Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: HepPolyhedron.cc,v 1.35 2010-12-07 09:36:59 allison Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ >> 29 // >> 30 // >> 31 // 26 // G4 Polyhedron library 32 // G4 Polyhedron library 27 // 33 // 28 // History: 34 // History: 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce 35 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version 30 // 36 // 31 // 30.09.96 E.Chernyaev 37 // 30.09.96 E.Chernyaev 32 // - added GetNextVertexIndex, GetVertex by Ya 38 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada 33 // - added GetNextUnitNormal, GetNextEdgeIndic << 39 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge 34 // 40 // 35 // 15.12.96 E.Chernyaev 41 // 15.12.96 E.Chernyaev 36 // - added GetNumberOfRotationSteps, RotateEdg 42 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences 37 // - rewritten G4PolyhedronCons; 43 // - rewritten G4PolyhedronCons; 38 // - added G4PolyhedronPara, ...Trap, ...Pgon, 44 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus 39 // 45 // 40 // 01.06.97 E.Chernyaev 46 // 01.06.97 E.Chernyaev 41 // - modified RotateAroundZ, added SetSideFace 47 // - modified RotateAroundZ, added SetSideFacets 42 // 48 // 43 // 19.03.00 E.Chernyaev 49 // 19.03.00 E.Chernyaev 44 // - implemented boolean operations (add, subt 50 // - implemented boolean operations (add, subtract, intersect) on polyhedra; 45 // 51 // 46 // 25.05.01 E.Chernyaev 52 // 25.05.01 E.Chernyaev 47 // - added GetSurfaceArea() and GetVolume() << 53 // - added GetSurfaceArea() and GetVolume(); 48 // 54 // 49 // 05.11.02 E.Chernyaev 55 // 05.11.02 E.Chernyaev 50 // - added createTwistedTrap() and createPolyh << 56 // - added createTwistedTrap() and createPolyhedron(); 51 // 57 // 52 // 20.06.05 G.Cosmo 58 // 20.06.05 G.Cosmo 53 // - added HepPolyhedronEllipsoid << 59 // - added HepPolyhedronEllipsoid; 54 // << 55 // 18.07.07 T.Nikitina << 56 // - added HepPolyhedronParaboloid << 57 // << 58 // 22.02.20 E.Chernyaev << 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 60 // << 61 // 12.05.21 E.Chernyaev << 62 // - added TriangulatePolygon(), RotateContour << 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 64 // << 65 // 26.03.22 E.Chernyaev << 66 // - added SetVertex(), SetFacet() << 67 // - added HepPolyhedronTetMesh << 68 // << 69 // 04.04.22 E.Chernyaev << 70 // - added JoinCoplanarFacets() << 71 // 60 // 72 // 07.04.22 E.Chernyaev << 61 // 18.07.07 T.Nikitin 73 // - added HepPolyhedronBoxMesh << 62 // - added HepParaboloid; 74 << 63 75 #include "HepPolyhedron.h" 64 #include "HepPolyhedron.h" 76 #include "G4PhysicalConstants.hh" 65 #include "G4PhysicalConstants.hh" 77 #include "G4Vector3D.hh" 66 #include "G4Vector3D.hh" 78 67 79 #include <cstdlib> // Required on some compil 68 #include <cstdlib> // Required on some compilers for std::abs(int) ... 80 #include <cmath> 69 #include <cmath> 81 #include <algorithm> << 82 70 83 using CLHEP::perMillion; 71 using CLHEP::perMillion; 84 using CLHEP::deg; 72 using CLHEP::deg; 85 using CLHEP::pi; 73 using CLHEP::pi; 86 using CLHEP::twopi; 74 using CLHEP::twopi; 87 using CLHEP::nm; << 88 const G4double spatialTolerance = 0.01*nm; << 89 75 90 /********************************************* 76 /*********************************************************************** 91 * 77 * * 92 * Name: HepPolyhedron operator << 78 * Name: HepPolyhedron operator << Date: 09.05.96 * 93 * Author: E.Chernyaev (IHEP/Protvino) 79 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 94 * 80 * * 95 * Function: Print contents of G4 polyhedron 81 * Function: Print contents of G4 polyhedron * 96 * 82 * * 97 ********************************************* 83 ***********************************************************************/ 98 std::ostream & operator<<(std::ostream & ostr, 84 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) { 99 for (const auto& edge : facet.edge) { << 85 for (G4int k=0; k<4; k++) { 100 ostr << " " << edge.v << "/" << edge.f; << 86 ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f; 101 } 87 } 102 return ostr; 88 return ostr; 103 } 89 } 104 90 105 std::ostream & operator<<(std::ostream & ostr, 91 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) { 106 ostr << std::endl; 92 ostr << std::endl; 107 ostr << "Nvertices=" << ph.nvert << ", Nface << 93 ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl; 108 G4int i; 94 G4int i; 109 for (i=1; i<=ph.nvert; i++) { 95 for (i=1; i<=ph.nvert; i++) { 110 ostr << "xyz(" << i << ")=" 96 ostr << "xyz(" << i << ")=" 111 << ph.pV[i].x() << ' ' << ph.pV[i].y 97 << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z() 112 << std::endl; 98 << std::endl; 113 } 99 } 114 for (i=1; i<=ph.nface; i++) { 100 for (i=1; i<=ph.nface; i++) { 115 ostr << "face(" << i << ")=" << ph.pF[i] < 101 ostr << "face(" << i << ")=" << ph.pF[i] << std::endl; 116 } 102 } 117 return ostr; 103 return ostr; 118 } 104 } 119 105 120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 121 /********************************************* << 122 * << 123 * Name: HepPolyhedron constructor with << 124 * allocation of memory << 125 * Author: E.Tcherniaev (E.Chernyaev) << 126 * << 127 ********************************************* << 128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 129 { << 130 AllocateMemory(Nvert, Nface); << 131 } << 132 << 133 HepPolyhedron::HepPolyhedron(const HepPolyhedr 106 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from) 134 /********************************************* 107 /*********************************************************************** 135 * 108 * * 136 * Name: HepPolyhedron copy constructor 109 * Name: HepPolyhedron copy constructor Date: 23.07.96 * 137 * Author: E.Chernyaev (IHEP/Protvino) 110 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 138 * 111 * * 139 ********************************************* 112 ***********************************************************************/ 140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 113 : nvert(0), nface(0), pV(0), pF(0) 141 { 114 { 142 AllocateMemory(from.nvert, from.nface); 115 AllocateMemory(from.nvert, from.nface); 143 for (G4int i=1; i<=nvert; i++) pV[i] = from. 116 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 144 for (G4int k=1; k<=nface; k++) pF[k] = from. 117 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 145 } 118 } 146 119 147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 148 /********************************************* << 149 * << 150 * Name: HepPolyhedron move constructor << 151 * Author: E.Tcherniaev (E.Chernyaev) << 152 * << 153 ********************************************* << 154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 155 { << 156 nvert = from.nvert; << 157 nface = from.nface; << 158 pV = from.pV; << 159 pF = from.pF; << 160 << 161 // Release the data from the source object << 162 from.nvert = 0; << 163 from.nface = 0; << 164 from.pV = nullptr; << 165 from.pF = nullptr; << 166 } << 167 << 168 HepPolyhedron & HepPolyhedron::operator=(const 120 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from) 169 /********************************************* 121 /*********************************************************************** 170 * 122 * * 171 * Name: HepPolyhedron operator = 123 * Name: HepPolyhedron operator = Date: 23.07.96 * 172 * Author: E.Chernyaev (IHEP/Protvino) 124 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 173 * 125 * * 174 * Function: Copy contents of one polyhedron t 126 * Function: Copy contents of one polyhedron to another * 175 * 127 * * 176 ********************************************* 128 ***********************************************************************/ 177 { 129 { 178 if (this != &from) { 130 if (this != &from) { 179 AllocateMemory(from.nvert, from.nface); 131 AllocateMemory(from.nvert, from.nface); 180 for (G4int i=1; i<=nvert; i++) pV[i] = fro 132 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 181 for (G4int k=1; k<=nface; k++) pF[k] = fro 133 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 182 } 134 } 183 return *this; 135 return *this; 184 } 136 } 185 137 186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 187 /********************************************* << 188 * << 189 * Name: HepPolyhedron move operator = << 190 * Author: E.Tcherniaev (E.Chernyaev) << 191 * << 192 * Function: Move contents of one polyhedron t << 193 * << 194 ********************************************* << 195 { << 196 if (this != &from) { << 197 delete [] pV; << 198 delete [] pF; << 199 nvert = from.nvert; << 200 nface = from.nface; << 201 pV = from.pV; << 202 pF = from.pF; << 203 << 204 // Release the data from the source object << 205 from.nvert = 0; << 206 from.nface = 0; << 207 from.pV = nullptr; << 208 from.pF = nullptr; << 209 } << 210 return *this; << 211 } << 212 << 213 G4int 138 G4int 214 HepPolyhedron::FindNeighbour(G4int iFace, G4in 139 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const 215 /********************************************* 140 /*********************************************************************** 216 * 141 * * 217 * Name: HepPolyhedron::FindNeighbour 142 * Name: HepPolyhedron::FindNeighbour Date: 22.11.99 * 218 * Author: E.Chernyaev 143 * Author: E.Chernyaev Revised: * 219 * 144 * * 220 * Function: Find neighbouring face 145 * Function: Find neighbouring face * 221 * 146 * * 222 ********************************************* 147 ***********************************************************************/ 223 { 148 { 224 G4int i; 149 G4int i; 225 for (i=0; i<4; i++) { 150 for (i=0; i<4; i++) { 226 if (iNode == std::abs(pF[iFace].edge[i].v) 151 if (iNode == std::abs(pF[iFace].edge[i].v)) break; 227 } 152 } 228 if (i == 4) { 153 if (i == 4) { 229 std::cerr 154 std::cerr 230 << "HepPolyhedron::FindNeighbour: face " 155 << "HepPolyhedron::FindNeighbour: face " << iFace 231 << " has no node " << iNode 156 << " has no node " << iNode 232 << std::endl; << 157 << std::endl; 233 return 0; 158 return 0; 234 } 159 } 235 if (iOrder < 0) { 160 if (iOrder < 0) { 236 if ( --i < 0) i = 3; 161 if ( --i < 0) i = 3; 237 if (pF[iFace].edge[i].v == 0) i = 2; 162 if (pF[iFace].edge[i].v == 0) i = 2; 238 } 163 } 239 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF 164 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f; 240 } 165 } 241 166 242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int 167 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const 243 /********************************************* 168 /*********************************************************************** 244 * 169 * * 245 * Name: HepPolyhedron::FindNodeNormal 170 * Name: HepPolyhedron::FindNodeNormal Date: 22.11.99 * 246 * Author: E.Chernyaev 171 * Author: E.Chernyaev Revised: * 247 * 172 * * 248 * Function: Find normal at given node 173 * Function: Find normal at given node * 249 * 174 * * 250 ********************************************* 175 ***********************************************************************/ 251 { 176 { 252 G4Normal3D normal = GetUnitNormal(iFace); << 177 G4Normal3D normal = GetUnitNormal(iFace); 253 G4int k = iFace, iOrder = 1; << 178 G4int k = iFace, iOrder = 1, n = 1; 254 179 255 for(;;) { 180 for(;;) { 256 k = FindNeighbour(k, iNode, iOrder); 181 k = FindNeighbour(k, iNode, iOrder); 257 if (k == iFace) break; << 182 if (k == iFace) break; 258 if (k > 0) { 183 if (k > 0) { >> 184 n++; 259 normal += GetUnitNormal(k); 185 normal += GetUnitNormal(k); 260 }else{ 186 }else{ 261 if (iOrder < 0) break; 187 if (iOrder < 0) break; 262 k = iFace; 188 k = iFace; 263 iOrder = -iOrder; 189 iOrder = -iOrder; 264 } 190 } 265 } 191 } 266 return normal.unit(); 192 return normal.unit(); 267 } 193 } 268 194 269 G4int HepPolyhedron::GetNumberOfRotationSteps( 195 G4int HepPolyhedron::GetNumberOfRotationSteps() 270 /********************************************* 196 /*********************************************************************** 271 * 197 * * 272 * Name: HepPolyhedron::GetNumberOfRotationSte 198 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 273 * Author: J.Allison (Manchester University) 199 * Author: J.Allison (Manchester University) Revised: * 274 * 200 * * 275 * Function: Get number of steps for whole cir 201 * Function: Get number of steps for whole circle * 276 * 202 * * 277 ********************************************* 203 ***********************************************************************/ 278 { 204 { 279 return fNumberOfRotationSteps; 205 return fNumberOfRotationSteps; 280 } 206 } 281 207 282 void HepPolyhedron::SetVertex(G4int index, con << 283 /********************************************* << 284 * << 285 * Name: HepPolyhedron::SetVertex << 286 * Author: E.Tcherniaev (E.Chernyaev) << 287 * << 288 * Function: Set vertex << 289 * << 290 ********************************************* << 291 { << 292 if (index < 1 || index > nvert) << 293 { << 294 std::cerr << 295 << "HepPolyhedron::SetVertex: vertex ind << 296 << " is out of range\n" << 297 << " N. of vertices = " << nvert << "\ << 298 << " N. of facets = " << nface << std: << 299 return; << 300 } << 301 pV[index] = v; << 302 } << 303 << 304 void << 305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 306 /********************************************* << 307 * << 308 * Name: HepPolyhedron::SetFacet << 309 * Author: E.Tcherniaev (E.Chernyaev) << 310 * << 311 * Function: Set facet << 312 * << 313 ********************************************* << 314 { << 315 if (index < 1 || index > nface) << 316 { << 317 std::cerr << 318 << "HepPolyhedron::SetFacet: facet index << 319 << " is out of range\n" << 320 << " N. of vertices = " << nvert << "\ << 321 << " N. of facets = " << nface << std: << 322 return; << 323 } << 324 if (iv1 < 1 || iv1 > nvert || << 325 iv2 < 1 || iv2 > nvert || << 326 iv3 < 1 || iv3 > nvert || << 327 iv4 < 0 || iv4 > nvert) << 328 { << 329 std::cerr << 330 << "HepPolyhedron::SetFacet: incorrectly << 331 << " (" << iv1 << ", " << iv2 << ", " << << 332 << " N. of vertices = " << nvert << "\ << 333 << " N. of facets = " << nface << std: << 334 return; << 335 } << 336 pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0, << 337 } << 338 << 339 void HepPolyhedron::SetNumberOfRotationSteps(G 208 void HepPolyhedron::SetNumberOfRotationSteps(G4int n) 340 /********************************************* 209 /*********************************************************************** 341 * 210 * * 342 * Name: HepPolyhedron::SetNumberOfRotationSte 211 * Name: HepPolyhedron::SetNumberOfRotationSteps Date: 24.06.97 * 343 * Author: J.Allison (Manchester University) 212 * Author: J.Allison (Manchester University) Revised: * 344 * 213 * * 345 * Function: Set number of steps for whole cir 214 * Function: Set number of steps for whole circle * 346 * 215 * * 347 ********************************************* 216 ***********************************************************************/ 348 { 217 { 349 const G4int nMin = 3; 218 const G4int nMin = 3; 350 if (n < nMin) { 219 if (n < nMin) { 351 std::cerr << 220 std::cerr 352 << "HepPolyhedron::SetNumberOfRotationSt 221 << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n" 353 << "number of steps per circle < " << nM 222 << "number of steps per circle < " << nMin << "; forced to " << nMin 354 << std::endl; 223 << std::endl; 355 fNumberOfRotationSteps = nMin; 224 fNumberOfRotationSteps = nMin; 356 }else{ 225 }else{ 357 fNumberOfRotationSteps = n; 226 fNumberOfRotationSteps = n; 358 } << 227 } 359 } 228 } 360 229 361 void HepPolyhedron::ResetNumberOfRotationSteps 230 void HepPolyhedron::ResetNumberOfRotationSteps() 362 /********************************************* 231 /*********************************************************************** 363 * 232 * * 364 * Name: HepPolyhedron::GetNumberOfRotationSte 233 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 365 * Author: J.Allison (Manchester University) 234 * Author: J.Allison (Manchester University) Revised: * 366 * 235 * * 367 * Function: Reset number of steps for whole c 236 * Function: Reset number of steps for whole circle to default value * 368 * 237 * * 369 ********************************************* 238 ***********************************************************************/ 370 { 239 { 371 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S 240 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 372 } 241 } 373 242 374 void HepPolyhedron::AllocateMemory(G4int Nvert 243 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface) 375 /********************************************* 244 /*********************************************************************** 376 * 245 * * 377 * Name: HepPolyhedron::AllocateMemory 246 * Name: HepPolyhedron::AllocateMemory Date: 19.06.96 * 378 * Author: E.Chernyaev (IHEP/Protvino) 247 * Author: E.Chernyaev (IHEP/Protvino) Revised: 05.11.02 * 379 * 248 * * 380 * Function: Allocate memory for GEANT4 polyhe 249 * Function: Allocate memory for GEANT4 polyhedron * 381 * 250 * * 382 * Input: Nvert - number of nodes 251 * Input: Nvert - number of nodes * 383 * Nface - number of faces 252 * Nface - number of faces * 384 * 253 * * 385 ********************************************* 254 ***********************************************************************/ 386 { 255 { 387 if (nvert == Nvert && nface == Nface) return 256 if (nvert == Nvert && nface == Nface) return; 388 delete [] pV; << 257 if (pV != 0) delete [] pV; 389 delete [] pF; << 258 if (pF != 0) delete [] pF; 390 if (Nvert > 0 && Nface > 0) { 259 if (Nvert > 0 && Nface > 0) { 391 nvert = Nvert; 260 nvert = Nvert; 392 nface = Nface; 261 nface = Nface; 393 pV = new G4Point3D[nvert+1]; 262 pV = new G4Point3D[nvert+1]; 394 pF = new G4Facet[nface+1]; 263 pF = new G4Facet[nface+1]; 395 }else{ 264 }else{ 396 nvert = 0; nface = 0; pV = nullptr; pF = n << 265 nvert = 0; nface = 0; pV = 0; pF = 0; 397 } 266 } 398 } 267 } 399 268 400 void HepPolyhedron::CreatePrism() 269 void HepPolyhedron::CreatePrism() 401 /********************************************* 270 /*********************************************************************** 402 * 271 * * 403 * Name: HepPolyhedron::CreatePrism 272 * Name: HepPolyhedron::CreatePrism Date: 15.07.96 * 404 * Author: E.Chernyaev (IHEP/Protvino) 273 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 405 * 274 * * 406 * Function: Set facets for a prism 275 * Function: Set facets for a prism * 407 * 276 * * 408 ********************************************* 277 ***********************************************************************/ 409 { 278 { 410 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON 279 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP}; 411 280 412 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 281 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 2,FRONT); 413 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 282 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 1,FRONT); 414 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 283 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 4,LEFT); 415 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 284 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 3,BACK); 416 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 285 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 2,RIGHT); 417 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 286 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 8,LEFT); 418 } 287 } 419 288 420 void HepPolyhedron::RotateEdge(G4int k1, G4int 289 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2, 421 G4int v1, G4int 290 G4int v1, G4int v2, G4int vEdge, 422 G4bool ifWholeCi << 291 G4bool ifWholeCircle, G4int ns, G4int &kface) 423 /********************************************* 292 /*********************************************************************** 424 * 293 * * 425 * Name: HepPolyhedron::RotateEdge 294 * Name: HepPolyhedron::RotateEdge Date: 05.12.96 * 426 * Author: E.Chernyaev (IHEP/Protvino) 295 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 427 * 296 * * 428 * Function: Create set of facets by rotation 297 * Function: Create set of facets by rotation of an edge around Z-axis * 429 * 298 * * 430 * Input: k1, k2 - end vertices of the edge 299 * Input: k1, k2 - end vertices of the edge * 431 * r1, r2 - radiuses of the end vertice 300 * r1, r2 - radiuses of the end vertices * 432 * v1, v2 - visibility of edges produce 301 * v1, v2 - visibility of edges produced by rotation of the end * 433 * vertices 302 * vertices * 434 * vEdge - visibility of the edge 303 * vEdge - visibility of the edge * 435 * ifWholeCircle - is true in case of w 304 * ifWholeCircle - is