Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 7 // 6 // * the Geant4 Collaboration. It is provided << 8 // $Id: HepPolyhedron.cc,v 1.4 2000/04/18 10:03:29 evc Exp $ 7 // * conditions of the Geant4 Software License << 9 // GEANT4 tag $Name: geant4-03-00 $ 8 // * LICENSE and available at http://cern.ch/ << 10 // 9 // * include a list of copyright holders. << 11 // 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 12 // 26 // G4 Polyhedron library 13 // G4 Polyhedron library 27 // 14 // 28 // History: 15 // History: 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce 16 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version 30 // 17 // 31 // 30.09.96 E.Chernyaev 18 // 30.09.96 E.Chernyaev 32 // - added GetNextVertexIndex, GetVertex by Ya 19 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada 33 // - added GetNextUnitNormal, GetNextEdgeIndic << 20 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge 34 // 21 // 35 // 15.12.96 E.Chernyaev 22 // 15.12.96 E.Chernyaev 36 // - added GetNumberOfRotationSteps, RotateEdg 23 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences 37 // - rewritten G4PolyhedronCons; 24 // - rewritten G4PolyhedronCons; 38 // - added G4PolyhedronPara, ...Trap, ...Pgon, 25 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus 39 // 26 // 40 // 01.06.97 E.Chernyaev 27 // 01.06.97 E.Chernyaev 41 // - modified RotateAroundZ, added SetSideFace 28 // - modified RotateAroundZ, added SetSideFacets 42 // 29 // 43 // 19.03.00 E.Chernyaev 30 // 19.03.00 E.Chernyaev 44 // - implemented boolean operations (add, subt 31 // - implemented boolean operations (add, subtract, intersect) on polyhedra; 45 // 32 // 46 // 25.05.01 E.Chernyaev << 33 47 // - added GetSurfaceArea() and GetVolume() << 48 // << 49 // 05.11.02 E.Chernyaev << 50 // - added createTwistedTrap() and createPolyh << 51 // << 52 // 20.06.05 G.Cosmo << 53 // - added HepPolyhedronEllipsoid << 54 // << 55 // 18.07.07 T.Nikitina << 56 // - added HepPolyhedronParaboloid << 57 // << 58 // 22.02.20 E.Chernyaev << 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 60 // << 61 // 12.05.21 E.Chernyaev << 62 // - added TriangulatePolygon(), RotateContour << 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 64 // << 65 // 26.03.22 E.Chernyaev << 66 // - added SetVertex(), SetFacet() << 67 // - added HepPolyhedronTetMesh << 68 // << 69 // 04.04.22 E.Chernyaev << 70 // - added JoinCoplanarFacets() << 71 // << 72 // 07.04.22 E.Chernyaev << 73 // - added HepPolyhedronBoxMesh << 74 << 75 #include "HepPolyhedron.h" 34 #include "HepPolyhedron.h" 76 #include "G4PhysicalConstants.hh" << 77 #include "G4Vector3D.hh" << 78 << 79 #include <cstdlib> // Required on some compil << 80 #include <cmath> << 81 #include <algorithm> << 82 << 83 using CLHEP::perMillion; << 84 using CLHEP::deg; << 85 using CLHEP::pi; << 86 using CLHEP::twopi; << 87 using CLHEP::nm; << 88 const G4double spatialTolerance = 0.01*nm; << 89 35 90 /********************************************* 36 /*********************************************************************** 91 * 37 * * 92 * Name: HepPolyhedron operator << 38 * Name: HepPolyhedron operator << Date: 09.05.96 * 93 * Author: E.Chernyaev (IHEP/Protvino) 39 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 94 * 40 * * 95 * Function: Print contents of G4 polyhedron 41 * Function: Print contents of G4 polyhedron * 96 * 42 * * 97 ********************************************* 43 ***********************************************************************/ 98 std::ostream & operator<<(std::ostream & ostr, << 44 HepStd::ostream & operator<<(HepStd::ostream & ostr, const G4Facet & facet) { 99 for (const auto& edge : facet.edge) { << 45 for (int k=0; k<4; k++) { 100 ostr << " " << edge.v << "/" << edge.f; << 46 ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f; 101 } 47 } 102 return ostr; 48 return ostr; 103 } 49 } 104 50 105 std::ostream & operator<<(std::ostream & ostr, << 51 HepStd::ostream & operator<<(HepStd::ostream & ostr, const HepPolyhedron & ph) { 106 ostr << std::endl; << 52 ostr << HepStd::endl; 107 ostr << "Nvertices=" << ph.nvert << ", Nface << 53 ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << HepStd::endl; 108 G4int i; << 54 int i; 109 for (i=1; i<=ph.nvert; i++) { 55 for (i=1; i<=ph.nvert; i++) { 110 ostr << "xyz(" << i << ")=" 56 ostr << "xyz(" << i << ")=" 111 << ph.pV[i].x() << ' ' << ph.pV[i].y << 57 << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z() 112 << std::endl; << 58 << HepStd::endl; 113 } 59 } 114 for (i=1; i<=ph.nface; i++) { 60 for (i=1; i<=ph.nface; i++) { 115 ostr << "face(" << i << ")=" << ph.pF[i] < << 61 ostr << "face(" << i << ")=" << ph.pF[i] << HepStd::endl; 116 } 62 } 117 return ostr; 63 return ostr; 118 } 64 } 119 65 120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 121 /********************************************* << 122 * << 123 * Name: HepPolyhedron constructor with << 124 * allocation of memory << 125 * Author: E.Tcherniaev (E.Chernyaev) << 126 * << 127 ********************************************* << 128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 129 { << 130 AllocateMemory(Nvert, Nface); << 131 } << 132 << 133 HepPolyhedron::HepPolyhedron(const HepPolyhedr 66 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from) 134 /********************************************* 67 /*********************************************************************** 135 * 68 * * 136 * Name: HepPolyhedron copy constructor 69 * Name: HepPolyhedron copy constructor Date: 23.07.96 * 137 * Author: E.Chernyaev (IHEP/Protvino) 70 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 138 * 71 * * 139 ********************************************* 72 ***********************************************************************/ 140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 141 { 73 { 142 AllocateMemory(from.nvert, from.nface); << 74 if (from.nvert > 0 && from.nface > 0) { 143 for (G4int i=1; i<=nvert; i++) pV[i] = from. << 75 nvert = from.nvert; 144 for (G4int k=1; k<=nface; k++) pF[k] = from. << 76 nface = from.nface; 145 } << 77 pV = new HepPoint3D[nvert + 1]; 146 << 78 pF = new G4Facet[nface + 1]; 147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 79 int i; 148 /********************************************* << 80 for (i=1; i<=nvert; i++) pV[i] = from.pV[i]; 149 * << 81 for (i=1; i<=nface; i++) pF[i] = from.pF[i]; 150 * Name: HepPolyhedron move constructor << 82 }else{ 151 * Author: E.Tcherniaev (E.Chernyaev) << 83 nvert = 0; nface = 0; pV = 0; pF = 0; 152 * << 84 } 153 ********************************************* << 154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 155 { << 156 nvert = from.nvert; << 157 nface = from.nface; << 158 pV = from.pV; << 159 pF = from.pF; << 160 << 161 // Release the data from the source object << 162 from.nvert = 0; << 163 from.nface = 0; << 164 from.pV = nullptr; << 165 from.pF = nullptr; << 166 } 85 } 167 86 168 HepPolyhedron & HepPolyhedron::operator=(const 87 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from) 169 /********************************************* 88 /*********************************************************************** 170 * 89 * * 171 * Name: HepPolyhedron operator = 90 * Name: HepPolyhedron operator = Date: 23.07.96 * 172 * Author: E.Chernyaev (IHEP/Protvino) 91 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 173 * 92 * * 174 * Function: Copy contents of one polyhedron t << 93 * Function: Copy contents of one GEANT4 polyhedron to another * 175 * << 176 ********************************************* << 177 { << 178 if (this != &from) { << 179 AllocateMemory(from.nvert, from.nface); << 180 for (G4int i=1; i<=nvert; i++) pV[i] = fro << 181 for (G4int k=1; k<=nface; k++) pF[k] = fro << 182 } << 183 return *this; << 184 } << 185 << 186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 187 /********************************************* << 188 * << 189 * Name: HepPolyhedron move operator = << 190 * Author: E.Tcherniaev (E.Chernyaev) << 191 * << 192 * Function: Move contents of one polyhedron t << 193 * 94 * * 194 ********************************************* 95 ***********************************************************************/ 195 { 96 { 196 if (this != &from) { << 97 if (this == &from) return *this; 197 delete [] pV; << 98 delete [] pV; 198 delete [] pF; << 99 delete [] pF; >> 100 if (from.nvert > 0 && from.nface > 0) { 199 nvert = from.nvert; 101 nvert = from.nvert; 200 nface = from.nface; 102 nface = from.nface; 201 pV = from.pV; << 103 pV = new HepPoint3D[nvert + 1]; 202 pF = from.pF; << 104 pF = new G4Facet[nface + 1]; 203 << 105 int i; 204 // Release the data from the source object << 106 for (i=1; i<=nvert; i++) pV[i] = from.pV[i]; 205 from.nvert = 0; << 107 for (i=1; i<=nface; i++) pF[i] = from.pF[i]; 206 from.nface = 0; << 108 }else{ 207 from.pV = nullptr; << 109 nvert = 0; nface = 0; pV = 0; pF = 0; 208 from.pF = nullptr; << 209 } 110 } 210 return *this; 111 return *this; 211 } 112 } 212 113 213 G4int << 114 int 214 HepPolyhedron::FindNeighbour(G4int iFace, G4in << 115 HepPolyhedron::FindNeighbour(int iFace, int iNode, int iOrder) const 215 /********************************************* 116 /*********************************************************************** 216 * 117 * * 217 * Name: HepPolyhedron::FindNeighbour 118 * Name: HepPolyhedron::FindNeighbour Date: 22.11.99 * 218 * Author: E.Chernyaev 119 * Author: E.Chernyaev Revised: * 219 * 120 * * 220 * Function: Find neighbouring face 121 * Function: Find neighbouring face * 221 * 122 * * 222 ********************************************* 123 ***********************************************************************/ 223 { 124 { 224 G4int i; << 125 int i; 225 for (i=0; i<4; i++) { 126 for (i=0; i<4; i++) { 226 if (iNode == std::abs(pF[iFace].edge[i].v) << 127 if (iNode == abs(pF[iFace].edge[i].v)) break; 227 } 128 } 228 if (i == 4) { 129 if (i == 4) { 229 std::cerr << 130 HepStd::cerr 230 << "HepPolyhedron::FindNeighbour: face " 131 << "HepPolyhedron::FindNeighbour: face " << iFace 231 << " has no node " << iNode 132 << " has no node " << iNode 232 << std::endl; << 133 << HepStd::endl; 233 return 0; 134 return 0; 234 } 135 } 235 if (iOrder < 0) { 136 if (iOrder < 0) { 236 if ( --i < 0) i = 3; 137 if ( --i < 0) i = 3; 237 if (pF[iFace].edge[i].v == 0) i = 2; 138 if (pF[iFace].edge[i].v == 0) i = 2; 238 } 139 } 239 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF 140 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f; 240 } 141 } 241 142 242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int << 143 HepNormal3D HepPolyhedron::FindNodeNormal(int iFace, int iNode) const 243 /********************************************* 144 /*********************************************************************** 244 * 145 * * 245 * Name: HepPolyhedron::FindNodeNormal 146 * Name: HepPolyhedron::FindNodeNormal Date: 22.11.99 * 246 * Author: E.Chernyaev 147 * Author: E.Chernyaev Revised: * 247 * 148 * * 248 * Function: Find normal at given node 149 * Function: Find normal at given node * 249 * 150 * * 250 ********************************************* 151 ***********************************************************************/ 251 { 152 { 252 G4Normal3D normal = GetUnitNormal(iFace); << 153 HepNormal3D normal = GetUnitNormal(iFace); 253 G4int k = iFace, iOrder = 1; << 154 int k = iFace, iOrder = 1, n = 1; 254 155 255 for(;;) { 156 for(;;) { 256 k = FindNeighbour(k, iNode, iOrder); 157 k = FindNeighbour(k, iNode, iOrder); 257 if (k == iFace) break; << 158 if (k == iFace) break; 258 if (k > 0) { 159 if (k > 0) { >> 160 n++; 259 normal += GetUnitNormal(k); 161 normal += GetUnitNormal(k); 260 }else{ 162 }else{ 261 if (iOrder < 0) break; 163 if (iOrder < 0) break; 262 k = iFace; 164 k = iFace; 263 iOrder = -iOrder; 165 iOrder = -iOrder; 264 } 166 } 265 } 167 } 266 return normal.unit(); 168 return normal.unit(); 267 } 169 } 268 170 269 G4int HepPolyhedron::GetNumberOfRotationSteps( << 171 void HepPolyhedron::SetNumberOfRotationSteps(int n) 270 /********************************************* << 271 * << 272 * Name: HepPolyhedron::GetNumberOfRotationSte << 273 * Author: J.Allison (Manchester University) << 274 * << 275 * Function: Get number of steps for whole cir << 276 * << 277 ********************************************* << 278 { << 279 return fNumberOfRotationSteps; << 280 } << 281 << 282 void HepPolyhedron::SetVertex(G4int index, con << 283 /********************************************* << 284 * << 285 * Name: HepPolyhedron::SetVertex << 286 * Author: E.Tcherniaev (E.Chernyaev) << 287 * << 288 * Function: Set vertex << 289 * << 290 ********************************************* << 291 { << 292 if (index < 1 || index > nvert) << 293 { << 294 std::cerr << 295 << "HepPolyhedron::SetVertex: vertex ind << 296 << " is out of range\n" << 297 << " N. of vertices = " << nvert << "\ << 298 << " N. of facets = " << nface << std: << 299 return; << 300 } << 301 pV[index] = v; << 302 } << 303 << 304 void << 305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 306 /********************************************* << 307 * << 308 * Name: HepPolyhedron::SetFacet << 309 * Author: E.Tcherniaev (E.Chernyaev) << 310 * << 311 * Function: Set facet << 312 * << 313 ********************************************* << 314 { << 315 if (index < 1 || index > nface) << 316 { << 317 std::cerr << 318 << "HepPolyhedron::SetFacet: facet index << 319 << " is out of range\n" << 320 << " N. of vertices = " << nvert << "\ << 321 << " N. of facets = " << nface << std: << 322 return; << 323 } << 324 if (iv1 < 1 || iv1 > nvert || << 325 iv2 < 1 || iv2 > nvert || << 326 iv3 < 1 || iv3 > nvert || << 327 iv4 < 0 || iv4 > nvert) << 328 { << 329 std::cerr << 330 << "HepPolyhedron::SetFacet: incorrectly << 331 << " (" << iv1 << ", " << iv2 << ", " << << 332 << " N. of vertices = " << nvert << "\ << 333 << " N. of facets = " << nface << std: << 334 return; << 335 } << 336 pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0, << 337 } << 338 << 339 void HepPolyhedron::SetNumberOfRotationSteps(G << 340 /********************************************* 172 /*********************************************************************** 341 * 173 * * 342 * Name: HepPolyhedron::SetNumberOfRotationSte 174 * Name: HepPolyhedron::SetNumberOfRotationSteps Date: 24.06.97 * 343 * Author: J.Allison (Manchester University) 175 * Author: J.Allison (Manchester University) Revised: * 344 * 176 * * 345 * Function: Set number of steps for whole cir 177 * Function: Set number of steps for whole circle * 346 * 178 * * 347 ********************************************* 179 ***********************************************************************/ 348 { 180 { 349 const G4int nMin = 3; << 181 const int nMin = 3; 350 if (n < nMin) { 182 if (n < nMin) { 351 std::cerr << 183 HepStd::cerr 352 << "HepPolyhedron::SetNumberOfRotationSt 184 << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n" 353 << "number of steps per circle < " << nM 185 << "number of steps per circle < " << nMin << "; forced to " << nMin 354 << std::endl; << 186 << HepStd::endl; 355 fNumberOfRotationSteps = nMin; 187 fNumberOfRotationSteps = nMin; 356 }else{ 188 }else{ 357 fNumberOfRotationSteps = n; 189 fNumberOfRotationSteps = n; 358 } << 190 } 359 } << 360 << 361 void HepPolyhedron::ResetNumberOfRotationSteps << 362 /********************************************* << 363 * << 364 * Name: HepPolyhedron::GetNumberOfRotationSte << 365 * Author: J.Allison (Manchester University) << 366 * << 367 * Function: Reset number of steps for whole c << 368 * << 369 ********************************************* << 370 { << 371 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S << 372 } 191 } 373 192 374 void HepPolyhedron::AllocateMemory(G4int Nvert << 193 void HepPolyhedron::AllocateMemory(int Nvert, int Nface) 375 /********************************************* 194 /*********************************************************************** 376 * 195 * * 377 * Name: HepPolyhedron::AllocateMemory 196 * Name: HepPolyhedron::AllocateMemory Date: 19.06.96 * 378 * Author: E.Chernyaev (IHEP/Protvino) << 197 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 379 * 198 * * 380 * Function: Allocate memory for GEANT4 polyhe 199 * Function: Allocate memory for GEANT4 polyhedron * 381 * 200 * * 382 * Input: Nvert - number of nodes 201 * Input: Nvert - number of nodes * 383 * Nface - number of faces 202 * Nface - number of faces * 384 * 203 * * 385 ********************************************* 204 ***********************************************************************/ 386 { 205 { 387 if (nvert == Nvert && nface == Nface) return << 206 nvert = Nvert; 388 delete [] pV; << 207 nface = Nface; 389 delete [] pF; << 208 pV = new HepPoint3D[nvert+1]; 390 if (Nvert > 0 && Nface > 0) { << 209 pF = new G4Facet[nface+1]; 391 nvert = Nvert; << 392 nface = Nface; << 393 pV = new G4Point3D[nvert+1]; << 394 pF = new G4Facet[nface+1]; << 395 }else{ << 396 nvert = 0; nface = 0; pV = nullptr; pF = n << 397 } << 398 } 210 } 399 211 400 void HepPolyhedron::CreatePrism() 212 void HepPolyhedron::CreatePrism() 401 /********************************************* 213 /*********************************************************************** 402 * 214 * * 403 * Name: HepPolyhedron::CreatePrism 215 * Name: HepPolyhedron::CreatePrism Date: 15.07.96 * 404 * Author: E.Chernyaev (IHEP/Protvino) 216 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 405 * 217 * * 406 * Function: Set facets for a prism 218 * Function: Set facets for a prism * 407 * 219 * * 408 ********************************************* 220 ***********************************************************************/ 409 { 221 { 410 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON 222 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP}; 411 223 412 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 224 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 2,FRONT); 413 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 225 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 1,FRONT); 414 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 226 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 4,LEFT); 415 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 227 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 3,BACK); 416 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 228 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 2,RIGHT); 417 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 229 