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 
2229   }                                              1673   }
                                                   >> 1674   zz[n+n] = -halfZ;
                                                   >> 1675   rr[n+n] = rr[n];
2230                                                  1676 
2231   //   R O T A T E    P O L Y L I N E S          1677   //   R O T A T E    P O L Y L I N E S
2232                                                  1678 
2233   RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1679   RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 
2234   SetReferences();                               1680   SetReferences();
2235                                                  1681 
2236   delete [] zz;                                  1682   delete [] zz;
2237   delete [] rr;                                  1683   delete [] rr;
2238 }                                                1684 }
2239                                                  1685 
2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1686 HepPolyhedronHype::~HepPolyhedronHype() {}
2241                                                  1687 
2242 HepPolyhedronCons::HepPolyhedronCons(G4double    1688 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1,
2243                                      G4double    1689                                      G4double Rmx1,
2244                                      G4double    1690                                      G4double Rmn2,
2245                                      G4double << 1691                                      G4double Rmx2, 
2246                                      G4double    1692                                      G4double Dz,
2247                                      G4double    1693                                      G4double Phi1,
2248                                      G4double << 1694                                      G4double Dphi) 
2249 /********************************************    1695 /***********************************************************************
2250  *                                               1696  *                                                                     *
2251  * Name: HepPolyhedronCons::HepPolyhedronCons    1697  * Name: HepPolyhedronCons::HepPolyhedronCons        Date:    15.12.96 *
2252  * Author: E.Chernyaev (IHEP/Protvino)           1698  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 15.12.96 *
2253  *                                               1699  *                                                                     *
2254  * Function: Constructor for CONS, TUBS, CONE    1700  * Function: Constructor for CONS, TUBS, CONE, TUBE                    *
2255  *                                               1701  *                                                                     *
2256  * Input: Rmn1, Rmx1 - inside and outside rad    1702  * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz              *
2257  *        Rmn2, Rmx2 - inside and outside rad    1703  *        Rmn2, Rmx2 - inside and outside radiuses at +Dz              *
2258  *        Dz         - half length in Z          1704  *        Dz         - half length in Z                                *
2259  *        Phi1       - starting angle of the     1705  *        Phi1       - starting angle of the segment                   *
2260  *        Dphi       - segment range             1706  *        Dphi       - segment range                                   *
2261  *                                               1707  *                                                                     *
2262  ********************************************    1708  ***********************************************************************/
2263 {                                                1709 {
2264   static const G4double wholeCircle=twopi;    << 1710   static G4double wholeCircle=twopi;
2265                                                  1711 
2266   //   C H E C K   I N P U T   P A R A M E T     1712   //   C H E C K   I N P U T   P A R A M E T E R S
2267                                                  1713 
2268   G4int k = 0;                                   1714   G4int k = 0;
2269   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. ||     1715   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.)        k = 1;
2270   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                1716   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                              k = 1;
2271   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)              1717   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)                            k = 1;
2272                                                  1718 
2273   if (Dz <= 0.) k += 2;                          1719   if (Dz <= 0.) k += 2;
2274                                               << 1720  
2275   G4double phi1, phi2, dphi;                     1721   G4double phi1, phi2, dphi;
2276   if (Dphi < 0.) {                               1722   if (Dphi < 0.) {
2277     phi2 = Phi1; phi1 = phi2 - Dphi;             1723     phi2 = Phi1; phi1 = phi2 - Dphi;
2278   }else if (Dphi == 0.) {                        1724   }else if (Dphi == 0.) {
2279     phi1 = Phi1; phi2 = phi1 + wholeCircle;      1725     phi1 = Phi1; phi2 = phi1 + wholeCircle;
2280   }else{                                         1726   }else{
2281     phi1 = Phi1; phi2 = phi1 + Dphi;             1727     phi1 = Phi1; phi2 = phi1 + Dphi;
2282   }                                              1728   }
2283   dphi  = phi2 - phi1;                           1729   dphi  = phi2 - phi1;
2284   if (std::abs(dphi-wholeCircle) < perMillion    1730   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2285   if (dphi > wholeCircle) k += 4;             << 1731   if (dphi > wholeCircle) k += 4; 
2286                                                  1732 
2287   if (k != 0) {                                  1733   if (k != 0) {
2288     std::cerr << "HepPolyhedronCone(s)/Tube(s    1734     std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters";
2289     if ((k & 1) != 0) std::cerr << " (radiuse    1735     if ((k & 1) != 0) std::cerr << " (radiuses)";
2290     if ((k & 2) != 0) std::cerr << " (half-le    1736     if ((k & 2) != 0) std::cerr << " (half-length)";
2291     if ((k & 4) != 0) std::cerr << " (angles)    1737     if ((k & 4) != 0) std::cerr << " (angles)";
2292     std::cerr << std::endl;                      1738     std::cerr << std::endl;
2293     std::cerr << " Rmn1=" << Rmn1 << " Rmx1="    1739     std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1;
2294     std::cerr << " Rmn2=" << Rmn2 << " Rmx2="    1740     std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2;
2295     std::cerr << " Dz=" << Dz << " Phi1=" <<     1741     std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi
2296               << std::endl;                      1742               << std::endl;
2297     return;                                      1743     return;
2298   }                                              1744   }
2299                                               << 1745   
2300   //   P R E P A R E   T W O   P O L Y L I N     1746   //   P R E P A R E   T W O   P O L Y L I N E S
2301                                                  1747 
2302   G4double zz[4], rr[4];                         1748   G4double zz[4], rr[4];
2303   zz[0] =  Dz;                                << 1749   zz[0] =  Dz; 
2304   zz[1] = -Dz;                                << 1750   zz[1] = -Dz; 
2305   zz[2] =  Dz;                                << 1751   zz[2] =  Dz; 
2306   zz[3] = -Dz;                                << 1752   zz[3] = -Dz; 
2307   rr[0] =  Rmx2;                                 1753   rr[0] =  Rmx2;
2308   rr[1] =  Rmx1;                                 1754   rr[1] =  Rmx1;
2309   rr[2] =  Rmn2;                                 1755   rr[2] =  Rmn2;
2310   rr[3] =  Rmn1;                                 1756   rr[3] =  Rmn1;
2311                                                  1757 
2312   //   R O T A T E    P O L Y L I N E S          1758   //   R O T A T E    P O L Y L I N E S
2313                                                  1759 
2314   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr,  << 1760   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 
2315   SetReferences();                               1761   SetReferences();
2316 }                                                1762 }
2317                                                  1763 
2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1764 HepPolyhedronCons::~HepPolyhedronCons() {}
2319                                                  1765 
2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1766 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 
2321                                      G4double    1767                                      G4double Rmn2, G4double Rmx2,
2322                                      G4double    1768                                      G4double Dz) :
2323   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D    1769   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {}
2324                                                  1770 
2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1771 HepPolyhedronCone::~HepPolyhedronCone() {}
2326                                                  1772 
2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double    1773 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax,
2328                                      G4double << 1774                                      G4double Dz, 
2329                                      G4double    1775                                      G4double Phi1, G4double Dphi)
2330   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rma    1776   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {}
2331                                                  1777 
2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1778 HepPolyhedronTubs::~HepPolyhedronTubs() {}
2333                                                  1779 
2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl    1780 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax,
2335                                       G4doubl    1781                                       G4double Dz)
2336   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax,    1782   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {}
2337                                                  1783 
2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1784 HepPolyhedronTube::~HepPolyhedronTube () {}
2339                                                  1785 
2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double    1786 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi,
2341                                      G4double    1787                                      G4double dphi,
2342                                      G4int np << 1788                                      G4int    npdv,
2343                                      G4int nz << 1789                                      G4int    nz,
2344                                      const G4    1790                                      const G4double *z,
2345                                      const G4    1791                                      const G4double *rmin,
2346                                      const G4    1792                                      const G4double *rmax)