true in case of whole circle rotation * 436 * nds - number of discrete steps << 305 * ns - number of discrete steps * 437 * r[] - r-coordinates 306 * r[] - r-coordinates * 438 * kface - current free cell in the pF 307 * kface - current free cell in the pF array * 439 * 308 * * 440 ********************************************* 309 ***********************************************************************/ 441 { 310 { 442 if (r1 == 0. && r2 == 0.) return; << 311 if (r1 == 0. && r2 == 0) return; 443 312 444 G4int i; 313 G4int i; 445 G4int i1 = k1; 314 G4int i1 = k1; 446 G4int i2 = k2; 315 G4int i2 = k2; 447 G4int ii1 = ifWholeCircle ? i1 : i1+nds; << 316 G4int ii1 = ifWholeCircle ? i1 : i1+ns; 448 G4int ii2 = ifWholeCircle ? i2 : i2+nds; << 317 G4int ii2 = ifWholeCircle ? i2 : i2+ns; 449 G4int vv = ifWholeCircle ? vEdge : 1; 318 G4int vv = ifWholeCircle ? vEdge : 1; 450 319 451 if (nds == 1) { << 320 if (ns == 1) { 452 if (r1 == 0.) { 321 if (r1 == 0.) { 453 pF[kface++] = G4Facet(i1,0, v2*i2,0 322 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0); 454 }else if (r2 == 0.) { 323 }else if (r2 == 0.) { 455 pF[kface++] = G4Facet(i1,0, i2,0, 324 pF[kface++] = G4Facet(i1,0, i2,0, v1*(i1+1),0); 456 }else{ 325 }else{ 457 pF[kface++] = G4Facet(i1,0, v2*i2,0 326 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0, v1*(i1+1),0); 458 } 327 } 459 }else{ 328 }else{ 460 if (r1 == 0.) { 329 if (r1 == 0.) { 461 pF[kface++] = G4Facet(vv*i1,0, v2*i 330 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0); 462 for (i2++,i=1; i<nds-1; i2++,i++) { << 331 for (i2++,i=1; i<ns-1; i2++,i++) { 463 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 332 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0); 464 } 333 } 465 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 334 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0); 466 }else if (r2 == 0.) { 335 }else if (r2 == 0.) { 467 pF[kface++] = G4Facet(vv*i1,0, vEdg 336 pF[kface++] = G4Facet(vv*i1,0, vEdge*i2,0, v1*(i1+1),0); 468 for (i1++,i=1; i<nds-1; i1++,i++) { << 337 for (i1++,i=1; i<ns-1; i1++,i++) { 469 pF[kface++] = G4Facet(vEdge*i1,0, vEdg 338 pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0); 470 } 339 } 471 pF[kface++] = G4Facet(vEdge*i1,0, vv*i 340 pF[kface++] = G4Facet(vEdge*i1,0, vv*i2,0, v1*ii1,0); 472 }else{ 341 }else{ 473 pF[kface++] = G4Facet(vv*i1,0, v2*i 342 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 474 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i << 343 for (i1++,i2++,i=1; i<ns-1; i1++,i2++,i++) { 475 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 344 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 476 } << 345 } 477 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 346 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0, v1*ii1,0); 478 } 347 } 479 } 348 } 480 } 349 } 481 350 482 void HepPolyhedron::SetSideFacets(G4int ii[4], 351 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4], 483 G4int *kk, G4 352 G4int *kk, G4double *r, 484 G4double dphi << 353 G4double dphi, G4int ns, G4int &kface) 485 /********************************************* 354 /*********************************************************************** 486 * 355 * * 487 * Name: HepPolyhedron::SetSideFacets 356 * Name: HepPolyhedron::SetSideFacets Date: 20.05.97 * 488 * Author: E.Chernyaev (IHEP/Protvino) 357 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 489 * 358 * * 490 * Function: Set side facets for the case of i 359 * Function: Set side facets for the case of incomplete rotation * 491 * 360 * * 492 * Input: ii[4] - indices of original vertices << 361 * Input: ii[4] - indeces of original verteces * 493 * vv[4] - visibility of edges 362 * vv[4] - visibility of edges * 494 * kk[] - indices of nodes << 363 * kk[] - indeces of nodes * 495 * r[] - radiuses 364 * r[] - radiuses * 496 * dphi - delta phi 365 * dphi - delta phi * 497 * nds - number of discrete steps << 366 * ns - number of discrete steps * 498 * kface - current free cell in the pF 367 * kface - current free cell in the pF array * 499 * 368 * * 500 ********************************************* 369 ***********************************************************************/ 501 { 370 { 502 G4int k1, k2, k3, k4; 371 G4int k1, k2, k3, k4; 503 << 372 504 if (std::abs(dphi-pi) < perMillion) { // hal << 373 if (std::abs((G4double)(dphi-pi)) < perMillion) { // half a circle 505 for (G4int i=0; i<4; i++) { 374 for (G4int i=0; i<4; i++) { 506 k1 = ii[i]; 375 k1 = ii[i]; 507 k2 = ii[(i+1)%4]; << 376 k2 = (i == 3) ? ii[0] : ii[i+1]; 508 if (r[k1] == 0. && r[k2] == 0.) vv[i] = << 377 if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1; 509 } 378 } 510 } 379 } 511 380 512 if (ii[1] == ii[2]) { 381 if (ii[1] == ii[2]) { 513 k1 = kk[ii[0]]; 382 k1 = kk[ii[0]]; 514 k2 = kk[ii[2]]; 383 k2 = kk[ii[2]]; 515 k3 = kk[ii[3]]; 384 k3 = kk[ii[3]]; 516 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2 385 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 517 if (r[ii[0]] != 0.) k1 += nds; << 386 if (r[ii[0]] != 0.) k1 += ns; 518 if (r[ii[2]] != 0.) k2 += nds; << 387 if (r[ii[2]] != 0.) k2 += ns; 519 if (r[ii[3]] != 0.) k3 += nds; << 388 if (r[ii[3]] != 0.) k3 += ns; 520 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2 389 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 521 }else if (kk[ii[0]] == kk[ii[1]]) { 390 }else if (kk[ii[0]] == kk[ii[1]]) { 522 k1 = kk[ii[0]]; 391 k1 = kk[ii[0]]; 523 k2 = kk[ii[2]]; 392 k2 = kk[ii[2]]; 524 k3 = kk[ii[3]]; 393 k3 = kk[ii[3]]; 525 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2 394 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 526 if (r[ii[0]] != 0.) k1 += nds; << 395 if (r[ii[0]] != 0.) k1 += ns; 527 if (r[ii[2]] != 0.) k2 += nds; << 396 if (r[ii[2]] != 0.) k2 += ns; 528 if (r[ii[3]] != 0.) k3 += nds; << 397 if (r[ii[3]] != 0.) k3 += ns; 529 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2 398 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0); 530 }else if (kk[ii[2]] == kk[ii[3]]) { 399 }else if (kk[ii[2]] == kk[ii[3]]) { 531 k1 = kk[ii[0]]; 400 k1 = kk[ii[0]]; 532 k2 = kk[ii[1]]; 401 k2 = kk[ii[1]]; 533 k3 = kk[ii[2]]; 402 k3 = kk[ii[2]]; 534 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 403 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0); 535 if (r[ii[0]] != 0.) k1 += nds; << 404 if (r[ii[0]] != 0.) k1 += ns; 536 if (r[ii[1]] != 0.) k2 += nds; << 405 if (r[ii[1]] != 0.) k2 += ns; 537 if (r[ii[2]] != 0.) k3 += nds; << 406 if (r[ii[2]] != 0.) k3 += ns; 538 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2 407 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 539 }else{ 408 }else{ 540 k1 = kk[ii[0]]; 409 k1 = kk[ii[0]]; 541 k2 = kk[ii[1]]; 410 k2 = kk[ii[1]]; 542 k3 = kk[ii[2]]; 411 k3 = kk[ii[2]]; 543 k4 = kk[ii[3]]; 412 k4 = kk[ii[3]]; 544 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 413 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0); 545 if (r[ii[0]] != 0.) k1 += nds; << 414 if (r[ii[0]] != 0.) k1 += ns; 546 if (r[ii[1]] != 0.) k2 += nds; << 415 if (r[ii[1]] != 0.) k2 += ns; 547 if (r[ii[2]] != 0.) k3 += nds; << 416 if (r[ii[2]] != 0.) k3 += ns; 548 if (r[ii[3]] != 0.) k4 += nds; << 417 if (r[ii[3]] != 0.) k4 += ns; 549 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3 418 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 550 } 419 } 551 } 420 } 552 421 553 void HepPolyhedron::RotateAroundZ(G4int nstep, 422 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi, 554 G4int np1, G4 423 G4int np1, G4int np2, 555 const G4doubl 424 const G4double *z, G4double *r, 556 G4int nodeVis 425 G4int nodeVis, G4int edgeVis) 557 /********************************************* 426 /*********************************************************************** 558 * 427 * * 559 * Name: HepPolyhedron::RotateAroundZ 428 * Name: HepPolyhedron::RotateAroundZ Date: 27.11.96 * 560 * Author: E.Chernyaev (IHEP/Protvino) 429 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 561 * 430 * * 562 * Function: Create HepPolyhedron for a solid 431 * Function: Create HepPolyhedron for a solid produced by rotation of * 563 * two polylines around Z-axis 432 * two polylines around Z-axis * 564 * 433 * * 565 * Input: nstep - number of discrete steps, if 434 * Input: nstep - number of discrete steps, if 0 then default * 566 * phi - starting phi angle 435 * phi - starting phi angle * 567 * dphi - delta phi 436 * dphi - delta phi * 568 * np1 - number of points in external 437 * np1 - number of points in external polyline * 569 * (must be negative in case of 438 * (must be negative in case of closed polyline) * 570 * np2 - number of points in internal 439 * np2 - number of points in internal polyline (may be 1) * 571 * z[] - z-coordinates (+z >>> -z for 440 * z[] - z-coordinates (+z >>> -z for both polylines) * 572 * r[] - r-coordinates 441 * r[] - r-coordinates * 573 * nodeVis - how to Draw edges joing co 442 * nodeVis - how to Draw edges joing consecutive positions of * 574 * node during rotation 443 * node during rotation * 575 * edgeVis - how to Draw edges 444 * edgeVis - how to Draw edges * 576 * 445 * * 577 ********************************************* 446 ***********************************************************************/ 578 { 447 { 579 static const G4double wholeCircle = twopi; << 448 static G4double wholeCircle = twopi; 580 << 449 581 // S E T R O T A T I O N P A R A M E T 450 // S E T R O T A T I O N P A R A M E T E R S 582 451 583 G4bool ifWholeCircle = std::abs(dphi-wholeCi << 452 G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false; 584 G4double delPhi = ifWholeCircle ? wholeCircl << 453 G4double delPhi = ifWholeCircle ? wholeCircle : dphi; 585 G4int nSphi = nstep; << 454 G4int nSphi = (nstep > 0) ? 586 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 455 nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5); 587 if (nSphi == 0) nSphi = 1; 456 if (nSphi == 0) nSphi = 1; 588 G4int nVphi = ifWholeCircle ? nSphi : nSphi << 457 G4int nVphi = ifWholeCircle ? nSphi : nSphi+1; 589 G4bool ifClosed = np1 <= 0; // true if exter << 458 G4bool ifClosed = np1 > 0 ? false : true; 590 << 459 591 // C O U N T V E R T I C E S << 460 // C O U N T V E R T E C E S 592 461 593 G4int absNp1 = std::abs(np1); 462 G4int absNp1 = std::abs(np1); 594 G4int absNp2 = std::abs(np2); 463 G4int absNp2 = std::abs(np2); 595 G4int i1beg = 0; 464 G4int i1beg = 0; 596 G4int i1end = absNp1-1; 465 G4int i1end = absNp1-1; 597 G4int i2beg = absNp1; 466 G4int i2beg = absNp1; 598 G4int i2end = absNp1+absNp2-1; << 467 G4int i2end = absNp1+absNp2-1; 599 G4int i, j, k; 468 G4int i, j, k; 600 469 601 for(i=i1beg; i<=i2end; i++) { 470 for(i=i1beg; i<=i2end; i++) { 602 if (std::abs(r[i]) < spatialTolerance) r[i << 471 if (std::abs(r[i]) < perMillion) r[i] = 0.; 603 } 472 } 604 473 605 // external polyline - check position of nod << 474 j = 0; // external nodes 606 // << 607 G4int Nverts = 0; << 608 for (i=i1beg; i<=i1end; i++) { 475 for (i=i1beg; i<=i1end; i++) { 609 Nverts += (r[i] == 0.) ? 1 : nVphi; << 476 j += (r[i] == 0.) ? 1 : nVphi; 610 } 477 } 611 478 612 // internal polyline << 479 G4bool ifSide1 = false; // internal nodes 613 // << 480 G4bool ifSide2 = false; 614 G4bool ifSide1 = false; // whether to create << 615 G4bool ifSide2 = false; // whether to create << 616 481 617 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 482 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) { 618 Nverts += (r[i2beg] == 0.) ? 1 : nVphi; << 483 j += (r[i2beg] == 0.) ? 1 : nVphi; 619 ifSide1 = true; 484 ifSide1 = true; 620 } 485 } 621 486 622 for(i=i2beg+1; i<i2end; i++) { // intermedia << 487 for(i=i2beg+1; i<i2end; i++) { 623 Nverts += (r[i] == 0.) ? 1 : nVphi; << 488 j += (r[i] == 0.) ? 1 : nVphi; 624 } 489 } 625 << 490 626 if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 491 if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) { 627 if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 492 if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi; 628 ifSide2 = true; 493 ifSide2 = true; 629 } 494 } 630 495 631 // C O U N T F A C E S 496 // C O U N T F A C E S 632 497 633 // external lateral faces << 498 k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi; // external faces 634 // << 635 G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 636 499 637 // internal lateral faces << 500 if (absNp2 > 1) { // internal faces 638 // << 639 if (absNp2 > 1) { << 640 for(i=i2beg; i<i2end; i++) { 501 for(i=i2beg; i<i2end; i++) { 641 if (r[i] > 0. || r[i+1] > 0.) Nfaces += << 502 if (r[i] > 0. || r[i+1] > 0.) k += nSphi; 642 } 503 } 643 504 644 if (ifClosed) { 505 if (ifClosed) { 645 if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 506 if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi; 646 } 507 } 647 } 508 } 648 509 649 // bottom and top faces << 510 if (!ifClosed) { // side faces 650 // << 511 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi; 651 if (!ifClosed) { << 512 if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi; 652 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] << 653 if (ifSide2 && (r[i1end] > 0. || r[i2end] << 654 } 513 } 655 514 656 // phi_wedge faces << 515 if (!ifWholeCircle) { // phi_side faces 657 // << 516 k += ifClosed ? 2*absNp1 : 2*(absNp1-1); 658 if (!ifWholeCircle) { << 659 Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 660 } 517 } 661 518 662 // A L L O C A T E M E M O R Y 519 // A L L O C A T E M E M O R Y 663 520 664 AllocateMemory(Nverts, Nfaces); << 521 AllocateMemory(j, k); 665 if (pV == nullptr || pF == nullptr) return; << 666 522 667 // G E N E R A T E V E R T I C E S << 523 // G E N E R A T E V E R T E C E S 668 524 669 G4int *kk; // array of start indices along p << 525 G4int *kk; 670 kk = new G4int[absNp1+absNp2]; 526 kk = new G4int[absNp1+absNp2]; 671 527 672 // external polyline << 528 k = 1; 673 // << 674 k = 1; // free position in array of vertices << 675 for(i=i1beg; i<=i1end; i++) { 529 for(i=i1beg; i<=i1end; i++) { 676 kk[i] = k; 530 kk[i] = k; 677 if (r[i] == 0.) 531 if (r[i] == 0.) 678 { pV[k++] = G4Point3D(0, 0, z[i]); } else 532 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 679 } 533 } 680 534 681 // first point of internal polyline << 682 // << 683 i = i2beg; 535 i = i2beg; 684 if (ifSide1) { 536 if (ifSide1) { 685 kk[i] = k; 537 kk[i] = k; 686 if (r[i] == 0.) 538 if (r[i] == 0.) 687 { pV[k++] = G4Point3D(0, 0, z[i]); } else 539 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 688 }else{ 540 }else{ 689 kk[i] = kk[i1beg]; 541 kk[i] = kk[i1beg]; 690 } 542 } 691 543 692 // intermediate points of internal polyline << 693 // << 694 for(i=i2beg+1; i<i2end; i++) { 544 for(i=i2beg+1; i<i2end; i++) { 695 kk[i] = k; 545 kk[i] = k; 696 if (r[i] == 0.) 546 if (r[i] == 0.) 697 { pV[k++] = G4Point3D(0, 0, z[i]); } else 547 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 698 } 548 } 699 549 700 // last point of internal polyline << 701 // << 702 if (absNp2 > 1) { 550 if (absNp2 > 1) { 703 i = i2end; 551 i = i2end; 704 if (ifSide2) { 552 if (ifSide2) { 705 kk[i] = k; 553 kk[i] = k; 706 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, 554 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]); 707 }else{ 555 }else{ 708 kk[i] = kk[i1end]; 556 kk[i] = kk[i1end]; 709 } 557 } 710 } 558 } 711 559 712 // set vertices << 713 // << 714 G4double cosPhi, sinPhi; 560 G4double cosPhi, sinPhi; 715 561 716 for(j=0; j<nVphi; j++) { 562 for(j=0; j<nVphi; j++) { 717 cosPhi = std::cos(phi+j*delPhi/nSphi); 563 cosPhi = std::cos(phi+j*delPhi/nSphi); 718 sinPhi = std::sin(phi+j*delPhi/nSphi); 564 sinPhi = std::sin(phi+j*delPhi/nSphi); 719 for(i=i1beg; i<=i2end; i++) { 565 for(i=i1beg; i<=i2end; i++) { 720 if (r[i] != 0.) 566 if (r[i] != 0.) 721 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[ 567 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]); 722 } 568 } 723 } 569 } 724 570 725 // G E N E R A T E F A C E S << 571 // G E N E R A T E E X T E R N A L F A C E S 726 572 727 // external faces << 728 // << 729 G4int v1,v2; 573 G4int v1,v2; 730 574 731 k = 1; // free position in array of faces pF << 575 k = 1; 732 v2 = ifClosed ? nodeVis : 1; 576 v2 = ifClosed ? nodeVis : 1; 733 for(i=i1beg; i<i1end; i++) { 577 for(i=i1beg; i<i1end; i++) { 734 v1 = v2; 578 v1 = v2; 735 if (!ifClosed && i == i1end-1) { 579 if (!ifClosed && i == i1end-1) { 736 v2 = 1; 580 v2 = 1; 737 }else{ 581 }else{ 738 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2] 582 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 739 } 583 } 740 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v 584 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2, 741 edgeVis, ifWholeCircle, nSphi, 585 edgeVis, ifWholeCircle, nSphi, k); 742 } 586 } 743 if (ifClosed) { 587 if (ifClosed) { 744 RotateEdge(kk[i1end], kk[i1beg], r[i1end], 588 RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis, 745 edgeVis, ifWholeCircle, nSphi, 589 edgeVis, ifWholeCircle, nSphi, k); 746 } 590 } 747 591 748 // internal faces << 592 // G E N E R A T E I N T E R N A L F A C E S 749 // << 593 750 if (absNp2 > 1) { 594 if (absNp2 > 1) { 751 v2 = ifClosed ? nodeVis : 1; 595 v2 = ifClosed ? nodeVis : 1; 752 for(i=i2beg; i<i2end; i++) { 596 for(i=i2beg; i<i2end; i++) { 753 v1 = v2; 597 v1 = v2; 754 if (!ifClosed && i==i2end-1) { 598 if (!ifClosed && i==i2end-1) { 755 v2 = 1; 599 v2 = 1; 756 }else{ 600 }else{ 757 v2 = (r[i] == r[i+1] && r[i+1] == r[i+ 601 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 758 } 602 } 759 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], 603 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1, 760 edgeVis, ifWholeCircle, nSphi 604 edgeVis, ifWholeCircle, nSphi, k); 761 } 605 } 762 if (ifClosed) { 606 if (ifClosed) { 763 RotateEdge(kk[i2beg], kk[i2end], r[i2beg 607 RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis, 764 edgeVis, ifWholeCircle, nSphi 608 edgeVis, ifWholeCircle, nSphi, k); 765 } 609 } 766 } 610 } 767 611 768 // bottom and top faces << 612 // G E N E R A T E S I D E F A C E S 769 // << 613 770 if (!ifClosed) { 614 if (!ifClosed) { 771 if (ifSide1) { 615 if (ifSide1) { 772 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg 616 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1, 773 -1, ifWholeCircle, nSphi, k); 617 -1, ifWholeCircle, nSphi, k); 774 } 618 } 775 if (ifSide2) { 619 if (ifSide2) { 776 RotateEdge(kk[i1end], kk[i2end], r[i1end 620 RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1, 777 -1, ifWholeCircle, nSphi, k); 621 -1, ifWholeCircle, nSphi, k); 778 } 622 } 779 } 623 } 780 624 781 // phi_wedge faces in case of incomplete cir << 625 // G E N E R A T E S I D E F A C E S for the case of incomplete circle 782 // << 626 783 if (!ifWholeCircle) { 627 if (!ifWholeCircle) { 784 628 785 G4int ii[4], vv[4]; 629 G4int ii[4], vv[4]; 786 630 787 if (ifClosed) { 631 if (ifClosed) { 788 for (i=i1beg; i<=i1end; i++) { 632 for (i=i1beg; i<=i1end; i++) { 789 ii[0] = i; 633 ii[0] = i; 790 ii[3] = (i == i1end) ? i1beg : i+1; 634 ii[3] = (i == i1end) ? i1beg : i+1; 791 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 635 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 792 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 636 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 793 vv[0] = -1; 637 vv[0] = -1; 794 vv[1] = 1; 638 vv[1] = 1; 795 vv[2] = -1; 639 vv[2] = -1; 796 vv[3] = 1; 640 vv[3] = 1; 797 SetSideFacets(ii, vv, kk, r, delPhi, n << 641 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 798 } 642 } 799 }else{ 643 }else{ 800 for (i=i1beg; i<i1end; i++) { 644 for (i=i1beg; i<i1end; i++) { 801 ii[0] = i; 645 ii[0] = i; 802 ii[3] = i+1; 646 ii[3] = i+1; 803 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 647 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 804 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 648 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 805 vv[0] = (i == i1beg) ? 1 : -1; 649 vv[0] = (i == i1beg) ? 1 : -1; 806 vv[1] = 1; 650 vv[1] = 1; 807 vv[2] = (i == i1end-1) ? 1 : -1; 651 vv[2] = (i == i1end-1) ? 