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 8,LEFT); 418 } 230 } 419 231 420 void HepPolyhedron::RotateEdge(G4int k1, G4int << 232 void HepPolyhedron::RotateEdge(int k1, int k2, HepDouble r1, HepDouble r2, 421 G4int v1, G4int << 233 int v1, int v2, int vEdge, 422 G4bool ifWholeCi << 234 HepBoolean ifWholeCircle, int ns, int &kface) 423 /********************************************* 235 /*********************************************************************** 424 * 236 * * 425 * Name: HepPolyhedron::RotateEdge 237 * Name: HepPolyhedron::RotateEdge Date: 05.12.96 * 426 * Author: E.Chernyaev (IHEP/Protvino) 238 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 427 * 239 * * 428 * Function: Create set of facets by rotation 240 * Function: Create set of facets by rotation of an edge around Z-axis * 429 * 241 * * 430 * Input: k1, k2 - end vertices of the edge 242 * Input: k1, k2 - end vertices of the edge * 431 * r1, r2 - radiuses of the end vertice 243 * r1, r2 - radiuses of the end vertices * 432 * v1, v2 - visibility of edges produce 244 * v1, v2 - visibility of edges produced by rotation of the end * 433 * vertices 245 * vertices * 434 * vEdge - visibility of the edge 246 * vEdge - visibility of the edge * 435 * ifWholeCircle - is true in case of w 247 * ifWholeCircle - is true in case of whole circle rotation * 436 * nds - number of discrete steps << 248 * ns - number of discrete steps * 437 * r[] - r-coordinates 249 * r[] - r-coordinates * 438 * kface - current free cell in the pF 250 * kface - current free cell in the pF array * 439 * 251 * * 440 ********************************************* 252 ***********************************************************************/ 441 { 253 { 442 if (r1 == 0. && r2 == 0.) return; << 254 if (r1 == 0. && r2 == 0) return; 443 255 444 G4int i; << 256 int i; 445 G4int i1 = k1; << 257 int i1 = k1; 446 G4int i2 = k2; << 258 int i2 = k2; 447 G4int ii1 = ifWholeCircle ? i1 : i1+nds; << 259 int ii1 = ifWholeCircle ? i1 : i1+ns; 448 G4int ii2 = ifWholeCircle ? i2 : i2+nds; << 260 int ii2 = ifWholeCircle ? i2 : i2+ns; 449 G4int vv = ifWholeCircle ? vEdge : 1; << 261 int vv = ifWholeCircle ? vEdge : 1; 450 262 451 if (nds == 1) { << 263 if (ns == 1) { 452 if (r1 == 0.) { 264 if (r1 == 0.) { 453 pF[kface++] = G4Facet(i1,0, v2*i2,0 265 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0); 454 }else if (r2 == 0.) { 266 }else if (r2 == 0.) { 455 pF[kface++] = G4Facet(i1,0, i2,0, 267 pF[kface++] = G4Facet(i1,0, i2,0, v1*(i1+1),0); 456 }else{ 268 }else{ 457 pF[kface++] = G4Facet(i1,0, v2*i2,0 269 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0, v1*(i1+1),0); 458 } 270 } 459 }else{ 271 }else{ 460 if (r1 == 0.) { 272 if (r1 == 0.) { 461 pF[kface++] = G4Facet(vv*i1,0, v2*i 273 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0); 462 for (i2++,i=1; i<nds-1; i2++,i++) { << 274 for (i2++,i=1; i<ns-1; i2++,i++) { 463 pF[kface++] = G4Facet(vEdge*i1,0, v2*i << 275 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0); 464 } 276 } 465 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 277 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0); 466 }else if (r2 == 0.) { 278 }else if (r2 == 0.) { 467 pF[kface++] = G4Facet(vv*i1,0, vEdg 279 pF[kface++] = G4Facet(vv*i1,0, vEdge*i2,0, v1*(i1+1),0); 468 for (i1++,i=1; i<nds-1; i1++,i++) { << 280 for (i1++,i=1; i<ns-1; i1++,i++) { 469 pF[kface++] = G4Facet(vEdge*i1,0, vEdg << 281 pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0); 470 } 282 } 471 pF[kface++] = G4Facet(vEdge*i1,0, vv*i 283 pF[kface++] = G4Facet(vEdge*i1,0, vv*i2,0, v1*ii1,0); 472 }else{ 284 }else{ 473 pF[kface++] = G4Facet(vv*i1,0, v2*i 285 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 474 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i << 286 for (i1++,i2++,i=1; i<ns-1; i1++,i2++,i++) { 475 pF[kface++] = G4Facet(vEdge*i1,0, v2*i << 287 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 476 } << 288 } 477 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 289 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0, v1*ii1,0); 478 } 290 } 479 } 291 } 480 } 292 } 481 293 482 void HepPolyhedron::SetSideFacets(G4int ii[4], << 294 void HepPolyhedron::SetSideFacets(int ii[4], int vv[4], 483 G4int *kk, G4 << 295 int *kk, HepDouble *r, 484 G4double dphi << 296 HepDouble dphi, int ns, int &kface) 485 /********************************************* 297 /*********************************************************************** 486 * 298 * * 487 * Name: HepPolyhedron::SetSideFacets 299 * Name: HepPolyhedron::SetSideFacets Date: 20.05.97 * 488 * Author: E.Chernyaev (IHEP/Protvino) 300 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 489 * 301 * * 490 * Function: Set side facets for the case of i 302 * Function: Set side facets for the case of incomplete rotation * 491 * 303 * * 492 * Input: ii[4] - indices of original vertices << 304 * Input: ii[4] - indeces of original verteces * 493 * vv[4] - visibility of edges 305 * vv[4] - visibility of edges * 494 * kk[] - indices of nodes << 306 * kk[] - indeces of nodes * 495 * r[] - radiuses 307 * r[] - radiuses * 496 * dphi - delta phi 308 * dphi - delta phi * 497 * nds - number of discrete steps << 309 * ns - number of discrete steps * 498 * kface - current free cell in the pF 310 * kface - current free cell in the pF array * 499 * 311 * * 500 ********************************************* 312 ***********************************************************************/ 501 { 313 { 502 G4int k1, k2, k3, k4; << 314 int k1, k2, k3, k4; 503 << 315 504 if (std::abs(dphi-pi) < perMillion) { // hal << 316 if (abs((HepDouble)(dphi-M_PI)) < perMillion) { // half a circle 505 for (G4int i=0; i<4; i++) { << 317 for (int i=0; i<4; i++) { 506 k1 = ii[i]; 318 k1 = ii[i]; 507 k2 = ii[(i+1)%4]; << 319 k2 = (i == 3) ? ii[0] : ii[i+1]; 508 if (r[k1] == 0. && r[k2] == 0.) vv[i] = << 320 if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1; 509 } 321 } 510 } 322 } 511 323 512 if (ii[1] == ii[2]) { 324 if (ii[1] == ii[2]) { 513 k1 = kk[ii[0]]; 325 k1 = kk[ii[0]]; 514 k2 = kk[ii[2]]; 326 k2 = kk[ii[2]]; 515 k3 = kk[ii[3]]; 327 k3 = kk[ii[3]]; 516 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2 328 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 517 if (r[ii[0]] != 0.) k1 += nds; << 329 if (r[ii[0]] != 0.) k1 += ns; 518 if (r[ii[2]] != 0.) k2 += nds; << 330 if (r[ii[2]] != 0.) k2 += ns; 519 if (r[ii[3]] != 0.) k3 += nds; << 331 if (r[ii[3]] != 0.) k3 += ns; 520 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2 332 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 521 }else if (kk[ii[0]] == kk[ii[1]]) { 333 }else if (kk[ii[0]] == kk[ii[1]]) { 522 k1 = kk[ii[0]]; 334 k1 = kk[ii[0]]; 523 k2 = kk[ii[2]]; 335 k2 = kk[ii[2]]; 524 k3 = kk[ii[3]]; 336 k3 = kk[ii[3]]; 525 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2 337 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 526 if (r[ii[0]] != 0.) k1 += nds; << 338 if (r[ii[0]] != 0.) k1 += ns; 527 if (r[ii[2]] != 0.) k2 += nds; << 339 if (r[ii[2]] != 0.) k2 += ns; 528 if (r[ii[3]] != 0.) k3 += nds; << 340 if (r[ii[3]] != 0.) k3 += ns; 529 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2 341 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0); 530 }else if (kk[ii[2]] == kk[ii[3]]) { 342 }else if (kk[ii[2]] == kk[ii[3]]) { 531 k1 = kk[ii[0]]; 343 k1 = kk[ii[0]]; 532 k2 = kk[ii[1]]; 344 k2 = kk[ii[1]]; 533 k3 = kk[ii[2]]; 345 k3 = kk[ii[2]]; 534 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 346 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0); 535 if (r[ii[0]] != 0.) k1 += nds; << 347 if (r[ii[0]] != 0.) k1 += ns; 536 if (r[ii[1]] != 0.) k2 += nds; << 348 if (r[ii[1]] != 0.) k2 += ns; 537 if (r[ii[2]] != 0.) k3 += nds; << 349 if (r[ii[2]] != 0.) k3 += ns; 538 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2 350 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 539 }else{ 351 }else{ 540 k1 = kk[ii[0]]; 352 k1 = kk[ii[0]]; 541 k2 = kk[ii[1]]; 353 k2 = kk[ii[1]]; 542 k3 = kk[ii[2]]; 354 k3 = kk[ii[2]]; 543 k4 = kk[ii[3]]; 355 k4 = kk[ii[3]]; 544 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 356 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0); 545 if (r[ii[0]] != 0.) k1 += nds; << 357 if (r[ii[0]] != 0.) k1 += ns; 546 if (r[ii[1]] != 0.) k2 += nds; << 358 if (r[ii[1]] != 0.) k2 += ns; 547 if (r[ii[2]] != 0.) k3 += nds; << 359 if (r[ii[2]] != 0.) k3 += ns; 548 if (r[ii[3]] != 0.) k4 += nds; << 360 if (r[ii[3]] != 0.) k4 += ns; 549 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3 361 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 550 } 362 } 551 } 363 } 552 364 553 void HepPolyhedron::RotateAroundZ(G4int nstep, << 365 void HepPolyhedron::RotateAroundZ(int nstep, HepDouble phi, HepDouble dphi, 554 G4int np1, G4 << 366 int np1, int np2, 555 const G4doubl << 367 const HepDouble *z, HepDouble *r, 556 G4int nodeVis << 368 int nodeVis, int edgeVis) 557 /********************************************* 369 /*********************************************************************** 558 * 370 * * 559 * Name: HepPolyhedron::RotateAroundZ 371 * Name: HepPolyhedron::RotateAroundZ Date: 27.11.96 * 560 * Author: E.Chernyaev (IHEP/Protvino) 372 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 561 * 373 * * 562 * Function: Create HepPolyhedron for a solid 374 * Function: Create HepPolyhedron for a solid produced by rotation of * 563 * two polylines around Z-axis 375 * two polylines around Z-axis * 564 * 376 * * 565 * Input: nstep - number of discrete steps, if 377 * Input: nstep - number of discrete steps, if 0 then default * 566 * phi - starting phi angle 378 * phi - starting phi angle * 567 * dphi - delta phi 379 * dphi - delta phi * 568 * np1 - number of points in external 380 * np1 - number of points in external polyline * 569 * (must be negative in case of 381 * (must be negative in case of closed polyline) * 570 * np2 - number of points in internal 382 * np2 - number of points in internal polyline (may be 1) * 571 * z[] - z-coordinates (+z >>> -z for 383 * z[] - z-coordinates (+z >>> -z for both polylines) * 572 * r[] - r-coordinates 384 * r[] - r-coordinates * 573 * nodeVis - how to Draw edges joing co 385 * nodeVis - how to Draw edges joing consecutive positions of * 574 * node during rotation 386 * node during rotation * 575 * edgeVis - how to Draw edges 387 * edgeVis - how to Draw edges * 576 * 388 * * 577 ********************************************* 389 ***********************************************************************/ 578 { 390 { 579 static const G4double wholeCircle = twopi; << 391 static HepDouble wholeCircle = 2*M_PI; 580 << 392 581 // S E T R O T A T I O N P A R A M E T 393 // S E T R O T A T I O N P A R A M E T E R S 582 394 583 G4bool ifWholeCircle = std::abs(dphi-wholeCi << 395 HepBoolean ifWholeCircle = (abs(dphi-wholeCircle) < perMillion) ? 584 G4double delPhi = ifWholeCircle ? wholeCircl << 396 true : false; 585 G4int nSphi = nstep; << 397 HepDouble delPhi = ifWholeCircle ? wholeCircle : dphi; 586 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 398 int nSphi = (nstep > 0) ? >> 399 nstep : int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5); 587 if (nSphi == 0) nSphi = 1; 400 if (nSphi == 0) nSphi = 1; 588 G4int nVphi = ifWholeCircle ? nSphi : nSphi << 401 int nVphi = ifWholeCircle ? nSphi : nSphi+1; 589 G4bool ifClosed = np1 <= 0; // true if exter << 402 HepBoolean ifClosed = np1 > 0 ? false : true; 590 << 403 591 // C O U N T V E R T I C E S << 404 // C O U N T V E R T E C E S 592 405 593 G4int absNp1 = std::abs(np1); << 406 int absNp1 = abs(np1); 594 G4int absNp2 = std::abs(np2); << 407 int absNp2 = abs(np2); 595 G4int i1beg = 0; << 408 int i1beg = 0; 596 G4int i1end = absNp1-1; << 409 int i1end = absNp1-1; 597 G4int i2beg = absNp1; << 410 int i2beg = absNp1; 598 G4int i2end = absNp1+absNp2-1; << 411 int i2end = absNp1+absNp2-1; 599 G4int i, j, k; << 412 int i, j, k; 600 413 601 for(i=i1beg; i<=i2end; i++) { 414 for(i=i1beg; i<=i2end; i++) { 602 if (std::abs(r[i]) < spatialTolerance) r[i << 415 if (abs(r[i]) < perMillion) r[i] = 0.; 603 } 416 } 604 417 605 // external polyline - check position of nod << 418 j = 0; // external nodes 606 // << 607 G4int Nverts = 0; << 608 for (i=i1beg; i<=i1end; i++) { 419 for (i=i1beg; i<=i1end; i++) { 609 Nverts += (r[i] == 0.) ? 1 : nVphi; << 420 j += (r[i] == 0.) ? 1 : nVphi; 610 } 421 } 611 422 612 // internal polyline << 423 HepBoolean ifSide1 = false; // internal nodes 613 // << 424 HepBoolean ifSide2 = false; 614 G4bool ifSide1 = false; // whether to create << 615 G4bool ifSide2 = false; // whether to create << 616 425 617 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 426 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) { 618 Nverts += (r[i2beg] == 0.) ? 1 : nVphi; << 427 j += (r[i2beg] == 0.) ? 1 : nVphi; 619 ifSide1 = true; 428 ifSide1 = true; 620 } 429 } 621 430 622 for(i=i2beg+1; i<i2end; i++) { // intermedia << 431 for(i=i2beg+1; i<i2end; i++) { 623 Nverts += (r[i] == 0.) ? 1 : nVphi; << 432 j += (r[i] == 0.) ? 1 : nVphi; 624 } 433 } 625 << 434 626 if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 435 if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) { 627 if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 436 if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi; 628 ifSide2 = true; 437 ifSide2 = true; 629 } 438 } 630 439 631 // C O U N T F A C E S 440 // C O U N T F A C E S 632 441 633 // external lateral faces << 442 k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi; // external faces 634 // << 635 G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 636 443 637 // internal lateral faces << 444 if (absNp2 > 1) { // internal faces 638 // << 639 if (absNp2 > 1) { << 640 for(i=i2beg; i<i2end; i++) { 445 for(i=i2beg; i<i2end; i++) { 641 if (r[i] > 0. || r[i+1] > 0.) Nfaces += << 446 if (r[i] > 0. || r[i+1] > 0.) k += nSphi; 642 } 447 } 643 448 644 if (ifClosed) { 449 if (ifClosed) { 645 if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 450 if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi; 646 } 451 } 647 } 452 } 648 453 649 // bottom and top faces << 454 if (!ifClosed) { // side faces 650 // << 455 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi; 651 if (!ifClosed) { << 456 if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi; 652 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] << 653 if (ifSide2 && (r[i1end] > 0. || r[i2end] << 654 } 457 } 655 458 656 // phi_wedge faces << 459 if (!ifWholeCircle) { // phi_side faces 657 // << 460 k += ifClosed ? 2*absNp1 : 2*(absNp1-1); 658 if (!ifWholeCircle) { << 659 Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 660 } 461 } 661 462 662 // A L L O C A T E M E M O R Y 463 // A L L O C A T E M E M O R Y 663 464 664 AllocateMemory(Nverts, Nfaces); << 465 AllocateMemory(j, k); 665 if (pV == nullptr || pF == nullptr) return; << 666 466 667 // G E N E R A T E V E R T I C E S << 467 // G E N E R A T E V E R T E C E S 668 468 669 G4int *kk; // array of start indices along p << 469 int *kk; 670 kk = new G4int[absNp1+absNp2]; << 470 kk = new int[absNp1+absNp2]; 671 471 672 // external polyline << 472 k = 1; 673 // << 674 k = 1; // free position in array of vertices << 675 for(i=i1beg; i<=i1end; i++) { 473 for(i=i1beg; i<=i1end; i++) { 676 kk[i] = k; 474 kk[i] = k; 677 if (r[i] == 0.) << 475 if (r[i] == 0.) { pV[k++] = HepPoint3D(0, 0, z[i]); } else { k += nVphi; } 678 { pV[k++] = G4Point3D(0, 0, z[i]); } else << 679 } 476 } 680 477 681 // first point of internal polyline << 682 // << 683 i = i2beg; 478 i = i2beg; 684 if (ifSide1) { 479 if (ifSide1) { 685 kk[i] = k; 480 kk[i] = k; 686 if (r[i] == 0.) << 481 if (r[i] == 0.) { pV[k++] = HepPoint3D(0, 0, z[i]); } else { k += nVphi; } 687 { pV[k++] = G4Point3D(0, 0, z[i]); } else << 688 }else{ 482 }else{ 689 kk[i] = kk[i1beg]; 483 kk[i] = kk[i1beg]; 690 } 484 } 691 485 692 // intermediate points of internal polyline << 693 // << 694 for(i=i2beg+1; i<i2end; i++) { 486 for(i=i2beg+1; i<i2end; i++) { 695 kk[i] = k; 487 kk[i] = k; 696 if (r[i] == 0.) << 488 if (r[i] == 0.) { pV[k++] = HepPoint3D(0, 0, z[i]); } else { k += nVphi; } 697 { pV[k++] = G4Point3D(0, 0, z[i]); } else << 698 } 489 } 699 490 700 // last point of internal polyline << 701 // << 702 if (absNp2 > 1) { 491 if (absNp2 > 1) { 703 i = i2end; 492 i = i2end; 704 if (ifSide2) { 493 if (ifSide2) { 705 kk[i] = k; 494 kk[i] = k; 706 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, << 495 if (r[i] == 0.) pV[k] = HepPoint3D(0, 0, z[i]); 707 }else{ 496 }else{ 708 kk[i] = kk[i1end]; 497 kk[i] = kk[i1end]; 709 } 498 } 710 } 499 } 711 500 712 // set vertices << 501 HepDouble cosPhi, sinPhi; 713 // << 714 G4double cosPhi, sinPhi; << 715 502 716 for(j=0; j<nVphi; j++) { 503 for(j=0; j<nVphi; j++) { 717 cosPhi = std::cos(phi+j*delPhi/nSphi); << 504 cosPhi = cos(phi+j*delPhi/nSphi); 718 sinPhi = std::sin(phi+j*delPhi/nSphi); << 505 sinPhi = sin(phi+j*delPhi/nSphi); 719 for(i=i1beg; i<=i2end; i++) { 506 for(i=i1beg; i<=i2end; i++) { 720 if (r[i] != 0.) << 507 if (r[i] != 0.) pV[kk[i]+j] = HepPoint3D(r[i]*cosPhi,r[i]*sinPhi,z[i]); 721 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[ << 722 } 508 } 723 } 509 } 724 510 725 // G E N E R A T E F A C E S << 511 // G E N E R A T E E X T E R N A L F A C E S 726 512 727 // external faces << 513 int v1,v2; 728 // << 729 G4int v1,v2; << 730 514 731 k = 1; // free position in array of faces pF << 515 k = 1; 732 v2 = ifClosed ? nodeVis : 1; 516 v2 = ifClosed ? nodeVis : 1; 733 for(i=i1beg; i<i1end; i++) { 517 for(i=i1beg; i<i1end; i++) { 734 v1 = v2; 518 v1 = v2; 735 if (!ifClosed && i == i1end-1) { 519 if (!ifClosed && i == i1end-1) { 736 v2 = 1; 520 v2 = 1; 737 }else{ 521 }else{ 738 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2] 522 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 739 } 523 } 740 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v 524 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2, 741 edgeVis, ifWholeCircle, nSphi, << 525 edgeVis, ifWholeCircle, nSphi, k); 742 } 526 } 743 if (ifClosed) { 527 if (ifClosed) { 744 RotateEdge(kk[i1end], kk[i1beg], r[i1end], 528 RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis, 745 edgeVis, ifWholeCircle, nSphi, << 529 edgeVis, ifWholeCircle, nSphi, k); 746 } 530 } 747 531 748 // internal faces << 532 // G E N E R A T E I N T E R N A L F A C E S 749 // << 533 750 if (absNp2 > 1) { 534 if (absNp2 > 1) { 751 v2 = ifClosed ? nodeVis : 1; 535 v2 = ifClosed ? nodeVis : 1; 752 for(i=i2beg; i<i2end; i++) { 536 for(i=i2beg; i<i2end; i++) { 753 v1 = v2; 537 v1 = v2; 754 if (!ifClosed && i==i2end-1) { 538 if (!ifClosed && i==i2end-1) { 755 v2 = 1; << 539 v2 = 1; 756 }else{ 540 }else{ 757 v2 = (r[i] == r[i+1] && r[i+1] == r[i+ << 541 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 758 } 542 } 759 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], 543 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1, 760 edgeVis, ifWholeCircle, nSphi << 544 edgeVis, ifWholeCircle, nSphi, k); 761 } 545 } 762 if (ifClosed) { 546 if (ifClosed) { 763 RotateEdge(kk[i2beg], kk[i2end], r[i2beg 547 RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis, 764 edgeVis, ifWholeCircle, nSphi << 548 edgeVis, ifWholeCircle, nSphi, k); 765 } 549 } 766 } 550 } 767 551 768 // bottom and top faces << 552 // G E N E R A T E S I D E F A C E S 769 // << 553 770 if (!ifClosed) { 554 if (!ifClosed) { 771 if (ifSide1) { 555 if (ifSide1) { 772 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg 556 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1, 773 -1, ifWholeCircle, nSphi, k); << 557 -1, ifWholeCircle, nSphi, k); 774 } 558 } 775 if (ifSide2) { 559 if (ifSide2) { 776 RotateEdge(kk[i1end], kk[i2end], r[i1end 560 RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1, 777 -1, ifWholeCircle, nSphi, k); << 561 -1, ifWholeCircle, nSphi, k); 778 } 562 } 779 } 563 } 780 564 781 // phi_wedge faces in case of incomplete cir << 565 // G E N E R A T E S I D E F A C E S for the case of incomplete circle 782 // << 566 783 if (!ifWholeCircle) { 567 if (!ifWholeCircle) { 784 568 785 G4int ii[4], vv[4]; << 569 int ii[4], vv[4]; 786 570 787 if (ifClosed) { 571 if (ifClosed) { 788 for (i=i1beg; i<=i1end; i++) { 572 for (i=i1beg; i<=i1end; i++) { 789 ii[0] = i; << 573 ii[0] = i; 790 ii[3] = (i == i1end) ? i1beg : i+1; << 574 ii[3] = (i == i1end) ? i1beg : i+1; 791 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ << 575 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 792 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ << 576 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 793 vv[0] = -1; << 577 vv[0] = -1; 794 vv[1] = 1; << 578 vv[1] = 1; 795 vv[2] = -1; << 579 vv[2] = -1; 796 vv[3] = 1; << 580 vv[3] = 1; 797 SetSideFacets(ii, vv, kk, r, delPhi, n << 581 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 798 } 582 } 799 }else{ 583 }else{ 800 for (i=i1beg; i<i1end; i++) { 584 for (i=i1beg; i<i1end; i++) { 801 ii[0] = i; << 585 ii[0] = i; 802 ii[3] = i+1; << 586 ii[3] = i+1; 803 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ << 587 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 804 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ << 588 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 805 vv[0] = (i == i1beg) ? 