Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/graphics_reps/src/HepPolyhedron.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /graphics_reps/src/HepPolyhedron.cc (Version 11.3.0) and /graphics_reps/src/HepPolyhedron.cc (Version 10.6)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 //
                                                   >>  28 // 
                                                   >>  29 //
 26 // G4 Polyhedron library                           30 // G4 Polyhedron library
 27 //                                                 31 //
 28 // History:                                        32 // History:
 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce     33 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version
 30 //                                                 34 //
 31 // 30.09.96 E.Chernyaev                            35 // 30.09.96 E.Chernyaev
 32 // - added GetNextVertexIndex, GetVertex by Ya     36 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada
 33 // - added GetNextUnitNormal, GetNextEdgeIndic     37 // - added GetNextUnitNormal, GetNextEdgeIndices, GetNextEdge
 34 //                                                 38 //
 35 // 15.12.96 E.Chernyaev                            39 // 15.12.96 E.Chernyaev
 36 // - added GetNumberOfRotationSteps, RotateEdg     40 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences
 37 // - rewritten G4PolyhedronCons;                   41 // - rewritten G4PolyhedronCons;
 38 // - added G4PolyhedronPara, ...Trap, ...Pgon,     42 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus
 39 //                                                 43 //
 40 // 01.06.97 E.Chernyaev                            44 // 01.06.97 E.Chernyaev
 41 // - modified RotateAroundZ, added SetSideFace     45 // - modified RotateAroundZ, added SetSideFacets
 42 //                                                 46 //
 43 // 19.03.00 E.Chernyaev                            47 // 19.03.00 E.Chernyaev
 44 // - implemented boolean operations (add, subt     48 // - implemented boolean operations (add, subtract, intersect) on polyhedra;
 45 //                                                 49 //
 46 // 25.05.01 E.Chernyaev                            50 // 25.05.01 E.Chernyaev
 47 // - added GetSurfaceArea() and GetVolume()    <<  51 // - added GetSurfaceArea() and GetVolume();
 48 //                                                 52 //
 49 // 05.11.02 E.Chernyaev                            53 // 05.11.02 E.Chernyaev
 50 // - added createTwistedTrap() and createPolyh <<  54 // - added createTwistedTrap() and createPolyhedron();
 51 //                                                 55 //
 52 // 20.06.05 G.Cosmo                                56 // 20.06.05 G.Cosmo
 53 // - added HepPolyhedronEllipsoid              <<  57 // - added HepPolyhedronEllipsoid;
 54 //                                             << 
 55 // 18.07.07 T.Nikitina                         << 
 56 // - added HepPolyhedronParaboloid             << 
 57 //                                             << 
 58 // 22.02.20 E.Chernyaev                        << 
 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 
 60 //                                             << 
 61 // 12.05.21 E.Chernyaev                        << 
 62 // - added TriangulatePolygon(), RotateContour << 
 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 
 64 //                                             << 
 65 // 26.03.22 E.Chernyaev                        << 
 66 // - added SetVertex(), SetFacet()             << 
 67 // - added HepPolyhedronTetMesh                << 
 68 //                                             << 
 69 // 04.04.22 E.Chernyaev                        << 
 70 // - added JoinCoplanarFacets()                << 
 71 //                                                 58 //
 72 // 07.04.22 E.Chernyaev                        <<  59 // 18.07.07 T.Nikitin
 73 // - added HepPolyhedronBoxMesh                <<  60 // - added HepParaboloid;
 74                                                <<  61   
 75 #include "HepPolyhedron.h"                         62 #include "HepPolyhedron.h"
 76 #include "G4PhysicalConstants.hh"                  63 #include "G4PhysicalConstants.hh"
 77 #include "G4Vector3D.hh"                           64 #include "G4Vector3D.hh"
 78                                                    65 
 79 #include <cstdlib>  // Required on some compil     66 #include <cstdlib>  // Required on some compilers for std::abs(int) ...
 80 #include <cmath>                                   67 #include <cmath>
 81 #include <algorithm>                           <<  68 #include <cassert>
 82                                                    69 
 83 using CLHEP::perMillion;                           70 using CLHEP::perMillion;
 84 using CLHEP::deg;                                  71 using CLHEP::deg;
 85 using CLHEP::pi;                                   72 using CLHEP::pi;
 86 using CLHEP::twopi;                                73 using CLHEP::twopi;
 87 using CLHEP::nm;                                   74 using CLHEP::nm;
 88 const G4double spatialTolerance = 0.01*nm;         75 const G4double spatialTolerance = 0.01*nm;
 89                                                    76 
 90 /*********************************************     77 /***********************************************************************
 91  *                                                 78  *                                                                     *
 92  * Name: HepPolyhedron operator <<                 79  * Name: HepPolyhedron operator <<                   Date:    09.05.96 *
 93  * Author: E.Chernyaev (IHEP/Protvino)             80  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
 94  *                                                 81  *                                                                     *
 95  * Function: Print contents of G4 polyhedron       82  * Function: Print contents of G4 polyhedron                           *
 96  *                                                 83  *                                                                     *
 97  *********************************************     84  ***********************************************************************/
 98 std::ostream & operator<<(std::ostream & ostr,     85 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) {
 99   for (const auto& edge : facet.edge) {        <<  86   for (G4int k=0; k<4; k++) {
100     ostr << " " << edge.v << "/" << edge.f;    <<  87     ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f;
101   }                                                88   }
102   return ostr;                                     89   return ostr;
103 }                                                  90 }
104                                                    91 
105 std::ostream & operator<<(std::ostream & ostr,     92 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) {
106   ostr << std::endl;                               93   ostr << std::endl;
107   ostr << "Nvertices=" << ph.nvert << ", Nface     94   ostr << "Nvertices=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl;
108   G4int i;                                         95   G4int i;
109   for (i=1; i<=ph.nvert; i++) {                    96   for (i=1; i<=ph.nvert; i++) {
110      ostr << "xyz(" << i << ")="                   97      ostr << "xyz(" << i << ")="
111           << ph.pV[i].x() << ' ' << ph.pV[i].y     98           << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z()
112           << std::endl;                            99           << std::endl;
113   }                                               100   }
114   for (i=1; i<=ph.nface; i++) {                   101   for (i=1; i<=ph.nface; i++) {
115     ostr << "face(" << i << ")=" << ph.pF[i] <    102     ostr << "face(" << i << ")=" << ph.pF[i] << std::endl;
116   }                                               103   }
117   return ostr;                                    104   return ostr;
118 }                                                 105 }
119                                                   106 
120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 
121 /********************************************* << 
122  *                                             << 
123  * Name: HepPolyhedron constructor with        << 
124  *       allocation of memory                  << 
125  * Author: E.Tcherniaev (E.Chernyaev)          << 
126  *                                             << 
127  ********************************************* << 
128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
129 {                                              << 
130   AllocateMemory(Nvert, Nface);                << 
131 }                                              << 
132                                                << 
133 HepPolyhedron::HepPolyhedron(const HepPolyhedr    107 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from)
134 /*********************************************    108 /***********************************************************************
135  *                                                109  *                                                                     *
136  * Name: HepPolyhedron copy constructor           110  * Name: HepPolyhedron copy constructor             Date:    23.07.96  *
137  * Author: E.Chernyaev (IHEP/Protvino)            111  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
138  *                                                112  *                                                                     *
139  *********************************************    113  ***********************************************************************/
140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 114 : nvert(0), nface(0), pV(0), pF(0)
141 {                                                 115 {
142   AllocateMemory(from.nvert, from.nface);         116   AllocateMemory(from.nvert, from.nface);
143   for (G4int i=1; i<=nvert; i++) pV[i] = from.    117   for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
144   for (G4int k=1; k<=nface; k++) pF[k] = from.    118   for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
145 }                                                 119 }
146                                                   120 
147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f    121 HepPolyhedron::HepPolyhedron(HepPolyhedron&& from)
148 /*********************************************    122 /***********************************************************************
149  *                                                123  *                                                                     *
150  * Name: HepPolyhedron move constructor           124  * Name: HepPolyhedron move constructor           Date:    04.11.2019  *
151  * Author: E.Tcherniaev (E.Chernyaev)          << 125  * Author: E.Tcherniaev (E.Cheryaev)              Revised:             *
152  *                                                126  *                                                                     *
153  *********************************************    127  ***********************************************************************/
154 : nvert(0), nface(0), pV(nullptr), pF(nullptr)    128 : nvert(0), nface(0), pV(nullptr), pF(nullptr)
155 {                                                 129 {
156   nvert = from.nvert;                             130   nvert = from.nvert;
157   nface = from.nface;                             131   nface = from.nface;
158   pV = from.pV;                                   132   pV = from.pV;
159   pF = from.pF;                                   133   pF = from.pF;
160                                                   134 
161   // Release the data from the source object      135   // Release the data from the source object
162   from.nvert = 0;                                 136   from.nvert = 0;
163   from.nface = 0;                                 137   from.nface = 0;
164   from.pV = nullptr;                              138   from.pV = nullptr;
165   from.pF = nullptr;                              139   from.pF = nullptr;
166 }                                                 140 }
167                                                   141 
168 HepPolyhedron & HepPolyhedron::operator=(const    142 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from)
169 /*********************************************    143 /***********************************************************************
170  *                                                144  *                                                                     *
171  * Name: HepPolyhedron operator =                 145  * Name: HepPolyhedron operator =                   Date:    23.07.96  *
172  * Author: E.Chernyaev (IHEP/Protvino)            146  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
173  *                                                147  *                                                                     *
174  * Function: Copy contents of one polyhedron t    148  * Function: Copy contents of one polyhedron to another                *
175  *                                                149  *                                                                     *
176  *********************************************    150  ***********************************************************************/
177 {                                                 151 {
178   if (this != &from) {                            152   if (this != &from) {
179     AllocateMemory(from.nvert, from.nface);       153     AllocateMemory(from.nvert, from.nface);
180     for (G4int i=1; i<=nvert; i++) pV[i] = fro    154     for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
181     for (G4int k=1; k<=nface; k++) pF[k] = fro    155     for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
182   }                                               156   }
183   return *this;                                   157   return *this;
184 }                                                 158 }
185                                                   159 
186 HepPolyhedron & HepPolyhedron::operator=(HepPo    160 HepPolyhedron & HepPolyhedron::operator=(HepPolyhedron&& from)
187 /*********************************************    161 /***********************************************************************
188  *                                                162  *                                                                     *
189  * Name: HepPolyhedron move operator =            163  * Name: HepPolyhedron move operator =              Date:   04.11.2019 *
190  * Author: E.Tcherniaev (E.Chernyaev)             164  * Author: E.Tcherniaev (E.Chernyaev)               Revised:           *
191  *                                                165  *                                                                     *
192  * Function: Move contents of one polyhedron t    166  * Function: Move contents of one polyhedron to another                *
193  *                                                167  *                                                                     *
194  *********************************************    168  ***********************************************************************/
195 {                                                 169 {
196   if (this != &from) {                            170   if (this != &from) {
197     delete [] pV;                                 171     delete [] pV;
198     delete [] pF;                                 172     delete [] pF;
199     nvert = from.nvert;                           173     nvert = from.nvert;
200     nface = from.nface;                           174     nface = from.nface;
201     pV = from.pV;                                 175     pV = from.pV;
202     pF = from.pF;                                 176     pF = from.pF;
203                                                   177 
204     // Release the data from the source object    178     // Release the data from the source object
205     from.nvert = 0;                               179     from.nvert = 0;
206     from.nface = 0;                               180     from.nface = 0;
207     from.pV = nullptr;                            181     from.pV = nullptr;
208     from.pF = nullptr;                            182     from.pF = nullptr;
209   }                                               183   }
210   return *this;                                   184   return *this;
211 }                                                 185 }
212                                                   186 
213 G4int                                             187 G4int
214 HepPolyhedron::FindNeighbour(G4int iFace, G4in    188 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const
215 /*********************************************    189 /***********************************************************************
216  *                                                190  *                                                                     *
217  * Name: HepPolyhedron::FindNeighbour             191  * Name: HepPolyhedron::FindNeighbour                Date:    22.11.99 *
218  * Author: E.Chernyaev                            192  * Author: E.Chernyaev                               Revised:          *
219  *                                                193  *                                                                     *
220  * Function: Find neighbouring face               194  * Function: Find neighbouring face                                    *
221  *                                                195  *                                                                     *
222  *********************************************    196  ***********************************************************************/
223 {                                                 197 {
224   G4int i;                                        198   G4int i;
225   for (i=0; i<4; i++) {                           199   for (i=0; i<4; i++) {
226     if (iNode == std::abs(pF[iFace].edge[i].v)    200     if (iNode == std::abs(pF[iFace].edge[i].v)) break;
227   }                                               201   }
228   if (i == 4) {                                   202   if (i == 4) {
229     std::cerr                                     203     std::cerr
230       << "HepPolyhedron::FindNeighbour: face "    204       << "HepPolyhedron::FindNeighbour: face " << iFace
231       << " has no node " << iNode                 205       << " has no node " << iNode
232       << std::endl;                            << 206       << std::endl; 
233     return 0;                                     207     return 0;
234   }                                               208   }
235   if (iOrder < 0) {                               209   if (iOrder < 0) {
236     if ( --i < 0) i = 3;                          210     if ( --i < 0) i = 3;
237     if (pF[iFace].edge[i].v == 0) i = 2;          211     if (pF[iFace].edge[i].v == 0) i = 2;
238   }                                               212   }
239   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF    213   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f;
240 }                                                 214 }
241                                                   215 
242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int    216 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const
243 /*********************************************    217 /***********************************************************************
244  *                                                218  *                                                                     *
245  * Name: HepPolyhedron::FindNodeNormal            219  * Name: HepPolyhedron::FindNodeNormal               Date:    22.11.99 *
246  * Author: E.Chernyaev                            220  * Author: E.Chernyaev                               Revised:          *
247  *                                                221  *                                                                     *
248  * Function: Find normal at given node            222  * Function: Find normal at given node                                 *
249  *                                                223  *                                                                     *
250  *********************************************    224  ***********************************************************************/
251 {                                                 225 {
252   G4Normal3D normal = GetUnitNormal(iFace);    << 226   G4Normal3D   normal = GetUnitNormal(iFace);
253   G4int      k = iFace, iOrder = 1;            << 227   G4int          k = iFace, iOrder = 1, n = 1;
254                                                   228 
255   for(;;) {                                       229   for(;;) {
256     k = FindNeighbour(k, iNode, iOrder);          230     k = FindNeighbour(k, iNode, iOrder);
257     if (k == iFace) break;                     << 231     if (k == iFace) break; 
258     if (k > 0) {                                  232     if (k > 0) {
                                                   >> 233       n++;
259       normal += GetUnitNormal(k);                 234       normal += GetUnitNormal(k);
260     }else{                                        235     }else{
261       if (iOrder < 0) break;                      236       if (iOrder < 0) break;
262       k = iFace;                                  237       k = iFace;
263       iOrder = -iOrder;                           238       iOrder = -iOrder;
264     }                                             239     }
265   }                                               240   }
266   return normal.unit();                           241   return normal.unit();
267 }                                                 242 }
268                                                   243 
269 G4int HepPolyhedron::GetNumberOfRotationSteps(    244 G4int HepPolyhedron::GetNumberOfRotationSteps()
270 /*********************************************    245 /***********************************************************************
271  *                                                246  *                                                                     *
272  * Name: HepPolyhedron::GetNumberOfRotationSte    247  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
273  * Author: J.Allison (Manchester University)      248  * Author: J.Allison (Manchester University)         Revised:          *
274  *                                                249  *                                                                     *
275  * Function: Get number of steps for whole cir    250  * Function: Get number of steps for whole circle                      *
276  *                                                251  *                                                                     *
277  *********************************************    252  ***********************************************************************/
278 {                                                 253 {
279   return fNumberOfRotationSteps;                  254   return fNumberOfRotationSteps;
280 }                                                 255 }
281                                                   256 
282 void HepPolyhedron::SetVertex(G4int index, con << 
283 /********************************************* << 
284  *                                             << 
285  * Name: HepPolyhedron::SetVertex              << 
286  * Author: E.Tcherniaev (E.Chernyaev)          << 
287  *                                             << 
288  * Function: Set vertex                        << 
289  *                                             << 
290  ********************************************* << 
291 {                                              << 
292   if (index < 1 || index > nvert)              << 
293   {                                            << 
294     std::cerr                                  << 
295       << "HepPolyhedron::SetVertex: vertex ind << 
296       << " is out of range\n"                  << 
297       << "   N. of vertices = " << nvert << "\ << 
298       << "   N. of facets = " << nface << std: << 
299     return;                                    << 
300   }                                            << 
301   pV[index] = v;                               << 
302 }                                              << 
303                                                << 
304 void                                           << 
305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 
306 /********************************************* << 
307  *                                             << 
308  * Name: HepPolyhedron::SetFacet               << 
309  * Author: E.Tcherniaev (E.Chernyaev)          << 
310  *                                             << 
311  * Function: Set facet                         << 
312  *                                             << 
313  ********************************************* << 
314 {                                              << 
315   if (index < 1 || index > nface)              << 
316   {                                            << 
317     std::cerr                                  << 
318       << "HepPolyhedron::SetFacet: facet index << 
319       << " is out of range\n"                  << 
320       << "   N. of vertices = " << nvert << "\ << 
321       << "   N. of facets = " << nface << std: << 
322     return;                                    << 
323   }                                            << 
324   if (iv1 < 1 || iv1 > nvert ||                << 
325       iv2 < 1 || iv2 > nvert ||                << 
326       iv3 < 1 || iv3 > nvert ||                << 
327       iv4 < 0 || iv4 > nvert)                  << 
328   {                                            << 
329     std::cerr                                  << 