1 : -1; 808 vv[3] = 1; 652 vv[3] = 1; 809 SetSideFacets(ii, vv, kk, r, delPhi, n << 653 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 810 } 654 } 811 } << 655 } 812 } 656 } 813 657 814 delete [] kk; // free memory << 658 delete [] kk; 815 659 816 // final check << 817 // << 818 if (k-1 != nface) { 660 if (k-1 != nface) { 819 std::cerr 661 std::cerr 820 << "HepPolyhedron::RotateAroundZ: number << 662 << "Polyhedron::RotateAroundZ: number of generated faces (" 821 << k-1 << ") is not equal to the number 663 << k-1 << ") is not equal to the number of allocated faces (" 822 << nface << ")" 664 << nface << ")" 823 << std::endl; 665 << std::endl; 824 } 666 } 825 } 667 } 826 668 827 void << 828 HepPolyhedron::RotateContourAroundZ(G4int nste << 829 G4double p << 830 G4double d << 831 const std: << 832 G4int node << 833 G4int edge << 834 /********************************************* << 835 * << 836 * Name: HepPolyhedron::RotateContourAroundZ << 837 * Author: E.Tcherniaev (E.Chernyaev) << 838 * << 839 * Function: Create HepPolyhedron for a solid << 840 * a closed polyline (rz-contour) ar << 841 * << 842 * Input: nstep - number of discrete steps, if << 843 * phi - starting phi angle << 844 * dphi - delta phi << 845 * rz - rz-contour << 846 * nodeVis - how to Draw edges joing co << 847 * node during rotation << 848 * edgeVis - how to Draw edges << 849 * << 850 ********************************************* << 851 { << 852 // S E T R O T A T I O N P A R A M E T << 853 << 854 G4bool ifWholeCircle = std::abs(dphi - twopi << 855 G4double delPhi = (ifWholeCircle) ? twopi : << 856 G4int nSphi = nstep; << 857 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 858 if (nSphi == 0) nSphi = 1; << 859 G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 860 << 861 // C A L C U L A T E A R E A << 862 << 863 G4int Nrz = (G4int)rz.size(); << 864 G4double area = 0; << 865 for (G4int i = 0; i < Nrz; ++i) << 866 { << 867 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 868 area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 869 } << 870 << 871 // P R E P A R E P O L Y L I N E << 872 << 873 auto r = new G4double[Nrz]; << 874 auto z = new G4double[Nrz]; << 875 for (G4int i = 0; i < Nrz; ++i) << 876 { << 877 r[i] = rz[i].x(); << 878 z[i] = rz[i].y(); << 879 if (std::abs(r[i]) < spatialTolerance) r[i << 880 } << 881 << 882 // C O U N T V E R T I C E S A N D F << 883 << 884 G4int Nverts = 0; << 885 for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 886 << 887 G4int Nedges = Nrz; << 888 for (G4int i = 0; i < Nrz; ++i) << 889 { << 890 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 891 Nedges -= static_cast<int>(r[k] == 0 && r[ << 892 } << 893 << 894 G4int Nfaces = Nedges*nSphi; / << 895 if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 896 << 897 // A L L O C A T E M E M O R Y << 898 << 899 AllocateMemory(Nverts, Nfaces); << 900 if (pV == nullptr || pF == nullptr) << 901 { << 902 delete [] r; << 903 delete [] z; << 904 return; << 905 } << 906 << 907 // S E T V E R T I C E S << 908 << 909 auto kk = new G4int[Nrz]; // start indices a << 910 G4int kfree = 1; // current free position in << 911 << 912 // set start indices, set vertices for nodes << 913 for(G4int i = 0; i < Nrz; ++i) << 914 { << 915 kk[i] = kfree; << 916 if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 917 if (r[i] != 0.) kfree += nVphi; << 918 } << 919 << 920 // set vertices by rotating r << 921 for(G4int j = 0; j < nVphi; ++j) << 922 { << 923 G4double cosPhi = std::cos(phi + j*delPhi/ << 924 G4double sinPhi = std::sin(phi + j*delPhi/ << 925 for(G4int i = 0; i < Nrz; ++i) << 926 { << 927 if (r[i] != 0.) << 928 pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 929 } << 930 } << 931 << 932 // S E T F A C E S << 933 << 934 kfree = 1; // current free position in array << 935 for(G4int i = 0; i < Nrz; ++i) << 936 { << 937 G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 938 G4int i2 = i; << 939 if (area < 0.) std::swap(i1, i2); << 940 RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 941 edgeVis, ifWholeCircle, nSphi, << 942 } << 943 << 944 // S E T P H I _ W E D G E F A C E S << 945 << 946 if (!ifWholeCircle) << 947 { << 948 std::vector<G4int> triangles; << 949 TriangulatePolygon(rz, triangles); << 950 << 951 G4int ii[4], vv[4]; << 952 G4int ntria = G4int(triangles.size()/3); << 953 for (G4int i = 0; i < ntria; ++i) << 954 { << 955 G4int i1 = triangles[0 + i*3]; << 956 G4int i2 = triangles[1 + i*3]; << 957 G4int i3 = triangles[2 + i*3]; << 958 if (area < 0.) std::swap(i1, i3); << 959 G4int v1 = (std::abs(i2-i1) == 1 || std: << 960 G4int v2 = (std::abs(i3-i2) == 1 || std: << 961 G4int v3 = (std::abs(i1-i3) == 1 || std: << 962 ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 963 vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 964 SetSideFacets(ii, vv, kk, r, delPhi, nSp << 965 } << 966 } << 967 << 968 // free memory << 969 delete [] r; << 970 delete [] z; << 971 delete [] kk; << 972 << 973 // final check << 974 if (kfree - 1 != nface) << 975 { << 976 std::cerr << 977 << "HepPolyhedron::RotateContourAroundZ: << 978 << kfree-1 << ") is not equal to the num << 979 << nface << ")" << 980 << std::endl; << 981 } << 982 } << 983 << 984 G4bool << 985 HepPolyhedron::TriangulatePolygon(const std::v << 986 std::vector< << 987 /********************************************* << 988 * << 989 * Name: HepPolyhedron::TriangulatePolygon << 990 * Author: E.Tcherniaev (E.Chernyaev) << 991 * << 992 * Function: Simple implementation of "ear cli << 993 * triangulation of a simple contour << 994 * the result in a std::vector as tr << 995 * << 996 * If triangulation is sucsessfull t << 997 * returns true, otherwise false << 998 * << 999 * Remark: It's a copy of G4GeomTools::Trian << 1000 * << 1001 ******************************************** << 1002 { << 1003 result.resize(0); << 1004 G4int n = (G4int)polygon.size(); << 1005 if (n < 3) return false; << 1006 << 1007 // calculate area << 1008 // << 1009 G4double area = 0.; << 1010 for(G4int i = 0; i < n; ++i) << 1011 { << 1012 G4int k = (i == 0) ? n - 1 : i - 1; << 1013 area += polygon[k].x()*polygon[i].y() - p << 1014 } << 1015 << 1016 // allocate and initialize list of Vertices << 1017 // we want a counter-clockwise polygon in V << 1018 // << 1019 auto V = new G4int[n]; << 1020 if (area > 0.) << 1021 for (G4int i = 0; i < n; ++i) V[i] = i; << 1022 else << 1023 for (G4int i = 0; i < n; ++i) V[i] = (n - << 1024 << 1025 // Triangulation: remove nv-2 Vertices, cr << 1026 // << 1027 G4int nv = n; << 1028 G4int count = 2*nv; // error detection coun << 1029 for(G4int b = nv - 1; nv > 2; ) << 1030 { << 1031 // ERROR: if we loop, it is probably a no << 1032 if ((count--) <= 0) << 1033 { << 1034 delete [] V; << 1035 if (area < 0.) std::reverse(result.begi << 1036 return false; << 1037 } << 1038 << 1039 // three consecutive vertices in current << 1040 G4int a = (b < nv) ? b : 0; // previo << 1041 b = (a+1 < nv) ? a+1 : 0; // curren << 1042 G4int c = (b+1 < nv) ? b+1 : 0; // next << 1043 << 1044 if (CheckSnip(polygon, a,b,c, nv,V)) << 1045 { << 1046 // output Triangle << 1047 result.push_back(V[a]); << 1048 result.push_back(V[b]); << 1049 result.push_back(V[c]); << 1050 << 1051 // remove vertex b from remaining polyg << 1052 nv--; << 1053 for(G4int i = b; i < nv; ++i) V[i] = V[ << 1054 << 1055 count = 2*nv; // resest error detection << 1056 } << 1057 } << 1058 delete [] V; << 1059 if (area < 0.) std::reverse(result.begin(), << 1060 return true; << 1061 } << 1062 << 1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 1064 G4int a, G4in << 1065 G4int n, cons << 1066 /******************************************** << 1067 * << 1068 * Name: HepPolyhedron::CheckSnip << 1069 * Author: E.Tcherniaev (E.Chernyaev) << 1070 * << 1071 * Function: Check for a valid snip, << 1072 * it is a helper functionfor Trian << 1073 * << 1074 ******************************************** << 1075 { << 1076 static const G4double kCarTolerance = 1.e-9 << 1077 << 1078 // check orientation of Triangle << 1079 G4double Ax = contour[V[a]].x(), Ay = conto << 1080 G4double Bx = contour[V[b]].x(), By = conto << 1081 G4double Cx = contour[V[c]].x(), Cy = conto << 1082 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 1083 << 1084 // check that there is no point inside Tria << 1085 G4double xmin = std::min(std::min(Ax,Bx),Cx << 1086 G4double xmax = std::max(std::max(Ax,Bx),Cx << 1087 G4double ymin = std::min(std::min(Ay,By),Cy << 1088 G4double ymax = std::max(std::max(Ay,By),Cy << 1089 << 1090 for (G4int i=0; i<n; ++i) << 1091 { << 1092 if((i == a) || (i == b) || (i == c)) cont << 1093 G4double Px = contour[V[i]].x(); << 1094 if (Px < xmin || Px > xmax) continue; << 1095 G4double Py = contour[V[i]].y(); << 1096 if (Py < ymin || Py > ymax) continue; << 1097 // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 1098 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 1099 { << 1100 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 1101 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 1102 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 1103 } << 1104 else << 1105 { << 1106 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 1107 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 1108 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 1109 } << 1110 return false; << 1111 } << 1112 return true; << 1113 } << 1114 << 1115 void HepPolyhedron::SetReferences() 669 void HepPolyhedron::SetReferences() 1116 /******************************************** 670 /*********************************************************************** 1117 * 671 * * 1118 * Name: HepPolyhedron::SetReferences 672 * Name: HepPolyhedron::SetReferences Date: 04.12.96 * 1119 * Author: E.Chernyaev (IHEP/Protvino) 673 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1120 * 674 * * 1121 * Function: For each edge set reference to n 675 * Function: For each edge set reference to neighbouring facet * 1122 * 676 * * 1123 ******************************************** 677 ***********************************************************************/ 1124 { 678 { 1125 if (nface <= 0) return; 679 if (nface <= 0) return; 1126 680 1127 struct edgeListMember { 681 struct edgeListMember { 1128 edgeListMember *next; 682 edgeListMember *next; 1129 G4int v2; 683 G4int v2; 1130 G4int iface; 684 G4int iface; 1131 G4int iedge; 685 G4int iedge; 1132 } *edgeList, *freeList, **headList; 686 } *edgeList, *freeList, **headList; 1133 687 1134 << 688 1135 // A L L O C A T E A N D I N I T I A 689 // A L L O C A T E A N D I N I T I A T E L I S T S 1136 690 1137 edgeList = new edgeListMember[2*nface]; 691 edgeList = new edgeListMember[2*nface]; 1138 headList = new edgeListMember*[nvert]; 692 headList = new edgeListMember*[nvert]; 1139 << 693 1140 G4int i; 694 G4int i; 1141 for (i=0; i<nvert; i++) { 695 for (i=0; i<nvert; i++) { 1142 headList[i] = nullptr; << 696 headList[i] = 0; 1143 } 697 } 1144 freeList = edgeList; 698 freeList = edgeList; 1145 for (i=0; i<2*nface-1; i++) { 699 for (i=0; i<2*nface-1; i++) { 1146 edgeList[i].next = &edgeList[i+1]; 700 edgeList[i].next = &edgeList[i+1]; 1147 } 701 } 1148 edgeList[2*nface-1].next = nullptr; << 702 edgeList[2*nface-1].next = 0; 1149 703 1150 // L O O P A L O N G E D G E S 704 // L O O P A L O N G E D G E S 1151 705 1152 G4int iface, iedge, nedge, i1, i2, k1, k2; 706 G4int iface, iedge, nedge, i1, i2, k1, k2; 1153 edgeListMember *prev, *cur; 707 edgeListMember *prev, *cur; 1154 << 708 1155 for(iface=1; iface<=nface; iface++) { 709 for(iface=1; iface<=nface; iface++) { 1156 nedge = (pF[iface].edge[3].v == 0) ? 3 : 710 nedge = (pF[iface].edge[3].v == 0) ? 3 : 4; 1157 for (iedge=0; iedge<nedge; iedge++) { 711 for (iedge=0; iedge<nedge; iedge++) { 1158 i1 = iedge; 712 i1 = iedge; 1159 i2 = (iedge < nedge-1) ? iedge+1 : 0; 713 i2 = (iedge < nedge-1) ? iedge+1 : 0; 1160 i1 = std::abs(pF[iface].edge[i1].v); 714 i1 = std::abs(pF[iface].edge[i1].v); 1161 i2 = std::abs(pF[iface].edge[i2].v); 715 i2 = std::abs(pF[iface].edge[i2].v); 1162 k1 = (i1 < i2) ? i1 : i2; // k 716 k1 = (i1 < i2) ? i1 : i2; // k1 = ::min(i1,i2); 1163 k2 = (i1 > i2) ? i1 : i2; // k 717 k2 = (i1 > i2) ? i1 : i2; // k2 = ::max(i1,i2); 1164 << 718 1165 // check head of the List corresponding 719 // check head of the List corresponding to k1 1166 cur = headList[k1]; 720 cur = headList[k1]; 1167 if (cur == nullptr) { << 721 if (cur == 0) { 1168 headList[k1] = freeList; 722 headList[k1] = freeList; 1169 if (freeList == nullptr) { << 1170 std::cerr << 1171 << "Polyhedron::SetReferences: bad << 1172 << std::endl; << 1173 break; << 1174 } << 1175 freeList = freeList->next; 723 freeList = freeList->next; 1176 cur = headList[k1]; 724 cur = headList[k1]; 1177 cur->next = nullptr; << 725 cur->next = 0; 1178 cur->v2 = k2; 726 cur->v2 = k2; 1179 cur->iface = iface; 727 cur->iface = iface; 1180 cur->iedge = iedge; 728 cur->iedge = iedge; 1181 continue; 729 continue; 1182 } 730 } 1183 731 1184 if (cur->v2 == k2) { 732 if (cur->v2 == k2) { 1185 headList[k1] = cur->next; 733 headList[k1] = cur->next; 1186 cur->next = freeList; 734 cur->next = freeList; 1187 freeList = cur; << 735 freeList = cur; 1188 pF[iface].edge[iedge].f = cur->iface; 736 pF[iface].edge[iedge].f = cur->iface; 1189 pF[cur->iface].edge[cur->iedge].f = i 737 pF[cur->iface].edge[cur->iedge].f = iface; 1190 i1 = (pF[iface].edge[iedge].v < 0) ? 738 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1191 i2 = (pF[cur->iface].edge[cur->iedge] 739 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1192 if (i1 != i2) { 740 if (i1 != i2) { 1193 std::cerr 741 std::cerr 1194 << "Polyhedron::SetReferences: di 742 << "Polyhedron::SetReferences: different edge visibility " 1195 << iface << "/" << iedge << "/" 743 << iface << "/" << iedge << "/" 1196 << pF[iface].edge[iedge].v << " a 744 << pF[iface].edge[iedge].v << " and " 1197 << cur->iface << "/" << cur->iedg 745 << cur->iface << "/" << cur->iedge << "/" 1198 << pF[cur->iface].edge[cur->iedge 746 << pF[cur->iface].edge[cur->iedge].v 1199 << std::endl; 747 << std::endl; 1200 } 748 } 1201 continue; 749 continue; 1202 } 750 } 1203 751 1204 // check List itself 752 // check List itself 1205 for (;;) { 753 for (;;) { 1206 prev = cur; 754 prev = cur; 1207 cur = prev->next; 755 cur = prev->next; 1208 if (cur == nullptr) { << 756 if (cur == 0) { 1209 prev->next = freeList; 757 prev->next = freeList; 1210 if (freeList == nullptr) { << 1211 std::cerr << 1212 << "Polyhedron::SetReferences: ba << 1213 << std::endl; << 1214 break; << 1215 } << 1216 freeList = freeList->next; 758 freeList = freeList->next; 1217 cur = prev->next; 759 cur = prev->next; 1218 cur->next = nullptr; << 760 cur->next = 0; 1219 cur->v2 = k2; 761 cur->v2 = k2; 1220 cur->iface = iface; 762 cur->iface = iface; 1221 cur->iedge = iedge; 763 cur->iedge = iedge; 1222 break; 764 break; 1223 } 765 } 1224 766 1225 if (cur->v2 == k2) { 767 if (cur->v2 == k2) { 1226 prev->next = cur->next; 768 prev->next = cur->next; 1227 cur->next = freeList; 769 cur->next = freeList; 1228 freeList = cur; << 770 freeList = cur; 1229 pF[iface].edge[iedge].f = cur->ifac 771 pF[iface].edge[iedge].f = cur->iface; 1230 pF[cur->iface].edge[cur->iedge].f = 772 pF[cur->iface].edge[cur->iedge].f = iface; 1231 i1 = (pF[iface].edge[iedge].v < 0) 773 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1232 i2 = (pF[cur->iface].edge[cur->iedg 774 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1233 if (i1 != i2) { 775 if (i1 != i2) { 1234 std::cerr 776 std::cerr 1235 << "Polyhedron::SetReferences 777 << "Polyhedron::SetReferences: different edge visibility " 1236 << iface << "/" << iedge << " 778 << iface << "/" << iedge << "/" 1237 << pF[iface].edge[iedge].v << 779 << pF[iface].edge[iedge].v << " and " 1238 << cur->iface << "/" << cur-> 780 << cur->iface << "/" << cur->iedge << "/" 1239 << pF[cur->iface].edge[cur->i 781 << pF[cur->iface].edge[cur->iedge].v 1240 << std::endl; 782 << std::endl; 1241 } 783 } 1242 break; 784 break; 1243 } 785 } 1244 } 786 } 1245 } 787 } 1246 } 788 } 1247 789 1248 // C H E C K T H A T A L L L I S T S 790 // C H E C K T H A T A L L L I S T S A R E E M P T Y 1249 791 1250 for (i=0; i<nvert; i++) { 792 for (i=0; i<nvert; i++) { 1251 if (headList[i] != nullptr) { << 793 if (headList[i] != 0) { 1252 std::cerr 794 std::cerr 1253 << "Polyhedron::SetReferences: List " 795 << "Polyhedron::SetReferences: List " << i << " is not empty" 1254 << std::endl; 796 << std::endl; 1255 } 797 } 1256 } 798 } 1257 799 1258 // F R E E M E M O R Y 800 // F R E E M E M O R Y 1259 801 1260 delete [] edgeList; 802 delete [] edgeList; 1261 delete [] headList; 803 delete [] headList; 1262 } 804 } 1263 805 1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 1265 /******************************************** << 1266 * << 1267 * Name: HepPolyhedron::JoinCoplanarFacets << 1268 * Author: E.Tcherniaev (E.Chernyaev) << 1269 * << 1270 * Function: Join couples of triangular facet << 1271 * where it is possible << 1272 * << 1273 ******************************************** << 1274 { << 1275 G4int njoin = 0; << 1276 for (G4int icur = 1; icur <= nface; ++icur) << 1277 { << 1278 // skip if already joined or quadrangle << 1279 if (pF[icur].edge[0].v == 0) continue; << 1280 if (pF[icur].edge[3].v != 0) continue; << 1281 // skip if all references point to alread << 1282 if (pF[icur].edge[0].f < icur && << 1283 pF[icur].edge[1].f < icur && << 1284 pF[icur].edge[2].f < icur) continue; << 1285 // compute plane equation << 1286 G4Normal3D norm = GetUnitNormal(icur); << 1287 G4double dd = norm.dot(pV[pF[icur].edge[0 << 1288 G4int vcur0 = std::abs(pF[icur].edge[0].v << 1289 G4int vcur1 = std::abs(pF[icur].edge[1].v << 1290 G4int vcur2 = std::abs(pF[icur].edge[2].v << 1291 // select neighbouring facet << 1292 G4int kcheck = 0, icheck = 0, vcheck = 0; << 1293 G4double dist = DBL_MAX; << 1294 for (G4int k = 0; k < 3; ++k) << 1295 { << 1296 G4int itmp = pF[icur].edge[k].f; << 1297 // skip if already checked, joined or q << 1298 if (itmp < icur) continue; << 1299 if (pF[itmp].edge[0].v == 0 || << 1300 pF[itmp].edge[3].v != 0) continue; << 1301 // get candidate vertex << 1302 G4int vtmp = 0; << 1303 for (G4int j = 0; j < 3; ++j) << 1304 { << 1305 vtmp = std::abs(pF[itmp].edge[j].v); << 1306 if (vtmp != vcur0 && vtmp != vcur1 && vtmp << 1307 } << 1308 // check distance to the plane << 1309 G4double dtmp = std::abs(norm.dot(pV[vt << 1310 if (dtmp > tolerance || dtmp >= dist) c << 1311 dist = dtmp; << 1312 kcheck = k; << 1313 icheck = itmp; << 1314 vcheck = vtmp; << 1315 } << 1316 if (icheck == 0) continue; // no facet se << 1317 // join facets << 1318 njoin++; << 1319 pF[icheck].edge[0].v = 0; // mark facet a << 1320 if (kcheck == 0) << 1321 { << 1322 pF[icur].edge[3].v = pF[icur].edge[2].v << 1323 pF[icur].edge[2].v = pF[icur].edge[1].v << 1324 pF[icur].edge[1].v = vcheck; << 1325 } << 1326 else if (kcheck == 1) << 1327 { << 1328 pF[icur].edge[3].v = pF[icur].edge[2].v << 1329 pF[icur].edge[2].v = vcheck; << 1330 } << 1331 else << 1332 { << 1333 pF[icur].edge[3].v = vcheck; << 1334 } << 1335 } << 1336 if (njoin == 0) return; // no joined facets << 1337 << 1338 // restructure facets << 1339 G4int nnew = 0; << 1340 for (G4int icur = 1; icur <= nface; ++icur) << 1341 { << 1342 if (pF[icur].edge[0].v == 0) continue; << 1343 nnew++; << 1344 pF[nnew].edge[0].v = pF[icur].edge[0].v; << 1345 pF[nnew].edge[1].v = pF[icur].edge[1].v; << 1346 pF[nnew].edge[2].v = pF[icur].edge[2].v; << 1347 pF[nnew].edge[3].v = pF[icur].edge[3].v; << 1348 } << 1349 nface = nnew; << 1350 SetReferences(); << 1351 } << 1352 << 1353 void HepPolyhedron::InvertFacets() 806 void HepPolyhedron::InvertFacets() 1354 /******************************************** 807 /*********************************************************************** 1355 * 808 * * 1356 * Name: HepPolyhedron::InvertFacets 809 * Name: HepPolyhedron::InvertFacets Date: 01.12.99 * 1357 * Author: E.Chernyaev 810 * Author: E.Chernyaev Revised: * 1358 * 811 * * 1359 * Function: Invert the order of the nodes in 812 * Function: Invert the order of the nodes in the facets * 1360 * 813 * * 1361 ******************************************** 814 ***********************************************************************/ 1362 { 815 { 1363 if (nface <= 0) return; 816 if (nface <= 0) return; 1364 G4int i, k, nnode, v[4],f[4]; 817 G4int i, k, nnode, v[4],f[4]; 1365 for (i=1; i<=nface; i++) { 818 for (i=1; i<=nface; i++) { 1366 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 819 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 1367 for (k=0; k<nnode; k++) { 820 for (k=0; k<nnode; k++) { 1368 v[k] = (k+1 == nnode) ? pF[i].edge[0].v 821 v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v; 1369 if (v[k] * pF[i].edge[k].v < 0) v[k] = 822 if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k]; 1370 f[k] = pF[i].edge[k].f; 823 f[k] = pF[i].edge[k].f; 1371 } 824 } 1372 for (k=0; k<nnode; k++) { 825 for (k=0; k<nnode; k++) { 1373 pF[i].edge[nnode-1-k].v = v[k]; 826 pF[i].edge[nnode-1-k].v = v[k]; 1374 pF[i].edge[nnode-1-k].f = f[k]; 827 pF[i].edge[nnode-1-k].f = f[k]; 1375 } 828 } 1376 } 829 } 1377 } 830 } 1378 831 1379 HepPolyhedron & HepPolyhedron::Transform(cons 832 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t) 1380 /******************************************** 833 /*********************************************************************** 1381 * 834 * * 1382 * Name: HepPolyhedron::Transform 835 * Name: HepPolyhedron::Transform Date: 01.12.99 * 1383 * Author: E.Chernyaev 836 * Author: E.Chernyaev Revised: * 1384 * 837 * * 1385 * Function: Make transformation of the polyh 838 * Function: Make transformation of the polyhedron * 1386 * 839 * * 1387 ******************************************** 840 ***********************************************************************/ 1388 { 841 { 1389 if (nvert > 0) { 842 if (nvert > 0) { 1390 for (G4int i=1; i<=nvert; i++) { pV[i] = 843 for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; } 1391 844 1392 // C H E C K D E T E R M I N A N T A 845 // C H E C K D E T E R M I N A N T A N D 1393 // I N V E R T F A C E T S I F I T 846 // I N V E R T F A C E T S I F I T I S N E G A T I V E 1394 847 1395 G4Vector3D d = t * G4Vector3D(0,0,0); 848 G4Vector3D d = t * G4Vector3D(0,0,0); 1396 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 849 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 1397 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 850 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 1398 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 851 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 1399 if ((x.cross(y))*z < 0) InvertFacets(); 852 if ((x.cross(y))*z < 0) InvertFacets(); 1400 } 853 } 1401 return *this; 854 return *this; 1402 } 855 } 1403 856 1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in 857 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const 1405 /******************************************** 858 /*********************************************************************** 1406 * 859 * * 1407 * Name: HepPolyhedron::GetNextVertexIndex 860 * Name: HepPolyhedron::GetNextVertexIndex Date: 03.09.96 * 1408 * Author: Yasuhide Sawada 861 * Author: Yasuhide Sawada Revised: * 1409 * 862 * * 1410 * Function: 863 * Function: * 1411 * 864 * * 1412 ******************************************** 865 ***********************************************************************/ 1413 { 866 { 1414 static G4ThreadLocal G4int iFace = 1; << 867 static G4int iFace = 1; 1415 static G4ThreadLocal G4int iQVertex = 0; << 868 static G4int iQVertex = 0; 1416 G4int vIndex = pF[iFace].edge[iQVertex].v; 869 G4int vIndex = pF[iFace].edge[iQVertex].v; 1417 870 1418 edgeFlag = (vIndex > 0) ? 