1 : -1; << 589 vv[0] = (i == i1beg) ? 1 : -1; 806 vv[1] = 1; << 590 vv[1] = 1; 807 vv[2] = (i == i1end-1) ? 1 : -1; << 591 vv[2] = (i == i1end-1) ? 1 : -1; 808 vv[3] = 1; << 592 vv[3] = 1; 809 SetSideFacets(ii, vv, kk, r, delPhi, n << 593 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 810 } 594 } 811 } << 595 } 812 } 596 } 813 597 814 delete [] kk; // free memory << 598 delete [] kk; 815 599 816 // final check << 817 // << 818 if (k-1 != nface) { 600 if (k-1 != nface) { 819 std::cerr << 601 HepStd::cerr 820 << "HepPolyhedron::RotateAroundZ: number << 602 << "Polyhedron::RotateAroundZ: number of generated faces (" 821 << k-1 << ") is not equal to the number 603 << k-1 << ") is not equal to the number of allocated faces (" 822 << nface << ")" 604 << nface << ")" 823 << std::endl; << 605 << HepStd::endl; 824 } << 825 } << 826 << 827 void << 828 HepPolyhedron::RotateContourAroundZ(G4int nste << 829 G4double p << 830 G4double d << 831 const std: << 832 G4int node << 833 G4int edge << 834 /********************************************* << 835 * << 836 * Name: HepPolyhedron::RotateContourAroundZ << 837 * Author: E.Tcherniaev (E.Chernyaev) << 838 * << 839 * Function: Create HepPolyhedron for a solid << 840 * a closed polyline (rz-contour) ar << 841 * << 842 * Input: nstep - number of discrete steps, if << 843 * phi - starting phi angle << 844 * dphi - delta phi << 845 * rz - rz-contour << 846 * nodeVis - how to Draw edges joing co << 847 * node during rotation << 848 * edgeVis - how to Draw edges << 849 * << 850 ********************************************* << 851 { << 852 // S E T R O T A T I O N P A R A M E T << 853 << 854 G4bool ifWholeCircle = std::abs(dphi - twopi << 855 G4double delPhi = (ifWholeCircle) ? twopi : << 856 G4int nSphi = nstep; << 857 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 858 if (nSphi == 0) nSphi = 1; << 859 G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 860 << 861 // C A L C U L A T E A R E A << 862 << 863 G4int Nrz = (G4int)rz.size(); << 864 G4double area = 0; << 865 for (G4int i = 0; i < Nrz; ++i) << 866 { << 867 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 868 area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 869 } << 870 << 871 // P R E P A R E P O L Y L I N E << 872 << 873 auto r = new G4double[Nrz]; << 874 auto z = new G4double[Nrz]; << 875 for (G4int i = 0; i < Nrz; ++i) << 876 { << 877 r[i] = rz[i].x(); << 878 z[i] = rz[i].y(); << 879 if (std::abs(r[i]) < spatialTolerance) r[i << 880 } << 881 << 882 // C O U N T V E R T I C E S A N D F << 883 << 884 G4int Nverts = 0; << 885 for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 886 << 887 G4int Nedges = Nrz; << 888 for (G4int i = 0; i < Nrz; ++i) << 889 { << 890 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 891 Nedges -= static_cast<int>(r[k] == 0 && r[ << 892 } << 893 << 894 G4int Nfaces = Nedges*nSphi; / << 895 if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 896 << 897 // A L L O C A T E M E M O R Y << 898 << 899 AllocateMemory(Nverts, Nfaces); << 900 if (pV == nullptr || pF == nullptr) << 901 { << 902 delete [] r; << 903 delete [] z; << 904 return; << 905 } << 906 << 907 // S E T V E R T I C E S << 908 << 909 auto kk = new G4int[Nrz]; // start indices a << 910 G4int kfree = 1; // current free position in << 911 << 912 // set start indices, set vertices for nodes << 913 for(G4int i = 0; i < Nrz; ++i) << 914 { << 915 kk[i] = kfree; << 916 if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 917 if (r[i] != 0.) kfree += nVphi; << 918 } << 919 << 920 // set vertices by rotating r << 921 for(G4int j = 0; j < nVphi; ++j) << 922 { << 923 G4double cosPhi = std::cos(phi + j*delPhi/ << 924 G4double sinPhi = std::sin(phi + j*delPhi/ << 925 for(G4int i = 0; i < Nrz; ++i) << 926 { << 927 if (r[i] != 0.) << 928 pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 929 } << 930 } << 931 << 932 // S E T F A C E S << 933 << 934 kfree = 1; // current free position in array << 935 for(G4int i = 0; i < Nrz; ++i) << 936 { << 937 G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 938 G4int i2 = i; << 939 if (area < 0.) std::swap(i1, i2); << 940 RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 941 edgeVis, ifWholeCircle, nSphi, << 942 } << 943 << 944 // S E T P H I _ W E D G E F A C E S << 945 << 946 if (!ifWholeCircle) << 947 { << 948 std::vector<G4int> triangles; << 949 TriangulatePolygon(rz, triangles); << 950 << 951 G4int ii[4], vv[4]; << 952 G4int ntria = G4int(triangles.size()/3); << 953 for (G4int i = 0; i < ntria; ++i) << 954 { << 955 G4int i1 = triangles[0 + i*3]; << 956 G4int i2 = triangles[1 + i*3]; << 957 G4int i3 = triangles[2 + i*3]; << 958 if (area < 0.) std::swap(i1, i3); << 959 G4int v1 = (std::abs(i2-i1) == 1 || std: << 960 G4int v2 = (std::abs(i3-i2) == 1 || std: << 961 G4int v3 = (std::abs(i1-i3) == 1 || std: << 962 ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 963 vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 964 SetSideFacets(ii, vv, kk, r, delPhi, nSp << 965 } << 966 } << 967 << 968 // free memory << 969 delete [] r; << 970 delete [] z; << 971 delete [] kk; << 972 << 973 // final check << 974 if (kfree - 1 != nface) << 975 { << 976 std::cerr << 977 << "HepPolyhedron::RotateContourAroundZ: << 978 << kfree-1 << ") is not equal to the num << 979 << nface << ")" << 980 << std::endl; << 981 } << 982 } << 983 << 984 G4bool << 985 HepPolyhedron::TriangulatePolygon(const std::v << 986 std::vector< << 987 /********************************************* << 988 * << 989 * Name: HepPolyhedron::TriangulatePolygon << 990 * Author: E.Tcherniaev (E.Chernyaev) << 991 * << 992 * Function: Simple implementation of "ear cli << 993 * triangulation of a simple contour << 994 * the result in a std::vector as tr << 995 * << 996 * If triangulation is sucsessfull t << 997 * returns true, otherwise false << 998 * << 999 * Remark: It's a copy of G4GeomTools::Trian << 1000 * << 1001 ******************************************** << 1002 { << 1003 result.resize(0); << 1004 G4int n = (G4int)polygon.size(); << 1005 if (n < 3) return false; << 1006 << 1007 // calculate area << 1008 // << 1009 G4double area = 0.; << 1010 for(G4int i = 0; i < n; ++i) << 1011 { << 1012 G4int k = (i == 0) ? n - 1 : i - 1; << 1013 area += polygon[k].x()*polygon[i].y() - p << 1014 } << 1015 << 1016 // allocate and initialize list of Vertices << 1017 // we want a counter-clockwise polygon in V << 1018 // << 1019 auto V = new G4int[n]; << 1020 if (area > 0.) << 1021 for (G4int i = 0; i < n; ++i) V[i] = i; << 1022 else << 1023 for (G4int i = 0; i < n; ++i) V[i] = (n - << 1024 << 1025 // Triangulation: remove nv-2 Vertices, cr << 1026 // << 1027 G4int nv = n; << 1028 G4int count = 2*nv; // error detection coun << 1029 for(G4int b = nv - 1; nv > 2; ) << 1030 { << 1031 // ERROR: if we loop, it is probably a no << 1032 if ((count--) <= 0) << 1033 { << 1034 delete [] V; << 1035 if (area < 0.) std::reverse(result.begi << 1036 return false; << 1037 } << 1038 << 1039 // three consecutive vertices in current << 1040 G4int a = (b < nv) ? b : 0; // previo << 1041 b = (a+1 < nv) ? a+1 : 0; // curren << 1042 G4int c = (b+1 < nv) ? b+1 : 0; // next << 1043 << 1044 if (CheckSnip(polygon, a,b,c, nv,V)) << 1045 { << 1046 // output Triangle << 1047 result.push_back(V[a]); << 1048 result.push_back(V[b]); << 1049 result.push_back(V[c]); << 1050 << 1051 // remove vertex b from remaining polyg << 1052 nv--; << 1053 for(G4int i = b; i < nv; ++i) V[i] = V[ << 1054 << 1055 count = 2*nv; // resest error detection << 1056 } << 1057 } << 1058 delete [] V; << 1059 if (area < 0.) std::reverse(result.begin(), << 1060 return true; << 1061 } << 1062 << 1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 1064 G4int a, G4in << 1065 G4int n, cons << 1066 /******************************************** << 1067 * << 1068 * Name: HepPolyhedron::CheckSnip << 1069 * Author: E.Tcherniaev (E.Chernyaev) << 1070 * << 1071 * Function: Check for a valid snip, << 1072 * it is a helper functionfor Trian << 1073 * << 1074 ******************************************** << 1075 { << 1076 static const G4double kCarTolerance = 1.e-9 << 1077 << 1078 // check orientation of Triangle << 1079 G4double Ax = contour[V[a]].x(), Ay = conto << 1080 G4double Bx = contour[V[b]].x(), By = conto << 1081 G4double Cx = contour[V[c]].x(), Cy = conto << 1082 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 1083 << 1084 // check that there is no point inside Tria << 1085 G4double xmin = std::min(std::min(Ax,Bx),Cx << 1086 G4double xmax = std::max(std::max(Ax,Bx),Cx << 1087 G4double ymin = std::min(std::min(Ay,By),Cy << 1088 G4double ymax = std::max(std::max(Ay,By),Cy << 1089 << 1090 for (G4int i=0; i<n; ++i) << 1091 { << 1092 if((i == a) || (i == b) || (i == c)) cont << 1093 G4double Px = contour[V[i]].x(); << 1094 if (Px < xmin || Px > xmax) continue; << 1095 G4double Py = contour[V[i]].y(); << 1096 if (Py < ymin || Py > ymax) continue; << 1097 // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 1098 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 1099 { << 1100 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 1101 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 1102 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 1103 } << 1104 else << 1105 { << 1106 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 1107 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 1108 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 1109 } << 1110 return false; << 1111 } 606 } 1112 return true; << 1113 } 607 } 1114 608 1115 void HepPolyhedron::SetReferences() 609 void HepPolyhedron::SetReferences() 1116 /******************************************** 610 /*********************************************************************** 1117 * 611 * * 1118 * Name: HepPolyhedron::SetReferences 612 * Name: HepPolyhedron::SetReferences Date: 04.12.96 * 1119 * Author: E.Chernyaev (IHEP/Protvino) 613 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1120 * 614 * * 1121 * Function: For each edge set reference to n 615 * Function: For each edge set reference to neighbouring facet * 1122 * 616 * * 1123 ******************************************** 617 ***********************************************************************/ 1124 { 618 { 1125 if (nface <= 0) return; 619 if (nface <= 0) return; 1126 620 1127 struct edgeListMember { 621 struct edgeListMember { 1128 edgeListMember *next; 622 edgeListMember *next; 1129 G4int v2; << 623 int v2; 1130 G4int iface; << 624 int iface; 1131 G4int iedge; << 625 int iedge; 1132 } *edgeList, *freeList, **headList; 626 } *edgeList, *freeList, **headList; 1133 627 1134 << 628 1135 // A L L O C A T E A N D I N I T I A 629 // A L L O C A T E A N D I N I T I A T E L I S T S 1136 630 1137 edgeList = new edgeListMember[2*nface]; 631 edgeList = new edgeListMember[2*nface]; 1138 headList = new edgeListMember*[nvert]; 632 headList = new edgeListMember*[nvert]; 1139 << 633 1140 G4int i; << 634 int i; 1141 for (i=0; i<nvert; i++) { 635 for (i=0; i<nvert; i++) { 1142 headList[i] = nullptr; << 636 headList[i] = 0; 1143 } 637 } 1144 freeList = edgeList; 638 freeList = edgeList; 1145 for (i=0; i<2*nface-1; i++) { 639 for (i=0; i<2*nface-1; i++) { 1146 edgeList[i].next = &edgeList[i+1]; 640 edgeList[i].next = &edgeList[i+1]; 1147 } 641 } 1148 edgeList[2*nface-1].next = nullptr; << 642 edgeList[2*nface-1].next = 0; 1149 643 1150 // L O O P A L O N G E D G E S 644 // L O O P A L O N G E D G E S 1151 645 1152 G4int iface, iedge, nedge, i1, i2, k1, k2; << 646 int iface, iedge, nedge, i1, i2, k1, k2; 1153 edgeListMember *prev, *cur; 647 edgeListMember *prev, *cur; 1154 << 648 1155 for(iface=1; iface<=nface; iface++) { 649 for(iface=1; iface<=nface; iface++) { 1156 nedge = (pF[iface].edge[3].v == 0) ? 3 : 650 nedge = (pF[iface].edge[3].v == 0) ? 3 : 4; 1157 for (iedge=0; iedge<nedge; iedge++) { 651 for (iedge=0; iedge<nedge; iedge++) { 1158 i1 = iedge; 652 i1 = iedge; 1159 i2 = (iedge < nedge-1) ? iedge+1 : 0; 653 i2 = (iedge < nedge-1) ? iedge+1 : 0; 1160 i1 = std::abs(pF[iface].edge[i1].v); << 654 i1 = abs(pF[iface].edge[i1].v); 1161 i2 = std::abs(pF[iface].edge[i2].v); << 655 i2 = abs(pF[iface].edge[i2].v); 1162 k1 = (i1 < i2) ? i1 : i2; // k 656 k1 = (i1 < i2) ? i1 : i2; // k1 = ::min(i1,i2); 1163 k2 = (i1 > i2) ? i1 : i2; // k 657 k2 = (i1 > i2) ? i1 : i2; // k2 = ::max(i1,i2); 1164 << 658 1165 // check head of the List corresponding 659 // check head of the List corresponding to k1 1166 cur = headList[k1]; 660 cur = headList[k1]; 1167 if (cur == nullptr) { << 661 if (cur == 0) { 1168 headList[k1] = freeList; << 662 headList[k1] = freeList; 1169 if (freeList == nullptr) { << 663 freeList = freeList->next; 1170 std::cerr << 1171 << "Polyhedron::SetReferences: bad << 1172 << std::endl; << 1173 break; << 1174 } << 1175 freeList = freeList->next; << 1176 cur = headList[k1]; 664 cur = headList[k1]; 1177 cur->next = nullptr; << 665 cur->next = 0; 1178 cur->v2 = k2; << 666 cur->v2 = k2; 1179 cur->iface = iface; << 667 cur->iface = iface; 1180 cur->iedge = iedge; << 668 cur->iedge = iedge; 1181 continue; 669 continue; 1182 } << 670 } 1183 671 1184 if (cur->v2 == k2) { 672 if (cur->v2 == k2) { 1185 headList[k1] = cur->next; 673 headList[k1] = cur->next; 1186 cur->next = freeList; << 674 cur->next = freeList; 1187 freeList = cur; << 675 freeList = cur; 1188 pF[iface].edge[iedge].f = cur->iface; 676 pF[iface].edge[iedge].f = cur->iface; 1189 pF[cur->iface].edge[cur->iedge].f = i << 677 pF[cur->iface].edge[cur->iedge].f = iface; 1190 i1 = (pF[iface].edge[iedge].v < 0) ? 