330       << "HepPolyhedron::SetFacet: incorrectly << 
331       << " (" << iv1 << ", " << iv2 << ", " << << 
332       << "   N. of vertices = " << nvert << "\ << 
333       << "   N. of facets = " << nface << std: << 
334     return;                                    << 
335   }                                            << 
336   pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0,  << 
337 }                                              << 
338                                                << 
339 void HepPolyhedron::SetNumberOfRotationSteps(G    257 void HepPolyhedron::SetNumberOfRotationSteps(G4int n)
340 /*********************************************    258 /***********************************************************************
341  *                                                259  *                                                                     *
342  * Name: HepPolyhedron::SetNumberOfRotationSte    260  * Name: HepPolyhedron::SetNumberOfRotationSteps     Date:    24.06.97 *
343  * Author: J.Allison (Manchester University)      261  * Author: J.Allison (Manchester University)         Revised:          *
344  *                                                262  *                                                                     *
345  * Function: Set number of steps for whole cir    263  * Function: Set number of steps for whole circle                      *
346  *                                                264  *                                                                     *
347  *********************************************    265  ***********************************************************************/
348 {                                                 266 {
349   const G4int nMin = 3;                           267   const G4int nMin = 3;
350   if (n < nMin) {                                 268   if (n < nMin) {
351     std::cerr                                  << 269     std::cerr 
352       << "HepPolyhedron::SetNumberOfRotationSt    270       << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n"
353       << "number of steps per circle < " << nM    271       << "number of steps per circle < " << nMin << "; forced to " << nMin
354       << std::endl;                               272       << std::endl;
355     fNumberOfRotationSteps = nMin;                273     fNumberOfRotationSteps = nMin;
356   }else{                                          274   }else{
357     fNumberOfRotationSteps = n;                   275     fNumberOfRotationSteps = n;
358   }                                            << 276   }    
359 }                                                 277 }
360                                                   278 
361 void HepPolyhedron::ResetNumberOfRotationSteps    279 void HepPolyhedron::ResetNumberOfRotationSteps()
362 /*********************************************    280 /***********************************************************************
363  *                                                281  *                                                                     *
364  * Name: HepPolyhedron::GetNumberOfRotationSte    282  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
365  * Author: J.Allison (Manchester University)      283  * Author: J.Allison (Manchester University)         Revised:          *
366  *                                                284  *                                                                     *
367  * Function: Reset number of steps for whole c    285  * Function: Reset number of steps for whole circle to default value   *
368  *                                                286  *                                                                     *
369  *********************************************    287  ***********************************************************************/
370 {                                                 288 {
371   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S    289   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
372 }                                                 290 }
373                                                   291 
374 void HepPolyhedron::AllocateMemory(G4int Nvert    292 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface)
375 /*********************************************    293 /***********************************************************************
376  *                                                294  *                                                                     *
377  * Name: HepPolyhedron::AllocateMemory            295  * Name: HepPolyhedron::AllocateMemory               Date:    19.06.96 *
378  * Author: E.Chernyaev (IHEP/Protvino)            296  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 05.11.02 *
379  *                                                297  *                                                                     *
380  * Function: Allocate memory for GEANT4 polyhe    298  * Function: Allocate memory for GEANT4 polyhedron                     *
381  *                                                299  *                                                                     *
382  * Input: Nvert - number of nodes                 300  * Input: Nvert - number of nodes                                      *
383  *        Nface - number of faces                 301  *        Nface - number of faces                                      *
384  *                                                302  *                                                                     *
385  *********************************************    303  ***********************************************************************/
386 {                                                 304 {
387   if (nvert == Nvert && nface == Nface) return    305   if (nvert == Nvert && nface == Nface) return;
388   delete [] pV;                                << 306   if (pV != 0) delete [] pV;
389   delete [] pF;                                << 307   if (pF != 0) delete [] pF;
390   if (Nvert > 0 && Nface > 0) {                   308   if (Nvert > 0 && Nface > 0) {
391     nvert = Nvert;                                309     nvert = Nvert;
392     nface = Nface;                                310     nface = Nface;
393     pV    = new G4Point3D[nvert+1];               311     pV    = new G4Point3D[nvert+1];
394     pF    = new G4Facet[nface+1];                 312     pF    = new G4Facet[nface+1];
395   }else{                                          313   }else{
396     nvert = 0; nface = 0; pV = nullptr; pF = n << 314     nvert = 0; nface = 0; pV = 0; pF = 0;
397   }                                               315   }
398 }                                                 316 }
399                                                   317 
400 void HepPolyhedron::CreatePrism()                 318 void HepPolyhedron::CreatePrism()
401 /*********************************************    319 /***********************************************************************
402  *                                                320  *                                                                     *
403  * Name: HepPolyhedron::CreatePrism               321  * Name: HepPolyhedron::CreatePrism                  Date:    15.07.96 *
404  * Author: E.Chernyaev (IHEP/Protvino)            322  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
405  *                                                323  *                                                                     *
406  * Function: Set facets for a prism               324  * Function: Set facets for a prism                                    *
407  *                                                325  *                                                                     *
408  *********************************************    326  ***********************************************************************/
409 {                                                 327 {
410   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON    328   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP};
411                                                   329 
412   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,      330   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,  2,FRONT);
413   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM,     331   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM, 1,FRONT);
414   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM,     332   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM, 4,LEFT);
415   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM,     333   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM, 3,BACK);
416   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM,     334   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM, 2,RIGHT);
417   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,       335   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,   8,LEFT);
418 }                                                 336 }
419                                                   337 
420 void HepPolyhedron::RotateEdge(G4int k1, G4int    338 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2,
421                               G4int v1, G4int     339                               G4int v1, G4int v2, G4int vEdge,
422                               G4bool ifWholeCi    340                               G4bool ifWholeCircle, G4int nds, G4int &kface)
423 /*********************************************    341 /***********************************************************************
424  *                                                342  *                                                                     *
425  * Name: HepPolyhedron::RotateEdge                343  * Name: HepPolyhedron::RotateEdge                   Date:    05.12.96 *
426  * Author: E.Chernyaev (IHEP/Protvino)            344  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
427  *                                                345  *                                                                     *
428  * Function: Create set of facets by rotation     346  * Function: Create set of facets by rotation of an edge around Z-axis *
429  *                                                347  *                                                                     *
430  * Input: k1, k2 - end vertices of the edge       348  * Input: k1, k2 - end vertices of the edge                            *
431  *        r1, r2 - radiuses of the end vertice    349  *        r1, r2 - radiuses of the end vertices                        *
432  *        v1, v2 - visibility of edges produce    350  *        v1, v2 - visibility of edges produced by rotation of the end *
433  *                 vertices                       351  *                 vertices                                            *
434  *        vEdge  - visibility of the edge         352  *        vEdge  - visibility of the edge                              *
435  *        ifWholeCircle - is true in case of w    353  *        ifWholeCircle - is true in case of whole circle rotation     *
436  *        nds    - number of discrete steps       354  *        nds    - number of discrete steps                            *
437  *        r[]    - r-coordinates                  355  *        r[]    - r-coordinates                                       *
438  *        kface  - current free cell in the pF    356  *        kface  - current free cell in the pF array                   *
439  *                                                357  *                                                                     *
440  *********************************************    358  ***********************************************************************/
441 {                                                 359 {
442   if (r1 == 0. && r2 == 0.) return;            << 360   if (r1 == 0. && r2 == 0) return;
443                                                   361 
444   G4int i;                                        362   G4int i;
445   G4int i1  = k1;                                 363   G4int i1  = k1;
446   G4int i2  = k2;                                 364   G4int i2  = k2;
447   G4int ii1 = ifWholeCircle ? i1 : i1+nds;        365   G4int ii1 = ifWholeCircle ? i1 : i1+nds;
448   G4int ii2 = ifWholeCircle ? i2 : i2+nds;        366   G4int ii2 = ifWholeCircle ? i2 : i2+nds;
449   G4int vv  = ifWholeCircle ? vEdge : 1;          367   G4int vv  = ifWholeCircle ? vEdge : 1;
450                                                   368 
451   if (nds == 1) {                                 369   if (nds == 1) {
452     if (r1 == 0.) {                               370     if (r1 == 0.) {
453       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    371       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0);
454     }else if (r2 == 0.) {                         372     }else if (r2 == 0.) {
455       pF[kface++]   = G4Facet(i1,0,    i2,0,      373       pF[kface++]   = G4Facet(i1,0,    i2,0,    v1*(i1+1),0);
456     }else{                                        374     }else{
457       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    375       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0, v1*(i1+1),0);
458     }                                             376     }
459   }else{                                          377   }else{
460     if (r1 == 0.) {                               378     if (r1 == 0.) {
461       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    379       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0);
462       for (i2++,i=1; i<nds-1; i2++,i++) {         380       for (i2++,i=1; i<nds-1; i2++,i++) {
463         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    381         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0);
464       }                                           382       }
465       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    383       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0);
466     }else if (r2 == 0.) {                         384     }else if (r2 == 0.) {
467       pF[kface++]   = G4Facet(vv*i1,0,    vEdg    385       pF[kface++]   = G4Facet(vv*i1,0,    vEdge*i2,0, v1*(i1+1),0);
468       for (i1++,i=1; i<nds-1; i1++,i++) {         386       for (i1++,i=1; i<nds-1; i1++,i++) {
469         pF[kface++] = G4Facet(vEdge*i1,0, vEdg    387         pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0);
470       }                                           388       }
471       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i    389       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i2,0,    v1*ii1,0);
472     }else{                                        390     }else{
473       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    391       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
474       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i    392       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) {
475         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    393         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
476       }                                        << 394       }  
477       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    395       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0,      v1*ii1,0);
478     }                                             396     }
479   }                                               397   }
480 }                                                 398 }
481                                                   399 
482 void HepPolyhedron::SetSideFacets(G4int ii[4],    400 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4],
483                                  G4int *kk, G4    401                                  G4int *kk, G4double *r,
484                                  G4double dphi    402                                  G4double dphi, G4int nds, G4int &kface)
485 /*********************************************    403 /***********************************************************************
486  *                                                404  *                                                                     *
487  * Name: HepPolyhedron::SetSideFacets             405  * Name: HepPolyhedron::SetSideFacets                Date:    20.05.97 *
488  * Author: E.Chernyaev (IHEP/Protvino)            406  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
489  *                                                407  *                                                                     *
490  * Function: Set side facets for the case of i    408  * Function: Set side facets for the case of incomplete rotation       *
491  *                                                409  *                                                                     *
492  * Input: ii[4] - indices of original vertices    410  * Input: ii[4] - indices of original vertices                         *
493  *        vv[4] - visibility of edges             411  *        vv[4] - visibility of edges                                  *
494  *        kk[]  - indices of nodes                412  *        kk[]  - indices of nodes                                     *
495  *        r[]   - radiuses                        413  *        r[]   - radiuses                                             *
496  *        dphi  - delta phi                       414  *        dphi  - delta phi                                            *
497  *        nds    - number of discrete steps       415  *        nds    - number of discrete steps                            *
498  *        kface  - current free cell in the pF    416  *        kface  - current free cell in the pF array                   *
499  *                                                417  *                                                                     *
500  *********************************************    418  ***********************************************************************/
501 {                                                 419 {
502   G4int k1, k2, k3, k4;                           420   G4int k1, k2, k3, k4;
503                                                << 421   
504   if (std::abs(dphi-pi) < perMillion) { // hal << 422   if (std::abs((G4double)(dphi-pi)) < perMillion) {          // half a circle
505     for (G4int i=0; i<4; i++) {                   423     for (G4int i=0; i<4; i++) {
506       k1 = ii[i];                                 424       k1 = ii[i];
507       k2 = ii[(i+1)%4];                           425       k2 = ii[(i+1)%4];
508       if (r[k1] == 0. && r[k2] == 0.) vv[i] =  << 426       if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1;      
509     }                                             427     }
510   }                                               428   }
511                                                   429 
512   if (ii[1] == ii[2]) {                           430   if (ii[1] == ii[2]) {
513     k1 = kk[ii[0]];                               431     k1 = kk[ii[0]];
514     k2 = kk[ii[2]];                               432     k2 = kk[ii[2]];
515     k3 = kk[ii[3]];                               433     k3 = kk[ii[3]];
516     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2    434     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
517     if (r[ii[0]] != 0.) k1 += nds;                435     if (r[ii[0]] != 0.) k1 += nds;
518     if (r[ii[2]] != 0.) k2 += nds;                436     if (r[ii[2]] != 0.) k2 += nds;
519     if (r[ii[3]] != 0.) k3 += nds;                437     if (r[ii[3]] != 0.) k3 += nds;
520     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2    438     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
521   }else if (kk[ii[0]] == kk[ii[1]]) {             439   }else if (kk[ii[0]] == kk[ii[1]]) {
522     k1 = kk[ii[0]];                               440     k1 = kk[ii[0]];
523     k2 = kk[ii[2]];                               441     k2 = kk[ii[2]];
524     k3 = kk[ii[3]];                               442     k3 = kk[ii[3]];
525     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2    443     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
526     if (r[ii[0]] != 0.) k1 += nds;                444     if (r[ii[0]] != 0.) k1 += nds;
527     if (r[ii[2]] != 0.) k2 += nds;                445     if (r[ii[2]] != 0.) k2 += nds;
528     if (r[ii[3]] != 0.) k3 += nds;                446     if (r[ii[3]] != 0.) k3 += nds;
529     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2    447     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0);
530   }else if (kk[ii[2]] == kk[ii[3]]) {             448   }else if (kk[ii[2]] == kk[ii[3]]) {
531     k1 = kk[ii[0]];                               449     k1 = kk[ii[0]];
532     k2 = kk[ii[1]];                               450     k2 = kk[ii[1]];
533     k3 = kk[ii[2]];                               451     k3 = kk[ii[2]];
534     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    452     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0);
535     if (r[ii[0]] != 0.) k1 += nds;                453     if (r[ii[0]] != 0.) k1 += nds;
536     if (r[ii[1]] != 0.) k2 += nds;                454     if (r[ii[1]] != 0.) k2 += nds;
537     if (r[ii[2]] != 0.) k3 += nds;                455     if (r[ii[2]] != 0.) k3 += nds;
538     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2    456     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
539   }else{                                          457   }else{
540     k1 = kk[ii[0]];                               458     k1 = kk[ii[0]];
541     k2 = kk[ii[1]];                               459     k2 = kk[ii[1]];
542     k3 = kk[ii[2]];                               460     k3 = kk[ii[2]];
543     k4 = kk[ii[3]];                               461     k4 = kk[ii[3]];
544     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    462     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0);
545     if (r[ii[0]] != 0.) k1 += nds;                463     if (r[ii[0]] != 0.) k1 += nds;
546     if (r[ii[1]] != 0.) k2 += nds;                464     if (r[ii[1]] != 0.) k2 += nds;
547     if (r[ii[2]] != 0.) k3 += nds;                465     if (r[ii[2]] != 0.) k3 += nds;
548     if (r[ii[3]] != 0.) k4 += nds;                466     if (r[ii[3]] != 0.) k4 += nds;
549     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3    467     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
550   }                                               468   }
551 }                                                 469 }
552                                                   470 
553 void HepPolyhedron::RotateAroundZ(G4int nstep,    471 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi,
554                                  G4int np1, G4    472                                  G4int np1, G4int np2,
555                                  const G4doubl    473                                  const G4double *z, G4double *r,
556                                  G4int nodeVis    474                                  G4int nodeVis, G4int edgeVis)
557 /*********************************************    475 /***********************************************************************
558  *                                                476  *                                                                     *
559  * Name: HepPolyhedron::RotateAroundZ             477  * Name: HepPolyhedron::RotateAroundZ                Date:    27.11.96 *
560  * Author: E.Chernyaev (IHEP/Protvino)            478  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
561  *                                                479  *                                                                     *
562  * Function: Create HepPolyhedron for a solid     480  * Function: Create HepPolyhedron for a solid produced by rotation of  *
563  *           two polylines around Z-axis          481  *           two polylines around Z-axis                               *
564  *                                                482  *                                                                     *
565  * Input: nstep - number of discrete steps, if    483  * Input: nstep - number of discrete steps, if 0 then default          *
566  *        phi   - starting phi angle              484  *        phi   - starting phi angle                                   *
567  *        dphi  - delta phi                       485  *        dphi  - delta phi                                            *
568  *        np1   - number of points in external    486  *        np1   - number of points in external polyline                *
569  *                (must be negative in case of    487  *                (must be negative in case of closed polyline)        *
570  *        np2   - number of points in internal    488  *        np2   - number of points in internal polyline (may be 1)     *
571  *        z[]   - z-coordinates (+z >>> -z for    489  *        z[]   - z-coordinates (+z >>> -z for both polylines)         *
572  *        r[]   - r-coordinates                   490  *        r[]   - r-coordinates                                        *
573  *        nodeVis - how to Draw edges joing co    491  *        nodeVis - how to Draw edges joing consecutive positions of   *
574  *                  node during rotation          492  *                  node during rotation                               *
575  *        edgeVis - how to Draw edges             493  *        edgeVis - how to Draw edges                                  *
576  *                                                494  *                                                                     *
577  *********************************************    495  ***********************************************************************/
578 {                                                 496 {
579   static const G4double wholeCircle   = twopi;    497   static const G4double wholeCircle   = twopi;