1 : 0; 871 edgeFlag = (vIndex > 0) ? 1 : 0; 1419 index = std::abs(vIndex); 872 index = std::abs(vIndex); 1420 873 1421 if (iQVertex >= 3 || pF[iFace].edge[iQVerte 874 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1422 iQVertex = 0; 875 iQVertex = 0; 1423 if (++iFace > nface) iFace = 1; 876 if (++iFace > nface) iFace = 1; 1424 return false; // Last Edge 877 return false; // Last Edge >> 878 }else{ >> 879 ++iQVertex; >> 880 return true; // not Last Edge 1425 } 881 } 1426 << 1427 ++iQVertex; << 1428 return true; // not Last Edge << 1429 } 882 } 1430 883 1431 G4Point3D HepPolyhedron::GetVertex(G4int inde 884 G4Point3D HepPolyhedron::GetVertex(G4int index) const 1432 /******************************************** 885 /*********************************************************************** 1433 * 886 * * 1434 * Name: HepPolyhedron::GetVertex 887 * Name: HepPolyhedron::GetVertex Date: 03.09.96 * 1435 * Author: Yasuhide Sawada 888 * Author: Yasuhide Sawada Revised: 17.11.99 * 1436 * 889 * * 1437 * Function: Get vertex of the index. 890 * Function: Get vertex of the index. * 1438 * 891 * * 1439 ******************************************** 892 ***********************************************************************/ 1440 { 893 { 1441 if (index <= 0 || index > nvert) { 894 if (index <= 0 || index > nvert) { 1442 std::cerr 895 std::cerr 1443 << "HepPolyhedron::GetVertex: irrelevan 896 << "HepPolyhedron::GetVertex: irrelevant index " << index 1444 << std::endl; 897 << std::endl; 1445 return G4Point3D(); 898 return G4Point3D(); 1446 } 899 } 1447 return pV[index]; 900 return pV[index]; 1448 } 901 } 1449 902 1450 G4bool 903 G4bool 1451 HepPolyhedron::GetNextVertex(G4Point3D &verte 904 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const 1452 /******************************************** 905 /*********************************************************************** 1453 * 906 * * 1454 * Name: HepPolyhedron::GetNextVertex 907 * Name: HepPolyhedron::GetNextVertex Date: 22.07.96 * 1455 * Author: John Allison 908 * Author: John Allison Revised: * 1456 * 909 * * 1457 * Function: Get vertices of the quadrilatera 910 * Function: Get vertices of the quadrilaterals in order for each * 1458 * face in face order. Returns fal 911 * face in face order. Returns false when finished each * 1459 * face. 912 * face. * 1460 * 913 * * 1461 ******************************************** 914 ***********************************************************************/ 1462 { 915 { 1463 G4int index; 916 G4int index; 1464 G4bool rep = GetNextVertexIndex(index, edge 917 G4bool rep = GetNextVertexIndex(index, edgeFlag); 1465 vertex = pV[index]; 918 vertex = pV[index]; 1466 return rep; 919 return rep; 1467 } 920 } 1468 921 1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D 922 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag, 1470 G4Normal3D 923 G4Normal3D &normal) const 1471 /******************************************** 924 /*********************************************************************** 1472 * 925 * * 1473 * Name: HepPolyhedron::GetNextVertex 926 * Name: HepPolyhedron::GetNextVertex Date: 26.11.99 * 1474 * Author: E.Chernyaev 927 * Author: E.Chernyaev Revised: * 1475 * 928 * * 1476 * Function: Get vertices with normals of the 929 * Function: Get vertices with normals of the quadrilaterals in order * 1477 * for each face in face order. 930 * for each face in face order. * 1478 * Returns false when finished each 931 * Returns false when finished each face. * 1479 * 932 * * 1480 ******************************************** 933 ***********************************************************************/ 1481 { 934 { 1482 static G4ThreadLocal G4int iFace = 1; << 935 static G4int iFace = 1; 1483 static G4ThreadLocal G4int iNode = 0; << 936 static G4int iNode = 0; 1484 937 1485 if (nface == 0) return false; // empty pol 938 if (nface == 0) return false; // empty polyhedron 1486 939 1487 G4int k = pF[iFace].edge[iNode].v; 940 G4int k = pF[iFace].edge[iNode].v; 1488 if (k > 0) { edgeFlag = 1; } else { edgeFla 941 if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; } 1489 vertex = pV[k]; 942 vertex = pV[k]; 1490 normal = FindNodeNormal(iFace,k); 943 normal = FindNodeNormal(iFace,k); 1491 if (iNode >= 3 || pF[iFace].edge[iNode+1].v 944 if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) { 1492 iNode = 0; 945 iNode = 0; 1493 if (++iFace > nface) iFace = 1; 946 if (++iFace > nface) iFace = 1; 1494 return false; // last node 947 return false; // last node >> 948 }else{ >> 949 ++iNode; >> 950 return true; // not last node 1495 } 951 } 1496 ++iNode; << 1497 return true; // not last no << 1498 } 952 } 1499 953 1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 954 G4bool HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag, 1501 G4int 955 G4int &iface1, G4int &iface2) const 1502 /******************************************** 956 /*********************************************************************** 1503 * 957 * * 1504 * Name: HepPolyhedron::GetNextEdgeIndices << 958 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 30.09.96 * 1505 * Author: E.Chernyaev 959 * Author: E.Chernyaev Revised: 17.11.99 * 1506 * 960 * * 1507 * Function: Get indices of the next edge tog << 961 * Function: Get indeces of the next edge together with indeces of * 1508 * of the faces which share the edg 962 * of the faces which share the edge. * 1509 * Returns false when the last edge 963 * Returns false when the last edge. * 1510 * 964 * * 1511 ******************************************** 965 ***********************************************************************/ 1512 { 966 { 1513 static G4ThreadLocal G4int iFace = 1; << 967 static G4int iFace = 1; 1514 static G4ThreadLocal G4int iQVertex = 0; << 968 static G4int iQVertex = 0; 1515 static G4ThreadLocal G4int iOrder = 1; << 969 static G4int iOrder = 1; 1516 G4int k1, k2, kflag, kface1, kface2; 970 G4int k1, k2, kflag, kface1, kface2; 1517 971 1518 if (iFace == 1 && iQVertex == 0) { 972 if (iFace == 1 && iQVertex == 0) { 1519 k2 = pF[nface].edge[0].v; 973 k2 = pF[nface].edge[0].v; 1520 k1 = pF[nface].edge[3].v; 974 k1 = pF[nface].edge[3].v; 1521 if (k1 == 0) k1 = pF[nface].edge[2].v; 975 if (k1 == 0) k1 = pF[nface].edge[2].v; 1522 if (std::abs(k1) > std::abs(k2)) iOrder = 976 if (std::abs(k1) > std::abs(k2)) iOrder = -1; 1523 } 977 } 1524 978 1525 do { 979 do { 1526 k1 = pF[iFace].edge[iQVertex].v; 980 k1 = pF[iFace].edge[iQVertex].v; 1527 kflag = k1; 981 kflag = k1; 1528 k1 = std::abs(k1); 982 k1 = std::abs(k1); 1529 kface1 = iFace; << 983 kface1 = iFace; 1530 kface2 = pF[iFace].edge[iQVertex].f; 984 kface2 = pF[iFace].edge[iQVertex].f; 1531 if (iQVertex >= 3 || pF[iFace].edge[iQVer 985 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1532 iQVertex = 0; 986 iQVertex = 0; 1533 k2 = std::abs(pF[iFace].edge[iQVertex]. 987 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1534 iFace++; 988 iFace++; 1535 }else{ 989 }else{ 1536 iQVertex++; 990 iQVertex++; 1537 k2 = std::abs(pF[iFace].edge[iQVertex]. 991 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1538 } 992 } 1539 } while (iOrder*k1 > iOrder*k2); 993 } while (iOrder*k1 > iOrder*k2); 1540 994 1541 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 995 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0; 1542 iface1 = kface1; iface2 = kface2; << 996 iface1 = kface1; iface2 = kface2; 1543 997 1544 if (iFace > nface) { 998 if (iFace > nface) { 1545 iFace = 1; iOrder = 1; 999 iFace = 1; iOrder = 1; 1546 return false; 1000 return false; >> 1001 }else{ >> 1002 return true; 1547 } 1003 } 1548 << 1549 return true; << 1550 } 1004 } 1551 1005 1552 G4bool 1006 G4bool 1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1, << 1007 HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag) const 1554 /******************************************** 1008 /*********************************************************************** 1555 * 1009 * * 1556 * Name: HepPolyhedron::GetNextEdgeIndices << 1010 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 17.11.99 * 1557 * Author: E.Chernyaev 1011 * Author: E.Chernyaev Revised: * 1558 * 1012 * * 1559 * Function: Get indices of the next edge. << 1013 * Function: Get indeces of the next edge. * 1560 * Returns false when the last edge 1014 * Returns false when the last edge. * 1561 * 1015 * * 1562 ******************************************** 1016 ***********************************************************************/ 1563 { 1017 { 1564 G4int kface1, kface2; 1018 G4int kface1, kface2; 1565 return GetNextEdgeIndices(i1, i2, edgeFlag, << 1019 return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2); 1566 } 1020 } 1567 1021 1568 G4bool 1022 G4bool 1569 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1023 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1570 G4Point3D &p2, 1024 G4Point3D &p2, 1571 G4int &edgeFlag) c 1025 G4int &edgeFlag) const 1572 /******************************************** 1026 /*********************************************************************** 1573 * 1027 * * 1574 * Name: HepPolyhedron::GetNextEdge 1028 * Name: HepPolyhedron::GetNextEdge Date: 30.09.96 * 1575 * Author: E.Chernyaev 1029 * Author: E.Chernyaev Revised: * 1576 * 1030 * * 1577 * Function: Get next edge. 1031 * Function: Get next edge. * 1578 * Returns false when the last edge 1032 * Returns false when the last edge. * 1579 * 1033 * * 1580 ******************************************** 1034 ***********************************************************************/ 1581 { 1035 { 1582 G4int i1,i2; 1036 G4int i1,i2; 1583 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1037 G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag); 1584 p1 = pV[i1]; 1038 p1 = pV[i1]; 1585 p2 = pV[i2]; 1039 p2 = pV[i2]; 1586 return rep; 1040 return rep; 1587 } 1041 } 1588 1042 1589 G4bool 1043 G4bool 1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P 1044 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2, 1591 G4int &edgeFlag, G4 1045 G4int &edgeFlag, G4int &iface1, G4int &iface2) const 1592 /******************************************** 1046 /*********************************************************************** 1593 * 1047 * * 1594 * Name: HepPolyhedron::GetNextEdge 1048 * Name: HepPolyhedron::GetNextEdge Date: 17.11.99 * 1595 * Author: E.Chernyaev 1049 * Author: E.Chernyaev Revised: * 1596 * 1050 * * 1597 * Function: Get next edge with indices of th << 1051 * Function: Get next edge with indeces of the faces which share * 1598 * the edge. 1052 * the edge. * 1599 * Returns false when the last edge 1053 * Returns false when the last edge. * 1600 * 1054 * * 1601 ******************************************** 1055 ***********************************************************************/ 1602 { 1056 { 1603 G4int i1,i2; 1057 G4int i1,i2; 1604 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1058 G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2); 1605 p1 = pV[i1]; 1059 p1 = pV[i1]; 1606 p2 = pV[i2]; 1060 p2 = pV[i2]; 1607 return rep; 1061 return rep; 1608 } 1062 } 1609 1063 1610 void HepPolyhedron::GetFacet(G4int iFace, G4i 1064 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes, 1611 G4int *edgeFlags, 1065 G4int *edgeFlags, G4int *iFaces) const 1612 /******************************************** 1066 /*********************************************************************** 1613 * 1067 * * 1614 * Name: HepPolyhedron::GetFacet 1068 * Name: HepPolyhedron::GetFacet Date: 15.12.99 * 1615 * Author: E.Chernyaev 1069 * Author: E.Chernyaev Revised: * 1616 * 1070 * * 1617 * Function: Get face by index 1071 * Function: Get face by index * 1618 * 1072 * * 1619 ******************************************** 1073 ***********************************************************************/ 1620 { 1074 { 1621 if (iFace < 1 || iFace > nface) { 1075 if (iFace < 1 || iFace > nface) { 1622 std::cerr << 1076 std::cerr 1623 << "HepPolyhedron::GetFacet: irrelevant 1077 << "HepPolyhedron::GetFacet: irrelevant index " << iFace 1624 << std::endl; 1078 << std::endl; 1625 n = 0; 1079 n = 0; 1626 }else{ 1080 }else{ 1627 G4int i, k; 1081 G4int i, k; 1628 for (i=0; i<4; i++) { << 1082 for (i=0; i<4; i++) { 1629 k = pF[iFace].edge[i].v; 1083 k = pF[iFace].edge[i].v; 1630 if (k == 0) break; 1084 if (k == 0) break; 1631 if (iFaces != nullptr) iFaces[i] = pF[i << 1085 if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f; 1632 if (k > 0) { << 1086 if (k > 0) { 1633 iNodes[i] = k; 1087 iNodes[i] = k; 1634 if (edgeFlags != nullptr) edgeFlags[i << 1088 if (edgeFlags != 0) edgeFlags[i] = 1; 1635 }else{ 1089 }else{ 1636 iNodes[i] = -k; 1090 iNodes[i] = -k; 1637 if (edgeFlags != nullptr) edgeFlags[i << 1091 if (edgeFlags != 0) edgeFlags[i] = -1; 1638 } 1092 } 1639 } 1093 } 1640 n = i; 1094 n = i; 1641 } 1095 } 1642 } 1096 } 1643 1097 1644 void HepPolyhedron::GetFacet(G4int index, G4i 1098 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes, 1645 G4int *edgeFlags 1099 G4int *edgeFlags, G4Normal3D *normals) const 1646 /******************************************** 1100 /*********************************************************************** 1647 * 1101 * * 1648 * Name: HepPolyhedron::GetFacet 1102 * Name: HepPolyhedron::GetFacet Date: 17.11.99 * 1649 * Author: E.Chernyaev 1103 * Author: E.Chernyaev Revised: * 1650 * 1104 * * 1651 * Function: Get face by index 1105 * Function: Get face by index * 1652 * 1106 * * 1653 ******************************************** 1107 ***********************************************************************/ 1654 { 1108 { 1655 G4int iNodes[4]; 1109 G4int iNodes[4]; 1656 GetFacet(index, n, iNodes, edgeFlags); 1110 GetFacet(index, n, iNodes, edgeFlags); 1657 if (n != 0) { 1111 if (n != 0) { 1658 for (G4int i=0; i<n; i++) { 1112 for (G4int i=0; i<n; i++) { 1659 nodes[i] = pV[iNodes[i]]; 1113 nodes[i] = pV[iNodes[i]]; 1660 if (normals != nullptr) normals[i] = Fi << 1114 if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]); 1661 } 1115 } 1662 } 1116 } 1663 } 1117 } 1664 1118 1665 G4bool 1119 G4bool 1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point 1120 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes, 1667 G4int *edgeFlags, 1121 G4int *edgeFlags, G4Normal3D *normals) const 1668 /******************************************** 1122 /*********************************************************************** 1669 * 1123 * * 1670 * Name: HepPolyhedron::GetNextFacet 1124 * Name: HepPolyhedron::GetNextFacet Date: 19.11.99 * 1671 * Author: E.Chernyaev 1125 * Author: E.Chernyaev Revised: * 1672 * 1126 * * 1673 * Function: Get next face with normals of un 1127 * Function: Get next face with normals of unit length at the nodes. * 1674 * Returns false when finished all 1128 * Returns false when finished all faces. * 1675 * 1129 * * 1676 ******************************************** 1130 ***********************************************************************/ 1677 { 1131 { 1678 static G4ThreadLocal G4int iFace = 1; << 1132 static G4int iFace = 1; 1679 1133 1680 if (edgeFlags == nullptr) { << 1134 if (edgeFlags == 0) { 1681 GetFacet(iFace, n, nodes); 1135 GetFacet(iFace, n, nodes); 1682 }else if (normals == nullptr) { << 1136 }else if (normals == 0) { 1683 GetFacet(iFace, n, nodes, edgeFlags); 1137 GetFacet(iFace, n, nodes, edgeFlags); 1684 }else{ 1138 }else{ 1685 GetFacet(iFace, n, nodes, edgeFlags, norm 1139 GetFacet(iFace, n, nodes, edgeFlags, normals); 1686 } 1140 } 1687 1141 1688 if (++iFace > nface) { 1142 if (++iFace > nface) { 1689 iFace = 1; 1143 iFace = 1; 1690 return false; 1144 return false; >> 1145 }else{ >> 1146 return true; 1691 } 1147 } 1692 << 1693 return true; << 1694 } 1148 } 1695 1149 1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa 1150 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const 1697 /******************************************** 1151 /*********************************************************************** 1698 * 1152 * * 1699 * Name: HepPolyhedron::GetNormal 1153 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1700 * Author: E.Chernyaev 1154 * Author: E.Chernyaev Revised: * 1701 * 1155 * * 1702 * Function: Get normal of the face given by 1156 * Function: Get normal of the face given by index * 1703 * 1157 * * 1704 ******************************************** 1158 ***********************************************************************/ 1705 { 1159 { 1706 if (iFace < 1 || iFace > nface) { 1160 if (iFace < 1 || iFace > nface) { 1707 std::cerr << 1161 std::cerr 1708 << "HepPolyhedron::GetNormal: irrelevan << 1162 << "HepPolyhedron::GetNormal: irrelevant index " << iFace 1709 << std::endl; 1163 << std::endl; 1710 return G4Normal3D(); 1164 return G4Normal3D(); 1711 } 1165 } 1712 1166 1713 G4int i0 = std::abs(pF[iFace].edge[0].v); 1167 G4int i0 = std::abs(pF[iFace].edge[0].v); 1714 G4int i1 = std::abs(pF[iFace].edge[1].v); 1168 G4int i1 = std::abs(pF[iFace].edge[1].v); 1715 G4int i2 = std::abs(pF[iFace].edge[2].v); 1169 G4int i2 = std::abs(pF[iFace].edge[2].v); 1716 G4int i3 = std::abs(pF[iFace].edge[3].v); 1170 G4int i3 = std::abs(pF[iFace].edge[3].v); 1717 if (i3 == 0) i3 = i0; 1171 if (i3 == 0) i3 = i0; 1718 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[ 1172 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]); 1719 } 1173 } 1720 1174 1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int 1175 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const 1722 /******************************************** 1176 /*********************************************************************** 1723 * 1177 * * 1724 * Name: HepPolyhedron::GetNormal 1178 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1725 * Author: E.Chernyaev 1179 * Author: E.Chernyaev Revised: * 1726 * 1180 * * 1727 * Function: Get unit normal of the face give 1181 * Function: Get unit normal of the face given by index * 1728 * 1182 * * 1729 ******************************************** 1183 ***********************************************************************/ 1730 { 1184 { 1731 if (iFace < 1 || iFace > nface) { 1185 if (iFace < 1 || iFace > nface) { 1732 std::cerr << 1186 std::cerr 1733 << "HepPolyhedron::GetUnitNormal: irrel 1187 << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace 1734 << std::endl; 1188 << std::endl; 1735 return G4Normal3D(); 1189 return G4Normal3D(); 1736 } 1190 } 1737 1191 1738 G4int i0 = std::abs(pF[iFace].edge[0].v); 1192 G4int i0 = std::abs(pF[iFace].edge[0].v); 1739 G4int i1 = std::abs(pF[iFace].edge[1].v); 1193 G4int i1 = std::abs(pF[iFace].edge[1].v); 1740 G4int i2 = std::abs(pF[iFace].edge[2].v); 1194 G4int i2 = std::abs(pF[iFace].edge[2].v); 1741 G4int i3 = std::abs(pF[iFace].edge[3].v); 1195 G4int i3 = std::abs(pF[iFace].edge[3].v); 1742 if (i3 == 0) i3 = i0; 1196 if (i3 == 0) i3 = i0; 1743 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1197 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit(); 1744 } 1198 } 1745 1199 1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3 1200 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const 1747 /******************************************** 1201 /*********************************************************************** 1748 * 1202 * * 1749 * Name: HepPolyhedron::GetNextNormal 1203 * Name: HepPolyhedron::GetNextNormal Date: 22.07.96 * 1750 * Author: John Allison 1204 * Author: John Allison Revised: 19.11.99 * 1751 * 1205 * * 1752 * Function: Get normals of each face in face 1206 * Function: Get normals of each face in face order. Returns false * 1753 * when finished all faces. 