2347 /********************************************    1793 /***********************************************************************
2348  *                                               1794  *                                                                     *
2349  * Name: HepPolyhedronPgon                       1795  * Name: HepPolyhedronPgon                           Date:    09.12.96 *
2350  * Author: E.Chernyaev                           1796  * Author: E.Chernyaev                               Revised:          *
2351  *                                               1797  *                                                                     *
2352  * Function: Constructor of polyhedron for PG    1798  * Function: Constructor of polyhedron for PGON, PCON                  *
2353  *                                               1799  *                                                                     *
2354  * Input: phi  - initial phi                     1800  * Input: phi  - initial phi                                           *
2355  *        dphi - delta phi                       1801  *        dphi - delta phi                                             *
2356  *        npdv - number of steps along phi       1802  *        npdv - number of steps along phi                             *
2357  *        nz   - number of z-planes (at least    1803  *        nz   - number of z-planes (at least two)                     *
2358  *        z[]  - z coordinates of the slices     1804  *        z[]  - z coordinates of the slices                           *
2359  *        rmin[] - smaller r at the slices       1805  *        rmin[] - smaller r at the slices                             *
2360  *        rmax[] - bigger  r at the slices       1806  *        rmax[] - bigger  r at the slices                             *
2361  *                                               1807  *                                                                     *
2362  ********************************************    1808  ***********************************************************************/
2363 {                                                1809 {
2364   //   C H E C K   I N P U T   P A R A M E T     1810   //   C H E C K   I N P U T   P A R A M E T E R S
2365                                                  1811 
2366   if (dphi <= 0. || dphi > twopi) {              1812   if (dphi <= 0. || dphi > twopi) {
2367     std::cerr                                    1813     std::cerr
2368       << "HepPolyhedronPgon/Pcon: wrong delta    1814       << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi
2369       << std::endl;                              1815       << std::endl;
2370     return;                                      1816     return;
2371   }                                           << 1817   }    
2372                                               << 1818     
2373   if (nz < 2) {                                  1819   if (nz < 2) {
2374     std::cerr                                    1820     std::cerr
2375       << "HepPolyhedronPgon/Pcon: number of z    1821       << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz
2376       << std::endl;                              1822       << std::endl;
2377     return;                                      1823     return;
2378   }                                              1824   }
2379                                                  1825 
2380   if (npdv < 0) {                                1826   if (npdv < 0) {
2381     std::cerr                                    1827     std::cerr
2382       << "HepPolyhedronPgon/Pcon: error in nu    1828       << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv
2383       << std::endl;                              1829       << std::endl;
2384     return;                                      1830     return;
2385   }                                              1831   }
2386                                                  1832 
2387   G4int i;                                       1833   G4int i;
2388   for (i=0; i<nz; i++) {                         1834   for (i=0; i<nz; i++) {
2389     if (rmin[i] < 0. || rmax[i] < 0. || rmin[    1835     if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) {
2390       std::cerr                                  1836       std::cerr
2391         << "HepPolyhedronPgon: error in radiu    1837         << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]="
2392         << rmin[i] << " rmax[" << i << "]=" <    1838         << rmin[i] << " rmax[" << i << "]=" << rmax[i]
2393         << std::endl;                            1839         << std::endl;
2394       return;                                    1840       return;
2395     }                                            1841     }
2396   }                                              1842   }
2397                                                  1843 
2398   //   P R E P A R E   T W O   P O L Y L I N     1844   //   P R E P A R E   T W O   P O L Y L I N E S
2399                                                  1845 
2400   G4double *zz, *rr;                             1846   G4double *zz, *rr;
2401   zz = new G4double[2*nz];                       1847   zz = new G4double[2*nz];
2402   rr = new G4double[2*nz];                       1848   rr = new G4double[2*nz];
2403                                                  1849 
2404   if (z[0] > z[nz-1]) {                          1850   if (z[0] > z[nz-1]) {
2405     for (i=0; i<nz; i++) {                       1851     for (i=0; i<nz; i++) {
2406       zz[i]    = z[i];                           1852       zz[i]    = z[i];
2407       rr[i]    = rmax[i];                        1853       rr[i]    = rmax[i];
2408       zz[i+nz] = z[i];                           1854       zz[i+nz] = z[i];
2409       rr[i+nz] = rmin[i];                        1855       rr[i+nz] = rmin[i];
2410     }                                            1856     }
2411   }else{                                         1857   }else{
2412     for (i=0; i<nz; i++) {                       1858     for (i=0; i<nz; i++) {
2413       zz[i]    = z[nz-i-1];                      1859       zz[i]    = z[nz-i-1];
2414       rr[i]    = rmax[nz-i-1];                   1860       rr[i]    = rmax[nz-i-1];
2415       zz[i+nz] = z[nz-i-1];                      1861       zz[i+nz] = z[nz-i-1];
2416       rr[i+nz] = rmin[nz-i-1];                   1862       rr[i+nz] = rmin[nz-i-1];
2417     }                                            1863     }
2418   }                                              1864   }
2419                                                  1865 
2420   //   R O T A T E    P O L Y L I N E S          1866   //   R O T A T E    P O L Y L I N E S
2421                                                  1867 
2422   G4int nodeVis = 1;                          << 1868   RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 
2423   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2424   RotateAroundZ(npdv, phi, dphi, nz, nz, zz,  << 
2425   SetReferences();                               1869   SetReferences();
2426                                               << 1870   
2427   delete [] zz;                                  1871   delete [] zz;
2428   delete [] rr;                                  1872   delete [] rr;
2429 }                                                1873 }
2430                                                  1874 
2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1875 HepPolyhedronPgon::~HepPolyhedronPgon() {}
2432                                      G4double << 
2433                                      G4int np << 
2434                                      const st << 
2435 /******************************************** << 
2436  *                                            << 
2437  * Name: HepPolyhedronPgon                    << 
2438  * Author: E.Tcherniaev (E.Chernyaev)         << 
2439  *                                            << 
2440  * Function: Constructor of polyhedron for PG << 
2441  *                                            << 
2442  * Input: phi  - initial phi                  << 
2443  *        dphi - delta phi                    << 
2444  *        npdv - number of steps along phi    << 
2445  *        rz   - rz-contour                   << 
2446  *                                            << 
2447  ******************************************** << 
2448 {                                             << 
2449   //   C H E C K   I N P U T   P A R A M E T  << 
2450                                               << 
2451   if (dphi <= 0. || dphi > twopi) {           << 
2452     std::cerr                                 << 
2453       << "HepPolyhedronPgon/Pcon: wrong delta << 
2454       << std::endl;                           << 
2455     return;                                   << 
2456   }                                           << 
2457                                               << 
2458   if (npdv < 0) {                             << 
2459     std::cerr                                 << 
2460       << "HepPolyhedronPgon/Pcon: error in nu << 
2461       << std::endl;                           << 
2462     return;                                   << 
2463   }                                           << 
2464                                               << 
2465   G4int nrz = (G4int)rz.size();               << 
2466   if (nrz < 3) {                              << 
2467     std::cerr                                 << 
2468       << "HepPolyhedronPgon/Pcon: invalid num << 
2469       << std::endl;                           << 
2470     return;                                   << 
2471   }                                           << 
2472                                               << 
2473   //   R O T A T E    P O L Y L I N E         << 
2474                                               << 
2475   G4int nodeVis = 1;                          << 
2476   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2477   RotateContourAroundZ(npdv, phi, dphi, rz, n << 
2478   SetReferences();                            << 
2479 }                                             << 
2480                                               << 
2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 
2482                                                  1876 
2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double    1877 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz,
2484                                      const G4    1878                                      const G4double *z,
2485                                      const G4    1879                                      const G4double *rmin,
2486                                      const G4    1880                                      const G4double *rmax)
2487   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm    1881   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {}
2488                                                  1882 
2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1883 HepPolyhedronPcon::~HepPolyhedronPcon() {}
2490                                      const st << 
2491   : HepPolyhedronPgon(phi, dphi, 0, rz) {}    << 
2492                                               << 
2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 
2494                                                  1884 
2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do    1885 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax,