678 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1191 i2 = (pF[cur->iface].edge[cur->iedge] << 679 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1192 if (i1 != i2) { 680 if (i1 != i2) { 1193 std::cerr << 681 HepStd::cerr 1194 << "Polyhedron::SetReferences: di << 682 << "Polyhedron::SetReferences: different edge visibility " 1195 << iface << "/" << iedge << "/" << 683 << iface << "/" << iedge << "/" 1196 << pF[iface].edge[iedge].v << " a << 684 << pF[iface].edge[iedge].v << " and " 1197 << cur->iface << "/" << cur->iedg << 685 << cur->iface << "/" << cur->iedge << "/" 1198 << pF[cur->iface].edge[cur->iedge << 686 << pF[cur->iface].edge[cur->iedge].v 1199 << std::endl; << 687 << HepStd::endl; 1200 } << 688 } 1201 continue; << 689 continue; 1202 } 690 } 1203 691 1204 // check List itself 692 // check List itself 1205 for (;;) { 693 for (;;) { 1206 prev = cur; << 694 prev = cur; 1207 cur = prev->next; << 695 cur = prev->next; 1208 if (cur == nullptr) { << 696 if (cur == 0) { 1209 prev->next = freeList; << 697 prev->next = freeList; 1210 if (freeList == nullptr) { << 698 freeList = freeList->next; 1211 std::cerr << 699 cur = prev->next; 1212 << "Polyhedron::SetReferences: ba << 700 cur->next = 0; 1213 << std::endl; << 701 cur->v2 = k2; 1214 break; << 702 cur->iface = iface; 1215 } << 703 cur->iedge = iedge; 1216 freeList = freeList->next; << 704 break; 1217 cur = prev->next; << 705 } 1218 cur->next = nullptr; << 1219 cur->v2 = k2; << 1220 cur->iface = iface; << 1221 cur->iedge = iedge; << 1222 break; << 1223 } << 1224 706 1225 if (cur->v2 == k2) { 707 if (cur->v2 == k2) { 1226 prev->next = cur->next; << 708 prev->next = cur->next; 1227 cur->next = freeList; << 709 cur->next = freeList; 1228 freeList = cur; << 710 freeList = cur; 1229 pF[iface].edge[iedge].f = cur->ifac << 711 pF[iface].edge[iedge].f = cur->iface; 1230 pF[cur->iface].edge[cur->iedge].f = << 712 pF[cur->iface].edge[cur->iedge].f = iface; 1231 i1 = (pF[iface].edge[iedge].v < 0) << 713 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1232 i2 = (pF[cur->iface].edge[cur->iedg << 714 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1233 if (i1 != i2) { << 715 if (i1 != i2) { 1234 std::cerr << 716 HepStd::cerr 1235 << "Polyhedron::SetReferences << 717 << "Polyhedron::SetReferences: different edge visibility " 1236 << iface << "/" << iedge << " << 718 << iface << "/" << iedge << "/" 1237 << pF[iface].edge[iedge].v << << 719 << pF[iface].edge[iedge].v << " and " 1238 << cur->iface << "/" << cur-> << 720 << cur->iface << "/" << cur->iedge << "/" 1239 << pF[cur->iface].edge[cur->i << 721 << pF[cur->iface].edge[cur->iedge].v 1240 << std::endl; << 722 << HepStd::endl; 1241 } << 723 } 1242 break; << 724 break; 1243 } << 725 } 1244 } 726 } 1245 } 727 } 1246 } 728 } 1247 729 1248 // C H E C K T H A T A L L L I S T S 730 // C H E C K T H A T A L L L I S T S A R E E M P T Y 1249 731 1250 for (i=0; i<nvert; i++) { 732 for (i=0; i<nvert; i++) { 1251 if (headList[i] != nullptr) { << 733 if (headList[i] != 0) { 1252 std::cerr << 734 HepStd::cerr 1253 << "Polyhedron::SetReferences: List " << 735 << "Polyhedron::SetReferences: List " << i << " is not empty" 1254 << std::endl; << 736 << HepStd::endl; 1255 } 737 } 1256 } 738 } 1257 739 1258 // F R E E M E M O R Y 740 // F R E E M E M O R Y 1259 741 1260 delete [] edgeList; 742 delete [] edgeList; 1261 delete [] headList; 743 delete [] headList; 1262 } 744 } 1263 745 1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 1265 /******************************************** << 1266 * << 1267 * Name: HepPolyhedron::JoinCoplanarFacets << 1268 * Author: E.Tcherniaev (E.Chernyaev) << 1269 * << 1270 * Function: Join couples of triangular facet << 1271 * where it is possible << 1272 * << 1273 ******************************************** << 1274 { << 1275 G4int njoin = 0; << 1276 for (G4int icur = 1; icur <= nface; ++icur) << 1277 { << 1278 // skip if already joined or quadrangle << 1279 if (pF[icur].edge[0].v == 0) continue; << 1280 if (pF[icur].edge[3].v != 0) continue; << 1281 // skip if all references point to alread << 1282 if (pF[icur].edge[0].f < icur && << 1283 pF[icur].edge[1].f < icur && << 1284 pF[icur].edge[2].f < icur) continue; << 1285 // compute plane equation << 1286 G4Normal3D norm = GetUnitNormal(icur); << 1287 G4double dd = norm.dot(pV[pF[icur].edge[0 << 1288 G4int vcur0 = std::abs(pF[icur].edge[0].v << 1289 G4int vcur1 = std::abs(pF[icur].edge[1].v << 1290 G4int vcur2 = std::abs(pF[icur].edge[2].v << 1291 // select neighbouring facet << 1292 G4int kcheck = 0, icheck = 0, vcheck = 0; << 1293 G4double dist = DBL_MAX; << 1294 for (G4int k = 0; k < 3; ++k) << 1295 { << 1296 G4int itmp = pF[icur].edge[k].f; << 1297 // skip if already checked, joined or q << 1298 if (itmp < icur) continue; << 1299 if (pF[itmp].edge[0].v == 0 || << 1300 pF[itmp].edge[3].v != 0) continue; << 1301 // get candidate vertex << 1302 G4int vtmp = 0; << 1303 for (G4int j = 0; j < 3; ++j) << 1304 { << 1305 vtmp = std::abs(pF[itmp].edge[j].v); << 1306 if (vtmp != vcur0 && vtmp != vcur1 && vtmp << 1307 } << 1308 // check distance to the plane << 1309 G4double dtmp = std::abs(norm.dot(pV[vt << 1310 if (dtmp > tolerance || dtmp >= dist) c << 1311 dist = dtmp; << 1312 kcheck = k; << 1313 icheck = itmp; << 1314 vcheck = vtmp; << 1315 } << 1316 if (icheck == 0) continue; // no facet se << 1317 // join facets << 1318 njoin++; << 1319 pF[icheck].edge[0].v = 0; // mark facet a << 1320 if (kcheck == 0) << 1321 { << 1322 pF[icur].edge[3].v = pF[icur].edge[2].v << 1323 pF[icur].edge[2].v = pF[icur].edge[1].v << 1324 pF[icur].edge[1].v = vcheck; << 1325 } << 1326 else if (kcheck == 1) << 1327 { << 1328 pF[icur].edge[3].v = pF[icur].edge[2].v << 1329 pF[icur].edge[2].v = vcheck; << 1330 } << 1331 else << 1332 { << 1333 pF[icur].edge[3].v = vcheck; << 1334 } << 1335 } << 1336 if (njoin == 0) return; // no joined facets << 1337 << 1338 // restructure facets << 1339 G4int nnew = 0; << 1340 for (G4int icur = 1; icur <= nface; ++icur) << 1341 { << 1342 if (pF[icur].edge[0].v == 0) continue; << 1343 nnew++; << 1344 pF[nnew].edge[0].v = pF[icur].edge[0].v; << 1345 pF[nnew].edge[1].v = pF[icur].edge[1].v; << 1346 pF[nnew].edge[2].v = pF[icur].edge[2].v; << 1347 pF[nnew].edge[3].v = pF[icur].edge[3].v; << 1348 } << 1349 nface = nnew; << 1350 SetReferences(); << 1351 } << 1352 << 1353 void HepPolyhedron::InvertFacets() 746 void HepPolyhedron::InvertFacets() 1354 /******************************************** 747 /*********************************************************************** 1355 * 748 * * 1356 * Name: HepPolyhedron::InvertFacets 749 * Name: HepPolyhedron::InvertFacets Date: 01.12.99 * 1357 * Author: E.Chernyaev 750 * Author: E.Chernyaev Revised: * 1358 * 751 * * 1359 * Function: Invert the order of the nodes in 752 * Function: Invert the order of the nodes in the facets * 1360 * 753 * * 1361 ******************************************** 754 ***********************************************************************/ 1362 { 755 { 1363 if (nface <= 0) return; 756 if (nface <= 0) return; 1364 G4int i, k, nnode, v[4],f[4]; << 757 int i, k, nnode, v[4],f[4]; 1365 for (i=1; i<=nface; i++) { 758 for (i=1; i<=nface; i++) { 1366 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 759 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 1367 for (k=0; k<nnode; k++) { 760 for (k=0; k<nnode; k++) { 1368 v[k] = (k+1 == nnode) ? pF[i].edge[0].v 761 v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v; 1369 if (v[k] * pF[i].edge[k].v < 0) v[k] = 762 if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k]; 1370 f[k] = pF[i].edge[k].f; 763 f[k] = pF[i].edge[k].f; 1371 } 764 } 1372 for (k=0; k<nnode; k++) { 765 for (k=0; k<nnode; k++) { 1373 pF[i].edge[nnode-1-k].v = v[k]; 766 pF[i].edge[nnode-1-k].v = v[k]; 1374 pF[i].edge[nnode-1-k].f = f[k]; 767 pF[i].edge[nnode-1-k].f = f[k]; 1375 } 768 } 1376 } 769 } 1377 } 770 } 1378 771 1379 HepPolyhedron & HepPolyhedron::Transform(cons << 772 HepPolyhedron & HepPolyhedron::Transform(const HepTransform3D &t) 1380 /******************************************** 773 /*********************************************************************** 1381 * 774 * * 1382 * Name: HepPolyhedron::Transform 775 * Name: HepPolyhedron::Transform Date: 01.12.99 * 1383 * Author: E.Chernyaev 776 * Author: E.Chernyaev Revised: * 1384 * 777 * * 1385 * Function: Make transformation of the polyh 778 * Function: Make transformation of the polyhedron * 1386 * 779 * * 1387 ******************************************** 780 ***********************************************************************/ 1388 { 781 { 1389 if (nvert > 0) { 782 if (nvert > 0) { 1390 for (G4int i=1; i<=nvert; i++) { pV[i] = << 783 for (int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; } 1391 784 1392 // C H E C K D E T E R M I N A N T A 785 // C H E C K D E T E R M I N A N T A N D 1393 // I N V E R T F A C E T S I F I T 786 // I N V E R T F A C E T S I F I T I S N E G A T I V E 1394 787 1395 G4Vector3D d = t * G4Vector3D(0,0,0); << 788 HepVector3D d = t * HepVector3D(0,0,0); 1396 G4Vector3D x = t * G4Vector3D(1,0,0) - d; << 789 HepVector3D x = t * HepVector3D(1,0,0) - d; 1397 G4Vector3D y = t * G4Vector3D(0,1,0) - d; << 790 HepVector3D y = t * HepVector3D(0,1,0) - d; 1398 G4Vector3D z = t * G4Vector3D(0,0,1) - d; << 791 HepVector3D z = t * HepVector3D(0,0,1) - d; 1399 if ((x.cross(y))*z < 0) InvertFacets(); 792 if ((x.cross(y))*z < 0) InvertFacets(); 1400 } 793 } 1401 return *this; 794 return *this; 1402 } 795 } 1403 796 1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in << 797 HepBoolean HepPolyhedron::GetNextVertexIndex(int &index, int &edgeFlag) const 1405 /******************************************** 798 /*********************************************************************** 1406 * 799 * * 1407 * Name: HepPolyhedron::GetNextVertexIndex 800 * Name: HepPolyhedron::GetNextVertexIndex Date: 03.09.96 * 1408 * Author: Yasuhide Sawada 801 * Author: Yasuhide Sawada Revised: * 1409 * 802 * * 1410 * Function: 803 * Function: * 1411 * 804 * * 1412 ******************************************** 805 ***********************************************************************/ 1413 { 806 { 1414 static G4ThreadLocal G4int iFace = 1; << 807 static int iFace = 1; 1415 static G4ThreadLocal G4int iQVertex = 0; << 808 static int iQVertex = 0; 1416 G4int vIndex = pF[iFace].edge[iQVertex].v; << 809 int vIndex = pF[iFace].edge[iQVertex].v; 1417 810 1418 edgeFlag = (vIndex > 0) ? 1 : 0; 811 edgeFlag = (vIndex > 0) ? 1 : 0; 1419 index = std::abs(vIndex); << 812 index = abs(vIndex); 1420 813 1421 if (iQVertex >= 3 || pF[iFace].edge[iQVerte 814 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1422 iQVertex = 0; 815 iQVertex = 0; 1423 if (++iFace > nface) iFace = 1; 816 if (++iFace > nface) iFace = 1; 1424 return false; // Last Edge 817 return false; // Last Edge >> 818 }else{ >> 819 ++iQVertex; >> 820 return true; // not Last Edge 1425 } 821 } 1426 << 1427 ++iQVertex; << 1428 return true; // not Last Edge << 1429 } 822 } 1430 823 1431 G4Point3D HepPolyhedron::GetVertex(G4int inde << 824 HepPoint3D HepPolyhedron::GetVertex(int index) const 1432 /******************************************** 825 /*********************************************************************** 1433 * 826 * * 1434 * Name: HepPolyhedron::GetVertex 827 * Name: HepPolyhedron::GetVertex Date: 03.09.96 * 1435 * Author: Yasuhide Sawada 828 * Author: Yasuhide Sawada Revised: 17.11.99 * 1436 * 829 * * 1437 * Function: Get vertex of the index. 830 * Function: Get vertex of the index. * 1438 * 831 * * 1439 ******************************************** 832 ***********************************************************************/ 1440 { 833 { 1441 if (index <= 0 || index > nvert) { 834 if (index <= 0 || index > nvert) { 1442 std::cerr << 835 HepStd::cerr 1443 << "HepPolyhedron::GetVertex: irrelevan 836 << "HepPolyhedron::GetVertex: irrelevant index " << index 1444 << std::endl; << 837 << HepStd::endl; 1445 return G4Point3D(); << 838 return HepPoint3D(); 1446 } 839 } 1447 return pV[index]; 840 return pV[index]; 1448 } 841 } 1449 842 1450 G4bool << 843 HepBoolean 1451 HepPolyhedron::GetNextVertex(G4Point3D &verte << 844 HepPolyhedron::GetNextVertex(HepPoint3D &vertex, int &edgeFlag) const 1452 /******************************************** 845 /*********************************************************************** 1453 * 846 * * 1454 * Name: HepPolyhedron::GetNextVertex 847 * Name: HepPolyhedron::GetNextVertex Date: 22.07.96 * 1455 * Author: John Allison 848 * Author: John Allison Revised: * 1456 * 849 * * 1457 * Function: Get vertices of the quadrilatera 850 * Function: Get vertices of the quadrilaterals in order for each * 1458 * face in face order. Returns fal 851 * face in face order. Returns false when finished each * 1459 * face. 852 * face. * 1460 * 853 * * 1461 ******************************************** 854 ***********************************************************************/ 1462 { 855 { 1463 G4int index; << 856 int index; 1464 G4bool rep = GetNextVertexIndex(index, edge << 857 HepBoolean rep = GetNextVertexIndex(index, edgeFlag); 1465 vertex = pV[index]; 858 vertex = pV[index]; 1466 return rep; 859 return rep; 1467 } 860 } 1468 861 1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D << 862 HepBoolean HepPolyhedron::GetNextVertex(HepPoint3D &vertex, int &edgeFlag, 1470 G4Normal3D << 863 HepNormal3D &normal) const 1471 /******************************************** 864 /*********************************************************************** 1472 * 865 * * 1473 * Name: HepPolyhedron::GetNextVertex 866 * Name: HepPolyhedron::GetNextVertex Date: 26.11.99 * 1474 * Author: E.Chernyaev 867 * Author: E.Chernyaev Revised: * 1475 * 868 * * 1476 * Function: Get vertices with normals of the 869 * Function: Get vertices with normals of the quadrilaterals in order * 1477 * for each face in face order. 870 * for each face in face order. * 1478 * Returns false when finished each 871 * Returns false when finished each face. * 1479 * 872 * * 1480 ******************************************** 873 ***********************************************************************/ 1481 { 874 { 1482 static G4ThreadLocal G4int iFace = 1; << 875 static int iFace = 1; 1483 static G4ThreadLocal G4int iNode = 0; << 876 static int iNode = 0; 1484 877 1485 if (nface == 0) return false; // empty pol 878 if (nface == 0) return false; // empty polyhedron 1486 879 1487 G4int k = pF[iFace].edge[iNode].v; << 880 int k = pF[iFace].edge[iNode].v; 1488 if (k > 0) { edgeFlag = 1; } else { edgeFla 881 if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; } 1489 vertex = pV[k]; 882 vertex = pV[k]; 1490 normal = FindNodeNormal(iFace,k); 883 normal = FindNodeNormal(iFace,k); 1491 if (iNode >= 3 || pF[iFace].edge[iNode+1].v 884 if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) { 1492 iNode = 0; 885 iNode = 0; 1493 if (++iFace > nface) iFace = 1; 886 if (++iFace > nface) iFace = 1; 1494 return false; // last node 887 return false; // last node >> 888 }else{ >> 889 ++iNode; >> 890 return true; // not last node 1495 } 891 } 1496 ++iNode; << 1497 return true; // not last no << 1498 } 892 } 1499 893 1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 894 HepBoolean HepPolyhedron::GetNextEdgeIndeces(int &i1, int &i2, int &edgeFlag, 1501 G4int << 895 int &iface1, int &iface2) const 1502 /******************************************** 896 /*********************************************************************** 1503 * 897 * * 1504 * Name: HepPolyhedron::GetNextEdgeIndices << 898 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 30.09.96 * 1505 * Author: E.Chernyaev 899 * Author: E.Chernyaev Revised: 17.11.99 * 1506 * 900 * * 1507 * Function: Get indices of the next edge tog << 901 * Function: Get indeces of the next edge together with indeces of * 1508 * of the faces which share the edg 902 * of the faces which share the edge. * 1509 * Returns false when the last edge 903 * Returns false when the last edge. * 1510 * 904 * * 1511 ******************************************** 905 ***********************************************************************/ 1512 { 906 { 1513 static G4ThreadLocal G4int iFace = 1; << 907 static int iFace = 1; 1514 static G4ThreadLocal G4int iQVertex = 0; << 908 static int iQVertex = 0; 1515 static G4ThreadLocal G4int iOrder = 1; << 909 static int iOrder = 1; 1516 G4int k1, k2, kflag, kface1, kface2; << 910 int k1, k2, kflag, kface1, kface2; 1517 911 1518 if (iFace == 1 && iQVertex == 0) { 912 if (iFace == 1 && iQVertex == 0) { 1519 k2 = pF[nface].edge[0].v; 913 k2 = pF[nface].edge[0].v; 1520 k1 = pF[nface].edge[3].v; 914 k1 = pF[nface].edge[3].v; 1521 if (k1 == 0) k1 = pF[nface].edge[2].v; 915 if (k1 == 0) k1 = pF[nface].edge[2].v; 1522 if (std::abs(k1) > std::abs(k2)) iOrder = << 916 if (abs(k1) > abs(k2)) iOrder = -1; 1523 } 917 } 1524 918 1525 do { 919 do { 1526 k1 = pF[iFace].edge[iQVertex].v; 920 k1 = pF[iFace].edge[iQVertex].v; 1527 kflag = k1; 921 kflag = k1; 1528 k1 = std::abs(k1); << 922 k1 = abs(k1); 1529 kface1 = iFace; << 923 kface1 = iFace; 1530 kface2 = pF[iFace].edge[iQVertex].f; 924 kface2 = pF[iFace].edge[iQVertex].f; 1531 if (iQVertex >= 3 || pF[iFace].edge[iQVer 925 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1532 iQVertex = 0; 926 iQVertex = 0; 1533 k2 = std::abs(pF[iFace].edge[iQVertex]. << 927 k2 = abs(pF[iFace].edge[iQVertex].v); 1534 iFace++; 928 iFace++; 1535 }else{ 929 }else{ 1536 iQVertex++; 930 iQVertex++; 1537 k2 = std::abs(pF[iFace].edge[iQVertex]. << 931 k2 = abs(pF[iFace].edge[iQVertex].v); 1538 } 932 } 1539 } while (iOrder*k1 > iOrder*k2); 933 } while (iOrder*k1 > iOrder*k2); 1540 934 1541 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 935 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0; 1542 iface1 = kface1; iface2 = kface2; << 936 iface1 = kface1; iface2 = kface2; 1543 937 1544 if (iFace > nface) { 938 if (iFace > nface) { 1545 iFace = 1; iOrder = 1; 939 iFace = 1; iOrder = 1; 1546 return false; 940 return false; >> 941 }else{ >> 942 return true; 1547 } 943 } 1548 << 1549 return true; << 1550 } 944 } 1551 945 1552 G4bool << 946 HepBoolean 1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1, << 947 HepPolyhedron::GetNextEdgeIndeces(int &i1, int &i2, int &edgeFlag) const 1554 /******************************************** 948 /*********************************************************************** 1555 * 949 * * 1556 * Name: HepPolyhedron::GetNextEdgeIndices << 950 * Name: HepPolyhedron::GetNextEdgeIndeces Date: 17.11.99 * 1557 * Author: E.Chernyaev 951 * Author: E.Chernyaev Revised: * 1558 * 952 * * 1559 * Function: Get indices of the next edge. << 953 * Function: Get indeces of the next edge. * 1560 * Returns false when the last edge 954 * Returns false when the last edge. * 1561 * 955 * * 1562 ******************************************** 956 ***********************************************************************/ 1563 { 957 { 1564 G4int kface1, kface2; << 958 int kface1, kface2; 1565 return GetNextEdgeIndices(i1, i2, edgeFlag, << 959 return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2); 1566 } 960 } 1567 961 1568 G4bool << 962 HepBoolean 1569 HepPolyhedron::GetNextEdge(G4Point3D &p1, << 963 HepPolyhedron::GetNextEdge(HepPoint3D &p1, 1570 G4Point3D &p2, << 964 HepPoint3D &p2, 1571 G4int &edgeFlag) c << 965 int &edgeFlag) const 1572 /******************************************** 966 /*********************************************************************** 1573 * 967 * * 1574 * Name: HepPolyhedron::GetNextEdge 968 * Name: HepPolyhedron::GetNextEdge Date: 30.09.96 * 1575 * Author: E.Chernyaev 969 * Author: E.Chernyaev Revised: * 1576 * 970 * * 1577 * Function: Get next edge. 971 * Function: Get next edge. * 1578 * Returns false when the last edge 972 * Returns false when the last edge. * 1579 * 973 * * 1580 ******************************************** 974 ***********************************************************************/ 1581 { 975 { 1582 G4int i1,i2; << 976 int i1,i2; 1583 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 977 HepBoolean rep = GetNextEdgeIndeces(i1,i2,edgeFlag); 1584 p1 = pV[i1]; 978 p1 = pV[i1]; 1585 p2 = pV[i2]; 979 p2 = pV[i2]; 1586 return rep; 980 return rep; 1587 } 981 } 1588 982 1589 G4bool << 983 HepBoolean 1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P << 984 HepPolyhedron::GetNextEdge(HepPoint3D &p1, HepPoint3D &p2, 1591 G4int &edgeFlag, G4 << 985 int &edgeFlag, int &iface1, int &iface2) const 1592 /******************************************** 986 /*********************************************************************** 1593 * 987 * * 1594 * Name: HepPolyhedron::GetNextEdge 988 * Name: HepPolyhedron::GetNextEdge Date: 17.11.99 * 1595 * Author: E.Chernyaev 989 * Author: E.Chernyaev