1207 * when finished all faces. * 1754 * 1208 * * 1755 ******************************************** 1209 ***********************************************************************/ 1756 { 1210 { 1757 static G4ThreadLocal G4int iFace = 1; << 1211 static G4int iFace = 1; 1758 normal = GetNormal(iFace); 1212 normal = GetNormal(iFace); 1759 if (++iFace > nface) { 1213 if (++iFace > nface) { 1760 iFace = 1; 1214 iFace = 1; 1761 return false; 1215 return false; >> 1216 }else{ >> 1217 return true; 1762 } 1218 } 1763 return true; << 1764 } 1219 } 1765 1220 1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor 1221 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const 1767 /******************************************** 1222 /*********************************************************************** 1768 * 1223 * * 1769 * Name: HepPolyhedron::GetNextUnitNormal 1224 * Name: HepPolyhedron::GetNextUnitNormal Date: 16.09.96 * 1770 * Author: E.Chernyaev 1225 * Author: E.Chernyaev Revised: * 1771 * 1226 * * 1772 * Function: Get normals of unit length of ea 1227 * Function: Get normals of unit length of each face in face order. * 1773 * Returns false when finished all 1228 * Returns false when finished all faces. * 1774 * 1229 * * 1775 ******************************************** 1230 ***********************************************************************/ 1776 { 1231 { 1777 G4bool rep = GetNextNormal(normal); 1232 G4bool rep = GetNextNormal(normal); 1778 normal = normal.unit(); 1233 normal = normal.unit(); 1779 return rep; 1234 return rep; 1780 } 1235 } 1781 1236 1782 G4double HepPolyhedron::GetSurfaceArea() cons 1237 G4double HepPolyhedron::GetSurfaceArea() const 1783 /******************************************** 1238 /*********************************************************************** 1784 * 1239 * * 1785 * Name: HepPolyhedron::GetSurfaceArea 1240 * Name: HepPolyhedron::GetSurfaceArea Date: 25.05.01 * 1786 * Author: E.Chernyaev 1241 * Author: E.Chernyaev Revised: * 1787 * 1242 * * 1788 * Function: Returns area of the surface of t 1243 * Function: Returns area of the surface of the polyhedron. * 1789 * 1244 * * 1790 ******************************************** 1245 ***********************************************************************/ 1791 { 1246 { 1792 G4double srf = 0.; << 1247 G4double s = 0.; 1793 for (G4int iFace=1; iFace<=nface; iFace++) 1248 for (G4int iFace=1; iFace<=nface; iFace++) { 1794 G4int i0 = std::abs(pF[iFace].edge[0].v); 1249 G4int i0 = std::abs(pF[iFace].edge[0].v); 1795 G4int i1 = std::abs(pF[iFace].edge[1].v); 1250 G4int i1 = std::abs(pF[iFace].edge[1].v); 1796 G4int i2 = std::abs(pF[iFace].edge[2].v); 1251 G4int i2 = std::abs(pF[iFace].edge[2].v); 1797 G4int i3 = std::abs(pF[iFace].edge[3].v); 1252 G4int i3 = std::abs(pF[iFace].edge[3].v); 1798 if (i3 == 0) i3 = i0; 1253 if (i3 == 0) i3 = i0; 1799 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - << 1254 s += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag(); 1800 } 1255 } 1801 return srf/2.; << 1256 return s/2.; 1802 } 1257 } 1803 1258 1804 G4double HepPolyhedron::GetVolume() const 1259 G4double HepPolyhedron::GetVolume() const 1805 /******************************************** 1260 /*********************************************************************** 1806 * 1261 * * 1807 * Name: HepPolyhedron::GetVolume 1262 * Name: HepPolyhedron::GetVolume Date: 25.05.01 * 1808 * Author: E.Chernyaev 1263 * Author: E.Chernyaev Revised: * 1809 * 1264 * * 1810 * Function: Returns volume of the polyhedron 1265 * Function: Returns volume of the polyhedron. * 1811 * 1266 * * 1812 ******************************************** 1267 ***********************************************************************/ 1813 { 1268 { 1814 G4double v = 0.; 1269 G4double v = 0.; 1815 for (G4int iFace=1; iFace<=nface; iFace++) 1270 for (G4int iFace=1; iFace<=nface; iFace++) { 1816 G4int i0 = std::abs(pF[iFace].edge[0].v); 1271 G4int i0 = std::abs(pF[iFace].edge[0].v); 1817 G4int i1 = std::abs(pF[iFace].edge[1].v); 1272 G4int i1 = std::abs(pF[iFace].edge[1].v); 1818 G4int i2 = std::abs(pF[iFace].edge[2].v); 1273 G4int i2 = std::abs(pF[iFace].edge[2].v); 1819 G4int i3 = std::abs(pF[iFace].edge[3].v); 1274 G4int i3 = std::abs(pF[iFace].edge[3].v); 1820 G4Point3D pt; << 1275 G4Point3D g; 1821 if (i3 == 0) { 1276 if (i3 == 0) { 1822 i3 = i0; 1277 i3 = i0; 1823 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); << 1278 g = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1824 }else{ 1279 }else{ 1825 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0. << 1280 g = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25; 1826 } 1281 } 1827 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV << 1282 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(g); 1828 } 1283 } 1829 return v/6.; 1284 return v/6.; 1830 } 1285 } 1831 1286 1832 G4int 1287 G4int 1833 HepPolyhedron::createTwistedTrap(G4double Dz, 1288 HepPolyhedron::createTwistedTrap(G4double Dz, 1834 const G4doub 1289 const G4double xy1[][2], 1835 const G4doub 1290 const G4double xy2[][2]) 1836 /******************************************** 1291 /*********************************************************************** 1837 * 1292 * * 1838 * Name: createTwistedTrap 1293 * Name: createTwistedTrap Date: 05.11.02 * 1839 * Author: E.Chernyaev (IHEP/Protvino) 1294 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1840 * 1295 * * 1841 * Function: Creates polyhedron for twisted t 1296 * Function: Creates polyhedron for twisted trapezoid * 1842 * 1297 * * 1843 * Input: Dz - half-length along Z 1298 * Input: Dz - half-length along Z 8----7 * 1844 * xy1[2,4] - quadrilateral at Z=-Dz 1299 * xy1[2,4] - quadrilateral at Z=-Dz 5----6 ! * 1845 * xy2[2,4] - quadrilateral at Z=+Dz 1300 * xy2[2,4] - quadrilateral at Z=+Dz ! 4-!--3 * 1846 * 1301 * 1----2 * 1847 * 1302 * * 1848 ******************************************** 1303 ***********************************************************************/ 1849 { 1304 { 1850 AllocateMemory(12,18); 1305 AllocateMemory(12,18); 1851 1306 1852 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz) 1307 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz); 1853 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz) 1308 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz); 1854 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz) 1309 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz); 1855 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz) 1310 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz); 1856 1311 1857 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz) 1312 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz); 1858 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz) 1313 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz); 1859 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz) 1314 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz); 1860 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz) 1315 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz); 1861 1316 1862 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1317 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1863 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1318 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1864 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1319 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1865 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1320 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1866 1321 1867 enum {DUMMY, BOTTOM, 1322 enum {DUMMY, BOTTOM, 1868 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, 1323 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, LEFT_BACK, 1869 BACK_BOTTOM, BACK_LEFT, BACK_TOP, 1324 BACK_BOTTOM, BACK_LEFT, BACK_TOP, BACK_RIGHT, 1870 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP 1325 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP, RIGHT_FRONT, 1871 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP 1326 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP, FRONT_LEFT, 1872 TOP}; 1327 TOP}; 1873 1328 1874 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM 1329 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM); 1875 1330 1876 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, 1331 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, -12,LEFT_BACK, 0,0); 1877 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, 1332 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, -12,LEFT_BOTTOM, 0,0); 1878 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, 1333 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, -12,LEFT_FRONT, 0,0); 1879 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM 1334 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM, -12,LEFT_TOP, 0,0); 1880 1335 1881 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, 1336 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, -11,BACK_RIGHT, 0,0); 1882 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, 1337 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, -11,BACK_BOTTOM, 0,0); 1883 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, 1338 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, -11,BACK_LEFT, 0,0); 1884 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM 1339 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP, 0,0); 1885 1340 1886 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, 1341 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, -10,RIGHT_FRONT, 0,0); 1887 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, 1342 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, -10,RIGHT_BOTTOM, 0,0); 1888 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT 1343 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT, -10,RIGHT_BACK, 0,0); 1889 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO 1344 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP, 0,0); 1890 1345 1891 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT 1346 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT, -9,FRONT_LEFT, 0,0); 1892 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, 1347 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, -9,FRONT_BOTTOM, 0,0); 1893 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, 1348 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, -9,FRONT_RIGHT, 0,0); 1894 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO 1349 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP, 0,0); 1895 << 1350 1896 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7, 1351 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP); 1897 1352 1898 return 0; 1353 return 0; 1899 } 1354 } 1900 1355 1901 G4int 1356 G4int 1902 HepPolyhedron::createPolyhedron(G4int Nnodes, 1357 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces, 1903 const G4doubl 1358 const G4double xyz[][3], 1904 const G4int 1359 const G4int faces[][4]) 1905 /******************************************** 1360 /*********************************************************************** 1906 * 1361 * * 1907 * Name: createPolyhedron 1362 * Name: createPolyhedron Date: 05.11.02 * 1908 * Author: E.Chernyaev (IHEP/Protvino) 1363 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1909 * 1364 * * 1910 * Function: Creates user defined polyhedron 1365 * Function: Creates user defined polyhedron * 1911 * 1366 * * 1912 * Input: Nnodes - number of nodes 1367 * Input: Nnodes - number of nodes * 1913 * Nfaces - number of faces 1368 * Nfaces - number of faces * 1914 * nodes[][3] - node coordinates 1369 * nodes[][3] - node coordinates * 1915 * faces[][4] - faces 1370 * faces[][4] - faces * 1916 * 1371 * * 1917 ******************************************** 1372 ***********************************************************************/ 1918 { 1373 { 1919 AllocateMemory(Nnodes, Nfaces); 1374 AllocateMemory(Nnodes, Nfaces); 1920 if (nvert == 0) return 1; 1375 if (nvert == 0) return 1; 1921 1376 1922 for (G4int i=0; i<Nnodes; i++) { 1377 for (G4int i=0; i<Nnodes; i++) { 1923 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], 1378 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]); 1924 } 1379 } 1925 for (G4int k=0; k<Nfaces; k++) { 1380 for (G4int k=0; k<Nfaces; k++) { 1926 pF[k+1] = G4Facet(faces[k][0],0,faces[k][ 1381 pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0); 1927 } 1382 } 1928 SetReferences(); 1383 SetReferences(); 1929 return 0; 1384 return 0; 1930 } 1385 } 1931 1386 1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 1933 /****************************************** << 1934 * << 1935 * Name: vertexUnweightedMean << 1936 * Author: S. Boogert (Manchester) << 1937 * << 1938 * Function: Calculate the unweighted mean << 1939 * in the polyhedron. Not to be confused wi << 1940 * centre of mass << 1941 ****************************************** << 1942 << 1943 auto centre = G4Point3D(); << 1944 for(int i=1;i<=nvert;i++) { << 1945 centre += pV[i]; << 1946 } << 1947 centre = centre/nvert; << 1948 return centre; << 1949 } << 1950 << 1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double 1387 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2, 1952 G4double 1388 G4double Dy1, G4double Dy2, 1953 G4double 1389 G4double Dz) 1954 /******************************************** 1390 /*********************************************************************** 1955 * 1391 * * 1956 * Name: HepPolyhedronTrd2 1392 * Name: HepPolyhedronTrd2 Date: 22.07.96 * 1957 * Author: E.Chernyaev (IHEP/Protvino) 1393 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1958 * 1394 * * 1959 * Function: Create GEANT4 TRD2-trapezoid 1395 * Function: Create GEANT4 TRD2-trapezoid * 1960 * 1396 * * 1961 * Input: Dx1 - half-length along X at -Dz 1397 * Input: Dx1 - half-length along X at -Dz 8----7 * 1962 * Dx2 - half-length along X ay +Dz 1398 * Dx2 - half-length along X ay +Dz 5----6 ! * 1963 * Dy1 - half-length along Y ay -Dz 1399 * Dy1 - half-length along Y ay -Dz ! 4-!--3 * 1964 * Dy2 - half-length along Y ay +Dz 1400 * Dy2 - half-length along Y ay +Dz 1----2 * 1965 * Dz - half-length along Z 1401 * Dz - half-length along Z * 1966 * 1402 * * 1967 ******************************************** 1403 ***********************************************************************/ 1968 { 1404 { 1969 AllocateMemory(8,6); 1405 AllocateMemory(8,6); 1970 1406 1971 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1407 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1972 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1408 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1973 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1409 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1974 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1410 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1975 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1411 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1976 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1412 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1977 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1413 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1978 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1414 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1979 1415 1980 CreatePrism(); 1416 CreatePrism(); 1981 } 1417 } 1982 1418 1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1419 HepPolyhedronTrd2::~HepPolyhedronTrd2() {} 1984 1420 1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double 1421 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2, 1986 G4double 1422 G4double Dy, G4double Dz) 1987 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) { 1423 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {} 1988 1424 1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1425 HepPolyhedronTrd1::~HepPolyhedronTrd1() {} 1990 1426 1991 HepPolyhedronBox::HepPolyhedronBox(G4double D 1427 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz) 1992 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1428 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1993 1429 1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1430 HepPolyhedronBox::~HepPolyhedronBox() {} 1995 1431 1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double 1432 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz, 1997 G4double 1433 G4double Theta, 1998 G4double 1434 G4double Phi, 1999 G4double 1435 G4double Dy1, 2000 G4double 1436 G4double Dx1, 2001 G4double 1437 G4double Dx2, 2002 G4double 1438 G4double Alp1, 2003 G4double 1439 G4double Dy2, 2004 G4double 1440 G4double Dx3, 2005 G4double 1441 G4double Dx4, 2006 G4double 1442 G4double Alp2) 2007 /******************************************** 1443 /*********************************************************************** 2008 * 1444 * * 2009 * Name: HepPolyhedronTrap 1445 * Name: HepPolyhedronTrap Date: 20.11.96 * 2010 * Author: E.Chernyaev 1446 * Author: E.Chernyaev Revised: * 2011 * 1447 * * 2012 * Function: Create GEANT4 TRAP-trapezoid 1448 * Function: Create GEANT4 TRAP-trapezoid * 2013 * 1449 * * 2014 * Input: DZ - half-length in Z 1450 * Input: DZ - half-length in Z * 2015 * Theta,Phi - polar angles of the lin 1451 * Theta,Phi - polar angles of the line joining centres of the * 2016 * faces at Z=-Dz and Z=+D 1452 * faces at Z=-Dz and Z=+Dz * 2017 * Dy1 - half-length in Y of the face 1453 * Dy1 - half-length in Y of the face at Z=-Dz * 2018 * Dx1 - half-length in X of low edge 1454 * Dx1 - half-length in X of low edge of the face at Z=-Dz * 2019 * Dx2 - half-length in X of top edge 1455 * Dx2 - half-length in X of top edge of the face at Z=-Dz * 2020 * Alp1 - angle between Y-axis and the 1456 * Alp1 - angle between Y-axis and the median joining top and * 2021 * low edges of the face at Z=- 1457 * low edges of the face at Z=-Dz * 2022 * Dy2 - half-length in Y of the face 1458 * Dy2 - half-length in Y of the face at Z=+Dz * 2023 * Dx3 - half-length in X of low edge 1459 * Dx3 - half-length in X of low edge of the face at Z=+Dz * 2024 * Dx4 - half-length in X of top edge 1460 * Dx4 - half-length in X of top edge of the face at Z=+Dz * 2025 * Alp2 - angle between Y-axis and the 1461 * Alp2 - angle between Y-axis and the median joining top and * 2026 * low edges of the face at Z=+ 1462 * low edges of the face at Z=+Dz * 2027 * 1463 * * 2028 ******************************************** 1464 ***********************************************************************/ 2029 { 1465 { 2030 G4double DzTthetaCphi = Dz*std::tan(Theta)* 1466 G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi); 2031 G4double DzTthetaSphi = Dz*std::tan(Theta)* 1467 G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi); 2032 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 1468 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 2033 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 1469 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 2034 << 1470 2035 AllocateMemory(8,6); 1471 AllocateMemory(8,6); 2036 1472 2037 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx 1473 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz); 2038 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx 1474 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz); 2039 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx 1475 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz); 2040 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx 1476 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz); 2041 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx 1477 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz); 2042 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx 1478 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz); 2043 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx 1479 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz); 2044 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx 1480 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz); 2045 1481 2046 CreatePrism(); 1482 CreatePrism(); 2047 } 1483 } 2048 1484 2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1485 HepPolyhedronTrap::~HepPolyhedronTrap() {} 2050 1486 2051 HepPolyhedronPara::HepPolyhedronPara(G4double 1487 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz, 2052 G4double 1488 G4double Alpha, G4double Theta, 2053 G4double 1489 G4double Phi) 2054 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, 1490 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {} 2055 1491 2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1492 HepPolyhedronPara::~HepPolyhedronPara() {} 2057 1493 2058 HepPolyhedronParaboloid::HepPolyhedronParabol 1494 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1, 2059 1495 G4double r2, 2060 1496 G4double dz, 2061 1497 G4double sPhi, 2062 << 1498 G4double dPhi) 2063 /******************************************** 1499 /*********************************************************************** 2064 * 1500 * * 2065 * Name: HepPolyhedronParaboloid 1501 * Name: HepPolyhedronParaboloid Date: 28.06.07 * 2066 * Author: L.Lindroos, T.Nikitina (CERN), Jul 1502 * Author: L.Lindroos, T.Nikitina (CERN), July 2007 Revised: 28.06.07 * 2067 * 1503 * * 2068 * Function: Constructor for paraboloid 1504 * Function: Constructor for paraboloid * 2069 * 1505 * * 2070 * Input: r1 - inside and outside radiuses 1506 * Input: r1 - inside and outside radiuses at -Dz * 2071 * r2 - inside and outside radiuses 1507 * r2 - inside and outside radiuses at +Dz * 2072 * dz - half length in Z 1508 * dz - half length in Z * 2073 * sPhi - starting angle of the segme 1509 * sPhi - starting angle of the segment * 2074 * dPhi - segment range 1510 * dPhi - segment range * 2075 * 1511 * * 2076 ******************************************** 1512 ***********************************************************************/ 2077 { 1513 { 2078 static const G4double wholeCircle=twopi; << 1514 static G4double wholeCircle=twopi; 2079 1515 2080 // C H E C K I N P U T P A R A M E T 1516 // C H E C K I N P U T P A R A M E T E R S 2081 1517 2082 G4int k = 0; 1518 G4int k = 0; 2083 if (r1 < 0. || r2 <= 0.) k = 1; 1519 if (r1 < 0. || r2 <= 0.) k = 1; 2084 1520 2085 if (dz <= 0.) k += 2; 1521 if (dz <= 0.) k += 2; 2086 1522 2087 G4double phi1, phi2, dphi; 1523 G4double phi1, phi2, dphi; 2088 1524 2089 if(dPhi < 0.) 