2496                                          G4do    1886                                          G4double phi, G4double dphi,
2497                                          G4do    1887                                          G4double the, G4double dthe)
2498 /********************************************    1888 /***********************************************************************
2499  *                                               1889  *                                                                     *
2500  * Name: HepPolyhedronSphere                     1890  * Name: HepPolyhedronSphere                         Date:    11.12.96 *
2501  * Author: E.Chernyaev (IHEP/Protvino)           1891  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2502  *                                               1892  *                                                                     *
2503  * Function: Constructor of polyhedron for SP    1893  * Function: Constructor of polyhedron for SPHERE                      *
2504  *                                               1894  *                                                                     *
2505  * Input: rmin - internal radius                 1895  * Input: rmin - internal radius                                       *
2506  *        rmax - external radius                 1896  *        rmax - external radius                                       *
2507  *        phi  - initial phi                     1897  *        phi  - initial phi                                           *
2508  *        dphi - delta phi                       1898  *        dphi - delta phi                                             *
2509  *        the  - initial theta                   1899  *        the  - initial theta                                         *
2510  *        dthe - delta theta                     1900  *        dthe - delta theta                                           *
2511  *                                               1901  *                                                                     *
2512  ********************************************    1902  ***********************************************************************/
2513 {                                                1903 {
2514   //   C H E C K   I N P U T   P A R A M E T     1904   //   C H E C K   I N P U T   P A R A M E T E R S
2515                                                  1905 
2516   if (dphi <= 0. || dphi > twopi) {              1906   if (dphi <= 0. || dphi > twopi) {
2517     std::cerr                                    1907     std::cerr
2518       << "HepPolyhedronSphere: wrong delta ph    1908       << "HepPolyhedronSphere: wrong delta phi = " << dphi
2519       << std::endl;                              1909       << std::endl;
2520     return;                                      1910     return;
2521   }                                           << 1911   }    
2522                                                  1912 
2523   if (the < 0. || the > pi) {                    1913   if (the < 0. || the > pi) {
2524     std::cerr                                    1914     std::cerr
2525       << "HepPolyhedronSphere: wrong theta =     1915       << "HepPolyhedronSphere: wrong theta = " << the
2526       << std::endl;                              1916       << std::endl;
2527     return;                                      1917     return;
2528   }                                           << 1918   }    
2529                                               << 1919   
2530   if (dthe <= 0. || dthe > pi) {                 1920   if (dthe <= 0. || dthe > pi) {
2531     std::cerr                                    1921     std::cerr
2532       << "HepPolyhedronSphere: wrong delta th    1922       << "HepPolyhedronSphere: wrong delta theta = " << dthe
2533       << std::endl;                              1923       << std::endl;
2534     return;                                      1924     return;
2535   }                                           << 1925   }    
2536                                                  1926 
2537   if (the+dthe > pi) {                           1927   if (the+dthe > pi) {
2538     std::cerr                                    1928     std::cerr
2539       << "HepPolyhedronSphere: wrong theta +     1929       << "HepPolyhedronSphere: wrong theta + delta theta = "
2540       << the << " " << dthe                      1930       << the << " " << dthe
2541       << std::endl;                              1931       << std::endl;
2542     return;                                      1932     return;
2543   }                                           << 1933   }    
2544                                               << 1934   
2545   if (rmin < 0. || rmin >= rmax) {               1935   if (rmin < 0. || rmin >= rmax) {
2546     std::cerr                                    1936     std::cerr
2547       << "HepPolyhedronSphere: error in radiu    1937       << "HepPolyhedronSphere: error in radiuses"
2548       << " rmin=" << rmin << " rmax=" << rmax    1938       << " rmin=" << rmin << " rmax=" << rmax
2549       << std::endl;                              1939       << std::endl;
2550     return;                                      1940     return;
2551   }                                              1941   }
2552                                                  1942 
2553   //   P R E P A R E   T W O   P O L Y L I N     1943   //   P R E P A R E   T W O   P O L Y L I N E S
2554                                                  1944 
2555   G4int nds = (GetNumberOfRotationSteps() + 1 << 1945   G4int ns = (GetNumberOfRotationSteps() + 1) / 2;
2556   G4int np1 = G4int(dthe*nds/pi+.5) + 1;      << 1946   G4int np1 = G4int(dthe*ns/pi+.5) + 1;
2557   if (np1 <= 1) np1 = 2;                         1947   if (np1 <= 1) np1 = 2;
2558   G4int np2 = rmin < spatialTolerance ? 1 : n << 1948   G4int np2 = rmin < perMillion ? 1 : np1;
2559                                                  1949 
2560   G4double *zz, *rr;                             1950   G4double *zz, *rr;
2561   zz = new G4double[np1+np2];                    1951   zz = new G4double[np1+np2];
2562   rr = new G4double[np1+np2];                    1952   rr = new G4double[np1+np2];
2563                                                  1953 
2564   G4double a = dthe/(np1-1);                     1954   G4double a = dthe/(np1-1);
2565   G4double cosa, sina;                           1955   G4double cosa, sina;
2566   for (G4int i=0; i<np1; i++) {                  1956   for (G4int i=0; i<np1; i++) {
2567     cosa  = std::cos(the+i*a);                   1957     cosa  = std::cos(the+i*a);
2568     sina  = std::sin(the+i*a);                   1958     sina  = std::sin(the+i*a);
2569     zz[i] = rmax*cosa;                           1959     zz[i] = rmax*cosa;
2570     rr[i] = rmax*sina;                           1960     rr[i] = rmax*sina;
2571     if (np2 > 1) {                               1961     if (np2 > 1) {
2572       zz[i+np1] = rmin*cosa;                     1962       zz[i+np1] = rmin*cosa;
2573       rr[i+np1] = rmin*sina;                     1963       rr[i+np1] = rmin*sina;
2574     }                                            1964     }
2575   }                                              1965   }
2576   if (np2 == 1) {                                1966   if (np2 == 1) {
2577     zz[np1] = 0.;                                1967     zz[np1] = 0.;
2578     rr[np1] = 0.;                                1968     rr[np1] = 0.;
2579   }                                              1969   }
2580                                                  1970 
2581   //   R O T A T E    P O L Y L I N E S          1971   //   R O T A T E    P O L Y L I N E S
2582                                                  1972 
2583   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1973   RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 
2584   SetReferences();                               1974   SetReferences();
2585                                               << 1975   
2586   delete [] zz;                                  1976   delete [] zz;
2587   delete [] rr;                                  1977   delete [] rr;
2588 }                                                1978 }
2589                                                  1979 
2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1980 HepPolyhedronSphere::~HepPolyhedronSphere() {}
2591                                                  1981 
2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub    1982 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin,
2593                                        G4doub    1983                                        G4double rmax,
2594                                        G4doub    1984                                        G4double rtor,
2595                                        G4doub    1985                                        G4double phi,
2596                                        G4doub    1986                                        G4double dphi)
2597 /********************************************    1987 /***********************************************************************
2598  *                                               1988  *                                                                     *
2599  * Name: HepPolyhedronTorus                      1989  * Name: HepPolyhedronTorus                          Date:    11.12.96 *
2600  * Author: E.Chernyaev (IHEP/Protvino)           1990  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2601  *                                               1991  *                                                                     *
2602  * Function: Constructor of polyhedron for TO    1992  * Function: Constructor of polyhedron for TORUS                       *
2603  *                                               1993  *                                                                     *
2604  * Input: rmin - internal radius                 1994  * Input: rmin - internal radius                                       *
2605  *        rmax - external radius                 1995  *        rmax - external radius                                       *
2606  *        rtor - radius of torus                 1996  *        rtor - radius of torus                                       *
2607  *        phi  - initial phi                     1997  *        phi  - initial phi                                           *
2608  *        dphi - delta phi                       1998  *        dphi - delta phi                                             *
2609  *                                               1999  *                                                                     *
2610  ********************************************    2000  ***********************************************************************/
2611 {                                                2001 {
2612   //   C H E C K   I N P U T   P A R A M E T     2002   //   C H E C K   I N P U T   P A R A M E T E R S
2613                                                  2003 
2614   if (dphi <= 0. || dphi > twopi) {              2004   if (dphi <= 0. || dphi > twopi) {
2615     std::cerr                                    2005     std::cerr
2616       << "HepPolyhedronTorus: wrong delta phi    2006       << "HepPolyhedronTorus: wrong delta phi = " << dphi
2617       << std::endl;                              2007       << std::endl;