580                                                << 498     
581   //   S E T   R O T A T I O N   P A R A M E T    499   //   S E T   R O T A T I O N   P A R A M E T E R S
582                                                   500 
583   G4bool ifWholeCircle = std::abs(dphi-wholeCi << 501   G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false;
584   G4double delPhi = ifWholeCircle ? wholeCircl << 502   G4double   delPhi  = ifWholeCircle ? wholeCircle : dphi;  
585   G4int nSphi = nstep;                         << 503   G4int        nSphi    = (nstep > 0) ?
586   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 504     nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5);
587   if (nSphi == 0) nSphi = 1;                      505   if (nSphi == 0) nSphi = 1;
588   G4int nVphi = ifWholeCircle ? nSphi : nSphi  << 506   G4int        nVphi    = ifWholeCircle ? nSphi : nSphi+1;
589   G4bool ifClosed = np1 <= 0; // true if exter << 507   G4bool ifClosed = np1 > 0 ? false : true;
590                                                << 508   
591   //   C O U N T   V E R T I C E S             << 509   //   C O U N T   V E R T E C E S
592                                                   510 
593   G4int absNp1 = std::abs(np1);                   511   G4int absNp1 = std::abs(np1);
594   G4int absNp2 = std::abs(np2);                   512   G4int absNp2 = std::abs(np2);
595   G4int i1beg = 0;                                513   G4int i1beg = 0;
596   G4int i1end = absNp1-1;                         514   G4int i1end = absNp1-1;
597   G4int i2beg = absNp1;                           515   G4int i2beg = absNp1;
598   G4int i2end = absNp1+absNp2-1;               << 516   G4int i2end = absNp1+absNp2-1; 
599   G4int i, j, k;                                  517   G4int i, j, k;
600                                                   518 
601   for(i=i1beg; i<=i2end; i++) {                   519   for(i=i1beg; i<=i2end; i++) {
602     if (std::abs(r[i]) < spatialTolerance) r[i    520     if (std::abs(r[i]) < spatialTolerance) r[i] = 0.;
603   }                                               521   }
604                                                   522 
605   // external polyline - check position of nod << 523   j = 0;                                                // external nodes
606   //                                           << 
607   G4int Nverts = 0;                            << 
608   for (i=i1beg; i<=i1end; i++) {                  524   for (i=i1beg; i<=i1end; i++) {
609     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 525     j += (r[i] == 0.) ? 1 : nVphi;
610   }                                               526   }
611                                                   527 
612   // internal polyline                         << 528   G4bool ifSide1 = false;                           // internal nodes
613   //                                           << 529   G4bool ifSide2 = false;
614   G4bool ifSide1 = false; // whether to create << 
615   G4bool ifSide2 = false; // whether to create << 
616                                                   530 
617   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 531   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) {
618     Nverts += (r[i2beg] == 0.) ? 1 : nVphi;    << 532     j += (r[i2beg] == 0.) ? 1 : nVphi;
619     ifSide1 = true;                               533     ifSide1 = true;
620   }                                               534   }
621                                                   535 
622   for(i=i2beg+1; i<i2end; i++) { // intermedia << 536   for(i=i2beg+1; i<i2end; i++) {
623     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 537     j += (r[i] == 0.) ? 1 : nVphi;
624   }                                               538   }
625                                                << 539   
626   if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 540   if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) {
627     if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 541     if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi;
628     ifSide2 = true;                               542     ifSide2 = true;
629   }                                               543   }
630                                                   544 
631   //   C O U N T   F A C E S                      545   //   C O U N T   F A C E S
632                                                   546 
633   // external lateral faces                    << 547   k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi;       // external faces
634   //                                           << 
635   G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 
636                                                   548 
637   // internal lateral faces                    << 549   if (absNp2 > 1) {                                     // internal faces
638   //                                           << 
639   if (absNp2 > 1) {                            << 
640     for(i=i2beg; i<i2end; i++) {                  550     for(i=i2beg; i<i2end; i++) {
641       if (r[i] > 0. || r[i+1] > 0.) Nfaces +=  << 551       if (r[i] > 0. || r[i+1] > 0.)       k += nSphi;
642     }                                             552     }
643                                                   553 
644     if (ifClosed) {                               554     if (ifClosed) {
645       if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 555       if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi;
646     }                                             556     }
647   }                                               557   }
648                                                   558 
649   // bottom and top faces                      << 559   if (!ifClosed) {                                      // side faces
650   //                                           << 560     if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi;
651   if (!ifClosed) {                             << 561     if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi;
652     if (ifSide1 && (r[i1beg] > 0. || r[i2beg]  << 
653     if (ifSide2 && (r[i1end] > 0. || r[i2end]  << 
654   }                                               562   }
655                                                   563 
656   // phi_wedge faces                           << 564   if (!ifWholeCircle) {                                 // phi_side faces
657   //                                           << 565     k += ifClosed ? 2*absNp1 : 2*(absNp1-1);
658   if (!ifWholeCircle) {                        << 
659     Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 
660   }                                               566   }
661                                                   567 
662   //   A L L O C A T E   M E M O R Y              568   //   A L L O C A T E   M E M O R Y
663                                                   569 
664   AllocateMemory(Nverts, Nfaces);              << 570   AllocateMemory(j, k);
665   if (pV == nullptr || pF == nullptr) return;  << 
666                                                   571 
667   //   G E N E R A T E   V E R T I C E S       << 572   //   G E N E R A T E   V E R T E C E S
668                                                   573 
669   G4int *kk; // array of start indices along p << 574   G4int *kk;
670   kk = new G4int[absNp1+absNp2];                  575   kk = new G4int[absNp1+absNp2];
671                                                   576 
672   // external polyline                         << 577   k = 1;
673   //                                           << 
674   k = 1; // free position in array of vertices << 
675   for(i=i1beg; i<=i1end; i++) {                   578   for(i=i1beg; i<=i1end; i++) {
676     kk[i] = k;                                    579     kk[i] = k;
677     if (r[i] == 0.)                               580     if (r[i] == 0.)
678     { pV[k++] = G4Point3D(0, 0, z[i]); } else     581     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
679   }                                               582   }
680                                                   583 
681   // first point of internal polyline          << 
682   //                                           << 
683   i = i2beg;                                      584   i = i2beg;
684   if (ifSide1) {                                  585   if (ifSide1) {
685     kk[i] = k;                                    586     kk[i] = k;
686     if (r[i] == 0.)                               587     if (r[i] == 0.)
687     { pV[k++] = G4Point3D(0, 0, z[i]); } else     588     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
688   }else{                                          589   }else{
689     kk[i] = kk[i1beg];                            590     kk[i] = kk[i1beg];
690   }                                               591   }
691                                                   592 
692   // intermediate points of internal polyline  << 
693   //                                           << 
694   for(i=i2beg+1; i<i2end; i++) {                  593   for(i=i2beg+1; i<i2end; i++) {
695     kk[i] = k;                                    594     kk[i] = k;
696     if (r[i] == 0.)                               595     if (r[i] == 0.)
697     { pV[k++] = G4Point3D(0, 0, z[i]); } else     596     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
698   }                                               597   }
699                                                   598 
700   // last point of internal polyline           << 
701   //                                           << 
702   if (absNp2 > 1) {                               599   if (absNp2 > 1) {
703     i = i2end;                                    600     i = i2end;
704     if (ifSide2) {                                601     if (ifSide2) {
705       kk[i] = k;                                  602       kk[i] = k;
706       if (r[i] == 0.) pV[k] = G4Point3D(0, 0,     603       if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]);
707     }else{                                        604     }else{
708       kk[i] = kk[i1end];                          605       kk[i] = kk[i1end];
709     }                                             606     }
710   }                                               607   }
711                                                   608 
712   // set vertices                              << 
713   //                                           << 
714   G4double cosPhi, sinPhi;                        609   G4double cosPhi, sinPhi;
715                                                   610 
716   for(j=0; j<nVphi; j++) {                        611   for(j=0; j<nVphi; j++) {
717     cosPhi = std::cos(phi+j*delPhi/nSphi);        612     cosPhi = std::cos(phi+j*delPhi/nSphi);
718     sinPhi = std::sin(phi+j*delPhi/nSphi);        613     sinPhi = std::sin(phi+j*delPhi/nSphi);
719     for(i=i1beg; i<=i2end; i++) {                 614     for(i=i1beg; i<=i2end; i++) {
720       if (r[i] != 0.)                             615       if (r[i] != 0.)
721         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[    616         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]);
722     }                                             617     }
723   }                                               618   }
724                                                   619 
725   //   G E N E R A T E   F A C E S             << 620   //   G E N E R A T E   E X T E R N A L   F A C E S
726                                                   621 
727   //  external faces                           << 
728   //                                           << 
729   G4int v1,v2;                                    622   G4int v1,v2;
730                                                   623 
731   k = 1; // free position in array of faces pF << 624   k = 1;
732   v2 = ifClosed ? nodeVis : 1;                    625   v2 = ifClosed ? nodeVis : 1;
733   for(i=i1beg; i<i1end; i++) {                    626   for(i=i1beg; i<i1end; i++) {
734     v1 = v2;                                      627     v1 = v2;
735     if (!ifClosed && i == i1end-1) {              628     if (!ifClosed && i == i1end-1) {
736       v2 = 1;                                     629       v2 = 1;
737     }else{                                        630     }else{
738       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]    631       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis;
739     }                                             632     }
740     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v    633     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2,
741                edgeVis, ifWholeCircle, nSphi,     634                edgeVis, ifWholeCircle, nSphi, k);
742   }                                               635   }
743   if (ifClosed) {                                 636   if (ifClosed) {
744     RotateEdge(kk[i1end], kk[i1beg], r[i1end],    637     RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis,
745                edgeVis, ifWholeCircle, nSphi,     638                edgeVis, ifWholeCircle, nSphi, k);
746   }                                               639   }
747                                                   640 
748   // internal faces                            << 641   //   G E N E R A T E   I N T E R N A L   F A C E S
749   //                                           << 642 
750   if (absNp2 > 1) {                               643   if (absNp2 > 1) {
751     v2 = ifClosed ? nodeVis : 1;                  644     v2 = ifClosed ? nodeVis : 1;
752     for(i=i2beg; i<i2end; i++) {                  645     for(i=i2beg; i<i2end; i++) {
753       v1 = v2;                                    646       v1 = v2;
754       if (!ifClosed && i==i2end-1) {              647       if (!ifClosed && i==i2end-1) {
755         v2 = 1;                                   648         v2 = 1;
756       }else{                                      649       }else{
757         v2 = (r[i] == r[i+1] && r[i+1] == r[i+    650         v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 :  nodeVis;
758       }                                           651       }
759       RotateEdge(kk[i+1], kk[i], r[i+1], r[i],    652       RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1,
760                  edgeVis, ifWholeCircle, nSphi    653                  edgeVis, ifWholeCircle, nSphi, k);
761     }                                             654     }
762     if (ifClosed) {                               655     if (ifClosed) {
763       RotateEdge(kk[i2beg], kk[i2end], r[i2beg    656       RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis,
764                  edgeVis, ifWholeCircle, nSphi    657                  edgeVis, ifWholeCircle, nSphi, k);
765     }                                             658     }
766   }                                               659   }
767                                                   660 
768   // bottom and top faces                      << 661   //   G E N E R A T E   S I D E   F A C E S
769   //                                           << 662 
770   if (!ifClosed) {                                663   if (!ifClosed) {
771     if (ifSide1) {                                664     if (ifSide1) {
772       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg    665       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1,
773                  -1, ifWholeCircle, nSphi, k);    666                  -1, ifWholeCircle, nSphi, k);
774     }                                             667     }
775     if (ifSide2) {                                668     if (ifSide2) {
776       RotateEdge(kk[i1end], kk[i2end], r[i1end    669       RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1,
777                  -1, ifWholeCircle, nSphi, k);    670                  -1, ifWholeCircle, nSphi, k);
778     }                                             671     }
779   }                                               672   }
780                                                   673 
781   // phi_wedge faces in case of incomplete cir << 674   //   G E N E R A T E   S I D E   F A C E S  for the case of incomplete circle
782   //                                           << 675 
783   if (!ifWholeCircle) {                           676   if (!ifWholeCircle) {
784                                                   677 
785     G4int  ii[4], vv[4];                          678     G4int  ii[4], vv[4];
786                                                   679 
787     if (ifClosed) {                               680     if (ifClosed) {
788       for (i=i1beg; i<=i1end; i++) {              681       for (i=i1beg; i<=i1end; i++) {
789         ii[0] = i;                                682         ii[0] = i;
790         ii[3] = (i == i1end) ? i1beg : i+1;       683         ii[3] = (i == i1end) ? i1beg : i+1;
791         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    684         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
792         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    685         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
793         vv[0] = -1;                               686         vv[0] = -1;
794         vv[1] = 1;                                687         vv[1] = 1;
795         vv[2] = -1;                               688         vv[2] = -1;
796         vv[3] = 1;                                689         vv[3] = 1;
797         SetSideFacets(ii, vv, kk, r, delPhi, n << 690         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
798       }                                           691       }
799     }else{                                        692     }else{
800       for (i=i1beg; i<i1end; i++) {               693       for (i=i1beg; i<i1end; i++) {
801         ii[0] = i;                                694         ii[0] = i;
802         ii[3] = i+1;                              695         ii[3] = i+1;
803         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    696         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
804         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    697         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
805         vv[0] = (i == i1beg)   ? 1 : -1;          698         vv[0] = (i == i1beg)   ? 1 : -1;
806         vv[1] = 1;                                699         vv[1] = 1;
807         vv[2] = (i == i1end-1) ? 1 : -1;          700         vv[2] = (i == i1end-1) ? 1 : -1;
808         vv[3] = 1;                                701         vv[3] = 1;
809         SetSideFacets(ii, vv, kk, r, delPhi, n << 702         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
810       }                                           703       }
811     }                                          << 704     }      
812   }                                               705   }
813                                                   706 
814   delete [] kk; // free memory                 << 707   delete [] kk;
815                                                   708 
816   // final check                               << 
817   //                                           << 
818   if (k-1 != nface) {                             709   if (k-1 != nface) {
819     std::cerr                                     710     std::cerr
820       << "HepPolyhedron::RotateAroundZ: number << 711       << "Polyhedron::RotateAroundZ: number of generated faces ("
821       << k-1 << ") is not equal to the number     712       << k-1 << ") is not equal to the number of allocated faces ("
822       << nface << ")"                             713       << nface << ")"
823       << std::endl;                               714       << std::endl;
824   }                                               715   }
825 }                                                 716 }
826                                                   717 
827 void                                           << 
828 HepPolyhedron::RotateContourAroundZ(G4int nste << 
829                                     G4double p << 
830                                     G4double d << 
831                                     const std: << 
832                                     G4int node << 
833                                     G4int edge << 
834 /********************************************* << 
835  *                                             << 
836  * Name: HepPolyhedron::RotateContourAroundZ   << 
837  * Author: E.Tcherniaev (E.Chernyaev)          << 
838  *                                             << 
839  * Function: Create HepPolyhedron for a solid  << 
840  *           a closed polyline (rz-contour) ar << 
841  *                                             << 
842  * Input: nstep - number of discrete steps, if << 
843  *        phi   - starting phi angle           << 
844  *        dphi  - delta phi                    << 
845  *        rz    - rz-contour                   << 
846  *        nodeVis - how to Draw edges joing co << 
847  *                  node during rotation       << 
848  *        edgeVis - how to Draw edges          << 
849  *                                             << 
850  ********************************************* << 
851 {                                              << 
852   //   S E T   R O T A T I O N   P A R A M E T << 
853                                                << 
854   G4bool ifWholeCircle = std::abs(dphi - twopi << 
855   G4double delPhi = (ifWholeCircle) ? twopi :  << 
856   G4int nSphi = nstep;                         << 
857   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 
858   if (nSphi == 0) nSphi = 1;                   << 
859   G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 
860                                                << 
861   //   C A L C U L A T E   A R E A             << 
862                                                << 
863   G4int Nrz = (G4int)rz.size();                << 
864   G4double area = 0;                           << 
865   for (G4int i = 0; i < Nrz; ++i)              << 
866   {                                            << 
867     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
868     area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 
869   }                                            << 
870                                                << 
871   //   P R E P A R E   P O L Y L I N E         << 
872                                                << 
873   auto r = new G4double[Nrz];                  << 
874   auto z = new G4double[Nrz];                  << 
875   for (G4int i = 0; i < Nrz; ++i)              << 
876   {                                            << 
877     r[i] = rz[i].x();                          << 
878     z[i] = rz[i].y();                          << 
879     if (std::abs(r[i]) < spatialTolerance) r[i << 
880   }                                            << 
881                                                << 
882   //   C O U N T   V E R T I C E S   A N D   F << 
883                                                << 
884   G4int Nverts = 0;                            << 
885   for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 
886                                                << 
887   G4int Nedges = Nrz;                          << 
888   for (G4int i = 0; i < Nrz; ++i)              << 
889   {                                            << 
890     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
891     Nedges -= static_cast<int>(r[k] == 0 && r[ << 
892   }                                            << 
893                                                << 