1525 if(dPhi < 0.) 2090 { 1526 { 2091 phi2 = sPhi; phi1 = phi2 + dPhi; 1527 phi2 = sPhi; phi1 = phi2 + dPhi; 2092 } 1528 } 2093 else if(dPhi == 0.) << 1529 else if(dPhi == 0.) 2094 { 1530 { 2095 phi1 = sPhi; phi2 = phi1 + wholeCircle; 1531 phi1 = sPhi; phi2 = phi1 + wholeCircle; 2096 } 1532 } 2097 else 1533 else 2098 { 1534 { 2099 phi1 = sPhi; phi2 = phi1 + dPhi; 1535 phi1 = sPhi; phi2 = phi1 + dPhi; 2100 } 1536 } 2101 dphi = phi2 - phi1; 1537 dphi = phi2 - phi1; 2102 1538 2103 if (std::abs(dphi-wholeCircle) < perMillion 1539 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2104 if (dphi > wholeCircle) k += 4; << 1540 if (dphi > wholeCircle) k += 4; 2105 1541 2106 if (k != 0) { 1542 if (k != 0) { 2107 std::cerr << "HepPolyhedronParaboloid: er 1543 std::cerr << "HepPolyhedronParaboloid: error in input parameters"; 2108 if ((k & 1) != 0) std::cerr << " (radiuse 1544 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2109 if ((k & 2) != 0) std::cerr << " (half-le 1545 if ((k & 2) != 0) std::cerr << " (half-length)"; 2110 if ((k & 4) != 0) std::cerr << " (angles) 1546 if ((k & 4) != 0) std::cerr << " (angles)"; 2111 std::cerr << std::endl; 1547 std::cerr << std::endl; 2112 std::cerr << " r1=" << r1; 1548 std::cerr << " r1=" << r1; 2113 std::cerr << " r2=" << r2; 1549 std::cerr << " r2=" << r2; 2114 std::cerr << " dz=" << dz << " sPhi=" << 1550 std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi 2115 << std::endl; 1551 << std::endl; 2116 return; 1552 return; 2117 } 1553 } 2118 << 1554 2119 // P R E P A R E T W O P O L Y L I N 1555 // P R E P A R E T W O P O L Y L I N E S 2120 1556 2121 G4int n = GetNumberOfRotationSteps(); 1557 G4int n = GetNumberOfRotationSteps(); 2122 G4double dl = (r2 - r1) / n; 1558 G4double dl = (r2 - r1) / n; 2123 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 1559 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 2124 G4double k2 = (r2*r2 + r1*r1) / 2; 1560 G4double k2 = (r2*r2 + r1*r1) / 2; 2125 1561 2126 auto zz = new G4double[n + 2], rr = new G4d << 1562 G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2]; 2127 1563 2128 zz[0] = dz; 1564 zz[0] = dz; 2129 rr[0] = r2; 1565 rr[0] = r2; 2130 1566 2131 for(G4int i = 1; i < n - 1; i++) 1567 for(G4int i = 1; i < n - 1; i++) 2132 { 1568 { 2133 rr[i] = rr[i-1] - dl; 1569 rr[i] = rr[i-1] - dl; 2134 zz[i] = (rr[i]*rr[i] - k2) / k1; 1570 zz[i] = (rr[i]*rr[i] - k2) / k1; 2135 if(rr[i] < 0) 1571 if(rr[i] < 0) 2136 { 1572 { 2137 rr[i] = 0; 1573 rr[i] = 0; 2138 zz[i] = 0; 1574 zz[i] = 0; 2139 } 1575 } 2140 } 1576 } 2141 1577 2142 zz[n-1] = -dz; 1578 zz[n-1] = -dz; 2143 rr[n-1] = r1; 1579 rr[n-1] = r1; 2144 1580 2145 zz[n] = dz; 1581 zz[n] = dz; 2146 rr[n] = 0; 1582 rr[n] = 0; 2147 1583 2148 zz[n+1] = -dz; 1584 zz[n+1] = -dz; 2149 rr[n+1] = 0; 1585 rr[n+1] = 0; 2150 1586 2151 // R O T A T E P O L Y L I N E S 1587 // R O T A T E P O L Y L I N E S 2152 1588 2153 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, << 1589 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 2154 SetReferences(); 1590 SetReferences(); 2155 1591 2156 delete [] zz; 1592 delete [] zz; 2157 delete [] rr; 1593 delete [] rr; 2158 } 1594 } 2159 1595 2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1596 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {} 2161 1597 2162 HepPolyhedronHype::HepPolyhedronHype(G4double 1598 HepPolyhedronHype::HepPolyhedronHype(G4double r1, 2163 G4double 1599 G4double r2, 2164 G4double 1600 G4double sqrtan1, 2165 G4double 1601 G4double sqrtan2, 2166 G4double << 1602 G4double halfZ) 2167 /******************************************** 1603 /*********************************************************************** 2168 * 1604 * * 2169 * Name: HepPolyhedronHype 1605 * Name: HepPolyhedronHype Date: 14.04.08 * 2170 * Author: Tatiana Nikitina (CERN) 1606 * Author: Tatiana Nikitina (CERN) Revised: 14.04.08 * 2171 * Evgueni Tcherniaev << 2172 * 1607 * * 2173 * Function: Constructor for Hype 1608 * Function: Constructor for Hype * 2174 * 1609 * * 2175 * Input: r1 - inside radius at z=0 1610 * Input: r1 - inside radius at z=0 * 2176 * r2 - outside radiuses at z=0 1611 * r2 - outside radiuses at z=0 * 2177 * sqrtan1 - sqr of tan of Inner Ster 1612 * sqrtan1 - sqr of tan of Inner Stereo Angle * 2178 * sqrtan2 - sqr of tan of Outer Ster 1613 * sqrtan2 - sqr of tan of Outer Stereo Angle * 2179 * halfZ - half length in Z 1614 * halfZ - half length in Z * 2180 * 1615 * * 2181 ******************************************** 1616 ***********************************************************************/ 2182 { 1617 { 2183 static const G4double wholeCircle = twopi; << 1618 static G4double wholeCircle=twopi; 2184 1619 2185 // C H E C K I N P U T P A R A M E T 1620 // C H E C K I N P U T P A R A M E T E R S 2186 1621 2187 G4int k = 0; 1622 G4int k = 0; 2188 if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1; << 1623 if (r2 < 0. || r1 < 0. ) k = 1; 2189 if (halfZ <= 0.) k += 2; << 1624 if (r1 > r2 ) k = 1; 2190 if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4; << 1625 if (r1 == r2) k = 1; 2191 1626 >> 1627 if (halfZ <= 0.) k += 2; >> 1628 >> 1629 if (sqrtan1<0.||sqrtan2<0.) k += 4; >> 1630 2192 if (k != 0) 1631 if (k != 0) 2193 { 1632 { 2194 std::cerr << "HepPolyhedronHype: error in 1633 std::cerr << "HepPolyhedronHype: error in input parameters"; 2195 if ((k & 1) != 0) std::cerr << " (radiuse 1634 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2196 if ((k & 2) != 0) std::cerr << " (half-le 1635 if ((k & 2) != 0) std::cerr << " (half-length)"; 2197 if ((k & 4) != 0) std::cerr << " (angles) 1636 if ((k & 4) != 0) std::cerr << " (angles)"; 2198 std::cerr << std::endl; 1637 std::cerr << std::endl; 2199 std::cerr << " r1=" << r1 << " r2=" << r2 1638 std::cerr << " r1=" << r1 << " r2=" << r2; 2200 std::cerr << " halfZ=" << halfZ << " sqrT 1639 std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1 2201 << " sqrTan2=" << sqrtan2 1640 << " sqrTan2=" << sqrtan2 2202 << std::endl; 1641 << std::endl; 2203 return; 1642 return; 2204 } 1643 } 2205 << 1644 2206 // P R E P A R E T W O P O L Y L I N 1645 // P R E P A R E T W O P O L Y L I N E S 2207 1646 2208 G4int ns = std::max(3, GetNumberOfRotationS << 1647 G4int n = GetNumberOfRotationSteps(); 2209 G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1; << 1648 G4double dz = 2.*halfZ / n; 2210 G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1; << 1649 G4double k1 = r1*r1; 2211 auto zz = new G4double[nz1 + nz2]; << 1650 G4double k2 = r2*r2; 2212 auto rr = new G4double[nz1 + nz2]; << 1651 2213 << 1652 G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1]; 2214 // external polyline << 1653 2215 G4double dz2 = 2.*halfZ/(nz2 - 1); << 1654 zz[0] = halfZ; 2216 for(G4int i = 0; i < nz2; ++i) << 1655 rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2); >> 1656 >> 1657 for(G4int i = 1; i < n-1; i++) 2217 { 1658 { 2218 zz[i] = halfZ - dz2*i; << 1659 zz[i] = zz[i-1] - dz; 2219 rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1660 rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2); 2220 } 1661 } 2221 1662 2222 // internal polyline << 1663 zz[n-1] = -halfZ; 2223 G4double dz1 = 2.*halfZ/(nz1 - 1); << 1664 rr[n-1] = rr[0]; 2224 for(G4int i = 0; i < nz1; ++i) << 1665 >> 1666 zz[n] = halfZ; >> 1667 rr[n] = std::sqrt(sqrtan1*halfZ*halfZ+k1); >> 1668 >> 1669 for(G4int i = n+1; i < n+n; i++) 2225 { 1670 { 2226 G4int j = nz2 + i; << 1671 zz[i] = zz[i-1] - dz; 2227 zz[j] = halfZ - dz1*i; << 1672 rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1); 2228 rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 2229 } 1673 } >> 1674 zz[n+n] = -halfZ; >> 1675 rr[n+n] = rr[n]; 2230 1676 2231 // R O T A T E P O L Y L I N E S 1677 // R O T A T E P O L Y L I N E S 2232 1678 2233 RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1679 RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 2234 SetReferences(); 1680 SetReferences(); 2235 1681 2236 delete [] zz; 1682 delete [] zz; 2237 delete [] rr; 1683 delete [] rr; 2238 } 1684 } 2239 1685 2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1686 HepPolyhedronHype::~HepPolyhedronHype() {} 2241 1687 2242 HepPolyhedronCons::HepPolyhedronCons(G4double 1688 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1, 2243 G4double 1689 G4double Rmx1, 2244 G4double 1690 G4double Rmn2, 2245 G4double << 1691 G4double Rmx2, 2246 G4double 1692 G4double Dz, 2247 G4double 1693 G4double Phi1, 2248 G4double << 1694 G4double Dphi) 2249 /******************************************** 1695 /*********************************************************************** 2250 * 1696 * * 2251 * Name: HepPolyhedronCons::HepPolyhedronCons 1697 * Name: HepPolyhedronCons::HepPolyhedronCons Date: 15.12.96 * 2252 * Author: E.Chernyaev (IHEP/Protvino) 1698 * Author: E.Chernyaev (IHEP/Protvino) Revised: 15.12.96 * 2253 * 1699 * * 2254 * Function: Constructor for CONS, TUBS, CONE 1700 * Function: Constructor for CONS, TUBS, CONE, TUBE * 2255 * 1701 * * 2256 * Input: Rmn1, Rmx1 - inside and outside rad 1702 * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz * 2257 * Rmn2, Rmx2 - inside and outside rad 1703 * Rmn2, Rmx2 - inside and outside radiuses at +Dz * 2258 * Dz - half length in Z 1704 * Dz - half length in Z * 2259 * Phi1 - starting angle of the 1705 * Phi1 - starting angle of the segment * 2260 * Dphi - segment range 1706 * Dphi - segment range * 2261 * 1707 * * 2262 ******************************************** 1708 ***********************************************************************/ 2263 { 1709 { 2264 static const G4double wholeCircle=twopi; << 1710 static G4double wholeCircle=twopi; 2265 1711 2266 // C H E C K I N P U T P A R A M E T 1712 // C H E C K I N P U T P A R A M E T E R S 2267 1713 2268 G4int k = 0; 1714 G4int k = 0; 2269 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || 1715 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.) k = 1; 2270 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) 1716 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) k = 1; 2271 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) 1717 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) k = 1; 2272 1718 2273 if (Dz <= 0.) k += 2; 1719 if (Dz <= 0.) k += 2; 2274 << 1720 2275 G4double phi1, phi2, dphi; 1721 G4double phi1, phi2, dphi; 2276 if (Dphi < 0.) { 1722 if (Dphi < 0.) { 2277 phi2 = Phi1; phi1 = phi2 - Dphi; 1723 phi2 = Phi1; phi1 = phi2 - Dphi; 2278 }else if (Dphi == 0.) { 1724 }else if (Dphi == 0.) { 2279 phi1 = Phi1; phi2 = phi1 + wholeCircle; 1725 phi1 = Phi1; phi2 = phi1 + wholeCircle; 2280 }else{ 1726 }else{ 2281 phi1 = Phi1; phi2 = phi1 + Dphi; 1727 phi1 = Phi1; phi2 = phi1 + Dphi; 2282 } 1728 } 2283 dphi = phi2 - phi1; 1729 dphi = phi2 - phi1; 2284 if (std::abs(dphi-wholeCircle) < perMillion 1730 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2285 if (dphi > wholeCircle) k += 4; << 1731 if (dphi > wholeCircle) k += 4; 2286 1732 2287 if (k != 0) { 1733 if (k != 0) { 2288 std::cerr << "HepPolyhedronCone(s)/Tube(s 1734 std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters"; 2289 if ((k & 1) != 0) std::cerr << " (radiuse 1735 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2290 if ((k & 2) != 0) std::cerr << " (half-le 1736 if ((k & 2) != 0) std::cerr << " (half-length)"; 2291 if ((k & 4) != 0) std::cerr << " (angles) 1737 if ((k & 4) != 0) std::cerr << " (angles)"; 2292 std::cerr << std::endl; 1738 std::cerr << std::endl; 2293 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" 1739 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1; 2294 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" 1740 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2; 2295 std::cerr << " Dz=" << Dz << " Phi1=" << 1741 std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi 2296 << std::endl; 1742 << std::endl; 2297 return; 1743 return; 2298 } 1744 } 2299 << 1745 2300 // P R E P A R E T W O P O L Y L I N 1746 // P R E P A R E T W O P O L Y L I N E S 2301 1747 2302 G4double zz[4], rr[4]; 1748 G4double zz[4], rr[4]; 2303 zz[0] = Dz; << 1749 zz[0] = Dz; 2304 zz[1] = -Dz; << 1750 zz[1] = -Dz; 2305 zz[2] = Dz; << 1751 zz[2] = Dz; 2306 zz[3] = -Dz; << 1752 zz[3] = -Dz; 2307 rr[0] = Rmx2; 1753 rr[0] = Rmx2; 2308 rr[1] = Rmx1; 1754 rr[1] = Rmx1; 2309 rr[2] = Rmn2; 1755 rr[2] = Rmn2; 2310 rr[3] = Rmn1; 1756 rr[3] = Rmn1; 2311 1757 2312 // R O T A T E P O L Y L I N E S 1758 // R O T A T E P O L Y L I N E S 2313 1759 2314 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, << 1760 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 2315 SetReferences(); 1761 SetReferences(); 2316 } 1762 } 2317 1763 2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1764 HepPolyhedronCons::~HepPolyhedronCons() {} 2319 1765 2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1766 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 2321 G4double 1767 G4double Rmn2, G4double Rmx2, 2322 G4double 1768 G4double Dz) : 2323 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D 1769 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {} 2324 1770 2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1771 HepPolyhedronCone::~HepPolyhedronCone() {} 2326 1772 2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double 1773 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax, 2328 G4double << 1774 G4double Dz, 2329 G4double 1775 G4double Phi1, G4double Dphi) 2330 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rma 1776 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {} 2331 1777 2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1778 HepPolyhedronTubs::~HepPolyhedronTubs() {} 2333 1779 2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl 1780 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax, 2335 G4doubl 1781 G4double Dz) 2336 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, 1782 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {} 2337 1783 2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1784 HepPolyhedronTube::~HepPolyhedronTube () {} 2339 1785 2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double 1786 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi, 2341 G4double 1787 G4double dphi, 2342 G4int np << 1788 G4int npdv, 2343 G4int nz << 1789 G4int nz, 2344 const G4 1790 const G4double *z, 2345 const G4 1791 const G4double *rmin, 2346 const G4 1792 const G4double *rmax) 2347 /******************************************** 1793 /*********************************************************************** 2348 * 1794 * * 2349 * Name: HepPolyhedronPgon 1795 * Name: HepPolyhedronPgon Date: 09.12.96 * 2350 * Author: E.Chernyaev 1796 * Author: E.Chernyaev Revised: * 2351 * 1797 * * 2352 * Function: Constructor of polyhedron for PG 1798 * Function: Constructor of polyhedron for PGON, PCON * 2353 * 1799 * * 2354 * Input: phi - initial phi 1800 * Input: phi - initial phi * 2355 * dphi - delta phi 1801 * dphi - delta phi * 2356 * npdv - number of steps along phi 1802 * npdv - number of steps along phi * 2357 * nz - number of z-planes (at least 1803 * nz - number of z-planes (at least two) * 2358 * z[] - z coordinates of the slices 1804 * z[] - z coordinates of the slices * 2359 * rmin[] - smaller r at the slices 1805 * rmin[] - smaller r at the slices * 2360 * rmax[] - bigger r at the slices 1806 * rmax[] - bigger r at the slices * 2361 * 1807 * * 2362 ******************************************** 1808 ***********************************************************************/ 2363 { 1809 { 2364 // C H E C K I N P U T P A R A M E T 1810 // C H E C K I N P U T P A R A M E T E R S 2365 1811 2366 if (dphi <= 0. || dphi > twopi) { 1812 if (dphi <= 0. || dphi > twopi) { 2367 std::cerr 1813 std::cerr 2368 << "HepPolyhedronPgon/Pcon: wrong delta 1814 << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi 2369 << std::endl; 1815 << std::endl; 2370 return; 1816 return; 2371 } << 1817 } 2372 << 1818 2373 if (nz < 2) { 1819 if (nz < 2) { 2374 std::cerr 1820 std::cerr 2375 << "HepPolyhedronPgon/Pcon: number of z 1821 << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz 2376 << std::endl; 1822 << std::endl; 2377 return; 1823 return; 2378 } 1824 } 2379 1825 2380 if (npdv < 0) { 1826 if (npdv < 0) { 2381 std::cerr 1827 std::cerr 2382 << "HepPolyhedronPgon/Pcon: error in nu 1828 << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv 2383 << std::endl; 1829 << std::endl; 2384 return; 1830 return; 2385 } 1831 } 2386 1832 2387 G4int i; 1833 G4int i; 2388 for (i=0; i<nz; i++) { 1834 for (i=0; i<nz; i++) { 2389 if (rmin[i] < 0. || rmax[i] < 0. || rmin[ 1835 if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) { 2390 std::cerr 1836 std::cerr 2391 << "HepPolyhedronPgon: error in radiu 1837 << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]=" 2392 << rmin[i] << " rmax[" << i << "]=" < 1838 << rmin[i] << " rmax[" << i << "]=" << rmax[i] 2393 << std::endl; 1839 << std::endl; 2394 return; 1840 return; 2395 } 1841 } 2396 } 1842 } 2397 1843 2398 // P R E P A R E T W O P O L Y L I N 1844 // P R E P A R E T W O P O L Y L I N E S 2399 1845 2400 G4double *zz, *rr; 1846 G4double *zz, *rr; 2401 zz = new G4double[2*nz]; 1847 zz = new G4double[2*nz]; 2402 rr = new G4double[2*nz]; 1848 rr = new G4double[2*nz]; 2403 1849 2404 if (z[0] > z[nz-1]) { 1850 if (z[0] > z[nz-1]) { 2405 for (i=0; i<nz; i++) { 1851 for (i=0; i<nz; i++) { 2406 zz[i] = z[i]; 1852 zz[i] = z[i]; 2407 rr[i] = rmax[i]; 1853 rr[i] = rmax[i]; 2408 zz[i+nz] = z[i]; 1854 zz[i+nz] = z[i]; 2409 rr[i+nz] = rmin[i]; 1855 rr[i+nz] = rmin[i]; 2410 } 1856 } 2411 }else{ 1857 }else{ 2412 for (i=0; i<nz; i++) { 1858 for (i=0; i<nz; i++) { 2413 zz[i] = z[nz-i-1]; 1859 zz[i] = z[nz-i-1]; 2414 rr[i] = rmax[nz-i-1]; 1860 rr[i] = rmax[nz-i-1]; 2415 zz[i+nz] = z[nz-i-1]; 1861 