2618     return;                                      2008     return;
2619   }                                              2009   }
2620                                                  2010 
2621   if (rmin < 0. || rmin >= rmax || rmax >= rt    2011   if (rmin < 0. || rmin >= rmax || rmax >= rtor) {
2622     std::cerr                                    2012     std::cerr
2623       << "HepPolyhedronTorus: error in radius    2013       << "HepPolyhedronTorus: error in radiuses"
2624       << " rmin=" << rmin << " rmax=" << rmax    2014       << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor
2625       << std::endl;                              2015       << std::endl;
2626     return;                                      2016     return;
2627   }                                              2017   }
2628                                                  2018 
2629   //   P R E P A R E   T W O   P O L Y L I N     2019   //   P R E P A R E   T W O   P O L Y L I N E S
2630                                                  2020 
2631   G4int np1 = GetNumberOfRotationSteps();        2021   G4int np1 = GetNumberOfRotationSteps();
2632   G4int np2 = rmin < spatialTolerance ? 1 : n << 2022   G4int np2 = rmin < perMillion ? 1 : np1;
2633                                                  2023 
2634   G4double *zz, *rr;                             2024   G4double *zz, *rr;
2635   zz = new G4double[np1+np2];                    2025   zz = new G4double[np1+np2];
2636   rr = new G4double[np1+np2];                    2026   rr = new G4double[np1+np2];
2637                                                  2027 
2638   G4double a = twopi/np1;                        2028   G4double a = twopi/np1;
2639   G4double cosa, sina;                           2029   G4double cosa, sina;
2640   for (G4int i=0; i<np1; i++) {                  2030   for (G4int i=0; i<np1; i++) {
2641     cosa  = std::cos(i*a);                       2031     cosa  = std::cos(i*a);
2642     sina  = std::sin(i*a);                       2032     sina  = std::sin(i*a);
2643     zz[i] = rmax*cosa;                           2033     zz[i] = rmax*cosa;
2644     rr[i] = rtor+rmax*sina;                      2034     rr[i] = rtor+rmax*sina;
2645     if (np2 > 1) {                               2035     if (np2 > 1) {
2646       zz[i+np1] = rmin*cosa;                     2036       zz[i+np1] = rmin*cosa;
2647       rr[i+np1] = rtor+rmin*sina;                2037       rr[i+np1] = rtor+rmin*sina;
2648     }                                            2038     }
2649   }                                              2039   }
2650   if (np2 == 1) {                                2040   if (np2 == 1) {
2651     zz[np1] = 0.;                                2041     zz[np1] = 0.;
2652     rr[np1] = rtor;                              2042     rr[np1] = rtor;
2653     np2 = -1;                                    2043     np2 = -1;
2654   }                                              2044   }
2655                                                  2045 
2656   //   R O T A T E    P O L Y L I N E S          2046   //   R O T A T E    P O L Y L I N E S
2657                                                  2047 
2658   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2048   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 
2659   SetReferences();                               2049   SetReferences();
2660                                               << 2050   
2661   delete [] zz;                                  2051   delete [] zz;
2662   delete [] rr;                                  2052   delete [] rr;
2663 }                                                2053 }
2664                                                  2054 
2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2055 HepPolyhedronTorus::~HepPolyhedronTorus() {}
2666                                               << 
2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 
2668                                    const G4do << 
2669                                    const G4do << 
2670                                    const G4do << 
2671 /******************************************** << 
2672  *                                            << 
2673  * Name: HepPolyhedronTet                     << 
2674  * Author: E.Tcherniaev (E.Chernyaev)         << 
2675  *                                            << 
2676  * Function: Constructor of polyhedron for TE << 
2677  *                                            << 
2678  * Input: p0,p1,p2,p3 - vertices              << 
2679  *                                            << 
2680  ******************************************** << 
2681 {                                             << 
2682   AllocateMemory(4,4);                        << 
2683                                               << 
2684   pV[1].set(p0[0], p0[1], p0[2]);             << 
2685   pV[2].set(p1[0], p1[1], p1[2]);             << 
2686   pV[3].set(p2[0], p2[1], p2[2]);             << 
2687   pV[4].set(p3[0], p3[1], p3[2]);             << 
2688                                               << 
2689   G4Vector3D v1(pV[2] - pV[1]);               << 
2690   G4Vector3D v2(pV[3] - pV[1]);               << 
2691   G4Vector3D v3(pV[4] - pV[1]);               << 
2692                                               << 
2693   if (v1.cross(v2).dot(v3) < 0.)              << 
2694   {                                           << 
2695     pV[3].set(p3[0], p3[1], p3[2]);           << 
2696     pV[4].set(p2[0], p2[1], p2[2]);           << 
2697   }                                           << 
2698                                               << 
2699   pF[1] = G4Facet(1,2,  3,4,  2,3);           << 
2700   pF[2] = G4Facet(1,3,  4,4,  3,1);           << 
2701   pF[3] = G4Facet(1,1,  2,4,  4,2);           << 
2702   pF[4] = G4Facet(2,1,  3,2,  4,3);           << 
2703 }                                             << 
2704                                               << 
2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 
2706                                                  2056 
2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi    2057 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by,
2708                                                  2058                                                G4double cz, G4double zCut1,
2709                                                  2059                                                G4double zCut2)
2710 /********************************************    2060 /***********************************************************************
2711  *                                               2061  *                                                                     *
2712  * Name: HepPolyhedronEllipsoid                  2062  * Name: HepPolyhedronEllipsoid                      Date:    25.02.05 *
2713  * Author: G.Guerrieri                           2063  * Author: G.Guerrieri                               Revised:          *
2714  *         Evgueni Tcherniaev                 << 
2715  *                                               2064  *                                                                     *
2716  * Function: Constructor of polyhedron for EL    2065  * Function: Constructor of polyhedron for ELLIPSOID                   *
2717  *                                               2066  *                                                                     *
2718  * Input: ax - semiaxis x                        2067  * Input: ax - semiaxis x                                              *
2719  *        by - semiaxis y                        2068  *        by - semiaxis y                                              *
2720  *        cz - semiaxis z                        2069  *        cz - semiaxis z                                              *
2721  *        zCut1 - lower cut plane level (soli    2070  *        zCut1 - lower cut plane level (solid lies above this plane)  *
2722  *        zCut2 - upper cut plane level (soli    2071  *        zCut2 - upper cut plane level (solid lies below this plane)  *
2723  *                                               2072  *                                                                     *
2724  ********************************************    2073  ***********************************************************************/
2725 {                                                2074 {
2726   //   C H E C K   I N P U T   P A R A M E T     2075   //   C H E C K   I N P U T   P A R A M E T E R S
2727                                                  2076 
2728   if (zCut1 >= cz || zCut2 <= -cz || zCut1 >     2077   if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) {
2729     std::cerr << "HepPolyhedronEllipsoid: wro    2078     std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1
2730            << " zCut2 = " << zCut2               2079            << " zCut2 = " << zCut2
2731            << " for given cz = " << cz << std    2080            << " for given cz = " << cz << std::endl;
2732     return;                                      2081     return;
2733   }                                              2082   }
2734   if (cz <= 0.0) {                               2083   if (cz <= 0.0) {
2735     std::cerr << "HepPolyhedronEllipsoid: bad    2084     std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz
2736       << std::endl;                              2085       << std::endl;
2737     return;                                      2086     return;
2738   }                                              2087   }
2739                                                  2088 
                                                   >> 2089   G4double dthe;
                                                   >> 2090   G4double sthe;
                                                   >> 2091   G4int cutflag;
                                                   >> 2092   cutflag= 0;
                                                   >> 2093   if (zCut2 >= cz)
                                                   >> 2094     {
                                                   >> 2095       sthe= 0.0;
                                                   >> 2096     }
                                                   >> 2097   else
                                                   >> 2098     {
                                                   >> 2099       sthe= std::acos(zCut2/cz);
                                                   >> 2100       cutflag++;
                                                   >> 2101     }
                                                   >> 2102   if (zCut1 <= -cz)
                                                   >> 2103     {
                                                   >> 2104       dthe= pi - sthe;
                                                   >> 2105     }
                                                   >> 2106   else
                                                   >> 2107     {
                                                   >> 2108       dthe= std::acos(zCut1/cz)-sthe;
                                                   >> 2109       cutflag++;
                                                   >> 2110     }
                                                   >> 2111 
2740   //   P R E P A R E   T W O   P O L Y L I N     2112   //   P R E P A R E   T W O   P O L Y L I N E S
2741   //   generate sphere of radius cz first, th    2113   //   generate sphere of radius cz first, then rescale x and y later
2742                                                  2114 