Revised: * 1596 * 990 * * 1597 * Function: Get next edge with indices of th << 991 * Function: Get next edge with indeces of the faces which share * 1598 * the edge. 992 * the edge. * 1599 * Returns false when the last edge 993 * Returns false when the last edge. * 1600 * 994 * * 1601 ******************************************** 995 ***********************************************************************/ 1602 { 996 { 1603 G4int i1,i2; << 997 int i1,i2; 1604 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 998 HepBoolean rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2); 1605 p1 = pV[i1]; 999 p1 = pV[i1]; 1606 p2 = pV[i2]; 1000 p2 = pV[i2]; 1607 return rep; 1001 return rep; 1608 } 1002 } 1609 1003 1610 void HepPolyhedron::GetFacet(G4int iFace, G4i << 1004 void HepPolyhedron::GetFacet(int iFace, int &n, int *iNodes, 1611 G4int *edgeFlags, << 1005 int *edgeFlags, int *iFaces) const 1612 /******************************************** 1006 /*********************************************************************** 1613 * 1007 * * 1614 * Name: HepPolyhedron::GetFacet 1008 * Name: HepPolyhedron::GetFacet Date: 15.12.99 * 1615 * Author: E.Chernyaev 1009 * Author: E.Chernyaev Revised: * 1616 * 1010 * * 1617 * Function: Get face by index 1011 * Function: Get face by index * 1618 * 1012 * * 1619 ******************************************** 1013 ***********************************************************************/ 1620 { 1014 { 1621 if (iFace < 1 || iFace > nface) { 1015 if (iFace < 1 || iFace > nface) { 1622 std::cerr << 1016 HepStd::cerr 1623 << "HepPolyhedron::GetFacet: irrelevant 1017 << "HepPolyhedron::GetFacet: irrelevant index " << iFace 1624 << std::endl; << 1018 << HepStd::endl; 1625 n = 0; 1019 n = 0; 1626 }else{ 1020 }else{ 1627 G4int i, k; << 1021 int i, k; 1628 for (i=0; i<4; i++) { << 1022 for (i=0; i<4; i++) { 1629 k = pF[iFace].edge[i].v; 1023 k = pF[iFace].edge[i].v; 1630 if (k == 0) break; 1024 if (k == 0) break; 1631 if (iFaces != nullptr) iFaces[i] = pF[i << 1025 if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f; 1632 if (k > 0) { << 1026 if (k > 0) { 1633 iNodes[i] = k; << 1027 iNodes[i] = k; 1634 if (edgeFlags != nullptr) edgeFlags[i << 1028 if (edgeFlags != 0) edgeFlags[i] = 1; 1635 }else{ 1029 }else{ 1636 iNodes[i] = -k; << 1030 iNodes[i] = -k; 1637 if (edgeFlags != nullptr) edgeFlags[i << 1031 if (edgeFlags != 0) edgeFlags[i] = -1; 1638 } 1032 } 1639 } 1033 } 1640 n = i; 1034 n = i; 1641 } 1035 } 1642 } 1036 } 1643 1037 1644 void HepPolyhedron::GetFacet(G4int index, G4i << 1038 void HepPolyhedron::GetFacet(int index, int &n, HepPoint3D *nodes, 1645 G4int *edgeFlags << 1039 int *edgeFlags, HepNormal3D *normals) const 1646 /******************************************** 1040 /*********************************************************************** 1647 * 1041 * * 1648 * Name: HepPolyhedron::GetFacet 1042 * Name: HepPolyhedron::GetFacet Date: 17.11.99 * 1649 * Author: E.Chernyaev 1043 * Author: E.Chernyaev Revised: * 1650 * 1044 * * 1651 * Function: Get face by index 1045 * Function: Get face by index * 1652 * 1046 * * 1653 ******************************************** 1047 ***********************************************************************/ 1654 { 1048 { 1655 G4int iNodes[4]; << 1049 int iNodes[4]; 1656 GetFacet(index, n, iNodes, edgeFlags); 1050 GetFacet(index, n, iNodes, edgeFlags); 1657 if (n != 0) { 1051 if (n != 0) { 1658 for (G4int i=0; i<n; i++) { << 1052 for (int i=0; i<4; i++) { 1659 nodes[i] = pV[iNodes[i]]; 1053 nodes[i] = pV[iNodes[i]]; 1660 if (normals != nullptr) normals[i] = Fi << 1054 if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]); 1661 } 1055 } 1662 } 1056 } 1663 } 1057 } 1664 1058 1665 G4bool << 1059 HepBoolean 1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point << 1060 HepPolyhedron::GetNextFacet(int &n, HepPoint3D *nodes, 1667 G4int *edgeFlags, << 1061 int *edgeFlags, HepNormal3D *normals) const 1668 /******************************************** 1062 /*********************************************************************** 1669 * 1063 * * 1670 * Name: HepPolyhedron::GetNextFacet 1064 * Name: HepPolyhedron::GetNextFacet Date: 19.11.99 * 1671 * Author: E.Chernyaev 1065 * Author: E.Chernyaev Revised: * 1672 * 1066 * * 1673 * Function: Get next face with normals of un 1067 * Function: Get next face with normals of unit length at the nodes. * 1674 * Returns false when finished all 1068 * Returns false when finished all faces. * 1675 * 1069 * * 1676 ******************************************** 1070 ***********************************************************************/ 1677 { 1071 { 1678 static G4ThreadLocal G4int iFace = 1; << 1072 static int iFace = 1; 1679 1073 1680 if (edgeFlags == nullptr) { << 1074 if (edgeFlags == 0) { 1681 GetFacet(iFace, n, nodes); 1075 GetFacet(iFace, n, nodes); 1682 }else if (normals == nullptr) { << 1076 }else if (normals == 0) { 1683 GetFacet(iFace, n, nodes, edgeFlags); 1077 GetFacet(iFace, n, nodes, edgeFlags); 1684 }else{ 1078 }else{ 1685 GetFacet(iFace, n, nodes, edgeFlags, norm 1079 GetFacet(iFace, n, nodes, edgeFlags, normals); 1686 } 1080 } 1687 1081 1688 if (++iFace > nface) { 1082 if (++iFace > nface) { 1689 iFace = 1; 1083 iFace = 1; 1690 return false; 1084 return false; >> 1085 }else{ >> 1086 return true; 1691 } 1087 } 1692 << 1693 return true; << 1694 } 1088 } 1695 1089 1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa << 1090 HepNormal3D HepPolyhedron::GetNormal(int iFace) const 1697 /******************************************** 1091 /*********************************************************************** 1698 * 1092 * * 1699 * Name: HepPolyhedron::GetNormal 1093 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1700 * Author: E.Chernyaev 1094 * Author: E.Chernyaev Revised: * 1701 * 1095 * * 1702 * Function: Get normal of the face given by 1096 * Function: Get normal of the face given by index * 1703 * 1097 * * 1704 ******************************************** 1098 ***********************************************************************/ 1705 { 1099 { 1706 if (iFace < 1 || iFace > nface) { 1100 if (iFace < 1 || iFace > nface) { 1707 std::cerr << 1101 HepStd::cerr 1708 << "HepPolyhedron::GetNormal: irrelevan << 1102 << "HepPolyhedron::GetNormal: irrelevant index " << iFace 1709 << std::endl; << 1103 << HepStd::endl; 1710 return G4Normal3D(); << 1104 return HepNormal3D(); 1711 } 1105 } 1712 1106 1713 G4int i0 = std::abs(pF[iFace].edge[0].v); << 1107 int i0 = abs(pF[iFace].edge[0].v); 1714 G4int i1 = std::abs(pF[iFace].edge[1].v); << 1108 int i1 = abs(pF[iFace].edge[1].v); 1715 G4int i2 = std::abs(pF[iFace].edge[2].v); << 1109 int i2 = abs(pF[iFace].edge[2].v); 1716 G4int i3 = std::abs(pF[iFace].edge[3].v); << 1110 int i3 = abs(pF[iFace].edge[3].v); 1717 if (i3 == 0) i3 = i0; 1111 if (i3 == 0) i3 = i0; 1718 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[ 1112 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]); 1719 } 1113 } 1720 1114 1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int << 1115 HepNormal3D HepPolyhedron::GetUnitNormal(int iFace) const 1722 /******************************************** 1116 /*********************************************************************** 1723 * 1117 * * 1724 * Name: HepPolyhedron::GetNormal 1118 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1725 * Author: E.Chernyaev 1119 * Author: E.Chernyaev Revised: * 1726 * 1120 * * 1727 * Function: Get unit normal of the face give 1121 * Function: Get unit normal of the face given by index * 1728 * 1122 * * 1729 ******************************************** 1123 ***********************************************************************/ 1730 { 1124 { 1731 if (iFace < 1 || iFace > nface) { 1125 if (iFace < 1 || iFace > nface) { 1732 std::cerr << 1126 HepStd::cerr 1733 << "HepPolyhedron::GetUnitNormal: irrel 1127 << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace 1734 << std::endl; << 1128 << HepStd::endl; 1735 return G4Normal3D(); << 1129 return HepNormal3D(); 1736 } 1130 } 1737 1131 1738 G4int i0 = std::abs(pF[iFace].edge[0].v); << 1132 int i0 = abs(pF[iFace].edge[0].v); 1739 G4int i1 = std::abs(pF[iFace].edge[1].v); << 1133 int i1 = abs(pF[iFace].edge[1].v); 1740 G4int i2 = std::abs(pF[iFace].edge[2].v); << 1134 int i2 = abs(pF[iFace].edge[2].v); 1741 G4int i3 = std::abs(pF[iFace].edge[3].v); << 1135 int i3 = abs(pF[iFace].edge[3].v); 1742 if (i3 == 0) i3 = i0; 1136 if (i3 == 0) i3 = i0; 1743 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1137 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit(); 1744 } 1138 } 1745 1139 1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3 << 1140 HepBoolean HepPolyhedron::GetNextNormal(HepNormal3D &normal) const 1747 /******************************************** 1141 /*********************************************************************** 1748 * 1142 * * 1749 * Name: HepPolyhedron::GetNextNormal 1143 * Name: HepPolyhedron::GetNextNormal Date: 22.07.96 * 1750 * Author: John Allison 1144 * Author: John Allison Revised: 19.11.99 * 1751 * 1145 * * 1752 * Function: Get normals of each face in face 1146 * Function: Get normals of each face in face order. Returns false * 1753 * when finished all faces. 1147 * when finished all faces. * 1754 * 1148 * * 1755 ******************************************** 1149 ***********************************************************************/ 1756 { 1150 { 1757 static G4ThreadLocal G4int iFace = 1; << 1151 static int iFace = 1; 1758 normal = GetNormal(iFace); 1152 normal = GetNormal(iFace); 1759 if (++iFace > nface) { 1153 if (++iFace > nface) { 1760 iFace = 1; 1154 iFace = 1; 1761 return false; 1155 return false; >> 1156 }else{ >> 1157 return true; 1762 } 1158 } 1763 return true; << 1764 } 1159 } 1765 1160 1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor << 1161 HepBoolean HepPolyhedron::GetNextUnitNormal(HepNormal3D &normal) const 1767 /******************************************** 1162 /*********************************************************************** 1768 * 1163 * * 1769 * Name: HepPolyhedron::GetNextUnitNormal 1164 * Name: HepPolyhedron::GetNextUnitNormal Date: 16.09.96 * 1770 * Author: E.Chernyaev 1165 * Author: E.Chernyaev Revised: * 1771 * 1166 * * 1772 * Function: Get normals of unit length of ea 1167 * Function: Get normals of unit length of each face in face order. * 1773 * Returns false when finished all 1168 * Returns false when finished all faces. * 1774 * 1169 * * 1775 ******************************************** 1170 ***********************************************************************/ 1776 { 1171 { 1777 G4bool rep = GetNextNormal(normal); << 1172 HepBoolean rep = GetNextNormal(normal); 1778 normal = normal.unit(); 1173 normal = normal.unit(); 1779 return rep; 1174 return rep; 1780 } 1175 } 1781 1176 1782 G4double HepPolyhedron::GetSurfaceArea() cons << 1177 HepPolyhedronTrd2::HepPolyhedronTrd2(HepDouble Dx1, HepDouble Dx2, 1783 /******************************************** << 1178 HepDouble Dy1, HepDouble Dy2, 1784 * << 1179 HepDouble Dz) 1785 * Name: HepPolyhedron::GetSurfaceArea << 1786 * Author: E.Chernyaev << 1787 * << 1788 * Function: Returns area of the surface of t << 1789 * << 1790 ******************************************** << 1791 { << 1792 G4double srf = 0.; << 1793 for (G4int iFace=1; iFace<=nface; iFace++) << 1794 G4int i0 = std::abs(pF[iFace].edge[0].v); << 1795 G4int i1 = std::abs(pF[iFace].edge[1].v); << 1796 G4int i2 = std::abs(pF[iFace].edge[2].v); << 1797 G4int i3 = std::abs(pF[iFace].edge[3].v); << 1798 if (i3 == 0) i3 = i0; << 1799 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - << 1800 } << 1801 return srf/2.; << 1802 } << 1803 << 1804 G4double HepPolyhedron::GetVolume() const << 1805 /******************************************** << 1806 * << 1807 * Name: HepPolyhedron::GetVolume << 1808 * Author: E.Chernyaev << 1809 * << 1810 * Function: Returns volume of the polyhedron << 1811 * << 1812 ******************************************** << 1813 { << 1814 G4double v = 0.; << 1815 for (G4int iFace=1; iFace<=nface; iFace++) << 1816 G4int i0 = std::abs(pF[iFace].edge[0].v); << 1817 G4int i1 = std::abs(pF[iFace].edge[1].v); << 1818 G4int i2 = std::abs(pF[iFace].edge[2].v); << 1819 G4int i3 = std::abs(pF[iFace].edge[3].v); << 1820 G4Point3D pt; << 1821 if (i3 == 0) { << 1822 i3 = i0; << 1823 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); << 1824 }else{ << 1825 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0. << 1826 } << 1827 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV << 1828 } << 1829 return v/6.; << 1830 } << 1831 << 1832 G4int << 1833 HepPolyhedron::createTwistedTrap(G4double Dz, << 1834 const G4doub << 1835 const G4doub << 1836 /******************************************** << 1837 * << 1838 * Name: createTwistedTrap << 1839 * Author: E.Chernyaev (IHEP/Protvino) << 1840 * << 1841 * Function: Creates polyhedron for twisted t << 1842 * << 1843 * Input: Dz - half-length along Z << 1844 * xy1[2,4] - quadrilateral at Z=-Dz << 1845 * xy2[2,4] - quadrilateral at Z=+Dz << 1846 * << 1847 * << 1848 ******************************************** << 1849 { << 1850 AllocateMemory(12,18); << 1851 << 1852 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz) << 1853 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz) << 1854 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz) << 1855 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz) << 1856 << 1857 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz) << 1858 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz) << 1859 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz) << 1860 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz) << 1861 << 1862 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; << 1863 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; << 1864 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; << 1865 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; << 1866 << 1867 enum {DUMMY, BOTTOM, << 1868 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, << 1869 BACK_BOTTOM, BACK_LEFT, BACK_TOP, << 1870 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP << 1871 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP << 1872 TOP}; << 1873 << 1874 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM << 1875 << 1876 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, << 1877 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, << 1878 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, << 1879 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM << 1880 << 1881 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, << 1882 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, << 1883 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, << 1884 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM << 1885 << 1886 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, << 1887 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, << 1888 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT << 1889 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO << 1890 << 1891 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT << 1892 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, << 1893 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, << 1894 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO << 1895 << 1896 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7, << 1897 << 1898 return 0; << 1899 } << 1900 << 1901 G4int << 1902 HepPolyhedron::createPolyhedron(G4int Nnodes, << 1903 const G4doubl << 1904 const G4int << 1905 /******************************************** << 1906 * << 1907 * Name: createPolyhedron << 1908 * Author: E.Chernyaev (IHEP/Protvino) << 1909 * << 1910 * Function: Creates user defined polyhedron << 1911 * << 1912 * Input: Nnodes - number of nodes << 1913 * Nfaces - number of faces << 1914 * nodes[][3] - node coordinates << 1915 * faces[][4] - faces << 1916 * << 1917 ******************************************** << 1918 { << 1919 AllocateMemory(Nnodes, Nfaces); << 1920 if (nvert == 0) return 1; << 1921 << 1922 for (G4int i=0; i<Nnodes; i++) { << 1923 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], << 1924 } << 1925 for (G4int k=0; k<Nfaces; k++) { << 1926 pF[k+1] = G4Facet(faces[k][0],0,faces[k][ << 1927 } << 1928 SetReferences(); << 1929 return 0; << 1930 } << 1931 << 1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 1933 /****************************************** << 1934 * << 1935 * Name: vertexUnweightedMean << 1936 * Author: S. Boogert (Manchester) << 1937 * << 1938 * Function: Calculate the unweighted mean << 1939 * in the polyhedron. Not to be confused wi << 1940 * centre of mass << 1941 ****************************************** << 1942 << 1943 auto centre = G4Point3D(); << 1944 for(int i=1;i<=nvert;i++) { << 1945 centre += pV[i]; << 1946 } << 1947 centre = centre/nvert; << 1948 return centre; << 1949 } << 1950 << 1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double << 1952 G4double << 1953 G4double << 1954 /******************************************** 1180 /*********************************************************************** 1955 * 1181 * * 1956 * Name: HepPolyhedronTrd2 1182 * Name: HepPolyhedronTrd2 Date: 22.07.96 * 1957 * Author: E.Chernyaev (IHEP/Protvino) 1183 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1958 * 1184 * * 1959 * Function: Create GEANT4 TRD2-trapezoid 1185 * Function: Create GEANT4 TRD2-trapezoid * 1960 * 1186 * * 1961 * Input: Dx1 - half-length along X at -Dz 1187 * Input: Dx1 - half-length along X at -Dz 8----7 * 1962 * Dx2 - half-length along X ay +Dz 1188 * Dx2 - half-length along X ay +Dz 5----6 ! * 1963 * Dy1 - half-length along Y ay -Dz 1189 * Dy1 - half-length along Y ay -Dz ! 4-!