894   G4int Nfaces = Nedges*nSphi;               / << 
895   if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 
896                                                << 
897   //   A L L O C A T E   M E M O R Y           << 
898                                                << 
899   AllocateMemory(Nverts, Nfaces);              << 
900   if (pV == nullptr || pF == nullptr)          << 
901   {                                            << 
902     delete [] r;                               << 
903     delete [] z;                               << 
904     return;                                    << 
905   }                                            << 
906                                                << 
907   //   S E T   V E R T I C E S                 << 
908                                                << 
909   auto kk = new G4int[Nrz]; // start indices a << 
910   G4int kfree = 1; // current free position in << 
911                                                << 
912   // set start indices, set vertices for nodes << 
913   for(G4int i = 0; i < Nrz; ++i)               << 
914   {                                            << 
915     kk[i] = kfree;                             << 
916     if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 
917     if (r[i] != 0.) kfree += nVphi;            << 
918   }                                            << 
919                                                << 
920   // set vertices by rotating r                << 
921   for(G4int j = 0; j < nVphi; ++j)             << 
922   {                                            << 
923     G4double cosPhi = std::cos(phi + j*delPhi/ << 
924     G4double sinPhi = std::sin(phi + j*delPhi/ << 
925     for(G4int i = 0; i < Nrz; ++i)             << 
926     {                                          << 
927       if (r[i] != 0.)                          << 
928         pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 
929     }                                          << 
930   }                                            << 
931                                                << 
932   //   S E T   F A C E S                       << 
933                                                << 
934   kfree = 1; // current free position in array << 
935   for(G4int i = 0; i < Nrz; ++i)               << 
936   {                                            << 
937     G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 
938     G4int i2 = i;                              << 
939     if (area < 0.) std::swap(i1, i2);          << 
940     RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 
941                edgeVis, ifWholeCircle, nSphi,  << 
942   }                                            << 
943                                                << 
944   //    S E T   P H I _ W E D G E   F A C E S  << 
945                                                << 
946   if (!ifWholeCircle)                          << 
947   {                                            << 
948     std::vector<G4int> triangles;              << 
949     TriangulatePolygon(rz, triangles);         << 
950                                                << 
951     G4int ii[4], vv[4];                        << 
952     G4int ntria = G4int(triangles.size()/3);   << 
953     for (G4int i = 0; i < ntria; ++i)          << 
954     {                                          << 
955       G4int i1 = triangles[0 + i*3];           << 
956       G4int i2 = triangles[1 + i*3];           << 
957       G4int i3 = triangles[2 + i*3];           << 
958       if (area < 0.) std::swap(i1, i3);        << 
959       G4int v1 = (std::abs(i2-i1) == 1 || std: << 
960       G4int v2 = (std::abs(i3-i2) == 1 || std: << 
961       G4int v3 = (std::abs(i1-i3) == 1 || std: << 
962       ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 
963       vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 
964       SetSideFacets(ii, vv, kk, r, delPhi, nSp << 
965     }                                          << 
966   }                                            << 
967                                                << 
968   // free memory                               << 
969   delete [] r;                                 << 
970   delete [] z;                                 << 
971   delete [] kk;                                << 
972                                                << 
973   // final check                               << 
974   if (kfree - 1 != nface)                      << 
975   {                                            << 
976     std::cerr                                  << 
977       << "HepPolyhedron::RotateContourAroundZ: << 
978       << kfree-1 << ") is not equal to the num << 
979       << nface << ")"                          << 
980       << std::endl;                            << 
981   }                                            << 
982 }                                              << 
983                                                << 
984 G4bool                                         << 
985 HepPolyhedron::TriangulatePolygon(const std::v << 
986                                   std::vector< << 
987 /********************************************* << 
988  *                                             << 
989  * Name: HepPolyhedron::TriangulatePolygon     << 
990  * Author: E.Tcherniaev (E.Chernyaev)          << 
991  *                                             << 
992  * Function: Simple implementation of "ear cli << 
993  *           triangulation of a simple contour << 
994  *           the result in a std::vector as tr << 
995  *                                             << 
996  *           If triangulation is sucsessfull t << 
997  *           returns true, otherwise false     << 
998  *                                             << 
999  * Remark:   It's a copy of G4GeomTools::Trian << 
1000  *                                            << 
1001  ******************************************** << 
1002 {                                             << 
1003   result.resize(0);                           << 
1004   G4int n = (G4int)polygon.size();            << 
1005   if (n < 3) return false;                    << 
1006                                               << 
1007   // calculate area                           << 
1008   //                                          << 
1009   G4double area = 0.;                         << 
1010   for(G4int i = 0; i < n; ++i)                << 
1011   {                                           << 
1012     G4int k = (i == 0) ? n - 1 : i - 1;       << 
1013     area += polygon[k].x()*polygon[i].y() - p << 
1014   }                                           << 
1015                                               << 
1016   // allocate and initialize list of Vertices << 
1017   // we want a counter-clockwise polygon in V << 
1018   //                                          << 
1019   auto  V = new G4int[n];                     << 
1020   if (area > 0.)                              << 
1021     for (G4int i = 0; i < n; ++i) V[i] = i;   << 
1022   else                                        << 
1023     for (G4int i = 0; i < n; ++i) V[i] = (n - << 
1024                                               << 
1025   //  Triangulation: remove nv-2 Vertices, cr << 
1026   //                                          << 
1027   G4int nv = n;                               << 
1028   G4int count = 2*nv; // error detection coun << 
1029   for(G4int b = nv - 1; nv > 2; )             << 
1030   {                                           << 
1031     // ERROR: if we loop, it is probably a no << 
1032     if ((count--) <= 0)                       << 
1033     {                                         << 
1034       delete [] V;                            << 
1035       if (area < 0.) std::reverse(result.begi << 
1036       return false;                           << 
1037     }                                         << 
1038                                               << 
1039     // three consecutive vertices in current  << 
1040     G4int a = (b   < nv) ? b   : 0; // previo << 
1041           b = (a+1 < nv) ? a+1 : 0; // curren << 
1042     G4int c = (b+1 < nv) ? b+1 : 0; // next   << 
1043                                               << 
1044     if (CheckSnip(polygon, a,b,c, nv,V))      << 
1045     {                                         << 
1046       // output Triangle                      << 
1047       result.push_back(V[a]);                 << 
1048       result.push_back(V[b]);                 << 
1049       result.push_back(V[c]);                 << 
1050                                               << 
1051       // remove vertex b from remaining polyg << 
1052       nv--;                                   << 
1053       for(G4int i = b; i < nv; ++i) V[i] = V[ << 
1054                                               << 
1055       count = 2*nv; // resest error detection << 
1056     }                                         << 
1057   }                                           << 
1058   delete [] V;                                << 
1059   if (area < 0.) std::reverse(result.begin(), << 
1060   return true;                                << 
1061 }                                             << 
1062                                               << 
1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 
1064                                 G4int a, G4in << 
1065                                 G4int n, cons << 
1066 /******************************************** << 
1067  *                                            << 
1068  * Name: HepPolyhedron::CheckSnip             << 
1069  * Author: E.Tcherniaev (E.Chernyaev)         << 
1070  *                                            << 
1071  * Function: Check for a valid snip,          << 
1072  *           it is a helper functionfor Trian << 
1073  *                                            << 
1074  ******************************************** << 
1075 {                                             << 
1076   static const G4double kCarTolerance = 1.e-9 << 
1077                                               << 
1078   // check orientation of Triangle            << 
1079   G4double Ax = contour[V[a]].x(), Ay = conto << 
1080   G4double Bx = contour[V[b]].x(), By = conto << 
1081   G4double Cx = contour[V[c]].x(), Cy = conto << 
1082   if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 
1083                                               << 
1084   // check that there is no point inside Tria << 
1085   G4double xmin = std::min(std::min(Ax,Bx),Cx << 
1086   G4double xmax = std::max(std::max(Ax,Bx),Cx << 
1087   G4double ymin = std::min(std::min(Ay,By),Cy << 
1088   G4double ymax = std::max(std::max(Ay,By),Cy << 
1089                                               << 
1090   for (G4int i=0; i<n; ++i)                   << 
1091   {                                           << 
1092     if((i == a) || (i == b) || (i == c)) cont << 
1093     G4double Px = contour[V[i]].x();          << 
1094     if (Px < xmin || Px > xmax) continue;     << 
1095     G4double Py = contour[V[i]].y();          << 
1096     if (Py < ymin || Py > ymax) continue;     << 
1097     // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 
1098     if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 
1099     {                                         << 
1100       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 
1101       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 
1102       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 
1103     }                                         << 
1104     else                                      << 
1105     {                                         << 
1106       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 
1107       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 
1108       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 
1109     }                                         << 
1110     return false;                             << 
1111   }                                           << 
1112   return true;                                << 
1113 }                                             << 
1114                                               << 
1115 void HepPolyhedron::SetReferences()              718 void HepPolyhedron::SetReferences()
1116 /********************************************    719 /***********************************************************************
1117  *                                               720  *                                                                     *
1118  * Name: HepPolyhedron::SetReferences            721  * Name: HepPolyhedron::SetReferences                Date:    04.12.96 *
1119  * Author: E.Chernyaev (IHEP/Protvino)           722  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1120  *                                               723  *                                                                     *
1121  * Function: For each edge set reference to n    724  * Function: For each edge set reference to neighbouring facet         *
1122  *                                               725  *                                                                     *
1123  ********************************************    726  ***********************************************************************/
1124 {                                                727 {
1125   if (nface <= 0) return;                        728   if (nface <= 0) return;
1126                                                  729 
1127   struct edgeListMember {                        730   struct edgeListMember {
1128     edgeListMember *next;                        731     edgeListMember *next;
1129     G4int v2;                                    732     G4int v2;
1130     G4int iface;                                 733     G4int iface;
1131     G4int iedge;                                 734     G4int iedge;
1132   } *edgeList, *freeList, **headList;            735   } *edgeList, *freeList, **headList;
1133                                                  736 
1134                                               << 737   
1135   //   A L L O C A T E   A N D   I N I T I A     738   //   A L L O C A T E   A N D   I N I T I A T E   L I S T S
1136                                                  739 
1137   edgeList = new edgeListMember[2*nface];        740   edgeList = new edgeListMember[2*nface];
1138   headList = new edgeListMember*[nvert];         741   headList = new edgeListMember*[nvert];
1139                                               << 742   
1140   G4int i;                                       743   G4int i;
1141   for (i=0; i<nvert; i++) {                      744   for (i=0; i<nvert; i++) {
1142     headList[i] = nullptr;                    << 745     headList[i] = 0;
1143   }                                              746   }
1144   freeList = edgeList;                           747   freeList = edgeList;
1145   for (i=0; i<2*nface-1; i++) {                  748   for (i=0; i<2*nface-1; i++) {
1146     edgeList[i].next = &edgeList[i+1];           749     edgeList[i].next = &edgeList[i+1];
1147   }                                              750   }
1148   edgeList[2*nface-1].next = nullptr;         << 751   edgeList[2*nface-1].next = 0;
1149                                                  752 
1150   //   L O O P   A L O N G   E D G E S           753   //   L O O P   A L O N G   E D G E S
1151                                                  754 
1152   G4int iface, iedge, nedge, i1, i2, k1, k2;     755   G4int iface, iedge, nedge, i1, i2, k1, k2;
1153   edgeListMember *prev, *cur;                    756   edgeListMember *prev, *cur;
1154                                               << 757   
1155   for(iface=1; iface<=nface; iface++) {          758   for(iface=1; iface<=nface; iface++) {
1156     nedge = (pF[iface].edge[3].v == 0) ? 3 :     759     nedge = (pF[iface].edge[3].v == 0) ? 3 : 4;
1157     for (iedge=0; iedge<nedge; iedge++) {        760     for (iedge=0; iedge<nedge; iedge++) {
1158       i1 = iedge;                                761       i1 = iedge;
1159       i2 = (iedge < nedge-1) ? iedge+1 : 0;      762       i2 = (iedge < nedge-1) ? iedge+1 : 0;
1160       i1 = std::abs(pF[iface].edge[i1].v);       763       i1 = std::abs(pF[iface].edge[i1].v);
1161       i2 = std::abs(pF[iface].edge[i2].v);       764       i2 = std::abs(pF[iface].edge[i2].v);
1162       k1 = (i1 < i2) ? i1 : i2;          // k    765       k1 = (i1 < i2) ? i1 : i2;          // k1 = ::min(i1,i2);
1163       k2 = (i1 > i2) ? i1 : i2;          // k    766       k2 = (i1 > i2) ? i1 : i2;          // k2 = ::max(i1,i2);
1164                                               << 767       
1165       // check head of the List corresponding    768       // check head of the List corresponding to k1
1166       cur = headList[k1];                        769       cur = headList[k1];
1167       if (cur == nullptr) {                   << 770       if (cur == 0) {
1168         headList[k1] = freeList;                 771         headList[k1] = freeList;
1169         if (freeList == nullptr) {            << 772         if (!freeList) {
1170           std::cerr                              773           std::cerr
1171           << "Polyhedron::SetReferences: bad     774           << "Polyhedron::SetReferences: bad link "
1172           << std::endl;                          775           << std::endl;
1173           break;                                 776           break;
1174         }                                        777         }
1175         freeList = freeList->next;               778         freeList = freeList->next;
1176         cur = headList[k1];                      779         cur = headList[k1];
1177         cur->next = nullptr;                  << 780         cur->next = 0;
1178         cur->v2 = k2;                            781         cur->v2 = k2;
1179         cur->iface = iface;                      782         cur->iface = iface;
1180         cur->iedge = iedge;                      783         cur->iedge = iedge;
1181         continue;                                784         continue;
1182       }                                          785       }
1183                                                  786 
1184       if (cur->v2 == k2) {                       787       if (cur->v2 == k2) {
1185         headList[k1] = cur->next;                788         headList[k1] = cur->next;
1186         cur->next = freeList;                    789         cur->next = freeList;
1187         freeList = cur;                       << 790         freeList = cur;      
1188         pF[iface].edge[iedge].f = cur->iface;    791         pF[iface].edge[iedge].f = cur->iface;
1189         pF[cur->iface].edge[cur->iedge].f = i    792         pF[cur->iface].edge[cur->iedge].f = iface;
1190         i1 = (pF[iface].edge[iedge].v < 0) ?     793         i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1191         i2 = (pF[cur->iface].edge[cur->iedge]    794         i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1192         if (i1 != i2) {                          795         if (i1 != i2) {
1193           std::cerr                              796           std::cerr
1194             << "Polyhedron::SetReferences: di    797             << "Polyhedron::SetReferences: different edge visibility "
1195             << iface << "/" << iedge << "/"      798             << iface << "/" << iedge << "/"
1196             << pF[iface].edge[iedge].v << " a    799             << pF[iface].edge[iedge].v << " and "
1197             << cur->iface << "/" << cur->iedg    800             << cur->iface << "/" << cur->iedge << "/"
1198             << pF[cur->iface].edge[cur->iedge    801             << pF[cur->iface].edge[cur->iedge].v
1199             << std::endl;                        802             << std::endl;
1200         }                                        803         }
1201         continue;                                804         continue;
1202       }                                          805       }
1203                                                  806 
1204       // check List itself                       807       // check List itself
1205       for (;;) {                                 808       for (;;) {
1206         prev = cur;                              809         prev = cur;
1207         cur = prev->next;                        810         cur = prev->next;
1208         if (cur == nullptr) {                 << 811         if (cur == 0) {
1209           prev->next = freeList;                 812           prev->next = freeList;
1210           if (freeList == nullptr) {          << 813           if (!freeList) {
1211             std::cerr                            814             std::cerr
1212             << "Polyhedron::SetReferences: ba    815             << "Polyhedron::SetReferences: bad link "
1213             << std::endl;                        816             << std::endl;
1214             break;                               817             break;
1215           }                                      818           }
1216           freeList = freeList->next;             819           freeList = freeList->next;
1217           cur = prev->next;                      820           cur = prev->next;
1218           cur->next = nullptr;                << 821           cur->next = 0;
1219           cur->v2 = k2;                          822           cur->v2 = k2;
1220           cur->iface = iface;                    823           cur->iface = iface;
1221           cur->iedge = iedge;                    824           cur->iedge = iedge;
1222           break;                                 825           break;
1223         }                                        826         }
1224                                                  827 
1225         if (cur->v2 == k2) {                     828         if (cur->v2 == k2) {
1226           prev->next = cur->next;                829           prev->next = cur->next;
1227           cur->next = freeList;                  830           cur->next = freeList;
1228           freeList = cur;                     << 831           freeList = cur;      
1229           pF[iface].edge[iedge].f = cur->ifac    832           pF[iface].edge[iedge].f = cur->iface;
1230           pF[cur->iface].edge[cur->iedge].f =    833           pF[cur->iface].edge[cur->iedge].f = iface;
1231           i1 = (pF[iface].edge[iedge].v < 0)     834           i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1232           i2 = (pF[cur->iface].edge[cur->iedg    835           i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1233             if (i1 != i2) {                      836             if (i1 != i2) {
1234               std::cerr                          837               std::cerr
1235                 << "Polyhedron::SetReferences    838                 << "Polyhedron::SetReferences: different edge visibility "
1236                 << iface << "/" << iedge << "    839                 << iface << "/" << iedge << "/"
1237                 << pF[iface].edge[iedge].v <<    840                 << pF[iface].edge[iedge].v << " and "
1238                 << cur->iface << "/" << cur->    841                 << cur->iface << "/" << cur->iedge << "/"
1239                 << pF[cur->iface].edge[cur->i    842                 << pF[cur->iface].edge[cur->iedge].v
1240                 << std::endl;                    843                 << std::endl;
1241             }                                    844             }