2743   G4double sthe = std::acos(zCut2/cz);        << 2115   G4int ns = (GetNumberOfRotationSteps() + 1) / 2;
2744   G4double dthe = std::acos(zCut1/cz) - sthe; << 2116   G4int np1 = G4int(dthe*ns/pi) + 2 + cutflag;
2745   G4int nds = (GetNumberOfRotationSteps() + 1 << 
2746   G4int np1 = G4int(dthe*nds/pi + 0.5) + 1;   << 
2747   if (np1 <= 1) np1 = 2;                      << 
2748   G4int np2 = 2;                              << 
2749                                                  2117 
2750   G4double *zz, *rr;                             2118   G4double *zz, *rr;
2751   zz = new G4double[np1 + np2];               << 2119   zz = new G4double[np1+1];
2752   rr = new G4double[np1 + np2];               << 2120   rr = new G4double[np1+1];
2753   if ((zz == nullptr) || (rr == nullptr))     << 2121   if (!zz || !rr)
2754   {                                           << 2122     {
2755     G4Exception("HepPolyhedronEllipsoid::HepP << 2123       G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid",
2756                 "greps1002", FatalException,  << 2124       "greps0002", FatalException, "Out of memory");
2757   }                                           << 2125     }
2758                                                  2126 
2759   G4double a = dthe/(np1 - 1);                << 2127   G4double a = dthe/(np1-cutflag-1);
2760   G4double cosa, sina;                           2128   G4double cosa, sina;
2761   for (G4int i = 0; i < np1; ++i)             << 2129   G4int j=0;
2762   {                                           << 2130   if (sthe > 0.0)
2763     cosa  = std::cos(sthe + i*a);             << 2131     {
2764     sina  = std::sin(sthe + i*a);             << 2132       zz[j]= zCut2;
2765     zz[i] = cz*cosa;                          << 2133       rr[j]= 0.;
2766     rr[i] = cz*sina;                          << 2134       j++;
2767   }                                           << 2135     }
2768   zz[np1 + 0] = zCut2;                        << 2136   for (G4int i=0; i<np1-cutflag; i++) {
2769   rr[np1 + 0] = 0.;                           << 2137     cosa  = std::cos(sthe+i*a);
2770   zz[np1 + 1] = zCut1;                        << 2138     sina  = std::sin(sthe+i*a);
2771   rr[np1 + 1] = 0.;                           << 2139     zz[j] = cz*cosa;
                                                   >> 2140     rr[j] = cz*sina;
                                                   >> 2141     j++;
                                                   >> 2142   }
                                                   >> 2143   if (j < np1)
                                                   >> 2144     {
                                                   >> 2145       zz[j]= zCut1;
                                                   >> 2146       rr[j]= 0.;
                                                   >> 2147       j++;
                                                   >> 2148     }
                                                   >> 2149   if (j > np1)
                                                   >> 2150     {
                                                   >> 2151       std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!"
                                                   >> 2152                 << std::endl;
                                                   >> 2153     }
                                                   >> 2154   if (j < np1)
                                                   >> 2155     {
                                                   >> 2156       std::cerr << "Warning: logic error in HepPolyhedronEllipsoid."
                                                   >> 2157                 << std::endl;
                                                   >> 2158       np1= j;
                                                   >> 2159     }
                                                   >> 2160   zz[j] = 0.;
                                                   >> 2161   rr[j] = 0.;
2772                                                  2162 
                                                   >> 2163   
2773   //   R O T A T E    P O L Y L I N E S          2164   //   R O T A T E    P O L Y L I N E S
2774                                                  2165 
2775   RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2166   RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 
2776   SetReferences();                               2167   SetReferences();
2777                                                  2168 
2778   delete [] zz;                                  2169   delete [] zz;
2779   delete [] rr;                                  2170   delete [] rr;
2780                                                  2171 
2781   // rescale x and y vertex coordinates          2172   // rescale x and y vertex coordinates
2782   G4double kx = ax/cz;                        << 
2783   G4double ky = by/cz;                        << 
2784   G4Point3D* p = pV;                          << 
2785   for (G4int i = 0; i < nvert; ++i, ++p)      << 
2786   {                                              2173   {
2787     p->setX(p->x()*kx);                       << 2174     G4Point3D * p= pV;
2788     p->setY(p->y()*ky);                       << 2175     for (G4int i=0; i<nvert; i++, p++) {
                                                   >> 2176       p->setX( p->x() * ax/cz );
                                                   >> 2177       p->setY( p->y() * by/cz );
                                                   >> 2178     }
2789   }                                              2179   }
2790 }                                                2180 }
2791                                                  2181 
2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2182 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {}
2793                                                  2183 
2794 HepPolyhedronEllipticalCone::HepPolyhedronEll    2184 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax,
2795                                                  2185                                                          G4double ay,
2796                                                  2186                                                          G4double h,
2797                                               << 2187                                                          G4double zTopCut) 
2798 /********************************************    2188 /***********************************************************************
2799  *                                               2189  *                                                                     *
2800  * Name: HepPolyhedronEllipticalCone             2190  * Name: HepPolyhedronEllipticalCone                 Date:    8.9.2005 *
2801  * Author: D.Anninos                             2191  * Author: D.Anninos                                 Revised: 9.9.2005 *
2802  *                                               2192  *                                                                     *
2803  * Function: Constructor for EllipticalCone      2193  * Function: Constructor for EllipticalCone                            *
2804  *                                               2194  *                                                                     *
2805  * Input: ax, ay     - X & Y semi axes at z =    2195  * Input: ax, ay     - X & Y semi axes at z = 0                        *
2806  *        h          - height of full cone       2196  *        h          - height of full cone                             *
2807  *        zTopCut    - Top Cut in Z Axis         2197  *        zTopCut    - Top Cut in Z Axis                               *
2808  *                                               2198  *                                                                     *
2809  ********************************************    2199  ***********************************************************************/
2810 {                                                2200 {
2811   //   C H E C K   I N P U T   P A R A M E T     2201   //   C H E C K   I N P U T   P A R A M E T E R S
2812                                                  2202 
2813   G4int k = 0;                                   2203   G4int k = 0;
2814   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.)     2204   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; }
2815                                                  2205 
2816   if (k != 0) {                                  2206   if (k != 0) {
2817     std::cerr << "HepPolyhedronCone: error in    2207     std::cerr << "HepPolyhedronCone: error in input parameters";
2818     std::cerr << std::endl;                      2208     std::cerr << std::endl;
2819     return;                                      2209     return;
2820   }                                              2210   }
2821                                               << 2211   
2822   //   P R E P A R E   T W O   P O L Y L I N     2212   //   P R E P A R E   T W O   P O L Y L I N E S
2823                                                  2213 
2824   zTopCut = (h >= zTopCut ? zTopCut : h);        2214   zTopCut = (h >= zTopCut ? zTopCut : h);
2825                                                  2215 
2826   G4double *zz, *rr;                             2216   G4double *zz, *rr;
2827   zz = new G4double[4];                          2217   zz = new G4double[4];
2828   rr = new G4double[4];                          2218   rr = new G4double[4];
2829   zz[0] =   zTopCut;                          << 2219   zz[0] =   zTopCut; 
2830   zz[1] =  -zTopCut;                          << 2220   zz[1] =  -zTopCut; 
2831   zz[2] =   zTopCut;                          << 2221   zz[2] =   zTopCut; 
2832   zz[3] =  -zTopCut;                          << 2222   zz[3] =  -zTopCut; 
2833   rr[0] =  (h-zTopCut);                          2223   rr[0] =  (h-zTopCut);
2834   rr[1] =  (h+zTopCut);                          2224   rr[1] =  (h+zTopCut);
2835   rr[2] =  0.;                                   2225   rr[2] =  0.;
2836   rr[3] =  0.;                                   2226   rr[3] =  0.;
2837                                                  2227 
2838   //   R O T A T E    P O L Y L I N E S          2228   //   R O T A T E    P O L Y L I N E S
2839                                                  2229 
2840   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2230   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 
2841   SetReferences();                               2231   SetReferences();
2842                                                  2232 
2843   delete [] zz;                                  2233   delete [] zz;
2844   delete [] rr;                                  2234   delete [] rr;
2845                                                  2235 
2846   // rescale x and y vertex coordinates          2236   // rescale x and y vertex coordinates
2847  {                                               2237  {
2848    G4Point3D * p= pV;                            2238    G4Point3D * p= pV;
2849    for (G4int i=0; i<nvert; i++, p++) {          2239    for (G4int i=0; i<nvert; i++, p++) {
2850      p->setX( p->x() * ax );                     2240      p->setX( p->x() * ax );
2851      p->setY( p->y() * ay );                     2241      p->setY( p->y() * ay );
2852    }                                             2242    }
2853  }                                               2243  }
2854 }                                                2244 }