--3 * 1964 * Dy2 - half-length along Y ay +Dz 1190 * Dy2 - half-length along Y ay +Dz 1----2 * 1965 * Dz - half-length along Z 1191 * Dz - half-length along Z * 1966 * 1192 * * 1967 ******************************************** 1193 ***********************************************************************/ 1968 { 1194 { 1969 AllocateMemory(8,6); 1195 AllocateMemory(8,6); 1970 1196 1971 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); << 1197 pV[1] = HepPoint3D(-Dx1,-Dy1,-Dz); 1972 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); << 1198 pV[2] = HepPoint3D( Dx1,-Dy1,-Dz); 1973 pV[3] = G4Point3D( Dx1, Dy1,-Dz); << 1199 pV[3] = HepPoint3D( Dx1, Dy1,-Dz); 1974 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); << 1200 pV[4] = HepPoint3D(-Dx1, Dy1,-Dz); 1975 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); << 1201 pV[5] = HepPoint3D(-Dx2,-Dy2, Dz); 1976 pV[6] = G4Point3D( Dx2,-Dy2, Dz); << 1202 pV[6] = HepPoint3D( Dx2,-Dy2, Dz); 1977 pV[7] = G4Point3D( Dx2, Dy2, Dz); << 1203 pV[7] = HepPoint3D( Dx2, Dy2, Dz); 1978 pV[8] = G4Point3D(-Dx2, Dy2, Dz); << 1204 pV[8] = HepPoint3D(-Dx2, Dy2, Dz); 1979 1205 1980 CreatePrism(); 1206 CreatePrism(); 1981 } 1207 } 1982 1208 1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1209 HepPolyhedronTrap::HepPolyhedronTrap(HepDouble Dz, 1984 << 1210 HepDouble Theta, 1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double << 1211 HepDouble Phi, 1986 G4double << 1212 HepDouble Dy1, 1987 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) { << 1213 HepDouble Dx1, 1988 << 1214 HepDouble Dx2, 1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1215 HepDouble Alp1, 1990 << 1216 HepDouble Dy2, 1991 HepPolyhedronBox::HepPolyhedronBox(G4double D << 1217 HepDouble Dx3, 1992 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} << 1218 HepDouble Dx4, 1993 << 1219 HepDouble Alp2) 1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1995 << 1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double << 1997 G4double << 1998 G4double << 1999 G4double << 2000 G4double << 2001 G4double << 2002 G4double << 2003 G4double << 2004 G4double << 2005 G4double << 2006 G4double << 2007 /******************************************** 1220 /*********************************************************************** 2008 * 1221 * * 2009 * Name: HepPolyhedronTrap 1222 * Name: HepPolyhedronTrap Date: 20.11.96 * 2010 * Author: E.Chernyaev 1223 * Author: E.Chernyaev Revised: * 2011 * 1224 * * 2012 * Function: Create GEANT4 TRAP-trapezoid 1225 * Function: Create GEANT4 TRAP-trapezoid * 2013 * 1226 * * 2014 * Input: DZ - half-length in Z 1227 * Input: DZ - half-length in Z * 2015 * Theta,Phi - polar angles of the lin 1228 * Theta,Phi - polar angles of the line joining centres of the * 2016 * faces at Z=-Dz and Z=+D 1229 * faces at Z=-Dz and Z=+Dz * 2017 * Dy1 - half-length in Y of the face 1230 * Dy1 - half-length in Y of the face at Z=-Dz * 2018 * Dx1 - half-length in X of low edge 1231 * Dx1 - half-length in X of low edge of the face at Z=-Dz * 2019 * Dx2 - half-length in X of top edge 1232 * Dx2 - half-length in X of top edge of the face at Z=-Dz * 2020 * Alp1 - angle between Y-axis and the 1233 * Alp1 - angle between Y-axis and the median joining top and * 2021 * low edges of the face at Z=- 1234 * low edges of the face at Z=-Dz * 2022 * Dy2 - half-length in Y of the face 1235 * Dy2 - half-length in Y of the face at Z=+Dz * 2023 * Dx3 - half-length in X of low edge 1236 * Dx3 - half-length in X of low edge of the face at Z=+Dz * 2024 * Dx4 - half-length in X of top edge 1237 * Dx4 - half-length in X of top edge of the face at Z=+Dz * 2025 * Alp2 - angle between Y-axis and the 1238 * Alp2 - angle between Y-axis and the median joining top and * 2026 * low edges of the face at Z=+ 1239 * low edges of the face at Z=+Dz * 2027 * 1240 * * 2028 ******************************************** 1241 ***********************************************************************/ 2029 { 1242 { 2030 G4double DzTthetaCphi = Dz*std::tan(Theta)* << 1243 HepDouble DzTthetaCphi = Dz*tan(Theta)*cos(Phi); 2031 G4double DzTthetaSphi = Dz*std::tan(Theta)* << 1244 HepDouble DzTthetaSphi = Dz*tan(Theta)*sin(Phi); 2032 G4double Dy1Talp1 = Dy1*std::tan(Alp1); << 1245 HepDouble Dy1Talp1 = Dy1*tan(Alp1); 2033 G4double Dy2Talp2 = Dy2*std::tan(Alp2); << 1246 HepDouble Dy2Talp2 = Dy2*tan(Alp2); 2034 << 1247 2035 AllocateMemory(8,6); 1248 AllocateMemory(8,6); 2036 1249 2037 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx << 1250 pV[1] = HepPoint3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz); 2038 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx << 1251 pV[2] = HepPoint3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz); 2039 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx << 1252 pV[3] = HepPoint3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz); 2040 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx << 1253 pV[4] = HepPoint3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz); 2041 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx << 1254 pV[5] = HepPoint3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz); 2042 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx << 1255 pV[6] = HepPoint3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz); 2043 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx << 1256 pV[7] = HepPoint3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz); 2044 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx << 1257 pV[8] = HepPoint3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz); 2045 1258 2046 CreatePrism(); 1259 CreatePrism(); 2047 } 1260 } 2048 1261 2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1262 HepPolyhedronCons::HepPolyhedronCons(HepDouble Rmn1, 2050 << 1263 HepDouble Rmx1, 2051 HepPolyhedronPara::HepPolyhedronPara(G4double << 1264 HepDouble Rmn2, 2052 G4double << 1265 HepDouble Rmx2, 2053 G4double << 1266 HepDouble Dz, 2054 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, << 1267 HepDouble Phi1, 2055 << 1268 HepDouble Dphi) 2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 2057 << 2058 HepPolyhedronParaboloid::HepPolyhedronParabol << 2059 << 2060 << 2061 << 2062 << 2063 /******************************************** << 2064 * << 2065 * Name: HepPolyhedronParaboloid << 2066 * Author: L.Lindroos, T.Nikitina (CERN), Jul << 2067 * << 2068 * Function: Constructor for paraboloid << 2069 * << 2070 * Input: r1 - inside and outside radiuses << 2071 * r2 - inside and outside radiuses << 2072 * dz - half length in Z << 2073 * sPhi - starting angle of the segme << 2074 * dPhi - segment range << 2075 * << 2076 ******************************************** << 2077 { << 2078 static const G4double wholeCircle=twopi; << 2079 << 2080 // C H E C K I N P U T P A R A M E T << 2081 << 2082 G4int k = 0; << 2083 if (r1 < 0. || r2 <= 0.) k = 1; << 2084 << 2085 if (dz <= 0.) k += 2; << 2086 << 2087 G4double phi1, phi2, dphi; << 2088 << 2089 if(dPhi < 0.) << 2090 { << 2091 phi2 = sPhi; phi1 = phi2 + dPhi; << 2092 } << 2093 else if(dPhi == 0.) << 2094 { << 2095 phi1 = sPhi; phi2 = phi1 + wholeCircle; << 2096 } << 2097 else << 2098 { << 2099 phi1 = sPhi; phi2 = phi1 + dPhi; << 2100 } << 2101 dphi = phi2 - phi1; << 2102 << 2103 if (std::abs(dphi-wholeCircle) < perMillion << 2104 if (dphi > wholeCircle) k += 4; << 2105 << 2106 if (k != 0) { << 2107 std::cerr << "HepPolyhedronParaboloid: er << 2108 if ((k & 1) != 0) std::cerr << " (radiuse << 2109 if ((k & 2) != 0) std::cerr << " (half-le << 2110 if ((k & 4) != 0) std::cerr << " (angles) << 2111 std::cerr << std::endl; << 2112 std::cerr << " r1=" << r1; << 2113 std::cerr << " r2=" << r2; << 2114 std::cerr << " dz=" << dz << " sPhi=" << << 2115 << std::endl; << 2116 return; << 2117 } << 2118 << 2119 // P R E P A R E T W O P O L Y L I N << 2120 << 2121 G4int n = GetNumberOfRotationSteps(); << 2122 G4double dl = (r2 - r1) / n; << 2123 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; << 2124 G4double k2 = (r2*r2 + r1*r1) / 2; << 2125 << 2126 auto zz = new G4double[n + 2], rr = new G4d << 2127 << 2128 zz[0] = dz; << 2129 rr[0] = r2; << 2130 << 2131 for(G4int i = 1; i < n - 1; i++) << 2132 { << 2133 rr[i] = rr[i-1] - dl; << 2134 zz[i] = (rr[i]*rr[i] - k2) / k1; << 2135 if(rr[i] < 0) << 2136 { << 2137 rr[i] = 0; << 2138 zz[i] = 0; << 2139 } << 2140 } << 2141 << 2142 zz[n-1] = -dz; << 2143 rr[n-1] = r1; << 2144 << 2145 zz[n] = dz; << 2146 rr[n] = 0; << 2147 << 2148 zz[n+1] = -dz; << 2149 rr[n+1] = 0; << 2150 << 2151 // R O T A T E P O L Y L I N E S << 2152 << 2153 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, << 2154 SetReferences(); << 2155 << 2156 delete [] zz; << 2157 delete [] rr; << 2158 } << 2159 << 2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 2161 << 2162 HepPolyhedronHype::HepPolyhedronHype(G4double << 2163 G4double << 2164 G4double << 2165 G4double << 2166 G4double << 2167 /******************************************** << 2168 * << 2169 * Name: HepPolyhedronHype << 2170 * Author: Tatiana Nikitina (CERN) << 2171 * Evgueni Tcherniaev << 2172 * << 2173 * Function: Constructor for Hype << 2174 * << 2175 * Input: r1 - inside radius at z=0 << 2176 * r2 - outside radiuses at z=0 << 2177 * sqrtan1 - sqr of tan of Inner Ster << 2178 * sqrtan2 - sqr of tan of Outer Ster << 2179 * halfZ - half length in Z << 2180 * << 2181 ******************************************** << 2182 { << 2183 static const G4double wholeCircle = twopi; << 2184 << 2185 // C H E C K I N P U T P A R A M E T << 2186 << 2187 G4int k = 0; << 2188 if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1; << 2189 if (halfZ <= 0.) k += 2; << 2190 if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4; << 2191 << 2192 if (k != 0) << 2193 { << 2194 std::cerr << "HepPolyhedronHype: error in << 2195 if ((k & 1) != 0) std::cerr << " (radiuse << 2196 if ((k & 2) != 0) std::cerr << " (half-le << 2197 if ((k & 4) != 0) std::cerr << " (angles) << 2198 std::cerr << std::endl; << 2199 std::cerr << " r1=" << r1 << " r2=" << r2 << 2200 std::cerr << " halfZ=" << halfZ << " sqrT << 2201 << " sqrTan2=" << sqrtan2 << 2202 << std::endl; << 2203 return; << 2204 } << 2205 << 2206 // P R E P A R E T W O P O L Y L I N << 2207 << 2208 G4int ns = std::max(3, GetNumberOfRotationS << 2209 G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1; << 2210 G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1; << 2211 auto zz = new G4double[nz1 + nz2]; << 2212 auto rr = new G4double[nz1 + nz2]; << 2213 << 2214 // external polyline << 2215 G4double dz2 = 2.*halfZ/(nz2 - 1); << 2216 for(G4int i = 0; i < nz2; ++i) << 2217 { << 2218 zz[i] = halfZ - dz2*i; << 2219 rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 2220 } << 2221 << 2222 // internal polyline << 2223 G4double dz1 = 2.*halfZ/(nz1 - 1); << 2224 for(G4int i = 0; i < nz1; ++i) << 2225 { << 2226 G4int j = nz2 + i; << 2227 zz[j] = halfZ - dz1*i; << 2228 rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 2229 } << 2230 << 2231 // R O T A T E P O L Y L I N E S << 2232 << 2233 RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 2234 SetReferences(); << 2235 << 2236 delete [] zz; << 2237 delete [] rr; << 2238 } << 2239 << 2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 2241 << 2242 HepPolyhedronCons::HepPolyhedronCons(G4double << 2243 G4double << 2244 G4double << 2245 G4double << 2246 G4double << 2247 G4double << 2248 G4double << 2249 /******************************************** 1269 /*********************************************************************** 2250 * 1270 * * 2251 * Name: HepPolyhedronCons::HepPolyhedronCons 1271 * Name: HepPolyhedronCons::HepPolyhedronCons Date: 15.12.96 * 2252 * Author: E.Chernyaev (IHEP/Protvino) 1272 * Author: E.Chernyaev (IHEP/Protvino) Revised: 15.12.96 * 2253 * 1273 * * 2254 * Function: Constructor for CONS, TUBS, CONE 1274 * Function: Constructor for CONS, TUBS, CONE, TUBE * 2255 * 1275 * * 2256 * Input: Rmn1, Rmx1 - inside and outside rad 1276 * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz * 2257 * Rmn2, Rmx2 - inside and outside rad 1277 * Rmn2, Rmx2 - inside and outside radiuses at +Dz * 2258 * Dz - half length in Z 1278 * Dz - half length in Z * 2259 * Phi1 - starting angle of the 1279 * Phi1 - starting angle of the segment * 2260 * Dphi - segment range 1280 * Dphi - segment range * 2261 * 1281 * * 2262 ******************************************** 1282 ***********************************************************************/ 2263 { 1283 { 2264 static const G4double wholeCircle=twopi; << 1284 static HepDouble wholeCircle=2*M_PI; 2265 1285 2266 // C H E C K I N P U T P A R A M E T 1286 // C H E C K I N P U T P A R A M E T E R S 2267 1287 2268 G4int k = 0; << 1288 int k = 0; 2269 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || 1289 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.) k = 1; 2270 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) 1290 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) k = 1; 2271 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) 1291 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) k = 1; 2272 1292 2273 if (Dz <= 0.) k += 2; 1293 if (Dz <= 0.) k += 2; 2274 << 1294 2275 G4double phi1, phi2, dphi; << 1295 HepDouble phi1, phi2, dphi; 2276 if (Dphi < 0.) { 1296 if (Dphi < 0.) { 2277 phi2 = Phi1; phi1 = phi2 - Dphi; 1297 phi2 = Phi1; phi1 = phi2 - Dphi; 2278 }else if (Dphi == 0.) { 1298 }else if (Dphi == 0.) { 2279 phi1 = Phi1; phi2 = phi1 + wholeCircle; 1299 phi1 = Phi1; phi2 = phi1 + wholeCircle; 2280 }else{ 1300 }else{ 2281 phi1 = Phi1; phi2 = phi1 + Dphi; 1301 phi1 = Phi1; phi2 = phi1 + Dphi; 2282 } 1302 } 2283 dphi = phi2 - phi1; 1303 dphi = phi2 - phi1; 2284 if (std::abs(dphi-wholeCircle) < perMillion << 1304 if (abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2285 if (dphi > wholeCircle) k += 4; << 1305 if (dphi > wholeCircle) k += 4; 2286 1306 2287 if (k != 0) { 1307 if (k != 0) { 2288 std::cerr << "HepPolyhedronCone(s)/Tube(s << 1308 HepStd::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters"; 2289 if ((k & 1) != 0) std::cerr << " (radiuse << 1309 if ((k & 1) != 0) HepStd::cerr << " (radiuses)"; 2290 if ((k & 2) != 0) std::cerr << " (half-le << 1310 if ((k & 2) != 0) HepStd::cerr << " (half-length)"; 2291 if ((k & 4) != 0) std::cerr << " (angles) << 1311 if ((k & 4) != 0) HepStd::cerr << " (angles)"; 2292 std::cerr << std::endl; << 1312 HepStd::cerr << HepStd::endl; 2293 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << 1313 HepStd::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1; 2294 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << 1314 HepStd::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2; 2295 std::cerr << " Dz=" << Dz << " Phi1=" << << 1315 HepStd::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi 2296 << std::endl; << 1316 << HepStd::endl; 2297 return; 1317 return; 2298 } 1318 } 2299 << 1319 2300 // P R E P A R E T W O P O L Y L I N 1320 // P R E P A R E T W O P O L Y L I N E S 2301 1321 2302 G4double zz[4], rr[4]; << 1322 HepDouble zz[4], rr[4]; 2303 zz[0] = Dz; << 1323 zz[0] = Dz; 2304 zz[1] = -Dz; << 1324 zz[1] = -Dz; 2305 zz[2] = Dz; << 1325 zz[2] = Dz; 2306 zz[3] = -Dz; << 1326 zz[3] = -Dz; 2307 rr[0] = Rmx2; 1327 rr[0] = Rmx2; 2308 rr[1] = Rmx1; 1328 rr[1] = Rmx1; 2309 rr[2] = Rmn2; 1329 rr[2] = Rmn2; 2310 rr[3] = Rmn1; 1330 rr[3] = Rmn1; 2311 1331 2312 // R O T A T E P O L Y L I N E S 1332 // R O T A T E P O L Y L I N E S 2313 1333 2314 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, << 1334 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 2315 SetReferences(); 1335 SetReferences(); 2316 } 1336 } 2317 1337 2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1338 HepPolyhedronPgon::HepPolyhedronPgon(HepDouble phi, 2319 << 1339 HepDouble dphi, 2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1340 int npdv, 2321 G4double << 1341 int nz, 2322 G4double << 1342 const HepDouble *z, 2323 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D << 1343 const HepDouble *rmin, 2324 << 1344 const HepDouble *rmax) 2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 2326 << 2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double << 2328 G4double << 2329 G4double << 2330 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rma << 2331 << 2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 2333 << 2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl << 2335 G4doubl << 2336 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, << 2337 << 2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 2339 << 2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 2341 G4double << 2342 G4int np << 2343 G4int nz << 2344 const G4 << 2345 const G4 << 2346 const G4 << 2347 /******************************************** 1345 /*********************************************************************** 2348 * 1346 * * 2349 * Name: HepPolyhedronPgon 1347 * Name: HepPolyhedronPgon Date: 09.12.96 * 2350 * Author: E.Chernyaev 1348 * Author: E.Chernyaev Revised: * 2351 * 1349 * * 2352 * Function: Constructor of polyhedron for PG 1350 * Function: Constructor of polyhedron for PGON, PCON * 2353 * 1351 * * 2354 * Input: phi - initial phi 1352 * Input: phi - initial phi * 2355 * dphi - delta phi 1353 * dphi - delta phi * 2356 * npdv - number of steps along phi 1354 * npdv - number of steps along phi * 2357 * nz - number of z-planes (at least 1355 * nz - number of z-planes (at least two) * 2358 * z[] - z coordinates of the slices 1356 * z[] - z coordinates of the slices * 2359 * rmin[] - smaller r at the slices 1357 * rmin[] - smaller r at the slices * 2360 * rmax[] - bigger r at the slices 1358 * rmax[] - bigger r at the slices * 2361 * 1359 * * 2362 ******************************************** 1360 ***********************************************************************/ 2363 { 1361 { 2364 // C H E C K I N P U T P A R A M E T 1362 // C H E C K I N P U T P A R A M E T E R S 2365 1363 2366 if (dphi <= 0. || dphi > twopi) { << 1364 if (dphi <= 0. || dphi > 2*M_PI) { 2367 std::cerr << 1365 HepStd::cerr 2368 << "HepPolyhedronPgon/Pcon: wrong delta 1366 << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi 2369 << std::endl; << 1367 << HepStd::endl; 2370 return; 1368 return; 2371 } << 1369 } 2372 << 1370 2373 if (nz < 2) { 1371 if (nz < 2) { 2374 std::cerr << 1372 HepStd::cerr 2375 << "HepPolyhedronPgon/Pcon: number of z 1373 << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz 2376 << std::endl; << 1374 << HepStd::endl; 2377 return; 1375 return; 2378 } 1376 } 2379 1377 2380 if (npdv < 0) { 1378 if (npdv < 0) { 2381 std::cerr << 1379 HepStd::cerr 2382 << "HepPolyhedronPgon/Pcon: error in nu 1380 << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv 2383 << std::endl; << 1381 << HepStd::endl; 2384 return; 1382 return; 2385 } 1383 } 2386 1384 2387 G4int i; << 1385 int i; 2388 for (i=0; i<nz; i++) { 1386 for (i=0; i<nz; i++) { 2389 if (rmin[i] < 0. || rmax[i] < 0. || rmin[ 1387 if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) { 2390 std::cerr << 1388 HepStd::cerr 2391 << "HepPolyhedronPgon: error in radiu << 1389 << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]=" 2392 << rmin[i] << " rmax[" << i << "]=" < << 1390 << rmin[i] << " rmax[" << i << "]=" << rmax[i] 2393 << std::endl; << 1391 << HepStd::endl; 2394 return; 1392 return; 2395 } 1393 } 2396 } 1394 } 