1242           break;                                 845           break;
1243         }                                        846         }
1244       }                                          847       }
1245     }                                            848     }
1246   }                                              849   }
1247                                                  850 
1248   //  C H E C K   T H A T   A L L   L I S T S    851   //  C H E C K   T H A T   A L L   L I S T S   A R E   E M P T Y
1249                                                  852 
1250   for (i=0; i<nvert; i++) {                      853   for (i=0; i<nvert; i++) {
1251     if (headList[i] != nullptr) {             << 854     if (headList[i] != 0) {
1252       std::cerr                                  855       std::cerr
1253         << "Polyhedron::SetReferences: List "    856         << "Polyhedron::SetReferences: List " << i << " is not empty"
1254         << std::endl;                            857         << std::endl;
1255     }                                            858     }
1256   }                                              859   }
1257                                                  860 
1258   //   F R E E   M E M O R Y                     861   //   F R E E   M E M O R Y
1259                                                  862 
1260   delete [] edgeList;                            863   delete [] edgeList;
1261   delete [] headList;                            864   delete [] headList;
1262 }                                                865 }
1263                                                  866 
1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 
1265 /******************************************** << 
1266  *                                            << 
1267  * Name: HepPolyhedron::JoinCoplanarFacets    << 
1268  * Author: E.Tcherniaev (E.Chernyaev)         << 
1269  *                                            << 
1270  * Function: Join couples of triangular facet << 
1271  *           where it is possible             << 
1272  *                                            << 
1273  ******************************************** << 
1274 {                                             << 
1275   G4int njoin = 0;                            << 
1276   for (G4int icur = 1; icur <= nface; ++icur) << 
1277   {                                           << 
1278     // skip if already joined or quadrangle   << 
1279     if (pF[icur].edge[0].v == 0) continue;    << 
1280     if (pF[icur].edge[3].v != 0) continue;    << 
1281     // skip if all references point to alread << 
1282     if (pF[icur].edge[0].f < icur &&          << 
1283         pF[icur].edge[1].f < icur &&          << 
1284         pF[icur].edge[2].f < icur) continue;  << 
1285     // compute plane equation                 << 
1286     G4Normal3D norm = GetUnitNormal(icur);    << 
1287     G4double dd = norm.dot(pV[pF[icur].edge[0 << 
1288     G4int vcur0 = std::abs(pF[icur].edge[0].v << 
1289     G4int vcur1 = std::abs(pF[icur].edge[1].v << 
1290     G4int vcur2 = std::abs(pF[icur].edge[2].v << 
1291     // select neighbouring facet              << 
1292     G4int kcheck = 0, icheck = 0, vcheck = 0; << 
1293     G4double dist = DBL_MAX;                  << 
1294     for (G4int k = 0; k < 3; ++k)             << 
1295     {                                         << 
1296       G4int itmp = pF[icur].edge[k].f;        << 
1297       // skip if already checked, joined or q << 
1298       if (itmp < icur) continue;              << 
1299       if (pF[itmp].edge[0].v == 0 ||          << 
1300           pF[itmp].edge[3].v != 0) continue;  << 
1301       // get candidate vertex                 << 
1302       G4int vtmp = 0;                         << 
1303       for (G4int j = 0; j < 3; ++j)           << 
1304       {                                       << 
1305         vtmp = std::abs(pF[itmp].edge[j].v);  << 
1306   if (vtmp != vcur0 && vtmp != vcur1 && vtmp  << 
1307       }                                       << 
1308       // check distance to the plane          << 
1309       G4double dtmp = std::abs(norm.dot(pV[vt << 
1310       if (dtmp > tolerance || dtmp >= dist) c << 
1311       dist = dtmp;                            << 
1312       kcheck = k;                             << 
1313       icheck = itmp;                          << 
1314       vcheck = vtmp;                          << 
1315     }                                         << 
1316     if (icheck == 0) continue; // no facet se << 
1317     // join facets                            << 
1318     njoin++;                                  << 
1319     pF[icheck].edge[0].v = 0; // mark facet a << 
1320     if (kcheck == 0)                          << 
1321     {                                         << 
1322       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1323       pF[icur].edge[2].v = pF[icur].edge[1].v << 
1324       pF[icur].edge[1].v = vcheck;            << 
1325     }                                         << 
1326     else if (kcheck == 1)                     << 
1327     {                                         << 
1328       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1329       pF[icur].edge[2].v = vcheck;            << 
1330     }                                         << 
1331     else                                      << 
1332     {                                         << 
1333       pF[icur].edge[3].v = vcheck;            << 
1334     }                                         << 
1335   }                                           << 
1336   if (njoin == 0) return; // no joined facets << 
1337                                               << 
1338   // restructure facets                       << 
1339   G4int nnew = 0;                             << 
1340   for (G4int icur = 1; icur <= nface; ++icur) << 
1341   {                                           << 
1342     if (pF[icur].edge[0].v == 0) continue;    << 
1343     nnew++;                                   << 
1344     pF[nnew].edge[0].v = pF[icur].edge[0].v;  << 
1345     pF[nnew].edge[1].v = pF[icur].edge[1].v;  << 
1346     pF[nnew].edge[2].v = pF[icur].edge[2].v;  << 
1347     pF[nnew].edge[3].v = pF[icur].edge[3].v;  << 
1348   }                                           << 
1349   nface = nnew;                               << 
1350   SetReferences();                            << 
1351 }                                             << 
1352                                               << 
1353 void HepPolyhedron::InvertFacets()               867 void HepPolyhedron::InvertFacets()
1354 /********************************************    868 /***********************************************************************
1355  *                                               869  *                                                                     *
1356  * Name: HepPolyhedron::InvertFacets             870  * Name: HepPolyhedron::InvertFacets                Date:    01.12.99  *
1357  * Author: E.Chernyaev                           871  * Author: E.Chernyaev                              Revised:           *
1358  *                                               872  *                                                                     *
1359  * Function: Invert the order of the nodes in    873  * Function: Invert the order of the nodes in the facets               *
1360  *                                               874  *                                                                     *
1361  ********************************************    875  ***********************************************************************/
1362 {                                                876 {
1363   if (nface <= 0) return;                        877   if (nface <= 0) return;
1364   G4int i, k, nnode, v[4],f[4];                  878   G4int i, k, nnode, v[4],f[4];
1365   for (i=1; i<=nface; i++) {                     879   for (i=1; i<=nface; i++) {
1366     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;     880     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;
1367     for (k=0; k<nnode; k++) {                    881     for (k=0; k<nnode; k++) {
1368       v[k] = (k+1 == nnode) ? pF[i].edge[0].v    882       v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v;
1369       if (v[k] * pF[i].edge[k].v < 0) v[k] =     883       if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k];
1370       f[k] = pF[i].edge[k].f;                    884       f[k] = pF[i].edge[k].f;
1371     }                                            885     }
1372     for (k=0; k<nnode; k++) {                    886     for (k=0; k<nnode; k++) {
1373       pF[i].edge[nnode-1-k].v = v[k];            887       pF[i].edge[nnode-1-k].v = v[k];
1374       pF[i].edge[nnode-1-k].f = f[k];            888       pF[i].edge[nnode-1-k].f = f[k];
1375     }                                            889     }
1376   }                                              890   }
1377 }                                                891 }
1378                                                  892 
1379 HepPolyhedron & HepPolyhedron::Transform(cons    893 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t)
1380 /********************************************    894 /***********************************************************************
1381  *                                               895  *                                                                     *
1382  * Name: HepPolyhedron::Transform                896  * Name: HepPolyhedron::Transform                    Date:    01.12.99  *
1383  * Author: E.Chernyaev                           897  * Author: E.Chernyaev                              Revised:           *
1384  *                                               898  *                                                                     *
1385  * Function: Make transformation of the polyh    899  * Function: Make transformation of the polyhedron                     *
1386  *                                               900  *                                                                     *
1387  ********************************************    901  ***********************************************************************/
1388 {                                                902 {
1389   if (nvert > 0) {                               903   if (nvert > 0) {
1390     for (G4int i=1; i<=nvert; i++) { pV[i] =     904     for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; }
1391                                                  905 
1392     //  C H E C K   D E T E R M I N A N T   A    906     //  C H E C K   D E T E R M I N A N T   A N D
1393     //  I N V E R T   F A C E T S   I F   I T    907     //  I N V E R T   F A C E T S   I F   I T   I S   N E G A T I V E
1394                                                  908 
1395     G4Vector3D d = t * G4Vector3D(0,0,0);        909     G4Vector3D d = t * G4Vector3D(0,0,0);
1396     G4Vector3D x = t * G4Vector3D(1,0,0) - d;    910     G4Vector3D x = t * G4Vector3D(1,0,0) - d;
1397     G4Vector3D y = t * G4Vector3D(0,1,0) - d;    911     G4Vector3D y = t * G4Vector3D(0,1,0) - d;
1398     G4Vector3D z = t * G4Vector3D(0,0,1) - d;    912     G4Vector3D z = t * G4Vector3D(0,0,1) - d;
1399     if ((x.cross(y))*z < 0) InvertFacets();      913     if ((x.cross(y))*z < 0) InvertFacets();
1400   }                                              914   }
1401   return *this;                                  915   return *this;
1402 }                                                916 }
1403                                                  917 
1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in    918 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const
1405 /********************************************    919 /***********************************************************************
1406  *                                               920  *                                                                     *
1407  * Name: HepPolyhedron::GetNextVertexIndex       921  * Name: HepPolyhedron::GetNextVertexIndex          Date:    03.09.96  *
1408  * Author: Yasuhide Sawada                       922  * Author: Yasuhide Sawada                          Revised:           *
1409  *                                               923  *                                                                     *
1410  * Function:                                     924  * Function:                                                           *
1411  *                                               925  *                                                                     *
1412  ********************************************    926  ***********************************************************************/
1413 {                                                927 {
1414   static G4ThreadLocal G4int iFace = 1;          928   static G4ThreadLocal G4int iFace = 1;
1415   static G4ThreadLocal G4int iQVertex = 0;       929   static G4ThreadLocal G4int iQVertex = 0;
1416   G4int vIndex = pF[iFace].edge[iQVertex].v;     930   G4int vIndex = pF[iFace].edge[iQVertex].v;
1417                                                  931 
1418   edgeFlag = (vIndex > 0) ? 1 : 0;               932   edgeFlag = (vIndex > 0) ? 1 : 0;
1419   index = std::abs(vIndex);                      933   index = std::abs(vIndex);
1420                                                  934 
1421   if (iQVertex >= 3 || pF[iFace].edge[iQVerte    935   if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1422     iQVertex = 0;                                936     iQVertex = 0;
1423     if (++iFace > nface) iFace = 1;              937     if (++iFace > nface) iFace = 1;
1424     return false;  // Last Edge                  938     return false;  // Last Edge
                                                   >> 939   }else{
                                                   >> 940     ++iQVertex;
                                                   >> 941     return true;  // not Last Edge
1425   }                                              942   }
1426                                               << 
1427   ++iQVertex;                                 << 
1428   return true;  // not Last Edge              << 
1429 }                                                943 }
1430                                                  944 
1431 G4Point3D HepPolyhedron::GetVertex(G4int inde    945 G4Point3D HepPolyhedron::GetVertex(G4int index) const
1432 /********************************************    946 /***********************************************************************
1433  *                                               947  *                                                                     *
1434  * Name: HepPolyhedron::GetVertex                948  * Name: HepPolyhedron::GetVertex                   Date:    03.09.96  *
1435  * Author: Yasuhide Sawada                       949  * Author: Yasuhide Sawada                          Revised: 17.11.99  *
1436  *                                               950  *                                                                     *
1437  * Function: Get vertex of the index.            951  * Function: Get vertex of the index.                                  *
1438  *                                               952  *                                                                     *
1439  ********************************************    953  ***********************************************************************/
1440 {                                                954 {
1441   if (index <= 0 || index > nvert) {             955   if (index <= 0 || index > nvert) {
1442     std::cerr                                    956     std::cerr
1443       << "HepPolyhedron::GetVertex: irrelevan    957       << "HepPolyhedron::GetVertex: irrelevant index " << index
1444       << std::endl;                              958       << std::endl;
1445     return G4Point3D();                          959     return G4Point3D();
1446   }                                              960   }
1447   return pV[index];                              961   return pV[index];
1448 }                                                962 }
1449                                                  963 
1450 G4bool                                           964 G4bool
1451 HepPolyhedron::GetNextVertex(G4Point3D &verte    965 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const
1452 /********************************************    966 /***********************************************************************
1453  *                                               967  *                                                                     *
1454  * Name: HepPolyhedron::GetNextVertex            968  * Name: HepPolyhedron::GetNextVertex               Date:    22.07.96  *
1455  * Author: John Allison                          969  * Author: John Allison                             Revised:           *
1456  *                                               970  *                                                                     *
1457  * Function: Get vertices of the quadrilatera    971  * Function: Get vertices of the quadrilaterals in order for each      *
1458  *           face in face order.  Returns fal    972  *           face in face order.  Returns false when finished each     *
1459  *           face.                               973  *           face.                                                     *
1460  *                                               974  *                                                                     *
1461  ********************************************    975  ***********************************************************************/
1462 {                                                976 {
1463   G4int index;                                   977   G4int index;
1464   G4bool rep = GetNextVertexIndex(index, edge    978   G4bool rep = GetNextVertexIndex(index, edgeFlag);
1465   vertex = pV[index];                            979   vertex = pV[index];
1466   return rep;                                    980   return rep;
1467 }                                                981 }
1468                                                  982 
1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D    983 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag,
1470                                   G4Normal3D     984                                   G4Normal3D &normal) const
1471 /********************************************    985 /***********************************************************************
1472  *                                               986  *                                                                     *
1473  * Name: HepPolyhedron::GetNextVertex            987  * Name: HepPolyhedron::GetNextVertex               Date:    26.11.99  *
1474  * Author: E.Chernyaev                           988  * Author: E.Chernyaev                              Revised:           *
1475  *                                               989  *                                                                     *
1476  * Function: Get vertices with normals of the    990  * Function: Get vertices with normals of the quadrilaterals in order  *
1477  *           for each face in face order.        991  *           for each face in face order.                              *
1478  *           Returns false when finished each    992  *           Returns false when finished each face.                    *
1479  *                                               993  *                                                                     *
1480  ********************************************    994  ***********************************************************************/
1481 {                                                995 {
1482   static G4ThreadLocal G4int iFace = 1;          996   static G4ThreadLocal G4int iFace = 1;
1483   static G4ThreadLocal G4int iNode = 0;          997   static G4ThreadLocal G4int iNode = 0;
1484                                                  998 
1485   if (nface == 0) return false;  // empty pol    999   if (nface == 0) return false;  // empty polyhedron
1486                                                  1000 
1487   G4int k = pF[iFace].edge[iNode].v;             1001   G4int k = pF[iFace].edge[iNode].v;
1488   if (k > 0) { edgeFlag = 1; } else { edgeFla    1002   if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; }
1489   vertex = pV[k];                                1003   vertex = pV[k];
1490   normal = FindNodeNormal(iFace,k);              1004   normal = FindNodeNormal(iFace,k);
1491   if (iNode >= 3 || pF[iFace].edge[iNode+1].v    1005   if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) {
1492     iNode = 0;                                   1006     iNode = 0;
1493     if (++iFace > nface) iFace = 1;              1007     if (++iFace > nface) iFace = 1;
1494     return false;                // last node    1008     return false;                // last node
                                                   >> 1009   }else{
                                                   >> 1010     ++iNode;
                                                   >> 1011     return true;                 // not last node
1495   }                                              1012   }
1496   ++iNode;                                    << 
1497   return true;                 // not last no << 
1498 }                                                1013 }
1499                                                  1014 
1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in    1015 G4bool HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag,
1501                                        G4int     1016                                        G4int &iface1, G4int &iface2) const
1502 /********************************************    1017 /***********************************************************************
1503  *                                               1018  *                                                                     *
1504  * Name: HepPolyhedron::GetNextEdgeIndices       1019  * Name: HepPolyhedron::GetNextEdgeIndices          Date:    30.09.96  *
1505  * Author: E.Chernyaev                           1020  * Author: E.Chernyaev                              Revised: 17.11.99  *
1506  *                                               1021  *                                                                     *
1507  * Function: Get indices of the next edge tog    1022  * Function: Get indices of the next edge together with indices of     *
1508  *           of the faces which share the edg    1023  *           of the faces which share the edge.                        *
1509  *           Returns false when the last edge    1024  *           Returns false when the last edge.                         *
1510  *                                               1025  *                                                                     *
1511  ********************************************    1026  ***********************************************************************/
1512 {                                                1027 {
1513   static G4ThreadLocal G4int iFace    = 1;       1028   static G4ThreadLocal G4int iFace    = 1;
1514   static G4ThreadLocal G4int iQVertex = 0;       1029   static G4ThreadLocal G4int iQVertex = 0;
1515   static G4ThreadLocal G4int iOrder   = 1;       1030   static G4ThreadLocal G4int iOrder   = 1;
1516   G4int  k1, k2, kflag, kface1, kface2;          1031   G4int  k1, k2, kflag, kface1, kface2;