2855                                                  2245 
2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2246 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {}
2857                                               << 
2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 
2859                                               << 
2860                                               << 
2861 /******************************************** << 
2862  *                                            << 
2863  * Name: HepPolyhedronHyperbolicMirror        << 
2864  * Author: E.Tcherniaev (E.Chernyaev)         << 
2865  *                                            << 
2866  * Function: Create polyhedron for Hyperbolic << 
2867  *                                            << 
2868  * Input: a - half-separation                 << 
2869  *        h - height                          << 
2870  *        r - radius                          << 
2871  *                                            << 
2872  ******************************************** << 
2873 {                                             << 
2874   G4double H = std::abs(h);                   << 
2875   G4double R = std::abs(r);                   << 
2876   G4double A = std::abs(a);                   << 
2877   G4double B = A*R/std::sqrt(2*A*H + H*H);    << 
2878                                               << 
2879   //   P R E P A R E   T W O   P O L Y L I N  << 
2880                                               << 
2881   G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 
2882   G4int np2 = 2;                              << 
2883   G4double maxAng = (A == 0.) ? 0. : std::aco << 
2884   G4double delAng = maxAng/(np1 - 1);         << 
2885                                               << 
2886   auto zz = new G4double[np1 + np2];          << 
2887   auto rr = new G4double[np1 + np2];          << 
2888                                               << 
2889   // 1st polyline                             << 
2890   zz[0] = H;                                  << 
2891   rr[0] = R;                                  << 
2892   for (G4int iz = 1; iz < np1 - 1; ++iz)      << 
2893   {                                           << 
2894     G4double ang = maxAng - iz*delAng;        << 
2895     zz[iz] = A*std::cosh(ang) - A;            << 
2896     rr[iz] = B*std::sinh(ang);                << 
2897   }                                           << 
2898   zz[np1 - 1] = 0.;                           << 
2899   rr[np1 - 1] = 0.;                           << 
2900                                               << 
2901   // 2nd polyline                             << 
2902   zz[np1] = H;                                << 
2903   rr[np1] = 0.;                               << 
2904   zz[np1 + 1] = 0.;                           << 
2905   rr[np1 + 1] = 0.;                           << 
2906                                               << 
2907   //   R O T A T E    P O L Y L I N E S       << 
2908                                               << 
2909   G4double phi  = 0.;                         << 
2910   G4double dphi = CLHEP::twopi;               << 
2911   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 
2912   SetReferences();                            << 
2913                                               << 
2914   delete [] zz;                               << 
2915   delete [] rr;                               << 
2916 }                                             << 
2917                                               << 
2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 
2919                                               << 
2920 HepPolyhedronTetMesh::                        << 
2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 
2922 /******************************************** << 
2923  *                                            << 
2924  * Name: HepPolyhedronTetMesh                 << 
2925  * Author: E.Tcherniaev (E.Chernyaev)         << 
2926  *                                            << 
2927  * Function: Create polyhedron for tetrahedro << 
2928  *                                            << 
2929  * Input: tetrahedra - array of tetrahedron v << 
2930  *                     per tetrahedron        << 
2931  *                                            << 
2932  ******************************************** << 
2933 {                                             << 
2934   // Check size of input vector               << 
2935   G4int nnodes = (G4int)tetrahedra.size();    << 
2936   if (nnodes == 0)                            << 
2937   {                                           << 
2938     std::cerr                                 << 
2939       << "HepPolyhedronTetMesh: Empty tetrahe << 
2940     return;                                   << 
2941   }                                           << 
2942   G4int ntet = nnodes/4;                      << 
2943   if (nnodes != ntet*4)                       << 
2944   {                                           << 
2945     std::cerr << "HepPolyhedronTetMesh: Numbe << 
2946               << " in tetrahedron mesh is NOT << 
2947               << std::endl;                   << 
2948     return;                                   << 
2949   }                                           << 
2950                                                  2247 
2951   // Find coincident vertices using hash tabl << 
2952   // This could be done using std::unordered_ << 
2953   // below runs faster.                       << 
2954   std::vector<G4int> iheads(nnodes, -1);      << 
2955   std::vector<std::pair<G4int,G4int>> ipairs( << 
2956   for (G4int i = 0; i < nnodes; ++i)          << 
2957   {                                           << 
2958     // Generate hash key                      << 
2959     G4ThreeVector point = tetrahedra[i];      << 
2960     auto key = std::hash<G4double>()(point.x( << 
2961     key ^= std::hash<G4double>()(point.y());  << 
2962     key ^= std::hash<G4double>()(point.z());  << 
2963     key %= nnodes;                            << 
2964     // Check head of the list                 << 
2965     if (iheads[key] < 0)                      << 
2966     {                                         << 
2967       iheads[key] = i;                        << 
2968       ipairs[i].first = i;                    << 
2969       continue;                               << 
2970     }                                         << 
2971     // Loop along the list                    << 
2972     for (G4int icur = iheads[key], iprev = 0; << 
2973     {                                         << 
2974       G4int icheck = ipairs[icur].first;      << 
2975       if (tetrahedra[icheck] == point)        << 
2976       {                                       << 
2977         ipairs[i].first = icheck; // coincide << 
2978         break;                                << 
2979       }                                       << 
2980       iprev = icur;                           << 
2981       icur = ipairs[icur].second;             << 
2982       // Append vertex to the list            << 
2983       if (icur < 0)                           << 
2984       {                                       << 
2985         ipairs[i].first = i;                  << 
2986         ipairs[iprev].second = i;             << 
2987         break;                                << 
2988       }                                       << 
2989     }                                         << 
2990   }                                           << 
2991                                               << 
2992   // Create vector of original facets         << 
2993   struct facet                                << 
2994   {                                           << 
2995     G4int i1, i2, i3;                         << 
2996     facet() : i1(0), i2(0), i3(0) {};         << 
2997     facet(G4int k1, G4int k2, G4int k3) : i1( << 
2998   };                                          << 
2999   G4int nfacets = nnodes;                     << 
3000   std::vector<facet> ifacets(nfacets);        << 
3001   for (G4int i = 0; i < nfacets; i += 4)      << 
3002   {                                           << 
3003     G4int i0 = ipairs[i + 0].first;           << 
3004     G4int i1 = ipairs[i + 1].first;           << 
3005     G4int i2 = ipairs[i + 2].first;           << 
3006     G4int i3 = ipairs[i + 3].first;           << 
3007     if (i0 > i1) std::swap(i0, i1);           << 
3008     if (i0 > i2) std::swap(i0, i2);           << 
3009     if (i0 > i3) std::swap(i0, i3);           << 
3010     if (i1 > i2) std::swap(i1, i2);           << 
3011     if (i1 > i3) std::swap(i1, i3);           << 
3012     G4ThreeVector e1 = tetrahedra[i1] - tetra << 
3013     G4ThreeVector e2 = tetrahedra[i2] - tetra << 
3014     G4ThreeVector e3 = tetrahedra[i3] - tetra << 
3015     G4double volume = (e1.cross(e2)).dot(e3); << 
3016     if (volume > 0.) std::swap(i2, i3);       << 
3017     ifacets[i + 0] = facet(i0, i1, i2);       << 
3018     ifacets[i + 1] = facet(i0, i2, i3);       << 
3019     ifacets[i + 2] = facet(i0, i3, i1);       << 
3020     ifacets[i + 3] = facet(i1, i3, i2);       << 
3021   }                                           << 
3022                                               << 
3023   // Find shared facets                       << 
3024   std::fill(iheads.begin(), iheads.end(), -1) << 
3025   std::fill(ipairs.begin(), ipairs.end(), std << 
3026   for (G4int i = 0; i < nfacets; ++i)         << 
3027   {                                           << 
3028     // Check head of the list                 << 
3029     G4int key = ifacets[i].i1;                << 
3030     if (iheads[key] < 0)                      << 
3031     {                                         << 
3032       iheads[key] = i;                        << 
3033       ipairs[i].first = i;                    << 
3034       continue;                               << 
3035     }                                         << 
3036     // Loop along the list                    << 
3037     G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 
3038     for (G4int icur = iheads[key], iprev = -1 << 
3039     {                                         << 
3040       G4int icheck = ipairs[icur].first;      << 
3041       if (ifacets[icheck].i2 == i3 && ifacets << 
3042       {                                       << 
3043         if (iprev < 0)                        << 
3044         {                                     << 
3045           iheads[key] = ipairs[icur].second;  << 
3046         }                                     << 
3047         else                                  << 
3048         {                                     << 
3049           ipairs[iprev].second = ipairs[icur] << 
3050         }                                     << 
3051         ipairs[icur].first = -1; // shared fa << 
3052         ipairs[icur].second = -1;             << 
3053         break;                                << 
3054       }                                       << 
3055       iprev = icur;                           << 
3056       icur = ipairs[icur].second;             << 
3057       // Append facet to the list             << 
3058       if (icur < 0)                           << 
3059       {                                       << 
3060         ipairs[i].first = i;                  << 
3061         ipairs[iprev].second = i;             << 
3062         break;                                << 
3063       }                                       << 