zz[i+nz] = z[nz-i-1]; 2416 rr[i+nz] = rmin[nz-i-1]; 1862 rr[i+nz] = rmin[nz-i-1]; 2417 } 1863 } 2418 } 1864 } 2419 1865 2420 // R O T A T E P O L Y L I N E S 1866 // R O T A T E P O L Y L I N E S 2421 1867 2422 G4int nodeVis = 1; << 1868 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 2423 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2424 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, << 2425 SetReferences(); 1869 SetReferences(); 2426 << 1870 2427 delete [] zz; 1871 delete [] zz; 2428 delete [] rr; 1872 delete [] rr; 2429 } 1873 } 2430 1874 2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1875 HepPolyhedronPgon::~HepPolyhedronPgon() {} 2432 G4double << 2433 G4int np << 2434 const st << 2435 /******************************************** << 2436 * << 2437 * Name: HepPolyhedronPgon << 2438 * Author: E.Tcherniaev (E.Chernyaev) << 2439 * << 2440 * Function: Constructor of polyhedron for PG << 2441 * << 2442 * Input: phi - initial phi << 2443 * dphi - delta phi << 2444 * npdv - number of steps along phi << 2445 * rz - rz-contour << 2446 * << 2447 ******************************************** << 2448 { << 2449 // C H E C K I N P U T P A R A M E T << 2450 << 2451 if (dphi <= 0. || dphi > twopi) { << 2452 std::cerr << 2453 << "HepPolyhedronPgon/Pcon: wrong delta << 2454 << std::endl; << 2455 return; << 2456 } << 2457 << 2458 if (npdv < 0) { << 2459 std::cerr << 2460 << "HepPolyhedronPgon/Pcon: error in nu << 2461 << std::endl; << 2462 return; << 2463 } << 2464 << 2465 G4int nrz = (G4int)rz.size(); << 2466 if (nrz < 3) { << 2467 std::cerr << 2468 << "HepPolyhedronPgon/Pcon: invalid num << 2469 << std::endl; << 2470 return; << 2471 } << 2472 << 2473 // R O T A T E P O L Y L I N E << 2474 << 2475 G4int nodeVis = 1; << 2476 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2477 RotateContourAroundZ(npdv, phi, dphi, rz, n << 2478 SetReferences(); << 2479 } << 2480 << 2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 2482 1876 2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double 1877 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz, 2484 const G4 1878 const G4double *z, 2485 const G4 1879 const G4double *rmin, 2486 const G4 1880 const G4double *rmax) 2487 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm 1881 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {} 2488 1882 2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1883 HepPolyhedronPcon::~HepPolyhedronPcon() {} 2490 const st << 2491 : HepPolyhedronPgon(phi, dphi, 0, rz) {} << 2492 << 2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 2494 1884 2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do 1885 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax, 2496 G4do 1886 G4double phi, G4double dphi, 2497 G4do 1887 G4double the, G4double dthe) 2498 /******************************************** 1888 /*********************************************************************** 2499 * 1889 * * 2500 * Name: HepPolyhedronSphere 1890 * Name: HepPolyhedronSphere Date: 11.12.96 * 2501 * Author: E.Chernyaev (IHEP/Protvino) 1891 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2502 * 1892 * * 2503 * Function: Constructor of polyhedron for SP 1893 * Function: Constructor of polyhedron for SPHERE * 2504 * 1894 * * 2505 * Input: rmin - internal radius 1895 * Input: rmin - internal radius * 2506 * rmax - external radius 1896 * rmax - external radius * 2507 * phi - initial phi 1897 * phi - initial phi * 2508 * dphi - delta phi 1898 * dphi - delta phi * 2509 * the - initial theta 1899 * the - initial theta * 2510 * dthe - delta theta 1900 * dthe - delta theta * 2511 * 1901 * * 2512 ******************************************** 1902 ***********************************************************************/ 2513 { 1903 { 2514 // C H E C K I N P U T P A R A M E T 1904 // C H E C K I N P U T P A R A M E T E R S 2515 1905 2516 if (dphi <= 0. || dphi > twopi) { 1906 if (dphi <= 0. || dphi > twopi) { 2517 std::cerr 1907 std::cerr 2518 << "HepPolyhedronSphere: wrong delta ph 1908 << "HepPolyhedronSphere: wrong delta phi = " << dphi 2519 << std::endl; 1909 << std::endl; 2520 return; 1910 return; 2521 } << 1911 } 2522 1912 2523 if (the < 0. || the > pi) { 1913 if (the < 0. || the > pi) { 2524 std::cerr 1914 std::cerr 2525 << "HepPolyhedronSphere: wrong theta = 1915 << "HepPolyhedronSphere: wrong theta = " << the 2526 << std::endl; 1916 << std::endl; 2527 return; 1917 return; 2528 } << 1918 } 2529 << 1919 2530 if (dthe <= 0. || dthe > pi) { 1920 if (dthe <= 0. || dthe > pi) { 2531 std::cerr 1921 std::cerr 2532 << "HepPolyhedronSphere: wrong delta th 1922 << "HepPolyhedronSphere: wrong delta theta = " << dthe 2533 << std::endl; 1923 << std::endl; 2534 return; 1924 return; 2535 } << 1925 } 2536 1926 2537 if (the+dthe > pi) { 1927 if (the+dthe > pi) { 2538 std::cerr 1928 std::cerr 2539 << "HepPolyhedronSphere: wrong theta + 1929 << "HepPolyhedronSphere: wrong theta + delta theta = " 2540 << the << " " << dthe 1930 << the << " " << dthe 2541 << std::endl; 1931 << std::endl; 2542 return; 1932 return; 2543 } << 1933 } 2544 << 1934 2545 if (rmin < 0. || rmin >= rmax) { 1935 if (rmin < 0. || rmin >= rmax) { 2546 std::cerr 1936 std::cerr 2547 << "HepPolyhedronSphere: error in radiu 1937 << "HepPolyhedronSphere: error in radiuses" 2548 << " rmin=" << rmin << " rmax=" << rmax 1938 << " rmin=" << rmin << " rmax=" << rmax 2549 << std::endl; 1939 << std::endl; 2550 return; 1940 return; 2551 } 1941 } 2552 1942 2553 // P R E P A R E T W O P O L Y L I N 1943 // P R E P A R E T W O P O L Y L I N E S 2554 1944 2555 G4int nds = (GetNumberOfRotationSteps() + 1 << 1945 G4int ns = (GetNumberOfRotationSteps() + 1) / 2; 2556 G4int np1 = G4int(dthe*nds/pi+.5) + 1; << 1946 G4int np1 = G4int(dthe*ns/pi+.5) + 1; 2557 if (np1 <= 1) np1 = 2; 1947 if (np1 <= 1) np1 = 2; 2558 G4int np2 = rmin < spatialTolerance ? 1 : n << 1948 G4int np2 = rmin < perMillion ? 1 : np1; 2559 1949 2560 G4double *zz, *rr; 1950 G4double *zz, *rr; 2561 zz = new G4double[np1+np2]; 1951 zz = new G4double[np1+np2]; 2562 rr = new G4double[np1+np2]; 1952 rr = new G4double[np1+np2]; 2563 1953 2564 G4double a = dthe/(np1-1); 1954 G4double a = dthe/(np1-1); 2565 G4double cosa, sina; 1955 G4double cosa, sina; 2566 for (G4int i=0; i<np1; i++) { 1956 for (G4int i=0; i<np1; i++) { 2567 cosa = std::cos(the+i*a); 1957 cosa = std::cos(the+i*a); 2568 sina = std::sin(the+i*a); 1958 sina = std::sin(the+i*a); 2569 zz[i] = rmax*cosa; 1959 zz[i] = rmax*cosa; 2570 rr[i] = rmax*sina; 1960 rr[i] = rmax*sina; 2571 if (np2 > 1) { 1961 if (np2 > 1) { 2572 zz[i+np1] = rmin*cosa; 1962 zz[i+np1] = rmin*cosa; 2573 rr[i+np1] = rmin*sina; 1963 rr[i+np1] = rmin*sina; 2574 } 1964 } 2575 } 1965 } 2576 if (np2 == 1) { 1966 if (np2 == 1) { 2577 zz[np1] = 0.; 1967 zz[np1] = 0.; 2578 rr[np1] = 0.; 1968 rr[np1] = 0.; 2579 } 1969 } 2580 1970 2581 // R O T A T E P O L Y L I N E S 1971 // R O T A T E P O L Y L I N E S 2582 1972 2583 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1973 RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 2584 SetReferences(); 1974 SetReferences(); 2585 << 1975 2586 delete [] zz; 1976 delete [] zz; 2587 delete [] rr; 1977 delete [] rr; 2588 } 1978 } 2589 1979 2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1980 HepPolyhedronSphere::~HepPolyhedronSphere() {} 2591 1981 2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub 1982 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin, 2593 G4doub 1983 G4double rmax, 2594 G4doub 1984 G4double rtor, 2595 G4doub 1985 G4double phi, 2596 G4doub 1986 G4double dphi) 2597 /******************************************** 1987 /*********************************************************************** 2598 * 1988 * * 2599 * Name: HepPolyhedronTorus 1989 * Name: HepPolyhedronTorus Date: 11.12.96 * 2600 * Author: E.Chernyaev (IHEP/Protvino) 1990 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2601 * 1991 * * 2602 * Function: Constructor of polyhedron for TO 1992 * Function: Constructor of polyhedron for TORUS * 2603 * 1993 * * 2604 * Input: rmin - internal radius 1994 * Input: rmin - internal radius * 2605 * rmax - external radius 1995 * rmax - external radius * 2606 * rtor - radius of torus 1996 * rtor - radius of torus * 2607 * phi - initial phi 1997 * phi - initial phi * 2608 * dphi - delta phi 1998 * dphi - delta phi * 2609 * 1999 * * 2610 ******************************************** 2000 ***********************************************************************/ 2611 { 2001 { 2612 // C H E C K I N P U T P A R A M E T 2002 // C H E C K I N P U T P A R A M E T E R S 2613 2003 2614 if (dphi <= 0. || dphi > twopi) { 2004 if (dphi <= 0. || dphi > twopi) { 2615 std::cerr 2005 std::cerr 2616 << "HepPolyhedronTorus: wrong delta phi 2006 << "HepPolyhedronTorus: wrong delta phi = " << dphi 2617 << std::endl; 2007 << std::endl; 2618 return; 2008 return; 2619 } 2009 } 2620 2010 2621 if (rmin < 0. || rmin >= rmax || rmax >= rt 2011 if (rmin < 0. || rmin >= rmax || rmax >= rtor) { 2622 std::cerr 2012 std::cerr 2623 << "HepPolyhedronTorus: error in radius 2013 << "HepPolyhedronTorus: error in radiuses" 2624 << " rmin=" << rmin << " rmax=" << rmax 2014 << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor 2625 << std::endl; 2015 << std::endl; 2626 return; 2016 return; 2627 } 2017 } 2628 2018 2629 // P R E P A R E T W O P O L Y L I N 2019 // P R E P A R E T W O P O L Y L I N E S 2630 2020 2631 G4int np1 = GetNumberOfRotationSteps(); 2021 G4int np1 = GetNumberOfRotationSteps(); 2632 G4int np2 = rmin < spatialTolerance ? 1 : n << 2022 G4int np2 = rmin < perMillion ? 1 : np1; 2633 2023 2634 G4double *zz, *rr; 2024 G4double *zz, *rr; 2635 zz = new G4double[np1+np2]; 2025 zz = new G4double[np1+np2]; 2636 rr = new G4double[np1+np2]; 2026 rr = new G4double[np1+np2]; 2637 2027 2638 G4double a = twopi/np1; 2028 G4double a = twopi/np1; 2639 G4double cosa, sina; 2029 G4double cosa, sina; 2640 for (G4int i=0; i<np1; i++) { 2030 for (G4int i=0; i<np1; i++) { 2641 cosa = std::cos(i*a); 2031 cosa = std::cos(i*a); 2642 sina = std::sin(i*a); 2032 sina = std::sin(i*a); 2643 zz[i] = rmax*cosa; 2033 zz[i] = rmax*cosa; 2644 rr[i] = rtor+rmax*sina; 2034 rr[i] = rtor+rmax*sina; 2645 if (np2 > 1) { 2035 if (np2 > 1) { 2646 zz[i+np1] = rmin*cosa; 2036 zz[i+np1] = rmin*cosa; 2647 rr[i+np1] = rtor+rmin*sina; 2037 rr[i+np1] = rtor+rmin*sina; 2648 } 2038 } 2649 } 2039 } 2650 if (np2 == 1) { 2040 if (np2 == 1) { 2651 zz[np1] = 0.; 2041 zz[np1] = 0.; 2652 rr[np1] = rtor; 2042 rr[np1] = rtor; 2653 np2 = -1; 2043 np2 = -1; 2654 } 2044 } 2655 2045 2656 // R O T A T E P O L Y L I N E S 2046 // R O T A T E P O L Y L I N E S 2657 2047 2658 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2048 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 2659 SetReferences(); 2049 SetReferences(); 2660 << 2050 2661 delete [] zz; 2051 delete [] zz; 2662 delete [] rr; 2052 delete [] rr; 2663 } 2053 } 2664 2054 2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2055 HepPolyhedronTorus::~HepPolyhedronTorus() {} 2666 << 2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 2668 const G4do << 2669 const G4do << 2670 const G4do << 2671 /******************************************** << 2672 * << 2673 * Name: HepPolyhedronTet << 2674 * Author: E.Tcherniaev (E.Chernyaev) << 2675 * << 2676 * Function: Constructor of polyhedron for TE << 2677 * << 2678 * Input: p0,p1,p2,p3 - vertices << 2679 * << 2680 ******************************************** << 2681 { << 2682 AllocateMemory(4,4); << 2683 << 2684 pV[1].set(p0[0], p0[1], p0[2]); << 2685 pV[2].set(p1[0], p1[1], p1[2]); << 2686 pV[3].set(p2[0], p2[1], p2[2]); << 2687 pV[4].set(p3[0], p3[1], p3[2]); << 2688 << 2689 G4Vector3D v1(pV[2] - pV[1]); << 2690 G4Vector3D v2(pV[3] - pV[1]); << 2691 G4Vector3D v3(pV[4] - pV[1]); << 2692 << 2693 if (v1.cross(v2).dot(v3) < 0.) << 2694 { << 2695 pV[3].set(p3[0], p3[1], p3[2]); << 2696 pV[4].set(p2[0], p2[1], p2[2]); << 2697 } << 2698 << 2699 pF[1] = G4Facet(1,2, 3,4, 2,3); << 2700 pF[2] = G4Facet(1,3, 4,4, 3,1); << 2701 pF[3] = G4Facet(1,1, 2,4, 4,2); << 2702 pF[4] = G4Facet(2,1, 3,2, 4,3); << 2703 } << 2704 << 2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 2706 2056 2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi 2057 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by, 2708 2058 G4double cz, G4double zCut1, 2709 2059 G4double zCut2) 2710 /******************************************** 2060 /*********************************************************************** 2711 * 2061 * * 2712 * Name: HepPolyhedronEllipsoid 2062 * Name: HepPolyhedronEllipsoid Date: 25.02.05 * 2713 * Author: G.Guerrieri 2063 * Author: G.Guerrieri Revised: * 2714 * Evgueni Tcherniaev << 2715 * 2064 * * 2716 * Function: Constructor of polyhedron for EL 2065 * Function: Constructor of polyhedron for ELLIPSOID * 2717 * 2066 * * 2718 * Input: ax - semiaxis x 2067 * Input: ax - semiaxis x * 2719 * by - semiaxis y 2068 * by - semiaxis y * 2720 * cz - semiaxis z 2069 * cz - semiaxis z * 2721 * zCut1 - lower cut plane level (soli 2070 * zCut1 - lower cut plane level (solid lies above this plane) * 2722 * zCut2 - upper cut plane level (soli 2071 * zCut2 - upper cut plane level (solid lies below this plane) * 2723 * 2072 * * 2724 ******************************************** 2073 ***********************************************************************/ 2725 { 2074 { 2726 // C H E C K I N P U T P A R A M E T 2075 // C H E C K I N P U T P A R A M E T E R S 2727 2076 2728 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > 2077 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) { 2729 std::cerr << "HepPolyhedronEllipsoid: wro 2078 std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1 2730 << " zCut2 = " << zCut2 2079 << " zCut2 = " << zCut2 2731 << " for given cz = " << cz << std 2080 << " for given cz = " << cz << std::endl; 2732 return; 2081 return; 2733 } 2082 } 2734 if (cz <= 0.0) { 2083 if (cz <= 0.0) { 2735 std::cerr << "HepPolyhedronEllipsoid: bad 2084 std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz 2736 << std::endl; 2085 << std::endl; 2737 return; 2086 return; 2738 } 2087 } 2739 2088 >> 2089 G4double dthe; >> 2090 G4double sthe; >> 2091 G4int cutflag; >> 2092 cutflag= 0; >> 2093 if (zCut2 >= cz) >> 2094 { >> 2095 sthe= 0.0; >> 2096 } >> 2097 else >> 2098 { >> 2099 sthe= std::acos(zCut2/cz); >> 2100 cutflag++; >> 2101 } >> 2102 if (zCut1 <= -cz) >> 2103 { >> 2104 dthe= pi - sthe; >> 2105 } >> 2106 else >> 2107 { >> 2108 dthe= std::acos(zCut1/cz)-sthe; >> 2109 cutflag++; >> 2110 } >> 2111 2740 // P R E P A R E T W O P O L Y L I N 2112 // P R E P A R E T W O P O L Y L I N E S 2741 // generate sphere of radius cz first, th 2113 // generate sphere of radius cz first, then rescale x and y later 2742 2114 2743 G4double sthe = std::acos(zCut2/cz); << 2115 G4int ns = (GetNumberOfRotationSteps() + 1) / 2; 2744 G4double dthe = std::acos(zCut1/cz) - sthe; << 2116 G4int np1 = G4int(dthe*ns/pi) + 2 + cutflag; 2745 G4int nds = (GetNumberOfRotationSteps() + 1 << 2746 G4int np1 = G4int(dthe*nds/pi + 0.5) + 1; << 2747 if (np1 <= 1) np1 = 2; << 2748 G4int np2 = 2; << 2749 2117 2750 G4double *zz, *rr; 2118 G4double *zz, *rr; 2751 zz = new G4double[np1 + np2]; << 2119 zz = new G4double[np1+1]; 2752 rr = new G4double[np1 + np2]; << 2120 rr = new G4double[np1+1]; 2753 if ((zz == nullptr) || (rr == nullptr)) << 2121 if (!zz || !rr) 2754 { << 2122 { 2755 G4Exception("HepPolyhedronEllipsoid::HepP << 2123 std::cerr << "Out of memory in HepPolyhedronEllipsoid!" << std::endl; 2756 "greps1002", FatalException, << 2124 //Exception("Out of memory in HepPolyhedronEllipsoid!"); 2757 } << 2125 } 2758 2126 2759 G4double a = dthe/(np1 - 1); << 2127 G4double a = dthe/(np1-cutflag-1); 2760 G4double cosa, sina; 2128 G4double cosa, sina; 2761 for (G4int i = 0; i < np1; ++i) << 2129 G4int j=0; 2762 { << 2130 if (sthe > 0.0) 2763 cosa = std::cos(sthe + i*a); << 2131 { 2764 sina = std::sin(sthe + i*a); << 2132 zz[j]= zCut2; 2765 zz[i] = cz*cosa; << 2133 rr[j]= 0.; 2766 rr[i] = cz*sina; << 2134 j++; 2767 } << 2135 } 2768 zz[np1 + 0] = zCut2; << 2136 for (G4int i=0; i<np1-cutflag; i++) { 2769 rr[np1 + 0] = 0.; << 2137 cosa = std::cos(sthe+i*a); 2770 zz[np1 + 1] = zCut1; << 2138 sina = std::sin(sthe+i*a); 2771 rr[np1 + 1] = 0.; << 2139 zz[j] = cz*cosa; >> 2140 rr[j] = cz*sina; >> 2141 j++; >> 2142 } >> 2143 if (j < np1) >> 2144 { >> 2145 zz[j]= zCut1; >> 2146 rr[j]= 0.; >> 2147 j++; >> 2148 } >> 2149 if (j > np1) >> 2150 { >> 2151 std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!" >> 2152 << std::endl; >> 2153 } >> 2154 if (j < np1) >> 2155 { >> 2156 std::cerr << "Warning: logic error in HepPolyhedronEllipsoid." >> 2157 << std::endl; >> 2158 np1= j; >> 2159 } >> 2160 zz[j] = 0.; >> 2161 rr[j] = 0.; 2772 2162 >> 2163 2773 // R O T A T E P O L Y L I N E S 2164 // R O T A T E P O L Y L I N E S 2774 2165 2775 RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2166 RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 2776 SetReferences(); 2167 SetReferences(); 2777 2168 2778 delete [] zz; 2169 delete [] zz; 2779 delete [] rr; 2170 delete [] rr; 2780 2171 2781 // rescale x and y vertex coordinates 2172 // rescale x and y vertex coordinates 2782 G4double kx = ax/cz; << 2783 G4double ky = by/cz; << 2784 G4Point3D* p = pV; << 2785 for (G4int i = 0; i < nvert; ++i, ++p) << 2786 { 2173 { 2787 p->setX(p->x()*kx); << 2174 G4Point3D * p= pV; 2788 p->setY(p->y()*ky); << 2175 for (G4int i=0; i<nvert; i++, p++) { >> 2176 p->setX( p->x() * ax/cz ); >> 2177 p->setY( p->y() * by/cz ); >> 2178 } 2789 } 2179 } 2790 } 2180 } 2791 2181 2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2182 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {} 2793 2183 2794 HepPolyhedronEllipticalCone::HepPolyhedronEll 2184 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax, 2795 2185 G4double ay, 2796 2186 G4double h, 2797 << 2187 G4double zTopCut) 2798 /******************************************** 2188 /*********************************************************************** 2799 * 2189 * * 2800 * Name: HepPolyhedronEllipticalCone 2190 * Name: HepPolyhedronEllipticalCone Date: 8.9.2005 * 2801 * Author: D.Anninos 2191 * Author: D.Anninos Revised: 9.9.2005 * 2802 * 2192 * * 2803 * Function: Constructor for EllipticalCone 2193 * Function: Constructor for EllipticalCone * 2804 * 2194 * * 2805 * Input: ax, ay - X & Y semi axes at z = 2195 * Input: ax, ay - X & Y semi axes at z = 0 * 2806 * h - height of full cone 2196 * h - height of full cone * 2807 * zTopCut - Top Cut in Z Axis 2197 * zTopCut - Top Cut in Z Axis * 2808 * 2198 * * 2809 ******************************************** 2199 ***********************************************************************/ 2810 { 2200 { 2811 // C H E C K I N P U T P A R A M E T 2201 // C H E C K I N P U T P A R A M E T E R S 2812 2202 2813 G4int k = 0; 2203 G4int k = 0; 2814 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) 2204 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; } 2815 2205 2816 if (k != 0) { 2206 if (k != 0) { 2817 std::cerr << "HepPolyhedronCone: error in 2207 std::cerr << "HepPolyhedronCone: error in input parameters"; 2818 std::cerr << std::endl; 2208 std::cerr << std::endl; 2819 return; 2209 return; 2820 } 2210 } 2821 << 2211 2822 // P R E P A R E T W O P O L Y L I N 2212 // P R E P A R E T W O P O L Y L I N E S 2823 2213 2824 zTopCut = (h >= zTopCut ? zTopCut : h); 2214 zTopCut = (h >= zTopCut ? zTopCut : h); 2825 2215 2826 G4double *zz, *rr; 2216 G4double *zz, *rr; 2827 zz = new G4double[4]; 2217 zz = new G4double[4]; 2828 rr = new G4double[4]; 2218 rr = new G4double[4]; 2829 zz[0] = zTopCut; << 2219 zz[0] = zTopCut; 2830 zz[1] = -zTopCut; << 2220 zz[1] = -zTopCut; 2831 zz[2] = zTopCut; << 2221 zz[2] = zTopCut; 2832 zz[3] = -zTopCut; << 2222 zz[3] = -zTopCut; 2833 rr[0] = (h-zTopCut); 2223 rr[0] = (h-zTopCut); 2834 rr[1] = (h+zTopCut); 2224 rr[1] = (h+zTopCut); 2835 rr[2] = 0.; 2225 rr[2] = 0.; 2836 rr[3] = 0.; 2226 rr[3] = 0.; 2837 2227 2838 // R O T A T E P O L Y L I N E S 2228 // R O T A T E P O L Y L I N E S 2839 2229 2840 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2230 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 2841 SetReferences(); 2231 SetReferences(); 2842 2232 2843 delete [] zz; 2233 delete [] zz; 2844 delete [] rr; 2234 delete [] rr; 2845 2235 2846 // rescale x and y vertex coordinates 2236 // rescale x and y vertex coordinates 2847 { 2237 { 2848 G4Point3D * p= pV; 2238 G4Point3D * p= pV; 2849 for (G4int i=0; i<nvert; i++, p++) { 2239 for (G4int i=0; i<nvert; i++, p++) { 2850 p->setX( p->x() * ax ); 2240 p->setX( p->x() * ax ); 2851 p->setY( p->y() * ay ); 2241 p->setY( p->y() * ay ); 2852 } 2242 } 2853 } 2243 } 2854 } 2244 } 2855 2245 2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2246 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {} 2857 << 2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 2859 << 2860 << 2861 /******************************************** << 2862 * << 2863 * Name: HepPolyhedronHyperbolicMirror << 2864 * Author: E.Tcherniaev (E.Chernyaev) << 2865 * << 2866 * Function: Create polyhedron for Hyperbolic << 2867 * << 2868 * Input: a - half-separation << 2869 * h - height << 2870 * r - radius << 2871 * << 2872 ******************************************** << 2873 { << 2874 G4double H = std::abs(h); << 2875 G4double R = std::abs(r); << 2876 G4double A = std::abs(a); << 2877 G4double B = A*R/std::sqrt(2*A*H + H*H); << 2878 << 2879 // P R E P A R E T W O P O L Y L I N << 2880 << 2881 G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 2882 G4int np2 = 2; << 2883 G4double maxAng = (A == 0.) ? 