1517                                                  1032 
1518   if (iFace == 1 && iQVertex == 0) {             1033   if (iFace == 1 && iQVertex == 0) {
1519     k2 = pF[nface].edge[0].v;                    1034     k2 = pF[nface].edge[0].v;
1520     k1 = pF[nface].edge[3].v;                    1035     k1 = pF[nface].edge[3].v;
1521     if (k1 == 0) k1 = pF[nface].edge[2].v;       1036     if (k1 == 0) k1 = pF[nface].edge[2].v;
1522     if (std::abs(k1) > std::abs(k2)) iOrder =    1037     if (std::abs(k1) > std::abs(k2)) iOrder = -1;
1523   }                                              1038   }
1524                                                  1039 
1525   do {                                           1040   do {
1526     k1     = pF[iFace].edge[iQVertex].v;         1041     k1     = pF[iFace].edge[iQVertex].v;
1527     kflag  = k1;                                 1042     kflag  = k1;
1528     k1     = std::abs(k1);                       1043     k1     = std::abs(k1);
1529     kface1 = iFace;                           << 1044     kface1 = iFace; 
1530     kface2 = pF[iFace].edge[iQVertex].f;         1045     kface2 = pF[iFace].edge[iQVertex].f;
1531     if (iQVertex >= 3 || pF[iFace].edge[iQVer    1046     if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1532       iQVertex = 0;                              1047       iQVertex = 0;
1533       k2 = std::abs(pF[iFace].edge[iQVertex].    1048       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1534       iFace++;                                   1049       iFace++;
1535     }else{                                       1050     }else{
1536       iQVertex++;                                1051       iQVertex++;
1537       k2 = std::abs(pF[iFace].edge[iQVertex].    1052       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1538     }                                            1053     }
1539   } while (iOrder*k1 > iOrder*k2);               1054   } while (iOrder*k1 > iOrder*k2);
1540                                                  1055 
1541   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ?     1056   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0;
1542   iface1 = kface1; iface2 = kface2;           << 1057   iface1 = kface1; iface2 = kface2; 
1543                                                  1058 
1544   if (iFace > nface) {                           1059   if (iFace > nface) {
1545     iFace  = 1; iOrder = 1;                      1060     iFace  = 1; iOrder = 1;
1546     return false;                                1061     return false;
                                                   >> 1062   }else{
                                                   >> 1063     return true;
1547   }                                              1064   }
1548                                               << 
1549   return true;                                << 
1550 }                                                1065 }
1551                                                  1066 
1552 G4bool                                           1067 G4bool
1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1,     1068 HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag) const
1554 /********************************************    1069 /***********************************************************************
1555  *                                               1070  *                                                                     *
1556  * Name: HepPolyhedron::GetNextEdgeIndices       1071  * Name: HepPolyhedron::GetNextEdgeIndices          Date:    17.11.99  *
1557  * Author: E.Chernyaev                           1072  * Author: E.Chernyaev                              Revised:           *
1558  *                                               1073  *                                                                     *
1559  * Function: Get indices of the next edge.       1074  * Function: Get indices of the next edge.                             *
1560  *           Returns false when the last edge    1075  *           Returns false when the last edge.                         *
1561  *                                               1076  *                                                                     *
1562  ********************************************    1077  ***********************************************************************/
1563 {                                                1078 {
1564   G4int kface1, kface2;                          1079   G4int kface1, kface2;
1565   return GetNextEdgeIndices(i1, i2, edgeFlag,    1080   return GetNextEdgeIndices(i1, i2, edgeFlag, kface1, kface2);
1566 }                                                1081 }
1567                                                  1082 
1568 G4bool                                           1083 G4bool
1569 HepPolyhedron::GetNextEdge(G4Point3D &p1,        1084 HepPolyhedron::GetNextEdge(G4Point3D &p1,
1570                            G4Point3D &p2,        1085                            G4Point3D &p2,
1571                            G4int &edgeFlag) c    1086                            G4int &edgeFlag) const
1572 /********************************************    1087 /***********************************************************************
1573  *                                               1088  *                                                                     *
1574  * Name: HepPolyhedron::GetNextEdge              1089  * Name: HepPolyhedron::GetNextEdge                 Date:    30.09.96  *
1575  * Author: E.Chernyaev                           1090  * Author: E.Chernyaev                              Revised:           *
1576  *                                               1091  *                                                                     *
1577  * Function: Get next edge.                      1092  * Function: Get next edge.                                            *
1578  *           Returns false when the last edge    1093  *           Returns false when the last edge.                         *
1579  *                                               1094  *                                                                     *
1580  ********************************************    1095  ***********************************************************************/
1581 {                                                1096 {
1582   G4int i1,i2;                                   1097   G4int i1,i2;
1583   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF    1098   G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag);
1584   p1 = pV[i1];                                   1099   p1 = pV[i1];
1585   p2 = pV[i2];                                   1100   p2 = pV[i2];
1586   return rep;                                    1101   return rep;
1587 }                                                1102 }
1588                                                  1103 
1589 G4bool                                           1104 G4bool
1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P    1105 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2,
1591                           G4int &edgeFlag, G4    1106                           G4int &edgeFlag, G4int &iface1, G4int &iface2) const
1592 /********************************************    1107 /***********************************************************************
1593  *                                               1108  *                                                                     *
1594  * Name: HepPolyhedron::GetNextEdge              1109  * Name: HepPolyhedron::GetNextEdge                 Date:    17.11.99  *
1595  * Author: E.Chernyaev                           1110  * Author: E.Chernyaev                              Revised:           *
1596  *                                               1111  *                                                                     *
1597  * Function: Get next edge with indices of th    1112  * Function: Get next edge with indices of the faces which share       *
1598  *           the edge.                           1113  *           the edge.                                                 *
1599  *           Returns false when the last edge    1114  *           Returns false when the last edge.                         *
1600  *                                               1115  *                                                                     *
1601  ********************************************    1116  ***********************************************************************/
1602 {                                                1117 {
1603   G4int i1,i2;                                   1118   G4int i1,i2;
1604   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF    1119   G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag,iface1,iface2);
1605   p1 = pV[i1];                                   1120   p1 = pV[i1];
1606   p2 = pV[i2];                                   1121   p2 = pV[i2];
1607   return rep;                                    1122   return rep;
1608 }                                                1123 }
1609                                                  1124 
1610 void HepPolyhedron::GetFacet(G4int iFace, G4i    1125 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes,
1611                             G4int *edgeFlags,    1126                             G4int *edgeFlags, G4int *iFaces) const
1612 /********************************************    1127 /***********************************************************************
1613  *                                               1128  *                                                                     *
1614  * Name: HepPolyhedron::GetFacet                 1129  * Name: HepPolyhedron::GetFacet                    Date:    15.12.99  *
1615  * Author: E.Chernyaev                           1130  * Author: E.Chernyaev                              Revised:           *
1616  *                                               1131  *                                                                     *
1617  * Function: Get face by index                   1132  * Function: Get face by index                                         *
1618  *                                               1133  *                                                                     *
1619  ********************************************    1134  ***********************************************************************/
1620 {                                                1135 {
1621   if (iFace < 1 || iFace > nface) {              1136   if (iFace < 1 || iFace > nface) {
1622     std::cerr                                 << 1137     std::cerr 
1623       << "HepPolyhedron::GetFacet: irrelevant    1138       << "HepPolyhedron::GetFacet: irrelevant index " << iFace
1624       << std::endl;                              1139       << std::endl;
1625     n = 0;                                       1140     n = 0;
1626   }else{                                         1141   }else{
1627     G4int i, k;                                  1142     G4int i, k;
1628     for (i=0; i<4; i++) {                     << 1143     for (i=0; i<4; i++) { 
1629       k = pF[iFace].edge[i].v;                   1144       k = pF[iFace].edge[i].v;
1630       if (k == 0) break;                         1145       if (k == 0) break;
1631       if (iFaces != nullptr) iFaces[i] = pF[i << 1146       if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f;
1632       if (k > 0) {                            << 1147       if (k > 0) { 
1633         iNodes[i] = k;                           1148         iNodes[i] = k;
1634         if (edgeFlags != nullptr) edgeFlags[i << 1149         if (edgeFlags != 0) edgeFlags[i] = 1;
1635       }else{                                     1150       }else{
1636         iNodes[i] = -k;                          1151         iNodes[i] = -k;
1637         if (edgeFlags != nullptr) edgeFlags[i << 1152         if (edgeFlags != 0) edgeFlags[i] = -1;
1638       }                                          1153       }
1639     }                                            1154     }
1640     n = i;                                       1155     n = i;
1641   }                                              1156   }
1642 }                                                1157 }
1643                                                  1158 
1644 void HepPolyhedron::GetFacet(G4int index, G4i    1159 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes,
1645                              G4int *edgeFlags    1160                              G4int *edgeFlags, G4Normal3D *normals) const
1646 /********************************************    1161 /***********************************************************************
1647  *                                               1162  *                                                                     *
1648  * Name: HepPolyhedron::GetFacet                 1163  * Name: HepPolyhedron::GetFacet                    Date:    17.11.99  *
1649  * Author: E.Chernyaev                           1164  * Author: E.Chernyaev                              Revised:           *
1650  *                                               1165  *                                                                     *
1651  * Function: Get face by index                   1166  * Function: Get face by index                                         *
1652  *                                               1167  *                                                                     *
1653  ********************************************    1168  ***********************************************************************/
1654 {                                                1169 {
1655   G4int iNodes[4];                               1170   G4int iNodes[4];
1656   GetFacet(index, n, iNodes, edgeFlags);         1171   GetFacet(index, n, iNodes, edgeFlags);
1657   if (n != 0) {                                  1172   if (n != 0) {
1658     for (G4int i=0; i<n; i++) {                  1173     for (G4int i=0; i<n; i++) {
1659       nodes[i] = pV[iNodes[i]];                  1174       nodes[i] = pV[iNodes[i]];
1660       if (normals != nullptr) normals[i] = Fi << 1175       if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]);
1661     }                                            1176     }
1662   }                                              1177   }
1663 }                                                1178 }
1664                                                  1179 
1665 G4bool                                           1180 G4bool
1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point    1181 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes,
1667                            G4int *edgeFlags,     1182                            G4int *edgeFlags, G4Normal3D *normals) const
1668 /********************************************    1183 /***********************************************************************
1669  *                                               1184  *                                                                     *
1670  * Name: HepPolyhedron::GetNextFacet             1185  * Name: HepPolyhedron::GetNextFacet                Date:    19.11.99  *
1671  * Author: E.Chernyaev                           1186  * Author: E.Chernyaev                              Revised:           *
1672  *                                               1187  *                                                                     *
1673  * Function: Get next face with normals of un    1188  * Function: Get next face with normals of unit length at the nodes.   *
1674  *           Returns false when finished all     1189  *           Returns false when finished all faces.                    *
1675  *                                               1190  *                                                                     *
1676  ********************************************    1191  ***********************************************************************/
1677 {                                                1192 {
1678   static G4ThreadLocal G4int iFace = 1;          1193   static G4ThreadLocal G4int iFace = 1;
1679                                                  1194 
1680   if (edgeFlags == nullptr) {                 << 1195   if (edgeFlags == 0) {
1681     GetFacet(iFace, n, nodes);                   1196     GetFacet(iFace, n, nodes);
1682   }else if (normals == nullptr) {             << 1197   }else if (normals == 0) {
1683     GetFacet(iFace, n, nodes, edgeFlags);        1198     GetFacet(iFace, n, nodes, edgeFlags);
1684   }else{                                         1199   }else{
1685     GetFacet(iFace, n, nodes, edgeFlags, norm    1200     GetFacet(iFace, n, nodes, edgeFlags, normals);
1686   }                                              1201   }
1687                                                  1202 
1688   if (++iFace > nface) {                         1203   if (++iFace > nface) {
1689     iFace  = 1;                                  1204     iFace  = 1;
1690     return false;                                1205     return false;
                                                   >> 1206   }else{
                                                   >> 1207     return true;
1691   }                                              1208   }
1692                                               << 
1693   return true;                                << 
1694 }                                                1209 }
1695                                                  1210 
1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa    1211 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const
1697 /********************************************    1212 /***********************************************************************
1698  *                                               1213  *                                                                     *
1699  * Name: HepPolyhedron::GetNormal                1214  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1700  * Author: E.Chernyaev                           1215  * Author: E.Chernyaev                               Revised:          *
1701  *                                               1216  *                                                                     *
1702  * Function: Get normal of the face given by     1217  * Function: Get normal of the face given by index                     *
1703  *                                               1218  *                                                                     *
1704  ********************************************    1219  ***********************************************************************/
1705 {                                                1220 {
1706   if (iFace < 1 || iFace > nface) {              1221   if (iFace < 1 || iFace > nface) {
1707     std::cerr                                 << 1222     std::cerr 
1708       << "HepPolyhedron::GetNormal: irrelevan << 1223       << "HepPolyhedron::GetNormal: irrelevant index " << iFace 
1709       << std::endl;                              1224       << std::endl;
1710     return G4Normal3D();                         1225     return G4Normal3D();
1711   }                                              1226   }
1712                                                  1227 
1713   G4int i0  = std::abs(pF[iFace].edge[0].v);     1228   G4int i0  = std::abs(pF[iFace].edge[0].v);
1714   G4int i1  = std::abs(pF[iFace].edge[1].v);     1229   G4int i1  = std::abs(pF[iFace].edge[1].v);
1715   G4int i2  = std::abs(pF[iFace].edge[2].v);     1230   G4int i2  = std::abs(pF[iFace].edge[2].v);
1716   G4int i3  = std::abs(pF[iFace].edge[3].v);     1231   G4int i3  = std::abs(pF[iFace].edge[3].v);
1717   if (i3 == 0) i3 = i0;                          1232   if (i3 == 0) i3 = i0;
1718   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[    1233   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]);
1719 }                                                1234 }
1720                                                  1235 
1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int    1236 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const
1722 /********************************************    1237 /***********************************************************************
1723  *                                               1238  *                                                                     *
1724  * Name: HepPolyhedron::GetNormal                1239  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1725  * Author: E.Chernyaev                           1240  * Author: E.Chernyaev                               Revised:          *
1726  *                                               1241  *                                                                     *
1727  * Function: Get unit normal of the face give    1242  * Function: Get unit normal of the face given by index                *
1728  *                                               1243  *                                                                     *
1729  ********************************************    1244  ***********************************************************************/
1730 {                                                1245 {
1731   if (iFace < 1 || iFace > nface) {              1246   if (iFace < 1 || iFace > nface) {
1732     std::cerr                                 << 1247     std::cerr 
1733       << "HepPolyhedron::GetUnitNormal: irrel    1248       << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace
1734       << std::endl;                              1249       << std::endl;
1735     return G4Normal3D();                         1250     return G4Normal3D();
1736   }                                              1251   }
1737                                                  1252 
1738   G4int i0  = std::abs(pF[iFace].edge[0].v);     1253   G4int i0  = std::abs(pF[iFace].edge[0].v);
1739   G4int i1  = std::abs(pF[iFace].edge[1].v);     1254   G4int i1  = std::abs(pF[iFace].edge[1].v);
1740   G4int i2  = std::abs(pF[iFace].edge[2].v);     1255   G4int i2  = std::abs(pF[iFace].edge[2].v);
1741   G4int i3  = std::abs(pF[iFace].edge[3].v);     1256   G4int i3  = std::abs(pF[iFace].edge[3].v);
1742   if (i3 == 0) i3 = i0;                          1257   if (i3 == 0) i3 = i0;
1743   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1258   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit();
1744 }                                                1259 }
1745                                                  1260 
1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3    1261 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const
1747 /********************************************    1262 /***********************************************************************
1748  *                                               1263  *                                                                     *
1749  * Name: HepPolyhedron::GetNextNormal            1264  * Name: HepPolyhedron::GetNextNormal               Date:    22.07.96  *
1750  * Author: John Allison                          1265  * Author: John Allison                             Revised: 19.11.99  *
1751  *                                               1266  *                                                                     *
1752  * Function: Get normals of each face in face    1267  * Function: Get normals of each face in face order.  Returns false    *
1753  *           when finished all faces.            1268  *           when finished all faces.                                  *