2397 1395 2398 // P R E P A R E T W O P O L Y L I N 1396 // P R E P A R E T W O P O L Y L I N E S 2399 1397 2400 G4double *zz, *rr; << 1398 HepDouble *zz, *rr; 2401 zz = new G4double[2*nz]; << 1399 zz = new HepDouble[2*nz]; 2402 rr = new G4double[2*nz]; << 1400 rr = new HepDouble[2*nz]; 2403 1401 2404 if (z[0] > z[nz-1]) { 1402 if (z[0] > z[nz-1]) { 2405 for (i=0; i<nz; i++) { 1403 for (i=0; i<nz; i++) { 2406 zz[i] = z[i]; 1404 zz[i] = z[i]; 2407 rr[i] = rmax[i]; 1405 rr[i] = rmax[i]; 2408 zz[i+nz] = z[i]; 1406 zz[i+nz] = z[i]; 2409 rr[i+nz] = rmin[i]; 1407 rr[i+nz] = rmin[i]; 2410 } 1408 } 2411 }else{ 1409 }else{ 2412 for (i=0; i<nz; i++) { 1410 for (i=0; i<nz; i++) { 2413 zz[i] = z[nz-i-1]; 1411 zz[i] = z[nz-i-1]; 2414 rr[i] = rmax[nz-i-1]; 1412 rr[i] = rmax[nz-i-1]; 2415 zz[i+nz] = z[nz-i-1]; 1413 zz[i+nz] = z[nz-i-1]; 2416 rr[i+nz] = rmin[nz-i-1]; 1414 rr[i+nz] = rmin[nz-i-1]; 2417 } 1415 } 2418 } 1416 } 2419 1417 2420 // R O T A T E P O L Y L I N E S 1418 // R O T A T E P O L Y L I N E S 2421 1419 2422 G4int nodeVis = 1; << 1420 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 2423 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2424 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, << 2425 SetReferences(); 1421 SetReferences(); 2426 << 1422 2427 delete [] zz; 1423 delete [] zz; 2428 delete [] rr; 1424 delete [] rr; 2429 } 1425 } 2430 1426 2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1427 HepPolyhedronSphere::HepPolyhedronSphere(HepDouble rmin, HepDouble rmax, 2432 G4double << 1428 HepDouble phi, HepDouble dphi, 2433 G4int np << 1429 HepDouble the, HepDouble dthe) 2434 const st << 2435 /******************************************** << 2436 * << 2437 * Name: HepPolyhedronPgon << 2438 * Author: E.Tcherniaev (E.Chernyaev) << 2439 * << 2440 * Function: Constructor of polyhedron for PG << 2441 * << 2442 * Input: phi - initial phi << 2443 * dphi - delta phi << 2444 * npdv - number of steps along phi << 2445 * rz - rz-contour << 2446 * << 2447 ******************************************** << 2448 { << 2449 // C H E C K I N P U T P A R A M E T << 2450 << 2451 if (dphi <= 0. || dphi > twopi) { << 2452 std::cerr << 2453 << "HepPolyhedronPgon/Pcon: wrong delta << 2454 << std::endl; << 2455 return; << 2456 } << 2457 << 2458 if (npdv < 0) { << 2459 std::cerr << 2460 << "HepPolyhedronPgon/Pcon: error in nu << 2461 << std::endl; << 2462 return; << 2463 } << 2464 << 2465 G4int nrz = (G4int)rz.size(); << 2466 if (nrz < 3) { << 2467 std::cerr << 2468 << "HepPolyhedronPgon/Pcon: invalid num << 2469 << std::endl; << 2470 return; << 2471 } << 2472 << 2473 // R O T A T E P O L Y L I N E << 2474 << 2475 G4int nodeVis = 1; << 2476 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2477 RotateContourAroundZ(npdv, phi, dphi, rz, n << 2478 SetReferences(); << 2479 } << 2480 << 2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 2482 << 2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 2484 const G4 << 2485 const G4 << 2486 const G4 << 2487 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm << 2488 << 2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 2490 const st << 2491 : HepPolyhedronPgon(phi, dphi, 0, rz) {} << 2492 << 2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 2494 << 2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do << 2496 G4do << 2497 G4do << 2498 /******************************************** 1430 /*********************************************************************** 2499 * 1431 * * 2500 * Name: HepPolyhedronSphere 1432 * Name: HepPolyhedronSphere Date: 11.12.96 * 2501 * Author: E.Chernyaev (IHEP/Protvino) 1433 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2502 * 1434 * * 2503 * Function: Constructor of polyhedron for SP 1435 * Function: Constructor of polyhedron for SPHERE * 2504 * 1436 * * 2505 * Input: rmin - internal radius 1437 * Input: rmin - internal radius * 2506 * rmax - external radius 1438 * rmax - external radius * 2507 * phi - initial phi 1439 * phi - initial phi * 2508 * dphi - delta phi 1440 * dphi - delta phi * 2509 * the - initial theta 1441 * the - initial theta * 2510 * dthe - delta theta 1442 * dthe - delta theta * 2511 * 1443 * * 2512 ******************************************** 1444 ***********************************************************************/ 2513 { 1445 { 2514 // C H E C K I N P U T P A R A M E T 1446 // C H E C K I N P U T P A R A M E T E R S 2515 1447 2516 if (dphi <= 0. || dphi > twopi) { << 1448 if (dphi <= 0. || dphi > 2*M_PI) { 2517 std::cerr << 1449 HepStd::cerr 2518 << "HepPolyhedronSphere: wrong delta ph 1450 << "HepPolyhedronSphere: wrong delta phi = " << dphi 2519 << std::endl; << 1451 << HepStd::endl; 2520 return; 1452 return; 2521 } << 1453 } 2522 1454 2523 if (the < 0. || the > pi) { << 1455 if (the < 0. || the > M_PI) { 2524 std::cerr << 1456 HepStd::cerr 2525 << "HepPolyhedronSphere: wrong theta = 1457 << "HepPolyhedronSphere: wrong theta = " << the 2526 << std::endl; << 1458 << HepStd::endl; 2527 return; 1459 return; 2528 } << 1460 } 2529 << 1461 2530 if (dthe <= 0. || dthe > pi) { << 1462 if (dthe <= 0. || dthe > M_PI) { 2531 std::cerr << 1463 HepStd::cerr 2532 << "HepPolyhedronSphere: wrong delta th 1464 << "HepPolyhedronSphere: wrong delta theta = " << dthe 2533 << std::endl; << 1465 << HepStd::endl; 2534 return; 1466 return; 2535 } << 1467 } 2536 1468 2537 if (the+dthe > pi) { << 1469 if (the+dthe > M_PI) { 2538 std::cerr << 1470 HepStd::cerr 2539 << "HepPolyhedronSphere: wrong theta + 1471 << "HepPolyhedronSphere: wrong theta + delta theta = " 2540 << the << " " << dthe 1472 << the << " " << dthe 2541 << std::endl; << 1473 << HepStd::endl; 2542 return; 1474 return; 2543 } << 1475 } 2544 << 1476 2545 if (rmin < 0. || rmin >= rmax) { 1477 if (rmin < 0. || rmin >= rmax) { 2546 std::cerr << 1478 HepStd::cerr 2547 << "HepPolyhedronSphere: error in radiu 1479 << "HepPolyhedronSphere: error in radiuses" 2548 << " rmin=" << rmin << " rmax=" << rmax 1480 << " rmin=" << rmin << " rmax=" << rmax 2549 << std::endl; << 1481 << HepStd::endl; 2550 return; 1482 return; 2551 } 1483 } 2552 1484 2553 // P R E P A R E T W O P O L Y L I N 1485 // P R E P A R E T W O P O L Y L I N E S 2554 1486 2555 G4int nds = (GetNumberOfRotationSteps() + 1 << 1487 int ns = (GetNumberOfRotationSteps() + 1) / 2; 2556 G4int np1 = G4int(dthe*nds/pi+.5) + 1; << 1488 int np1 = int(dthe*ns/M_PI+.5) + 1; 2557 if (np1 <= 1) np1 = 2; 1489 if (np1 <= 1) np1 = 2; 2558 G4int np2 = rmin < spatialTolerance ? 1 : n << 1490 int np2 = rmin < perMillion ? 1 : np1; 2559 1491 2560 G4double *zz, *rr; << 1492 HepDouble *zz, *rr; 2561 zz = new G4double[np1+np2]; << 1493 zz = new HepDouble[np1+np2]; 2562 rr = new G4double[np1+np2]; << 1494 rr = new HepDouble[np1+np2]; 2563 << 1495 2564 G4double a = dthe/(np1-1); << 1496 HepDouble a = dthe/(np1-1); 2565 G4double cosa, sina; << 1497 HepDouble cosa, sina; 2566 for (G4int i=0; i<np1; i++) { << 1498 for (int i=0; i<np1; i++) { 2567 cosa = std::cos(the+i*a); << 1499 cosa = cos(the+i*a); 2568 sina = std::sin(the+i*a); << 1500 sina = sin(the+i*a); 2569 zz[i] = rmax*cosa; 1501 zz[i] = rmax*cosa; 2570 rr[i] = rmax*sina; 1502 rr[i] = rmax*sina; 2571 if (np2 > 1) { 1503 if (np2 > 1) { 2572 zz[i+np1] = rmin*cosa; 1504 zz[i+np1] = rmin*cosa; 2573 rr[i+np1] = rmin*sina; 1505 rr[i+np1] = rmin*sina; 2574 } 1506 } 2575 } 1507 } 2576 if (np2 == 1) { 1508 if (np2 == 1) { 2577 zz[np1] = 0.; 1509 zz[np1] = 0.; 2578 rr[np1] = 0.; 1510 rr[np1] = 0.; 2579 } 1511 } 2580 1512 2581 // R O T A T E P O L Y L I N E S 1513 // R O T A T E P O L Y L I N E S 2582 1514 2583 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1515 RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 2584 SetReferences(); 1516 SetReferences(); 2585 << 1517 2586 delete [] zz; 1518 delete [] zz; 2587 delete [] rr; 1519 delete [] rr; 2588 } 1520 } 2589 1521 2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1522 HepPolyhedronTorus::HepPolyhedronTorus(HepDouble rmin, 2591 << 1523 HepDouble rmax, 2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub << 1524 HepDouble rtor, 2593 G4doub << 1525 HepDouble phi, 2594 G4doub << 1526 HepDouble dphi) 2595 G4doub << 2596 G4doub << 2597 /******************************************** 1527 /*********************************************************************** 2598 * 1528 * * 2599 * Name: HepPolyhedronTorus 1529 * Name: HepPolyhedronTorus Date: 11.12.96 * 2600 * Author: E.Chernyaev (IHEP/Protvino) 1530 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2601 * 1531 * * 2602 * Function: Constructor of polyhedron for TO 1532 * Function: Constructor of polyhedron for TORUS * 2603 * 1533 * * 2604 * Input: rmin - internal radius 1534 * Input: rmin - internal radius * 2605 * rmax - external radius 1535 * rmax - external radius * 2606 * rtor - radius of torus 1536 * rtor - radius of torus * 2607 * phi - initial phi 1537 * phi - initial phi * 2608 * dphi - delta phi 1538 * dphi - delta phi * 2609 * 1539 * * 2610 ******************************************** 1540 ***********************************************************************/ 2611 { 1541 { 2612 // C H E C K I N P U T P A R A M E T 1542 // C H E C K I N P U T P A R A M E T E R S 2613 1543 2614 if (dphi <= 0. || dphi > twopi) { << 1544 if (dphi <= 0. || dphi > 2*M_PI) { 2615 std::cerr << 1545 HepStd::cerr 2616 << "HepPolyhedronTorus: wrong delta phi 1546 << "HepPolyhedronTorus: wrong delta phi = " << dphi 2617 << std::endl; << 1547 << HepStd::endl; 2618 return; 1548 return; 2619 } 1549 } 2620 1550 2621 if (rmin < 0. || rmin >= rmax || rmax >= rt 1551 if (rmin < 0. || rmin >= rmax || rmax >= rtor) { 2622 std::cerr << 1552 HepStd::cerr 2623 << "HepPolyhedronTorus: error in radius 1553 << "HepPolyhedronTorus: error in radiuses" 2624 << " rmin=" << rmin << " rmax=" << rmax 1554 << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor 2625 << std::endl; << 1555 << HepStd::endl; 2626 return; 1556 return; 2627 } 1557 } 2628 1558 2629 // P R E P A R E T W O P O L Y L I N 1559 // P R E P A R E T W O P O L Y L I N E S 2630 1560 2631 G4int np1 = GetNumberOfRotationSteps(); << 1561 int np1 = GetNumberOfRotationSteps(); 2632 G4int np2 = rmin < spatialTolerance ? 1 : n << 1562 int np2 = rmin < perMillion ? 1 : np1; 2633 1563 2634 G4double *zz, *rr; << 1564 HepDouble *zz, *rr; 2635 zz = new G4double[np1+np2]; << 1565 zz = new HepDouble[np1+np2]; 2636 rr = new G4double[np1+np2]; << 1566 rr = new HepDouble[np1+np2]; 2637 << 1567 2638 G4double a = twopi/np1; << 1568 HepDouble a = 2*M_PI/np1; 2639 G4double cosa, sina; << 1569 HepDouble cosa, sina; 2640 for (G4int i=0; i<np1; i++) { << 1570 for (int i=0; i<np1; i++) { 2641 cosa = std::cos(i*a); << 1571 cosa = cos(i*a); 2642 sina = std::sin(i*a); << 1572 sina = sin(i*a); 2643 zz[i] = rmax*cosa; 1573 zz[i] = rmax*cosa; 2644 rr[i] = rtor+rmax*sina; 1574 rr[i] = rtor+rmax*sina; 2645 if (np2 > 1) { 1575 if (np2 > 1) { 2646 zz[i+np1] = rmin*cosa; 1576 zz[i+np1] = rmin*cosa; 2647 rr[i+np1] = rtor+rmin*sina; 1577 rr[i+np1] = rtor+rmin*sina; 2648 } 1578 } 2649 } 1579 } 2650 if (np2 == 1) { 1580 if (np2 == 1) { 2651 zz[np1] = 0.; 1581 zz[np1] = 0.; 2652 rr[np1] = rtor; 1582 rr[np1] = rtor; 2653 np2 = -1; 1583 np2 = -1; 2654 } 1584 } 2655 1585 2656 // R O T A T E P O L Y L I N E S 1586 // R O T A T E P O L Y L I N E S 2657 1587 2658 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 1588 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 2659 SetReferences(); 1589 SetReferences(); 2660 << 1590 2661 delete [] zz; << 2662 delete [] rr; << 2663 } << 2664 << 2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2666 << 2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 2668 const G4do << 2669 const G4do << 2670 const G4do << 2671 /******************************************** << 2672 * << 2673 * Name: HepPolyhedronTet << 2674 * Author: E.Tcherniaev (E.Chernyaev) << 2675 * << 2676 * Function: Constructor of polyhedron for TE << 2677 * << 2678 * Input: p0,p1,p2,p3 - vertices << 2679 * << 2680 ******************************************** << 2681 { << 2682 AllocateMemory(4,4); << 2683 << 2684 pV[1].set(p0[0], p0[1], p0[2]); << 2685 pV[2].set(p1[0], p1[1], p1[2]); << 2686 pV[3].set(p2[0], p2[1], p2[2]); << 2687 pV[4].set(p3[0], p3[1], p3[2]); << 2688 << 2689 G4Vector3D v1(pV[2] - pV[1]); << 2690 G4Vector3D v2(pV[3] - pV[1]); << 2691 G4Vector3D v3(pV[4] - pV[1]); << 2692 << 2693 if (v1.cross(v2).dot(v3) < 0.) << 2694 { << 2695 pV[3].set(p3[0], p3[1], p3[2]); << 2696 pV[4].set(p2[0], p2[1], p2[2]); << 2697 } << 2698 << 2699 pF[1] = G4Facet(1,2, 3,4, 2,3); << 2700 pF[2] = G4Facet(1,3, 4,4, 3,1); << 2701 pF[3] = G4Facet(1,1, 2,4, 4,2); << 2702 pF[4] = G4Facet(2,1, 3,2, 4,3); << 2703 } << 2704 << 2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 2706 << 2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi << 2708 << 2709 << 2710 /******************************************** << 2711 * << 2712 * Name: HepPolyhedronEllipsoid << 2713 * Author: G.Guerrieri << 2714 * Evgueni Tcherniaev << 2715 * << 2716 * Function: Constructor of polyhedron for EL << 2717 * << 2718 * Input: ax - semiaxis x << 2719 * by - semiaxis y << 2720 * cz - semiaxis z << 2721 * zCut1 - lower cut plane level (soli << 2722 * zCut2 - upper cut plane level (soli << 2723 * << 2724 ******************************************** << 2725 { << 2726 // C H E C K I N P U T P A R A M E T << 2727 << 2728 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > << 2729 std::cerr << "HepPolyhedronEllipsoid: wro << 2730 << " zCut2 = " << zCut2 << 2731 << " for given cz = " << cz << std << 2732 return; << 2733 } << 2734 if (cz <= 0.0) { << 2735 std::cerr << "HepPolyhedronEllipsoid: bad << 2736 << std::endl; << 2737 return; << 2738 } << 2739 << 2740 // P R E P A R E T W O P O L Y L I N << 2741 // generate sphere of radius cz first, th << 2742 << 2743 G4double sthe = std::acos(zCut2/cz); << 2744 G4double dthe = std::acos(zCut1/cz) - sthe; << 2745 G4int nds = (GetNumberOfRotationSteps() + 1 << 2746 G4int np1 = G4int(dthe*nds/pi + 0.5) + 1; << 2747 if (np1 <= 1) np1 = 2; << 2748 G4int np2 = 2; << 2749 << 2750 G4double *zz, *rr; << 2751 zz = new G4double[np1 + np2]; << 2752 rr = new G4double[np1 + np2]; << 2753 if ((zz == nullptr) || (rr == nullptr)) << 2754 { << 2755 G4Exception("HepPolyhedronEllipsoid::HepP << 2756 "greps1002", FatalException, << 2757 } << 2758 << 2759 G4double a = dthe/(np1 - 1); << 2760 G4double cosa, sina; << 2761 for (G4int i = 0; i < np1; ++i) << 2762 { << 2763 cosa = std::cos(sthe + i*a); << 2764 sina = std::sin(sthe + i*a); << 2765 zz[i] = cz*cosa; << 2766 rr[i] = cz*sina; << 2767 } << 2768 zz[np1 + 0] = zCut2; << 2769 rr[np1 + 0] = 0.; << 2770 zz[np1 + 1] = zCut1; << 2771 rr[np1 + 1] = 0.; << 2772 << 2773 // R O T A T E P O L Y L I N E S << 2774 << 2775 RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2776 SetReferences(); << 2777 << 2778 delete [] zz; << 2779 delete [] rr; << 2780 << 2781 // rescale x and y vertex coordinates << 2782 G4double kx = ax/cz; << 2783 G4double ky = by/cz; << 2784 G4Point3D* p = pV; << 2785 for (G4int i = 0; i < nvert; ++i, ++p) << 2786 { << 2787 p->setX(p->x()*kx); << 2788 p->setY(p->y()*ky); << 2789 } << 2790 } << 2791 << 2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2793 << 2794 HepPolyhedronEllipticalCone::HepPolyhedronEll << 2795 << 2796 << 2797 << 2798 /******************************************** << 2799 * << 2800 * Name: HepPolyhedronEllipticalCone << 2801 * Author: D.Anninos << 2802 * << 2803 * Function: Constructor for EllipticalCone << 2804 * << 2805 * Input: ax, ay - X & Y semi axes at z = << 2806 * h - height of full cone << 2807 * zTopCut - Top Cut in Z Axis << 2808 * << 2809 ******************************************** << 2810 { << 2811 // C H E C K I N P U T P A R A M E T << 2812 << 2813 G4int k = 0; << 2814 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) << 2815 << 2816 if (k != 0) { << 2817 std::cerr << "HepPolyhedronCone: error in << 2818 std::cerr << std::endl; << 2819 return; << 2820 } << 2821 << 2822 // P R E P A R E T W O P O L Y L I N << 2823 << 2824 zTopCut = (h >= zTopCut ? zTopCut : h); << 2825 << 2826 G4double *zz, *rr; << 2827 zz = new G4double[4]; << 2828 rr = new G4double[4]; << 2829 zz[0] = zTopCut; << 2830 zz[1] = -zTopCut; << 2831 zz[2] = zTopCut; << 2832 zz[3] = -zTopCut; << 2833 rr[0] = (h-zTopCut); << 2834 rr[1] = (h+zTopCut); << 2835 rr[2] = 0.; << 2836 rr[3] = 0.; << 2837 << 2838 // R O T A T E P O L Y L I N E S << 2839 << 2840 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2841 SetReferences(); << 2842 << 2843 delete [] zz; << 2844 delete [] rr; << 2845 << 2846 // rescale x and y vertex coordinates << 2847 { << 2848 G4Point3D * p= pV; << 2849 for (G4int i=0; i<nvert; i++, p++) { << 2850 p->setX( p->x() * ax ); << 2851 p->setY( p->y() * ay ); << 2852 } << 2853 } << 2854 } << 2855 << 2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2857 << 2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 2859 << 2860 << 2861 /******************************************** << 2862 * << 2863 * Name: HepPolyhedronHyperbolicMirror << 2864 * Author: E.Tcherniaev (E.Chernyaev) << 2865 * << 2866 * Function: Create polyhedron for Hyperbolic << 2867 * << 2868 * Input: a - half-separation << 2869 * h - height << 2870 * r - radius << 2871 * << 2872 ******************************************** << 2873 { << 2874 G4double H = std::abs(h); << 2875 G4double R = std::abs(r); << 2876 G4double A = std::abs(a); << 2877 G4double B = A*R/std::sqrt(2*A*H + H*H); << 2878 << 2879 // P R E P A R E T W O P O L Y L I N << 2880 << 2881 G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 2882 G4int np2 = 2; << 2883 G4double maxAng = (A == 0.) ? 