3064     }                                         << 
3065   }                                           << 
3066                                               << 
3067   // Count vertices and facets skipping share << 
3068   std::fill(iheads.begin(), iheads.end(), -1) << 
3069   G4int nver = 0, nfac = 0;                   << 
3070   for (G4int i = 0; i < nfacets; ++i)         << 
3071   {                                           << 
3072     if (ipairs[i].first < 0) continue;        << 
3073     G4int i1 = ifacets[i].i1;                 << 
3074     G4int i2 = ifacets[i].i2;                 << 
3075     G4int i3 = ifacets[i].i3;                 << 
3076     if (iheads[i1] < 0) iheads[i1] = nver++;  << 
3077     if (iheads[i2] < 0) iheads[i2] = nver++;  << 
3078     if (iheads[i3] < 0) iheads[i3] = nver++;  << 
3079     nfac++;                                   << 
3080   }                                           << 
3081                                               << 
3082   // Construct polyhedron                     << 
3083   AllocateMemory(nver, nfac);                 << 
3084   for (G4int i = 0; i < nnodes; ++i)          << 
3085   {                                           << 
3086     G4int k = iheads[i];                      << 
3087     if (k >= 0) SetVertex(k + 1, tetrahedra[i << 
3088   }                                           << 
3089   for (G4int i = 0, k = 0; i < nfacets; ++i)  << 
3090   {                                           << 
3091     if (ipairs[i].first < 0) continue;        << 
3092     G4int i1 = iheads[ifacets[i].i1] + 1;     << 
3093     G4int i2 = iheads[ifacets[i].i2] + 1;     << 
3094     G4int i3 = iheads[ifacets[i].i3] + 1;     << 
3095     SetFacet(++k, i1, i2, i3);                << 
3096   }                                           << 
3097   SetReferences();                            << 
3098 }                                             << 
3099                                               << 
3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 
3101                                               << 
3102 HepPolyhedronBoxMesh::                        << 
3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 
3104                      const std::vector<G4Thre << 
3105 /******************************************** << 
3106  *                                            << 
3107  * Name: HepPolyhedronBoxMesh                 << 
3108  * Author: E.Tcherniaev (E.Chernyaev)         << 
3109  *                                            << 
3110  * Function: Create polyhedron for box mesh   << 
3111  *                                            << 
3112  * Input: sizeX, sizeY, sizeZ - dimensions of << 
3113  *        positions - vector of cell centres  << 
3114  *                                            << 
3115  ******************************************** << 
3116 {                                             << 
3117   G4int nbox = (G4int)positions.size();       << 
3118   if (nbox == 0)                              << 
3119   {                                           << 
3120     std::cerr << "HepPolyhedronBoxMesh: Empty << 
3121     return;                                   << 
3122   }                                           << 
3123   // compute inverse dimensions               << 
3124   G4double invx = 1./sizeX, invy = 1./sizeY,  << 
3125   // find mesh bounding box                   << 
3126   G4ThreeVector pmin = positions[0], pmax = p << 
3127   for (const auto& p: positions)              << 
3128   {                                           << 
3129     if (pmin.x() > p.x()) pmin.setX(p.x());   << 
3130     if (pmin.y() > p.y()) pmin.setY(p.y());   << 
3131     if (pmin.z() > p.z()) pmin.setZ(p.z());   << 
3132     if (pmax.x() < p.x()) pmax.setX(p.x());   << 
3133     if (pmax.y() < p.y()) pmax.setY(p.y());   << 
3134     if (pmax.z() < p.z()) pmax.setZ(p.z());   << 
3135   }                                           << 
3136   // find number of voxels                    << 
3137   G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 
3138   G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 
3139   G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 
3140   // create structures for voxels and node in << 
3141   std::vector<char> voxels(nx*ny*nz, 0);      << 
3142   std::vector<G4int> indices((nx+1)*(ny+1)*(n << 
3143   // mark voxels listed in positions          << 
3144   G4int kx =  ny*nz, ky = nz;                 << 
3145   for (const auto& p: positions)              << 
3146   {                                           << 
3147     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3148     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3149     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3150     G4int i = ix*kx + iy*ky + iz;             << 
3151     voxels[i] = 1;                            << 
3152   }                                           << 
3153   // count number of vertices and facets      << 
3154   // set indices                              << 
3155   G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 
3156   G4int nver = 0, nfac = 0;                   << 
3157   for (const auto& p: positions)              << 
3158   {                                           << 
3159     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3160     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3161     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3162     //                                        << 
3163     //    011       111                       << 
3164     //      +---–---+                       << 
3165     //      | 001   |   101                   << 
3166     //      |   +---–---+                   << 
3167     //      |   |   |   |                     << 
3168     //      +---|---+   |                     << 
3169     //    010   |   110 |                     << 
3170     //          +-------+                     << 
3171     //        000       100                   << 
3172     //                                        << 
3173     G4int vcheck = 0;                         << 
3174     // check (ix - 1) side                    << 
3175     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3176     if (vcheck == 0)                          << 
3177     {                                         << 
3178       nfac++;                                 << 
3179       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3180       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3181       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3182       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3183       if (indices[i1] == 0) indices[i1] = ++n << 
3184       if (indices[i2] == 0) indices[i2] = ++n << 
3185       if (indices[i3] == 0) indices[i3] = ++n << 
3186       if (indices[i4] == 0) indices[i4] = ++n << 
3187     }                                         << 
3188     // check (ix + 1) side                    << 
3189     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3190     if (vcheck == 0)                          << 
3191     {                                         << 
3192       nfac++;                                 << 
3193       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3194       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3195       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3196       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3197       if (indices[i1] == 0) indices[i1] = ++n << 
3198       if (indices[i2] == 0) indices[i2] = ++n << 
3199       if (indices[i3] == 0) indices[i3] = ++n << 
3200       if (indices[i4] == 0) indices[i4] = ++n << 
3201     }                                         << 
3202     // check (iy - 1) side                    << 
3203     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3204     if (vcheck == 0)                          << 
3205     {                                         << 
3206       nfac++;                                 << 
3207       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3208       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3209       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3210       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3211       if (indices[i1] == 0) indices[i1] = ++n << 
3212       if (indices[i2] == 0) indices[i2] = ++n << 
3213       if (indices[i3] == 0) indices[i3] = ++n << 
3214       if (indices[i4] == 0) indices[i4] = ++n << 
3215     }                                         << 
3216     // check (iy + 1) side                    << 
3217     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3218     if (vcheck == 0)                          << 
3219     {                                         << 
3220       nfac++;                                 << 
3221       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3222       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3223       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3224       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3225       if (indices[i1] == 0) indices[i1] = ++n << 
3226       if (indices[i2] == 0) indices[i2] = ++n << 
3227       if (indices[i3] == 0) indices[i3] = ++n << 
3228       if (indices[i4] == 0) indices[i4] = ++n << 
3229     }                                         << 
3230     // check (iz - 1) side                    << 
3231     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3232     if (vcheck == 0)                          << 
3233     {                                         << 
3234       nfac++;                                 << 
3235       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3236       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3237       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3238       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3239       if (indices[i1] == 0) indices[i1] = ++n << 
3240       if (indices[i2] == 0) indices[i2] = ++n << 
3241       if (indices[i3] == 0) indices[i3] = ++n << 
3242       if (indices[i4] == 0) indices[i4] = ++n << 
3243     }                                         << 
3244     // check (iz + 1) side                    << 
3245     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3246     if (vcheck == 0)                          << 
3247     {                                         << 
3248       nfac++;                                 << 
3249       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3250       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3251       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3252       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3253       if (indices[i1] == 0) indices[i1] = ++n << 
3254       if (indices[i2] == 0) indices[i2] = ++n << 
3255       if (indices[i3] == 0) indices[i3] = ++n << 
3256       if (indices[i4] == 0) indices[i4] = ++n << 
3257     }                                         << 
3258   }                                           << 
3259   // Construct polyhedron                     << 
3260   AllocateMemory(nver, nfac);                 << 
3261   G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 
3262   for (G4int ix = 0; ix <= nx; ++ix)          << 
3263   {                                           << 
3264     for (G4int iy = 0; iy <= ny; ++iy)        << 
3265     {                                         << 
3266       for (G4int iz = 0; iz <= nz; ++iz)      << 
3267       {                                       << 