1754  *                                               1269  *                                                                     *
1755  ********************************************    1270  ***********************************************************************/
1756 {                                                1271 {
1757   static G4ThreadLocal G4int iFace = 1;          1272   static G4ThreadLocal G4int iFace = 1;
1758   normal = GetNormal(iFace);                     1273   normal = GetNormal(iFace);
1759   if (++iFace > nface) {                         1274   if (++iFace > nface) {
1760     iFace = 1;                                   1275     iFace = 1;
1761     return false;                                1276     return false;
                                                   >> 1277   }else{
                                                   >> 1278     return true;
1762   }                                              1279   }
1763   return true;                                << 
1764 }                                                1280 }
1765                                                  1281 
1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor    1282 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const
1767 /********************************************    1283 /***********************************************************************
1768  *                                               1284  *                                                                     *
1769  * Name: HepPolyhedron::GetNextUnitNormal        1285  * Name: HepPolyhedron::GetNextUnitNormal           Date:    16.09.96  *
1770  * Author: E.Chernyaev                           1286  * Author: E.Chernyaev                              Revised:           *
1771  *                                               1287  *                                                                     *
1772  * Function: Get normals of unit length of ea    1288  * Function: Get normals of unit length of each face in face order.    *
1773  *           Returns false when finished all     1289  *           Returns false when finished all faces.                    *
1774  *                                               1290  *                                                                     *
1775  ********************************************    1291  ***********************************************************************/
1776 {                                                1292 {
1777   G4bool rep = GetNextNormal(normal);            1293   G4bool rep = GetNextNormal(normal);
1778   normal = normal.unit();                        1294   normal = normal.unit();
1779   return rep;                                    1295   return rep;
1780 }                                                1296 }
1781                                                  1297 
1782 G4double HepPolyhedron::GetSurfaceArea() cons    1298 G4double HepPolyhedron::GetSurfaceArea() const
1783 /********************************************    1299 /***********************************************************************
1784  *                                               1300  *                                                                     *
1785  * Name: HepPolyhedron::GetSurfaceArea           1301  * Name: HepPolyhedron::GetSurfaceArea              Date:    25.05.01  *
1786  * Author: E.Chernyaev                           1302  * Author: E.Chernyaev                              Revised:           *
1787  *                                               1303  *                                                                     *
1788  * Function: Returns area of the surface of t    1304  * Function: Returns area of the surface of the polyhedron.            *
1789  *                                               1305  *                                                                     *
1790  ********************************************    1306  ***********************************************************************/
1791 {                                                1307 {
1792   G4double srf = 0.;                             1308   G4double srf = 0.;
1793   for (G4int iFace=1; iFace<=nface; iFace++)     1309   for (G4int iFace=1; iFace<=nface; iFace++) {
1794     G4int i0 = std::abs(pF[iFace].edge[0].v);    1310     G4int i0 = std::abs(pF[iFace].edge[0].v);
1795     G4int i1 = std::abs(pF[iFace].edge[1].v);    1311     G4int i1 = std::abs(pF[iFace].edge[1].v);
1796     G4int i2 = std::abs(pF[iFace].edge[2].v);    1312     G4int i2 = std::abs(pF[iFace].edge[2].v);
1797     G4int i3 = std::abs(pF[iFace].edge[3].v);    1313     G4int i3 = std::abs(pF[iFace].edge[3].v);
1798     if (i3 == 0) i3 = i0;                        1314     if (i3 == 0) i3 = i0;
1799     srf += ((pV[i2] - pV[i0]).cross(pV[i3] -     1315     srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag();
1800   }                                              1316   }
1801   return srf/2.;                                 1317   return srf/2.;
1802 }                                                1318 }
1803                                                  1319 
1804 G4double HepPolyhedron::GetVolume() const        1320 G4double HepPolyhedron::GetVolume() const
1805 /********************************************    1321 /***********************************************************************
1806  *                                               1322  *                                                                     *
1807  * Name: HepPolyhedron::GetVolume                1323  * Name: HepPolyhedron::GetVolume                   Date:    25.05.01  *
1808  * Author: E.Chernyaev                           1324  * Author: E.Chernyaev                              Revised:           *
1809  *                                               1325  *                                                                     *
1810  * Function: Returns volume of the polyhedron    1326  * Function: Returns volume of the polyhedron.                         *
1811  *                                               1327  *                                                                     *
1812  ********************************************    1328  ***********************************************************************/
1813 {                                                1329 {
1814   G4double v = 0.;                               1330   G4double v = 0.;
1815   for (G4int iFace=1; iFace<=nface; iFace++)     1331   for (G4int iFace=1; iFace<=nface; iFace++) {
1816     G4int i0 = std::abs(pF[iFace].edge[0].v);    1332     G4int i0 = std::abs(pF[iFace].edge[0].v);
1817     G4int i1 = std::abs(pF[iFace].edge[1].v);    1333     G4int i1 = std::abs(pF[iFace].edge[1].v);
1818     G4int i2 = std::abs(pF[iFace].edge[2].v);    1334     G4int i2 = std::abs(pF[iFace].edge[2].v);
1819     G4int i3 = std::abs(pF[iFace].edge[3].v);    1335     G4int i3 = std::abs(pF[iFace].edge[3].v);
1820     G4Point3D pt;                                1336     G4Point3D pt;
1821     if (i3 == 0) {                               1337     if (i3 == 0) {
1822       i3 = i0;                                   1338       i3 = i0;
1823       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);     1339       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);
1824     }else{                                       1340     }else{
1825       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.    1341       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25;
1826     }                                            1342     }
1827     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1343     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt);
1828   }                                              1344   }
1829   return v/6.;                                   1345   return v/6.;
1830 }                                                1346 }
1831                                                  1347 
1832 G4int                                            1348 G4int
1833 HepPolyhedron::createTwistedTrap(G4double Dz,    1349 HepPolyhedron::createTwistedTrap(G4double Dz,
1834                                  const G4doub    1350                                  const G4double xy1[][2],
1835                                  const G4doub    1351                                  const G4double xy2[][2])
1836 /********************************************    1352 /***********************************************************************
1837  *                                               1353  *                                                                     *
1838  * Name: createTwistedTrap                       1354  * Name: createTwistedTrap                           Date:    05.11.02 *
1839  * Author: E.Chernyaev (IHEP/Protvino)           1355  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1840  *                                               1356  *                                                                     *
1841  * Function: Creates polyhedron for twisted t    1357  * Function: Creates polyhedron for twisted trapezoid                  *
1842  *                                               1358  *                                                                     *
1843  * Input: Dz       - half-length along Z         1359  * Input: Dz       - half-length along Z             8----7            *
1844  *        xy1[2,4] - quadrilateral at Z=-Dz      1360  *        xy1[2,4] - quadrilateral at Z=-Dz       5----6  !            *
1845  *        xy2[2,4] - quadrilateral at Z=+Dz      1361  *        xy2[2,4] - quadrilateral at Z=+Dz       !  4-!--3            *
1846  *                                               1362  *                                                1----2               *
1847  *                                               1363  *                                                                     *
1848  ********************************************    1364  ***********************************************************************/
1849 {                                                1365 {
1850   AllocateMemory(12,18);                         1366   AllocateMemory(12,18);
1851                                                  1367 
1852   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz)    1368   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz);
1853   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz)    1369   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz);
1854   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz)    1370   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz);
1855   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz)    1371   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz);
1856                                                  1372 
1857   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz)    1373   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz);
1858   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz)    1374   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz);
1859   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz)    1375   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz);
1860   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz)    1376   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz);
1861                                                  1377 
1862   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;         1378   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;
1863   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;         1379   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;
1864   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;         1380   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;
1865   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;         1381   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;
1866                                                  1382 
1867   enum {DUMMY, BOTTOM,                           1383   enum {DUMMY, BOTTOM,
1868         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,    1384         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,  LEFT_BACK,
1869         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,    1385         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,  BACK_RIGHT,
1870         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP    1386         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP, RIGHT_FRONT,
1871         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP    1387         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP, FRONT_LEFT,
1872         TOP};                                    1388         TOP};
1873                                                  1389 
1874   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM    1390   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM);
1875                                                  1391 
1876   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,    1392   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,  -12,LEFT_BACK,    0,0);
1877   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,      1393   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,    -12,LEFT_BOTTOM,  0,0);
1878   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,     1394   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,   -12,LEFT_FRONT,   0,0);
1879   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM    1395   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM, -12,LEFT_TOP,     0,0);
1880                                                  1396 
1881   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,     1397   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,   -11,BACK_RIGHT,   0,0);
1882   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,      1398   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,    -11,BACK_BOTTOM,  0,0);
1883   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,    1399   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,  -11,BACK_LEFT,    0,0);
1884   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM    1400   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP,     0,0);
1885                                                  1401 
1886   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,    1402   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,  -10,RIGHT_FRONT,  0,0);
1887   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,     1403   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,   -10,RIGHT_BOTTOM, 0,0);
1888   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT    1404   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT, -10,RIGHT_BACK,   0,0);
1889   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO    1405   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP,    0,0);
1890                                                  1406 
1891   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT    1407   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT,  -9,FRONT_LEFT,   0,0);
1892   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,     1408   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,    -9,FRONT_BOTTOM, 0,0);
1893   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,    1409   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,   -9,FRONT_RIGHT,  0,0);
1894   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO    1410   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP,    0,0);
1895                                               << 1411  
1896   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,    1412   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP);
1897                                                  1413 
1898   return 0;                                      1414   return 0;
1899 }                                                1415 }
1900                                                  1416 
1901 G4int                                            1417 G4int
1902 HepPolyhedron::createPolyhedron(G4int Nnodes,    1418 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces,
1903                                 const G4doubl    1419                                 const G4double xyz[][3],
1904                                 const G4int      1420                                 const G4int  faces[][4])
1905 /********************************************    1421 /***********************************************************************
1906  *                                               1422  *                                                                     *
1907  * Name: createPolyhedron                        1423  * Name: createPolyhedron                            Date:    05.11.02 *
1908  * Author: E.Chernyaev (IHEP/Protvino)           1424  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1909  *                                               1425  *                                                                     *
1910  * Function: Creates user defined polyhedron     1426  * Function: Creates user defined polyhedron                           *
1911  *                                               1427  *                                                                     *
1912  * Input: Nnodes  - number of nodes              1428  * Input: Nnodes  - number of nodes                                    *
1913  *        Nfaces  - number of faces              1429  *        Nfaces  - number of faces                                    *
1914  *        nodes[][3] - node coordinates          1430  *        nodes[][3] - node coordinates                                *
1915  *        faces[][4] - faces                     1431  *        faces[][4] - faces                                           *
1916  *                                               1432  *                                                                     *
1917  ********************************************    1433  ***********************************************************************/
1918 {                                                1434 {
1919   AllocateMemory(Nnodes, Nfaces);                1435   AllocateMemory(Nnodes, Nfaces);
1920   if (nvert == 0) return 1;                      1436   if (nvert == 0) return 1;
1921                                                  1437 
1922   for (G4int i=0; i<Nnodes; i++) {               1438   for (G4int i=0; i<Nnodes; i++) {
1923     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1],    1439     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]);
1924   }                                              1440   }
1925   for (G4int k=0; k<Nfaces; k++) {               1441   for (G4int k=0; k<Nfaces; k++) {
1926     pF[k+1] = G4Facet(faces[k][0],0,faces[k][    1442     pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0);
1927   }                                              1443   }
1928   SetReferences();                               1444   SetReferences();
1929   return 0;                                      1445   return 0;
1930 }                                                1446 }
1931                                                  1447 
1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 
1933   /****************************************** << 
1934    *                                          << 
1935    * Name: vertexUnweightedMean               << 
1936    * Author: S. Boogert (Manchester)          << 
1937    *                                          << 
1938    * Function: Calculate the unweighted mean  << 
1939    * in the polyhedron. Not to be confused wi << 
1940    * centre of mass                           << 
1941    ****************************************** << 
1942                                               << 
1943   auto centre = G4Point3D();                  << 
1944   for(int i=1;i<=nvert;i++) {                 << 
1945     centre += pV[i];                          << 
1946   }                                           << 
1947   centre = centre/nvert;                      << 
1948   return centre;                              << 
1949 }                                             << 
1950                                               << 
1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double    1448 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2,
1952                                      G4double    1449                                      G4double Dy1, G4double Dy2,
1953                                      G4double    1450                                      G4double Dz)
1954 /********************************************    1451 /***********************************************************************
1955  *                                               1452  *                                                                     *
1956  * Name: HepPolyhedronTrd2                       1453  * Name: HepPolyhedronTrd2                           Date:    22.07.96 *
1957  * Author: E.Chernyaev (IHEP/Protvino)           1454  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1958  *                                               1455  *                                                                     *
1959  * Function: Create GEANT4 TRD2-trapezoid        1456  * Function: Create GEANT4 TRD2-trapezoid                              *
1960  *                                               1457  *                                                                     *
1961  * Input: Dx1 - half-length along X at -Dz       1458  * Input: Dx1 - half-length along X at -Dz           8----7            *
1962  *        Dx2 - half-length along X ay +Dz       1459  *        Dx2 - half-length along X ay +Dz        5----6  !            *
1963  *        Dy1 - half-length along Y ay -Dz       1460  *        Dy1 - half-length along Y ay -Dz        !  4-!--3            *
1964  *        Dy2 - half-length along Y ay +Dz       1461  *        Dy2 - half-length along Y ay +Dz        1----2               *
1965  *        Dz  - half-length along Z              1462  *        Dz  - half-length along Z                                    *
1966  *                                               1463  *                                                                     *
1967  ********************************************    1464  ***********************************************************************/
1968 {                                                1465 {
1969   AllocateMemory(8,6);                           1466   AllocateMemory(8,6);
1970                                                  1467 
1971   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);              1468   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);
1972   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);              1469   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);
1973   pV[3] = G4Point3D( Dx1, Dy1,-Dz);              1470   pV[3] = G4Point3D( Dx1, Dy1,-Dz);
1974   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);              1471   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);
1975   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);              1472   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);
1976   pV[6] = G4Point3D( Dx2,-Dy2, Dz);              1473   pV[6] = G4Point3D( Dx2,-Dy2, Dz);
1977   pV[7] = G4Point3D( Dx2, Dy2, Dz);              1474   pV[7] = G4Point3D( Dx2, Dy2, Dz);
1978   pV[8] = G4Point3D(-Dx2, Dy2, Dz);              1475   pV[8] = G4Point3D(-Dx2, Dy2, Dz);
1979                                                  1476 