0. : std::aco << 2884 G4double delAng = maxAng/(np1 - 1); << 2885 << 2886 auto zz = new G4double[np1 + np2]; << 2887 auto rr = new G4double[np1 + np2]; << 2888 << 2889 // 1st polyline << 2890 zz[0] = H; << 2891 rr[0] = R; << 2892 for (G4int iz = 1; iz < np1 - 1; ++iz) << 2893 { << 2894 G4double ang = maxAng - iz*delAng; << 2895 zz[iz] = A*std::cosh(ang) - A; << 2896 rr[iz] = B*std::sinh(ang); << 2897 } << 2898 zz[np1 - 1] = 0.; << 2899 rr[np1 - 1] = 0.; << 2900 << 2901 // 2nd polyline << 2902 zz[np1] = H; << 2903 rr[np1] = 0.; << 2904 zz[np1 + 1] = 0.; << 2905 rr[np1 + 1] = 0.; << 2906 << 2907 // R O T A T E P O L Y L I N E S << 2908 << 2909 G4double phi = 0.; << 2910 G4double dphi = CLHEP::twopi; << 2911 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 2912 SetReferences(); << 2913 << 2914 delete [] zz; << 2915 delete [] rr; << 2916 } << 2917 << 2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 2919 << 2920 HepPolyhedronTetMesh:: << 2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 2922 /******************************************** << 2923 * << 2924 * Name: HepPolyhedronTetMesh << 2925 * Author: E.Tcherniaev (E.Chernyaev) << 2926 * << 2927 * Function: Create polyhedron for tetrahedro << 2928 * << 2929 * Input: tetrahedra - array of tetrahedron v << 2930 * per tetrahedron << 2931 * << 2932 ******************************************** << 2933 { << 2934 // Check size of input vector << 2935 G4int nnodes = (G4int)tetrahedra.size(); << 2936 if (nnodes == 0) << 2937 { << 2938 std::cerr << 2939 << "HepPolyhedronTetMesh: Empty tetrahe << 2940 return; << 2941 } << 2942 G4int ntet = nnodes/4; << 2943 if (nnodes != ntet*4) << 2944 { << 2945 std::cerr << "HepPolyhedronTetMesh: Numbe << 2946 << " in tetrahedron mesh is NOT << 2947 << std::endl; << 2948 return; << 2949 } << 2950 2247 2951 // Find coincident vertices using hash tabl << 2952 // This could be done using std::unordered_ << 2953 // below runs faster. << 2954 std::vector<G4int> iheads(nnodes, -1); << 2955 std::vector<std::pair<G4int,G4int>> ipairs( << 2956 for (G4int i = 0; i < nnodes; ++i) << 2957 { << 2958 // Generate hash key << 2959 G4ThreeVector point = tetrahedra[i]; << 2960 auto key = std::hash<G4double>()(point.x( << 2961 key ^= std::hash<G4double>()(point.y()); << 2962 key ^= std::hash<G4double>()(point.z()); << 2963 key %= nnodes; << 2964 // Check head of the list << 2965 if (iheads[key] < 0) << 2966 { << 2967 iheads[key] = i; << 2968 ipairs[i].first = i; << 2969 continue; << 2970 } << 2971 // Loop along the list << 2972 for (G4int icur = iheads[key], iprev = 0; << 2973 { << 2974 G4int icheck = ipairs[icur].first; << 2975 if (tetrahedra[icheck] == point) << 2976 { << 2977 ipairs[i].first = icheck; // coincide << 2978 break; << 2979 } << 2980 iprev = icur; << 2981 icur = ipairs[icur].second; << 2982 // Append vertex to the list << 2983 if (icur < 0) << 2984 { << 2985 ipairs[i].first = i; << 2986 ipairs[iprev].second = i; << 2987 break; << 2988 } << 2989 } << 2990 } << 2991 << 2992 // Create vector of original facets << 2993 struct facet << 2994 { << 2995 G4int i1, i2, i3; << 2996 facet() : i1(0), i2(0), i3(0) {}; << 2997 facet(G4int k1, G4int k2, G4int k3) : i1( << 2998 }; << 2999 G4int nfacets = nnodes; << 3000 std::vector<facet> ifacets(nfacets); << 3001 for (G4int i = 0; i < nfacets; i += 4) << 3002 { << 3003 G4int i0 = ipairs[i + 0].first; << 3004 G4int i1 = ipairs[i + 1].first; << 3005 G4int i2 = ipairs[i + 2].first; << 3006 G4int i3 = ipairs[i + 3].first; << 3007 if (i0 > i1) std::swap(i0, i1); << 3008 if (i0 > i2) std::swap(i0, i2); << 3009 if (i0 > i3) std::swap(i0, i3); << 3010 if (i1 > i2) std::swap(i1, i2); << 3011 if (i1 > i3) std::swap(i1, i3); << 3012 G4ThreeVector e1 = tetrahedra[i1] - tetra << 3013 G4ThreeVector e2 = tetrahedra[i2] - tetra << 3014 G4ThreeVector e3 = tetrahedra[i3] - tetra << 3015 G4double volume = (e1.cross(e2)).dot(e3); << 3016 if (volume > 0.) std::swap(i2, i3); << 3017 ifacets[i + 0] = facet(i0, i1, i2); << 3018 ifacets[i + 1] = facet(i0, i2, i3); << 3019 ifacets[i + 2] = facet(i0, i3, i1); << 3020 ifacets[i + 3] = facet(i1, i3, i2); << 3021 } << 3022 << 3023 // Find shared facets << 3024 std::fill(iheads.begin(), iheads.end(), -1) << 3025 std::fill(ipairs.begin(), ipairs.end(), std << 3026 for (G4int i = 0; i < nfacets; ++i) << 3027 { << 3028 // Check head of the list << 3029 G4int key = ifacets[i].i1; << 3030 if (iheads[key] < 0) << 3031 { << 3032 iheads[key] = i; << 3033 ipairs[i].first = i; << 3034 continue; << 3035 } << 3036 // Loop along the list << 3037 G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 3038 for (G4int icur = iheads[key], iprev = -1 << 3039 { << 3040 G4int icheck = ipairs[icur].first; << 3041 if (ifacets[icheck].i2 == i3 && ifacets << 3042 { << 3043 if (iprev < 0) << 3044 { << 3045 iheads[key] = ipairs[icur].second; << 3046 } << 3047 else << 3048 { << 3049 ipairs[iprev].second = ipairs[icur] << 3050 } << 3051 ipairs[icur].first = -1; // shared fa << 3052 ipairs[icur].second = -1; << 3053 break; << 3054 } << 3055 iprev = icur; << 3056 icur = ipairs[icur].second; << 3057 // Append facet to the list << 3058 if (icur < 0) << 3059 { << 3060 ipairs[i].first = i; << 3061 ipairs[iprev].second = i; << 3062 break; << 3063 } << 3064 } << 3065 } << 3066 << 3067 // Count vertices and facets skipping share << 3068 std::fill(iheads.begin(), iheads.end(), -1) << 3069 G4int nver = 0, nfac = 0; << 3070 for (G4int i = 0; i < nfacets; ++i) << 3071 { << 3072 if (ipairs[i].first < 0) continue; << 3073 G4int i1 = ifacets[i].i1; << 3074 G4int i2 = ifacets[i].i2; << 3075 G4int i3 = ifacets[i].i3; << 3076 if (iheads[i1] < 0) iheads[i1] = nver++; << 3077 if (iheads[i2] < 0) iheads[i2] = nver++; << 3078 if (iheads[i3] < 0) iheads[i3] = nver++; << 3079 nfac++; << 3080 } << 3081 << 3082 // Construct polyhedron << 3083 AllocateMemory(nver, nfac); << 3084 for (G4int i = 0; i < nnodes; ++i) << 3085 { << 3086 G4int k = iheads[i]; << 3087 if (k >= 0) SetVertex(k + 1, tetrahedra[i << 3088 } << 3089 for (G4int i = 0, k = 0; i < nfacets; ++i) << 3090 { << 3091 if (ipairs[i].first < 0) continue; << 3092 G4int i1 = iheads[ifacets[i].i1] + 1; << 3093 G4int i2 = iheads[ifacets[i].i2] + 1; << 3094 G4int i3 = iheads[ifacets[i].i3] + 1; << 3095 SetFacet(++k, i1, i2, i3); << 3096 } << 3097 SetReferences(); << 3098 } << 3099 << 3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 3101 << 3102 HepPolyhedronBoxMesh:: << 3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 3104 const std::vector<G4Thre << 3105 /******************************************** << 3106 * << 3107 * Name: HepPolyhedronBoxMesh << 3108 * Author: E.Tcherniaev (E.Chernyaev) << 3109 * << 3110 * Function: Create polyhedron for box mesh << 3111 * << 3112 * Input: sizeX, sizeY, sizeZ - dimensions of << 3113 * positions - vector of cell centres << 3114 * << 3115 ******************************************** << 3116 { << 3117 G4int nbox = (G4int)positions.size(); << 3118 if (nbox == 0) << 3119 { << 3120 std::cerr << "HepPolyhedronBoxMesh: Empty << 3121 return; << 3122 } << 3123 // compute inverse dimensions << 3124 G4double invx = 1./sizeX, invy = 1./sizeY, << 3125 // find mesh bounding box << 3126 G4ThreeVector pmin = positions[0], pmax = p << 3127 for (const auto& p: positions) << 3128 { << 3129 if (pmin.x() > p.x()) pmin.setX(p.x()); << 3130 if (pmin.y() > p.y()) pmin.setY(p.y()); << 3131 if (pmin.z() > p.z()) pmin.setZ(p.z()); << 3132 if (pmax.x() < p.x()) pmax.setX(p.x()); << 3133 if (pmax.y() < p.y()) pmax.setY(p.y()); << 3134 if (pmax.z() < p.z()) pmax.setZ(p.z()); << 3135 } << 3136 // find number of voxels << 3137 G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 3138 G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 3139 G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 3140 // create structures for voxels and node in << 3141 std::vector<char> voxels(nx*ny*nz, 0); << 3142 std::vector<G4int> indices((nx+1)*(ny+1)*(n << 3143 // mark voxels listed in positions << 3144 G4int kx = ny*nz, ky = nz; << 3145 for (const auto& p: positions) << 3146 { << 3147 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3148 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3149 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3150 G4int i = ix*kx + iy*ky + iz; << 3151 voxels[i] = 1; << 3152 } << 3153 // count number of vertices and facets << 3154 // set indices << 3155 G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 3156 G4int nver = 0, nfac = 0; << 3157 for (const auto& p: positions) << 3158 { << 3159 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3160 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3161 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3162 // << 3163 // 011 111 << 3164 // +---–---+ << 3165 // | 001 | 101 << 3166 // | +---–---+ << 3167 // | | | | << 3168 // +---|---+ | << 3169 // 010 | 110 | << 3170 // +-------+ << 3171 // 000 100 << 3172 // << 3173 G4int vcheck = 0; << 3174 // check (ix - 1) side << 3175 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3176 if (vcheck == 0) << 3177 { << 3178 nfac++; << 3179 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3180 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3181 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3182 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3183 if (indices[i1] == 0) indices[i1] = ++n << 3184 if (indices[i2] == 0) indices[i2] = ++n << 3185 if (indices[i3] == 0) indices[i3] = ++n << 3186 if (indices[i4] == 0) indices[i4] = ++n << 3187 } << 3188 // check (ix + 1) side << 3189 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3190 if (vcheck == 0) << 3191 { << 3192 nfac++; << 3193 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3194 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3195 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3196 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3197 if (indices[i1] == 0) indices[i1] = ++n << 3198 if (indices[i2] == 0) indices[i2] = ++n << 3199 if (indices[i3] == 0) indices[i3] = ++n << 3200 if (indices[i4] == 0) indices[i4] = ++n << 3201 } << 3202 // check (iy - 1) side << 3203 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3204 if (vcheck == 0) << 3205 { << 3206 nfac++; << 3207 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3208 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3209 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3210 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3211 if (indices[i1] == 0) indices[i1] = ++n << 3212 if (indices[i2] == 0) indices[i2] = ++n << 3213 if (indices[i3] == 0) indices[i3] = ++n << 3214 if (indices[i4] == 0) indices[i4] = ++n << 3215 } << 3216 // check (iy + 1) side << 3217 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3218 if (vcheck == 0) << 3219 { << 3220 nfac++; << 3221 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3222 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3223 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3224 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3225 if (indices[i1] == 0) indices[i1] = ++n << 3226 if (indices[i2] == 0) indices[i2] = ++n << 3227 if (indices[i3] == 0) indices[i3] = ++n << 3228 if (indices[i4] == 0) indices[i4] = ++n << 3229 } << 3230 // check (iz - 1) side << 3231 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3232 if (vcheck == 0) << 3233 { << 3234 nfac++; << 3235 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3236 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3237 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3238 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3239 if (indices[i1] == 0) indices[i1] = ++n << 3240 if (indices[i2] == 0) indices[i2] = ++n << 3241 if (indices[i3] == 0) indices[i3] = ++n << 3242 if (indices[i4] == 0) indices[i4] = ++n << 3243 } << 3244 // check (iz + 1) side << 3245 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3246 if (vcheck == 0) << 3247 { << 3248 nfac++; << 3249 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3250 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3251 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3252 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3253 if (indices[i1] == 0) indices[i1] = ++n << 3254 if (indices[i2] == 0) indices[i2] = ++n << 3255 if (indices[i3] == 0) indices[i3] = ++n << 3256 if (indices[i4] == 0) indices[i4] = ++n << 3257 } << 3258 } << 3259 // Construct polyhedron << 3260 AllocateMemory(nver, nfac); << 3261 G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 3262 for (G4int ix = 0; ix <= nx; ++ix) << 3263 { << 3264 for (G4int iy = 0; iy <= ny; ++iy) << 3265 { << 3266 for (G4int iz = 0; iz <= nz; ++iz) << 3267 { << 3268 G4int i = ix*kvx + iy*kvy + iz; << 3269 if (indices[i] == 0) continue; << 3270 SetVertex(indices[i], p0 + G4ThreeVector(ix << 3271 } << 3272 } << 3273 } << 3274 nfac = 0; << 3275 for (const auto& p: positions) << 3276 { << 3277 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3278 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3279 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3280 G4int vcheck = 0; << 3281 // check (ix - 1) side << 3282 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3283 if (vcheck == 0) << 3284 { << 3285 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3286 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3287 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3288 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3289 SetFacet(++nfac, indices[i1], indices[i << 3290 } << 3291 // check (ix + 1) side << 3292 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3293 if (vcheck == 0) << 3294 { << 3295 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3296 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3297 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3298 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3299 SetFacet(++nfac, indices[i1], indices[i << 3300 << 3301 } << 3302 // check (iy - 1) side << 3303 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3304 if (vcheck == 0) << 3305 { << 3306 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3307 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3308 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3309 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3310 SetFacet(++nfac, indices[i1], indices[i << 3311 } << 3312 // check (iy + 1) side << 3313 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3314 if (vcheck == 0) << 3315 { << 3316 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3317 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3318 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3319 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3320 SetFacet(++nfac, indices[i1], indices[i << 3321 } << 3322 // check (iz - 1) side << 3323 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3324 if (vcheck == 0) << 3325 { << 3326 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3327 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3328 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3329 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3330 SetFacet(++nfac, indices[i1], indices[i << 3331 } << 3332 // check (iz + 1) side << 3333 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3334 if (vcheck == 0) << 3335 { << 3336 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3337 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3338 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3339 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3340 SetFacet(++nfac, indices[i1], indices[i << 3341 } << 3342 } << 3343 SetReferences(); << 3344 } << 3345 << 3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 3347 << 3348 G4ThreadLocal << 3349 G4int HepPolyhedron::fNumberOfRotationSteps = 2248 G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 3350 /******************************************** 2249 /*********************************************************************** 3351 * 2250 * * 3352 * Name: HepPolyhedron::fNumberOfRotationStep 2251 * Name: HepPolyhedron::fNumberOfRotationSteps Date: 24.06.97 * 3353 * Author: J.Allison (Manchester University) 2252 * Author: J.Allison (Manchester University) Revised: * 3354 * 2253 * * 3355 * Function: Number of steps for whole circle 2254 * Function: Number of steps for whole circle * 3356 * 2255 * * 3357 ******************************************** 2256 ***********************************************************************/ 3358 2257 3359 #include "BooleanProcessor.src" 2258 #include "BooleanProcessor.src" 3360 2259 3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2260 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 3362 /******************************************** 2261 /*********************************************************************** 3363 * 2262 * * 3364 * Name: HepPolyhedron::add 2263 * Name: HepPolyhedron::add Date: 19.03.00 * 3365 * Author: E.Chernyaev 2264 * Author: E.Chernyaev Revised: * 3366 * 2265 * * 3367 * Function: Boolean "union" of two polyhedra 2266 * Function: Boolean "union" of two polyhedra * 3368 * 2267 * * 3369 ******************************************** 2268 ***********************************************************************/ 3370 { 2269 { 3371 G4int ierr; 2270 G4int ierr; 3372 BooleanProcessor processor; 2271 BooleanProcessor processor; 3373 return processor.execute(OP_UNION, *this, p 2272 return processor.execute(OP_UNION, *this, p,ierr); 3374 } 2273 } 3375 2274 3376 HepPolyhedron HepPolyhedron::intersect(const << 2275 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 3377 /******************************************** 2276 /*********************************************************************** 3378 * 2277 * * 3379 * Name: HepPolyhedron::intersect 2278 * Name: HepPolyhedron::intersect Date: 19.03.00 * 3380 * Author: E.Chernyaev 2279 * Author: E.Chernyaev Revised: * 3381 * 2280 * * 3382 * Function: Boolean "intersection" of two po 2281 * Function: Boolean "intersection" of two polyhedra * 3383 * 2282 * * 3384 ******************************************** 2283 ***********************************************************************/ 3385 { 2284 { 3386 G4int ierr; 2285 G4int ierr; 3387 BooleanProcessor processor; 2286 BooleanProcessor processor; 3388 return processor.execute(OP_INTERSECTION, * 2287 return processor.execute(OP_INTERSECTION, *this, p,ierr); 3389 } 2288 } 3390 2289 3391 HepPolyhedron HepPolyhedron::subtract(const H << 2290 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 3392 /******************************************** 2291 /*********************************************************************** 3393 * 2292 * * 3394 * Name: HepPolyhedron::add 2293 * Name: HepPolyhedron::add Date: 19.03.00 * 3395 * Author: E.Chernyaev 2294 * Author: E.Chernyaev Revised: * 3396 * 2295 * * 3397 * Function: Boolean "subtraction" of "p" fro 2296 * Function: Boolean "subtraction" of "p" from "this" * 3398 * 2297 * * 3399 ******************************************** 2298 ***********************************************************************/ 3400 { 2299 { 3401 G4int ierr; 2300 G4int ierr; 3402 BooleanProcessor processor; 2301 BooleanProcessor processor; 3403 return processor.execute(OP_SUBTRACTION, *t 2302 return processor.execute(OP_SUBTRACTION, *this, p,ierr); 3404 } 2303 } 3405 2304 3406 //NOTE : include the code of HepPolyhedronPro 2305 //NOTE : include the code of HepPolyhedronProcessor here 3407 // since there is no BooleanProcessor.h 2306 // since there is no BooleanProcessor.h 3408 2307 3409 #undef INTERSECTION 2308 #undef INTERSECTION 3410 2309 3411 #include "HepPolyhedronProcessor.src" 2310 #include "HepPolyhedronProcessor.src" >> 2311 3412 2312