3268   G4int i = ix*kvx + iy*kvy + iz;             << 
3269   if (indices[i] == 0) continue;              << 
3270   SetVertex(indices[i], p0 + G4ThreeVector(ix << 
3271       }                                       << 
3272     }                                         << 
3273   }                                           << 
3274   nfac = 0;                                   << 
3275   for (const auto& p: positions)              << 
3276   {                                           << 
3277     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3278     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3279     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3280     G4int vcheck = 0;                         << 
3281     // check (ix - 1) side                    << 
3282     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3283     if (vcheck == 0)                          << 
3284     {                                         << 
3285       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3286       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3287       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3288       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3289       SetFacet(++nfac, indices[i1], indices[i << 
3290     }                                         << 
3291     // check (ix + 1) side                    << 
3292     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3293     if (vcheck == 0)                          << 
3294     {                                         << 
3295       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3296       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3297       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3298       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3299       SetFacet(++nfac, indices[i1], indices[i << 
3300                                               << 
3301     }                                         << 
3302     // check (iy - 1) side                    << 
3303     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3304     if (vcheck == 0)                          << 
3305     {                                         << 
3306       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3307       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3308       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3309       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3310       SetFacet(++nfac, indices[i1], indices[i << 
3311     }                                         << 
3312     // check (iy + 1) side                    << 
3313     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3314     if (vcheck == 0)                          << 
3315     {                                         << 
3316       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3317       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3318       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3319       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3320       SetFacet(++nfac, indices[i1], indices[i << 
3321     }                                         << 
3322     // check (iz - 1) side                    << 
3323     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3324     if (vcheck == 0)                          << 
3325     {                                         << 
3326       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3327       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3328       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3329       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3330       SetFacet(++nfac, indices[i1], indices[i << 
3331     }                                         << 
3332     // check (iz + 1) side                    << 
3333     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3334     if (vcheck == 0)                          << 
3335     {                                         << 
3336       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3337       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3338       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3339       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3340       SetFacet(++nfac, indices[i1], indices[i << 
3341     }                                         << 
3342   }                                           << 
3343   SetReferences();                            << 
3344 }                                             << 
3345                                               << 
3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 
3347                                               << 
3348 G4ThreadLocal                                 << 
3349 G4int HepPolyhedron::fNumberOfRotationSteps =    2248 G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
3350 /********************************************    2249 /***********************************************************************
3351  *                                               2250  *                                                                     *
3352  * Name: HepPolyhedron::fNumberOfRotationStep    2251  * Name: HepPolyhedron::fNumberOfRotationSteps       Date:    24.06.97 *
3353  * Author: J.Allison (Manchester University)     2252  * Author: J.Allison (Manchester University)         Revised:          *
3354  *                                               2253  *                                                                     *
3355  * Function: Number of steps for whole circle    2254  * Function: Number of steps for whole circle                          *
3356  *                                               2255  *                                                                     *
3357  ********************************************    2256  ***********************************************************************/
3358                                                  2257 
3359 #include "BooleanProcessor.src"                  2258 #include "BooleanProcessor.src"
3360                                                  2259 
3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2260 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 
3362 /********************************************    2261 /***********************************************************************
3363  *                                               2262  *                                                                     *
3364  * Name: HepPolyhedron::add                      2263  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3365  * Author: E.Chernyaev                           2264  * Author: E.Chernyaev                               Revised:          *
3366  *                                               2265  *                                                                     *
3367  * Function: Boolean "union" of two polyhedra    2266  * Function: Boolean "union" of two polyhedra                          *
3368  *                                               2267  *                                                                     *
3369  ********************************************    2268  ***********************************************************************/
3370 {                                                2269 {
3371   G4int ierr;                                    2270   G4int ierr;
3372   BooleanProcessor processor;                    2271   BooleanProcessor processor;
3373   return processor.execute(OP_UNION, *this, p    2272   return processor.execute(OP_UNION, *this, p,ierr);
3374 }                                                2273 }
3375                                                  2274 
3376 HepPolyhedron HepPolyhedron::intersect(const  << 2275 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 
3377 /********************************************    2276 /***********************************************************************
3378  *                                               2277  *                                                                     *
3379  * Name: HepPolyhedron::intersect                2278  * Name: HepPolyhedron::intersect                    Date:    19.03.00 *
3380  * Author: E.Chernyaev                           2279  * Author: E.Chernyaev                               Revised:          *
3381  *                                               2280  *                                                                     *
3382  * Function: Boolean "intersection" of two po    2281  * Function: Boolean "intersection" of two polyhedra                   *
3383  *                                               2282  *                                                                     *
3384  ********************************************    2283  ***********************************************************************/
3385 {                                                2284 {
3386   G4int ierr;                                    2285   G4int ierr;
3387   BooleanProcessor processor;                    2286   BooleanProcessor processor;
3388   return processor.execute(OP_INTERSECTION, *    2287   return processor.execute(OP_INTERSECTION, *this, p,ierr);
3389 }                                                2288 }
3390                                                  2289 
3391 HepPolyhedron HepPolyhedron::subtract(const H << 2290 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 
3392 /********************************************    2291 /***********************************************************************
3393  *                                               2292  *                                                                     *
3394  * Name: HepPolyhedron::add                      2293  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3395  * Author: E.Chernyaev                           2294  * Author: E.Chernyaev                               Revised:          *
3396  *                                               2295  *                                                                     *
3397  * Function: Boolean "subtraction" of "p" fro    2296  * Function: Boolean "subtraction" of "p" from "this"                  *
3398  *                                               2297  *                                                                     *
3399  ********************************************    2298  ***********************************************************************/
3400 {                                                2299 {
3401   G4int ierr;                                    2300   G4int ierr;
3402   BooleanProcessor processor;                    2301   BooleanProcessor processor;
3403   return processor.execute(OP_SUBTRACTION, *t    2302   return processor.execute(OP_SUBTRACTION, *this, p,ierr);
3404 }                                                2303 }
3405                                                  2304 
3406 //NOTE : include the code of HepPolyhedronPro    2305 //NOTE : include the code of HepPolyhedronProcessor here
3407 //       since there is no BooleanProcessor.h    2306 //       since there is no BooleanProcessor.h
3408                                                  2307 
3409 #undef INTERSECTION                              2308 #undef INTERSECTION
3410                                                  2309 
3411 #include "HepPolyhedronProcessor.src"            2310 #include "HepPolyhedronProcessor.src"
                                                   >> 2311 
3412                                                  2312