0. : std::aco << 2884 G4double delAng = maxAng/(np1 - 1); << 2885 << 2886 auto zz = new G4double[np1 + np2]; << 2887 auto rr = new G4double[np1 + np2]; << 2888 << 2889 // 1st polyline << 2890 zz[0] = H; << 2891 rr[0] = R; << 2892 for (G4int iz = 1; iz < np1 - 1; ++iz) << 2893 { << 2894 G4double ang = maxAng - iz*delAng; << 2895 zz[iz] = A*std::cosh(ang) - A; << 2896 rr[iz] = B*std::sinh(ang); << 2897 } << 2898 zz[np1 - 1] = 0.; << 2899 rr[np1 - 1] = 0.; << 2900 << 2901 // 2nd polyline << 2902 zz[np1] = H; << 2903 rr[np1] = 0.; << 2904 zz[np1 + 1] = 0.; << 2905 rr[np1 + 1] = 0.; << 2906 << 2907 // R O T A T E P O L Y L I N E S << 2908 << 2909 G4double phi = 0.; << 2910 G4double dphi = CLHEP::twopi; << 2911 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 2912 SetReferences(); << 2913 << 2914 delete [] zz; 1591 delete [] zz; 2915 delete [] rr; 1592 delete [] rr; 2916 } 1593 } 2917 1594 2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 1595 int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 2919 << 2920 HepPolyhedronTetMesh:: << 2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 2922 /******************************************** << 2923 * << 2924 * Name: HepPolyhedronTetMesh << 2925 * Author: E.Tcherniaev (E.Chernyaev) << 2926 * << 2927 * Function: Create polyhedron for tetrahedro << 2928 * << 2929 * Input: tetrahedra - array of tetrahedron v << 2930 * per tetrahedron << 2931 * << 2932 ******************************************** << 2933 { << 2934 // Check size of input vector << 2935 G4int nnodes = (G4int)tetrahedra.size(); << 2936 if (nnodes == 0) << 2937 { << 2938 std::cerr << 2939 << "HepPolyhedronTetMesh: Empty tetrahe << 2940 return; << 2941 } << 2942 G4int ntet = nnodes/4; << 2943 if (nnodes != ntet*4) << 2944 { << 2945 std::cerr << "HepPolyhedronTetMesh: Numbe << 2946 << " in tetrahedron mesh is NOT << 2947 << std::endl; << 2948 return; << 2949 } << 2950 << 2951 // Find coincident vertices using hash tabl << 2952 // This could be done using std::unordered_ << 2953 // below runs faster. << 2954 std::vector<G4int> iheads(nnodes, -1); << 2955 std::vector<std::pair<G4int,G4int>> ipairs( << 2956 for (G4int i = 0; i < nnodes; ++i) << 2957 { << 2958 // Generate hash key << 2959 G4ThreeVector point = tetrahedra[i]; << 2960 auto key = std::hash<G4double>()(point.x( << 2961 key ^= std::hash<G4double>()(point.y()); << 2962 key ^= std::hash<G4double>()(point.z()); << 2963 key %= nnodes; << 2964 // Check head of the list << 2965 if (iheads[key] < 0) << 2966 { << 2967 iheads[key] = i; << 2968 ipairs[i].first = i; << 2969 continue; << 2970 } << 2971 // Loop along the list << 2972 for (G4int icur = iheads[key], iprev = 0; << 2973 { << 2974 G4int icheck = ipairs[icur].first; << 2975 if (tetrahedra[icheck] == point) << 2976 { << 2977 ipairs[i].first = icheck; // coincide << 2978 break; << 2979 } << 2980 iprev = icur; << 2981 icur = ipairs[icur].second; << 2982 // Append vertex to the list << 2983 if (icur < 0) << 2984 { << 2985 ipairs[i].first = i; << 2986 ipairs[iprev].second = i; << 2987 break; << 2988 } << 2989 } << 2990 } << 2991 << 2992 // Create vector of original facets << 2993 struct facet << 2994 { << 2995 G4int i1, i2, i3; << 2996 facet() : i1(0), i2(0), i3(0) {}; << 2997 facet(G4int k1, G4int k2, G4int k3) : i1( << 2998 }; << 2999 G4int nfacets = nnodes; << 3000 std::vector<facet> ifacets(nfacets); << 3001 for (G4int i = 0; i < nfacets; i += 4) << 3002 { << 3003 G4int i0 = ipairs[i + 0].first; << 3004 G4int i1 = ipairs[i + 1].first; << 3005 G4int i2 = ipairs[i + 2].first; << 3006 G4int i3 = ipairs[i + 3].first; << 3007 if (i0 > i1) std::swap(i0, i1); << 3008 if (i0 > i2) std::swap(i0, i2); << 3009 if (i0 > i3) std::swap(i0, i3); << 3010 if (i1 > i2) std::swap(i1, i2); << 3011 if (i1 > i3) std::swap(i1, i3); << 3012 G4ThreeVector e1 = tetrahedra[i1] - tetra << 3013 G4ThreeVector e2 = tetrahedra[i2] - tetra << 3014 G4ThreeVector e3 = tetrahedra[i3] - tetra << 3015 G4double volume = (e1.cross(e2)).dot(e3); << 3016 if (volume > 0.) std::swap(i2, i3); << 3017 ifacets[i + 0] = facet(i0, i1, i2); << 3018 ifacets[i + 1] = facet(i0, i2, i3); << 3019 ifacets[i + 2] = facet(i0, i3, i1); << 3020 ifacets[i + 3] = facet(i1, i3, i2); << 3021 } << 3022 << 3023 // Find shared facets << 3024 std::fill(iheads.begin(), iheads.end(), -1) << 3025 std::fill(ipairs.begin(), ipairs.end(), std << 3026 for (G4int i = 0; i < nfacets; ++i) << 3027 { << 3028 // Check head of the list << 3029 G4int key = ifacets[i].i1; << 3030 if (iheads[key] < 0) << 3031 { << 3032 iheads[key] = i; << 3033 ipairs[i].first = i; << 3034 continue; << 3035 } << 3036 // Loop along the list << 3037 G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 3038 for (G4int icur = iheads[key], iprev = -1 << 3039 { << 3040 G4int icheck = ipairs[icur].first; << 3041 if (ifacets[icheck].i2 == i3 && ifacets << 3042 { << 3043 if (iprev < 0) << 3044 { << 3045 iheads[key] = ipairs[icur].second; << 3046 } << 3047 else << 3048 { << 3049 ipairs[iprev].second = ipairs[icur] << 3050 } << 3051 ipairs[icur].first = -1; // shared fa << 3052 ipairs[icur].second = -1; << 3053 break; << 3054 } << 3055 iprev = icur; << 3056 icur = ipairs[icur].second; << 3057 // Append facet to the list << 3058 if (icur < 0) << 3059 { << 3060 ipairs[i].first = i; << 3061 ipairs[iprev].second = i; << 3062 break; << 3063 } << 3064 } << 3065 } << 3066 << 3067 // Count vertices and facets skipping share << 3068 std::fill(iheads.begin(), iheads.end(), -1) << 3069 G4int nver = 0, nfac = 0; << 3070 for (G4int i = 0; i < nfacets; ++i) << 3071 { << 3072 if (ipairs[i].first < 0) continue; << 3073 G4int i1 = ifacets[i].i1; << 3074 G4int i2 = ifacets[i].i2; << 3075 G4int i3 = ifacets[i].i3; << 3076 if (iheads[i1] < 0) iheads[i1] = nver++; << 3077 if (iheads[i2] < 0) iheads[i2] = nver++; << 3078 if (iheads[i3] < 0) iheads[i3] = nver++; << 3079 nfac++; << 3080 } << 3081 << 3082 // Construct polyhedron << 3083 AllocateMemory(nver, nfac); << 3084 for (G4int i = 0; i < nnodes; ++i) << 3085 { << 3086 G4int k = iheads[i]; << 3087 if (k >= 0) SetVertex(k + 1, tetrahedra[i << 3088 } << 3089 for (G4int i = 0, k = 0; i < nfacets; ++i) << 3090 { << 3091 if (ipairs[i].first < 0) continue; << 3092 G4int i1 = iheads[ifacets[i].i1] + 1; << 3093 G4int i2 = iheads[ifacets[i].i2] + 1; << 3094 G4int i3 = iheads[ifacets[i].i3] + 1; << 3095 SetFacet(++k, i1, i2, i3); << 3096 } << 3097 SetReferences(); << 3098 } << 3099 << 3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 3101 << 3102 HepPolyhedronBoxMesh:: << 3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 3104 const std::vector<G4Thre << 3105 /******************************************** << 3106 * << 3107 * Name: HepPolyhedronBoxMesh << 3108 * Author: E.Tcherniaev (E.Chernyaev) << 3109 * << 3110 * Function: Create polyhedron for box mesh << 3111 * << 3112 * Input: sizeX, sizeY, sizeZ - dimensions of << 3113 * positions - vector of cell centres << 3114 * << 3115 ******************************************** << 3116 { << 3117 G4int nbox = (G4int)positions.size(); << 3118 if (nbox == 0) << 3119 { << 3120 std::cerr << "HepPolyhedronBoxMesh: Empty << 3121 return; << 3122 } << 3123 // compute inverse dimensions << 3124 G4double invx = 1./sizeX, invy = 1./sizeY, << 3125 // find mesh bounding box << 3126 G4ThreeVector pmin = positions[0], pmax = p << 3127 for (const auto& p: positions) << 3128 { << 3129 if (pmin.x() > p.x()) pmin.setX(p.x()); << 3130 if (pmin.y() > p.y()) pmin.setY(p.y()); << 3131 if (pmin.z() > p.z()) pmin.setZ(p.z()); << 3132 if (pmax.x() < p.x()) pmax.setX(p.x()); << 3133 if (pmax.y() < p.y()) pmax.setY(p.y()); << 3134 if (pmax.z() < p.z()) pmax.setZ(p.z()); << 3135 } << 3136 // find number of voxels << 3137 G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 3138 G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 3139 G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 3140 // create structures for voxels and node in << 3141 std::vector<char> voxels(nx*ny*nz, 0); << 3142 std::vector<G4int> indices((nx+1)*(ny+1)*(n << 3143 // mark voxels listed in positions << 3144 G4int kx = ny*nz, ky = nz; << 3145 for (const auto& p: positions) << 3146 { << 3147 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3148 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3149 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3150 G4int i = ix*kx + iy*ky + iz; << 3151 voxels[i] = 1; << 3152 } << 3153 // count number of vertices and facets << 3154 // set indices << 3155 G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 3156 G4int nver = 0, nfac = 0; << 3157 for (const auto& p: positions) << 3158 { << 3159 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3160 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3161 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3162 // << 3163 // 011 111 << 3164 // +---–---+ << 3165 // | 001 | 101 << 3166 // | +---–---+ << 3167 // | | | | << 3168 // +---|---+ | << 3169 // 010 | 110 | << 3170 // +-------+ << 3171 // 000 100 << 3172 // << 3173 G4int vcheck = 0; << 3174 // check (ix - 1) side << 3175 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3176 if (vcheck == 0) << 3177 { << 3178 nfac++; << 3179 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3180 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3181 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3182 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3183 if (indices[i1] == 0) indices[i1] = ++n << 3184 if (indices[i2] == 0) indices[i2] = ++n << 3185 if (indices[i3] == 0) indices[i3] = ++n << 3186 if (indices[i4] == 0) indices[i4] = ++n << 3187 } << 3188 // check (ix + 1) side << 3189 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3190 if (vcheck == 0) << 3191 { << 3192 nfac++; << 3193 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3194 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3195 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3196 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3197 if (indices[i1] == 0) indices[i1] = ++n << 3198 if (indices[i2] == 0) indices[i2] = ++n << 3199 if (indices[i3] == 0) indices[i3] = ++n << 3200 if (indices[i4] == 0) indices[i4] = ++n << 3201 } << 3202 // check (iy - 1) side << 3203 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3204 if (vcheck == 0) << 3205 { << 3206 nfac++; << 3207 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3208 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3209 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3210 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3211 if (indices[i1] == 0) indices[i1] = ++n << 3212 if (indices[i2] == 0) indices[i2] = ++n << 3213 if (indices[i3] == 0) indices[i3] = ++n << 3214 if (indices[i4] == 0) indices[i4] = ++n << 3215 } << 3216 // check (iy + 1) side << 3217 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3218 if (vcheck == 0) << 3219 { << 3220 nfac++; << 3221 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3222 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3223 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3224 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3225 if (indices[i1] == 0) indices[i1] = ++n << 3226 if (indices[i2] == 0) indices[i2] = ++n << 3227 if (indices[i3] == 0) indices[i3] = ++n << 3228 if (indices[i4] == 0) indices[i4] = ++n << 3229 } << 3230 // check (iz - 1) side << 3231 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3232 if (vcheck == 0) << 3233 { << 3234 nfac++; << 3235 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3236 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3237 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3238 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3239 if (indices[i1] == 0) indices[i1] = ++n << 3240 if (indices[i2] == 0) indices[i2] = ++n << 3241 if (indices[i3] == 0) indices[i3] = ++n << 3242 if (indices[i4] == 0) indices[i4] = ++n << 3243 } << 3244 // check (iz + 1) side << 3245 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3246 if (vcheck == 0) << 3247 { << 3248 nfac++; << 3249 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3250 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3251 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3252 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3253 if (indices[i1] == 0) indices[i1] = ++n << 3254 if (indices[i2] == 0) indices[i2] = ++n << 3255 if (indices[i3] == 0) indices[i3] = ++n << 3256 if (indices[i4] == 0) indices[i4] = ++n << 3257 } << 3258 } << 3259 // Construct polyhedron << 3260 AllocateMemory(nver, nfac); << 3261 G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 3262 for (G4int ix = 0; ix <= nx; ++ix) << 3263 { << 3264 for (G4int iy = 0; iy <= ny; ++iy) << 3265 { << 3266 for (G4int iz = 0; iz <= nz; ++iz) << 3267 { << 3268 G4int i = ix*kvx + iy*kvy + iz; << 3269 if (indices[i] == 0) continue; << 3270 SetVertex(indices[i], p0 + G4ThreeVector(ix << 3271 } << 3272 } << 3273 } << 3274 nfac = 0; << 3275 for (const auto& p: positions) << 3276 { << 3277 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3278 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3279 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3280 G4int vcheck = 0; << 3281 // check (ix - 1) side << 3282 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3283 if (vcheck == 0) << 3284 { << 3285 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3286 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3287 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3288 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3289 SetFacet(++nfac, indices[i1], indices[i << 3290 } << 3291 // check (ix + 1) side << 3292 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3293 if (vcheck == 0) << 3294 { << 3295 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3296 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3297 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3298 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3299 SetFacet(++nfac, indices[i1], indices[i << 3300 << 3301 } << 3302 // check (iy - 1) side << 3303 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3304 if (vcheck == 0) << 3305 { << 3306 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3307 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3308 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3309 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3310 SetFacet(++nfac, indices[i1], indices[i << 3311 } << 3312 // check (iy + 1) side << 3313 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3314 if (vcheck == 0) << 3315 { << 3316 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3317 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3318 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3319 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3320 SetFacet(++nfac, indices[i1], indices[i << 3321 } << 3322 // check (iz - 1) side << 3323 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3324 if (vcheck == 0) << 3325 { << 3326 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3327 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3328 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3329 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3330 SetFacet(++nfac, indices[i1], indices[i << 3331 } << 3332 // check (iz + 1) side << 3333 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3334 if (vcheck == 0) << 3335 { << 3336 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3337 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3338 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3339 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3340 SetFacet(++nfac, indices[i1], indices[i << 3341 } << 3342 } << 3343 SetReferences(); << 3344 } << 3345 << 3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 3347 << 3348 G4ThreadLocal << 3349 G4int HepPolyhedron::fNumberOfRotationSteps = << 3350 /******************************************** 1596 /*********************************************************************** 3351 * 1597 * * 3352 * Name: HepPolyhedron::fNumberOfRotationStep 1598 * Name: HepPolyhedron::fNumberOfRotationSteps Date: 24.06.97 * 3353 * Author: J.Allison (Manchester University) 1599 * Author: J.Allison (Manchester University) Revised: * 3354 * 1600 * * 3355 * Function: Number of steps for whole circle 1601 * Function: Number of steps for whole circle * 3356 * 1602 * * 3357 ******************************************** 1603 ***********************************************************************/ 3358 1604 3359 #include "BooleanProcessor.src" 1605 #include "BooleanProcessor.src" >> 1606 static BooleanProcessor processor; 3360 1607 3361 HepPolyhedron HepPolyhedron::add(const HepPol << 1608 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 3362 /******************************************** 1609 /*********************************************************************** 3363 * 1610 * * 3364 * Name: HepPolyhedron::add 1611 * Name: HepPolyhedron::add Date: 19.03.00 * 3365 * Author: E.Chernyaev 1612 * Author: E.Chernyaev Revised: * 3366 * 1613 * * 3367 * Function: Boolean "union" of two polyhedra 1614 * Function: Boolean "union" of two polyhedra * 3368 * 1615 * * 3369 ******************************************** 1616 ***********************************************************************/ 3370 { 1617 { 3371 G4int ierr; << 1618 return processor.execute(OP_UNION, *this, p); 3372 BooleanProcessor processor; << 3373 return processor.execute(OP_UNION, *this, p << 3374 } 1619 } 3375 1620 3376 HepPolyhedron HepPolyhedron::intersect(const << 1621 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 3377 /******************************************** 1622 /*********************************************************************** 3378 * 1623 * * 3379 * Name: HepPolyhedron::intersect 1624 * Name: HepPolyhedron::intersect Date: 19.03.00 * 3380 * Author: E.Chernyaev 1625 * Author: E.Chernyaev Revised: * 3381 * 1626 * * 3382 * Function: Boolean "intersection" of two po 1627 * Function: Boolean "intersection" of two polyhedra * 3383 * 1628 * * 3384 ******************************************** 1629 ***********************************************************************/ 3385 { 1630 { 3386 G4int ierr; << 1631 return processor.execute(OP_INTERSECTION, *this, p); 3387 BooleanProcessor processor; << 3388 return processor.execute(OP_INTERSECTION, * << 3389 } 1632 } 3390 1633 3391 HepPolyhedron HepPolyhedron::subtract(const H << 1634 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 3392 /******************************************** 1635 /*********************************************************************** 3393 * 1636 * * 3394 * Name: HepPolyhedron::add 1637 * Name: HepPolyhedron::add Date: 19.03.00 * 3395 * Author: E.Chernyaev 1638 * Author: E.Chernyaev Revised: * 3396 * 1639 * * 3397 * Function: Boolean "subtraction" of "p" fro 1640 * Function: Boolean "subtraction" of "p" from "this" * 3398 * 1641 * * 3399 ******************************************** 1642 ***********************************************************************/ 3400 { 1643 { 3401 G4int ierr; << 1644 return processor.execute(OP_SUBTRACTION, *this, p); 3402 BooleanProcessor processor; << 3403 return processor.execute(OP_SUBTRACTION, *t << 3404 } 1645 } 3405 << 3406 //NOTE : include the code of HepPolyhedronPro << 3407 // since there is no BooleanProcessor.h << 3408 << 3409 #undef INTERSECTION << 3410 << 3411 #include "HepPolyhedronProcessor.src" << 3412 1646