1980   CreatePrism();                                 1477   CreatePrism();
1981 }                                                1478 }
1982                                                  1479 
1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1480 HepPolyhedronTrd2::~HepPolyhedronTrd2() {}
1984                                                  1481 
1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double    1482 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2,
1986                                      G4double    1483                                      G4double Dy, G4double Dz)
1987   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {    1484   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {}
1988                                                  1485 
1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1486 HepPolyhedronTrd1::~HepPolyhedronTrd1() {}
1990                                                  1487 
1991 HepPolyhedronBox::HepPolyhedronBox(G4double D    1488 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz)
1992   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}     1489   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}
1993                                                  1490 
1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1491 HepPolyhedronBox::~HepPolyhedronBox() {}
1995                                                  1492 
1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double    1493 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz,
1997                                      G4double    1494                                      G4double Theta,
1998                                      G4double    1495                                      G4double Phi,
1999                                      G4double    1496                                      G4double Dy1,
2000                                      G4double    1497                                      G4double Dx1,
2001                                      G4double    1498                                      G4double Dx2,
2002                                      G4double    1499                                      G4double Alp1,
2003                                      G4double    1500                                      G4double Dy2,
2004                                      G4double    1501                                      G4double Dx3,
2005                                      G4double    1502                                      G4double Dx4,
2006                                      G4double    1503                                      G4double Alp2)
2007 /********************************************    1504 /***********************************************************************
2008  *                                               1505  *                                                                     *
2009  * Name: HepPolyhedronTrap                       1506  * Name: HepPolyhedronTrap                           Date:    20.11.96 *
2010  * Author: E.Chernyaev                           1507  * Author: E.Chernyaev                               Revised:          *
2011  *                                               1508  *                                                                     *
2012  * Function: Create GEANT4 TRAP-trapezoid        1509  * Function: Create GEANT4 TRAP-trapezoid                              *
2013  *                                               1510  *                                                                     *
2014  * Input: DZ   - half-length in Z                1511  * Input: DZ   - half-length in Z                                      *
2015  *        Theta,Phi - polar angles of the lin    1512  *        Theta,Phi - polar angles of the line joining centres of the  *
2016  *                    faces at Z=-Dz and Z=+D    1513  *                    faces at Z=-Dz and Z=+Dz                         *
2017  *        Dy1  - half-length in Y of the face    1514  *        Dy1  - half-length in Y of the face at Z=-Dz                 *
2018  *        Dx1  - half-length in X of low edge    1515  *        Dx1  - half-length in X of low edge of the face at Z=-Dz     *
2019  *        Dx2  - half-length in X of top edge    1516  *        Dx2  - half-length in X of top edge of the face at Z=-Dz     *
2020  *        Alp1 - angle between Y-axis and the    1517  *        Alp1 - angle between Y-axis and the median joining top and   *
2021  *               low edges of the face at Z=-    1518  *               low edges of the face at Z=-Dz                        *
2022  *        Dy2  - half-length in Y of the face    1519  *        Dy2  - half-length in Y of the face at Z=+Dz                 *
2023  *        Dx3  - half-length in X of low edge    1520  *        Dx3  - half-length in X of low edge of the face at Z=+Dz     *
2024  *        Dx4  - half-length in X of top edge    1521  *        Dx4  - half-length in X of top edge of the face at Z=+Dz     *
2025  *        Alp2 - angle between Y-axis and the    1522  *        Alp2 - angle between Y-axis and the median joining top and   *
2026  *               low edges of the face at Z=+    1523  *               low edges of the face at Z=+Dz                        *
2027  *                                               1524  *                                                                     *
2028  ********************************************    1525  ***********************************************************************/
2029 {                                                1526 {
2030   G4double DzTthetaCphi = Dz*std::tan(Theta)*    1527   G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi);
2031   G4double DzTthetaSphi = Dz*std::tan(Theta)*    1528   G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi);
2032   G4double Dy1Talp1 = Dy1*std::tan(Alp1);        1529   G4double Dy1Talp1 = Dy1*std::tan(Alp1);
2033   G4double Dy2Talp2 = Dy2*std::tan(Alp2);        1530   G4double Dy2Talp2 = Dy2*std::tan(Alp2);
2034                                               << 1531   
2035   AllocateMemory(8,6);                           1532   AllocateMemory(8,6);
2036                                                  1533 
2037   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx    1534   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz);
2038   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx    1535   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz);
2039   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx    1536   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz);
2040   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx    1537   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz);
2041   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx    1538   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz);
2042   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx    1539   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz);
2043   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx    1540   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz);
2044   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx    1541   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz);
2045                                                  1542 
2046   CreatePrism();                                 1543   CreatePrism();
2047 }                                                1544 }
2048                                                  1545 
2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1546 HepPolyhedronTrap::~HepPolyhedronTrap() {}
2050                                                  1547 
2051 HepPolyhedronPara::HepPolyhedronPara(G4double    1548 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz,
2052                                      G4double    1549                                      G4double Alpha, G4double Theta,
2053                                      G4double    1550                                      G4double Phi)
2054   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx,    1551   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {}
2055                                                  1552 
2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1553 HepPolyhedronPara::~HepPolyhedronPara() {}
2057                                                  1554 
2058 HepPolyhedronParaboloid::HepPolyhedronParabol    1555 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1,
2059                                                  1556                                                  G4double r2,
2060                                                  1557                                                  G4double dz,
2061                                                  1558                                                  G4double sPhi,
2062                                               << 1559                                                  G4double dPhi) 
2063 /********************************************    1560 /***********************************************************************
2064  *                                               1561  *                                                                     *
2065  * Name: HepPolyhedronParaboloid                 1562  * Name: HepPolyhedronParaboloid                     Date:    28.06.07 *
2066  * Author: L.Lindroos, T.Nikitina (CERN), Jul    1563  * Author: L.Lindroos, T.Nikitina (CERN), July 2007  Revised: 28.06.07 *
2067  *                                               1564  *                                                                     *
2068  * Function: Constructor for paraboloid          1565  * Function: Constructor for paraboloid                                *
2069  *                                               1566  *                                                                     *
2070  * Input: r1    - inside and outside radiuses    1567  * Input: r1    - inside and outside radiuses at -Dz                   *
2071  *        r2    - inside and outside radiuses    1568  *        r2    - inside and outside radiuses at +Dz                   *
2072  *        dz    - half length in Z               1569  *        dz    - half length in Z                                     *
2073  *        sPhi  - starting angle of the segme    1570  *        sPhi  - starting angle of the segment                        *
2074  *        dPhi  - segment range                  1571  *        dPhi  - segment range                                        *
2075  *                                               1572  *                                                                     *
2076  ********************************************    1573  ***********************************************************************/
2077 {                                                1574 {
2078   static const G4double wholeCircle=twopi;       1575   static const G4double wholeCircle=twopi;
2079                                                  1576 
2080   //   C H E C K   I N P U T   P A R A M E T     1577   //   C H E C K   I N P U T   P A R A M E T E R S
2081                                                  1578 
2082   G4int k = 0;                                   1579   G4int k = 0;
2083   if (r1 < 0. || r2 <= 0.)        k = 1;         1580   if (r1 < 0. || r2 <= 0.)        k = 1;
2084                                                  1581 
2085   if (dz <= 0.) k += 2;                          1582   if (dz <= 0.) k += 2;
2086                                                  1583 
2087   G4double phi1, phi2, dphi;                     1584   G4double phi1, phi2, dphi;
2088                                                  1585 
2089   if(dPhi < 0.)                                  1586   if(dPhi < 0.)
2090   {                                              1587   {
2091     phi2 = sPhi; phi1 = phi2 + dPhi;             1588     phi2 = sPhi; phi1 = phi2 + dPhi;
2092   }                                              1589   }
2093   else if(dPhi == 0.)                         << 1590   else if(dPhi == 0.) 
2094   {                                              1591   {
2095     phi1 = sPhi; phi2 = phi1 + wholeCircle;      1592     phi1 = sPhi; phi2 = phi1 + wholeCircle;
2096   }                                              1593   }
2097   else                                           1594   else
2098   {                                              1595   {
2099     phi1 = sPhi; phi2 = phi1 + dPhi;             1596     phi1 = sPhi; phi2 = phi1 + dPhi;
2100   }                                              1597   }
2101   dphi  = phi2 - phi1;                           1598   dphi  = phi2 - phi1;
2102                                                  1599 
2103   if (std::abs(dphi-wholeCircle) < perMillion    1600   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2104   if (dphi > wholeCircle) k += 4;             << 1601   if (dphi > wholeCircle) k += 4; 
2105                                                  1602 
2106   if (k != 0) {                                  1603   if (k != 0) {
2107     std::cerr << "HepPolyhedronParaboloid: er    1604     std::cerr << "HepPolyhedronParaboloid: error in input parameters";
2108     if ((k & 1) != 0) std::cerr << " (radiuse    1605     if ((k & 1) != 0) std::cerr << " (radiuses)";
2109     if ((k & 2) != 0) std::cerr << " (half-le    1606     if ((k & 2) != 0) std::cerr << " (half-length)";
2110     if ((k & 4) != 0) std::cerr << " (angles)    1607     if ((k & 4) != 0) std::cerr << " (angles)";
2111     std::cerr << std::endl;                      1608     std::cerr << std::endl;
2112     std::cerr << " r1=" << r1;                   1609     std::cerr << " r1=" << r1;
2113     std::cerr << " r2=" << r2;                   1610     std::cerr << " r2=" << r2;
2114     std::cerr << " dz=" << dz << " sPhi=" <<     1611     std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi
2115               << std::endl;                      1612               << std::endl;
2116     return;                                      1613     return;
2117   }                                              1614   }
2118                                               << 1615   
2119   //   P R E P A R E   T W O   P O L Y L I N     1616   //   P R E P A R E   T W O   P O L Y L I N E S
2120                                                  1617 
2121   G4int n = GetNumberOfRotationSteps();          1618   G4int n = GetNumberOfRotationSteps();
2122   G4double dl = (r2 - r1) / n;                   1619   G4double dl = (r2 - r1) / n;
2123   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;        1620   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;
2124   G4double k2 = (r2*r2 + r1*r1) / 2;             1621   G4double k2 = (r2*r2 + r1*r1) / 2;
2125                                                  1622 
2126   auto zz = new G4double[n + 2], rr = new G4d << 1623   G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2];
2127                                                  1624 
2128   zz[0] = dz;                                    1625   zz[0] = dz;
2129   rr[0] = r2;                                    1626   rr[0] = r2;
2130                                                  1627 
2131   for(G4int i = 1; i < n - 1; i++)               1628   for(G4int i = 1; i < n - 1; i++)
2132   {                                              1629   {
2133     rr[i] = rr[i-1] - dl;                        1630     rr[i] = rr[i-1] - dl;
2134     zz[i] = (rr[i]*rr[i] - k2) / k1;             1631     zz[i] = (rr[i]*rr[i] - k2) / k1;
2135     if(rr[i] < 0)                                1632     if(rr[i] < 0)
2136     {                                            1633     {
2137       rr[i] = 0;                                 1634       rr[i] = 0;
2138       zz[i] = 0;                                 1635       zz[i] = 0;
2139     }                                            1636     }
2140   }                                              1637   }
2141                                                  1638 
2142   zz[n-1] = -dz;                                 1639   zz[n-1] = -dz;
2143   rr[n-1] = r1;                                  1640   rr[n-1] = r1;
2144                                                  1641 
2145   zz[n] = dz;                                    1642   zz[n] = dz;
2146   rr[n] = 0;                                     1643   rr[n] = 0;
2147                                                  1644 
2148   zz[n+1] = -dz;                                 1645   zz[n+1] = -dz;
2149   rr[n+1] = 0;                                   1646   rr[n+1] = 0;
2150                                                  1647 
2151   //   R O T A T E    P O L Y L I N E S          1648   //   R O T A T E    P O L Y L I N E S
2152                                                  1649 
2153   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr,  << 1650   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 
2154   SetReferences();                               1651   SetReferences();
2155                                                  1652 
2156   delete [] zz;                                  1653   delete [] zz;
2157   delete [] rr;                                  1654   delete [] rr;
2158 }                                                1655 }
2159                                                  1656 
2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1657 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {}
2161                                                  1658 
2162 HepPolyhedronHype::HepPolyhedronHype(G4double    1659 HepPolyhedronHype::HepPolyhedronHype(G4double r1,
2163                                      G4double    1660                                      G4double r2,
2164                                      G4double    1661                                      G4double sqrtan1,
2165                                      G4double    1662                                      G4double sqrtan2,
2166                                      G4double << 1663                                      G4double halfZ) 
2167 /********************************************    1664 /***********************************************************************
2168  *                                               1665  *                                                                     *
2169  * Name: HepPolyhedronHype                       1666  * Name: HepPolyhedronHype                           Date:    14.04.08 *
2170  * Author: Tatiana Nikitina (CERN)               1667  * Author: Tatiana Nikitina (CERN)                   Revised: 14.04.08 *
2171  *         Evgueni Tcherniaev                 << 
2172  *                                               1668  *                                                                     *
2173  * Function: Constructor for Hype                1669  * Function: Constructor for Hype                                      *
2174  *                                               1670  *                                                                     *
2175  * Input: r1       - inside radius at z=0        1671  * Input: r1       - inside radius at z=0                              *
2176  *        r2       - outside radiuses at z=0     1672  *        r2       - outside radiuses at z=0                           *
2177  *        sqrtan1  - sqr of tan of Inner Ster    1673  *        sqrtan1  - sqr of tan of Inner Stereo Angle                  *
2178  *        sqrtan2  - sqr of tan of Outer Ster    1674  *        sqrtan2  - sqr of tan of Outer Stereo Angle                  *
2179  *        halfZ    - half length in Z            1675  *        halfZ    - half length in Z                                  *
2180  *                                               1676  *                                                                     *
2181  ********************************************    1677  ***********************************************************************/
2182 {                                                1678 {
2183   static const G4double wholeCircle = twopi;  << 1679   static const G4double wholeCircle=twopi;
2184                                                  1680 
2185   //   C H E C K   I N P U T   P A R A M E T     1681   //   C H E C K   I N P U T   P A R A M E T E R S
2186                                                  1682 
2187   G4int k = 0;                                   1683   G4int k = 0;
2188   if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1;  << 1684   if (r2 < 0. || r1 < 0. )        k = 1;
2189   if (halfZ <= 0.) k += 2;                    << 1685   if (r1 > r2 )                   k = 1;
2190   if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4;    << 1686   if (r1 == r2)                   k = 1;
2191                                                  1687 
                                                   >> 1688   if (halfZ <= 0.) k += 2;
                                                   >> 1689  
                                                   >> 1690   if (sqrtan1<0.||sqrtan2<0.) k += 4;  
                                                   >> 1691  
2192   if (k != 0)                                    1692   if (k != 0)
2193   {                                              1693   {
2194     std::cerr << "HepPolyhedronHype: error in    1694     std::cerr << "HepPolyhedronHype: error in input parameters";
2195     if ((k & 1) != 0) std::cerr << " (radiuse    1695     if ((k & 1) != 0) std::cerr << " (radiuses)";
2196     if ((k & 2) != 0) std::cerr << " (half-le    1696     if ((k & 2) != 0) std::cerr << " (half-length)";
2197     if ((k & 4) != 0) std::cerr << " (angles)    1697     if ((k & 4) != 0) std::cerr << " (angles)";
2198     std::cerr << std::endl;                      1698     std::cerr << std::endl;
2199     std::cerr << " r1=" << r1 << " r2=" << r2    1699     std::cerr << " r1=" << r1 << " r2=" << r2;
2200     std::cerr << " halfZ=" << halfZ << " sqrT    1700     std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1
2201               << " sqrTan2=" << sqrtan2          1701               << " sqrTan2=" << sqrtan2
2202               << std::endl;                      1702               << std::endl;
2203     return;                                      1703     return;
2204   }                                              1704   }
2205                                               << 1705   
2206   //   P R E P A R E   T W O   P O L Y L I N     1706   //   P R E P A R E   T W O   P O L Y L I N E S
2207                                                  1707 
2208   G4int ns = std::max(3, GetNumberOfRotationS << 1708   G4int n = GetNumberOfRotationSteps();
2209   G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1;   << 1709   G4double dz = 2.*halfZ / n;
2210   G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1;   << 1710   G4double k1 = r1*r1;
2211   auto  zz = new G4double[nz1 + nz2];         << 1711   G4double k2 = r2*r2;
2212   auto  rr = new G4double[nz1 + nz2];         << 1712 
2213                                               << 1713   G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1];
2214   // external polyline                        << 1714 
2215   G4double dz2 = 2.*halfZ/(nz2 - 1);          << 1715   zz[0] = halfZ;
2216   for(G4int i = 0; i < nz2; ++i)              << 1716   rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2);
                                                   >> 1717 
                                                   >> 1718   for(G4int i = 1; i < n-1; i++)
2217   {                                              1719   {
2218     zz[i] = halfZ - dz2*i;                    << 1720     zz[i] = zz[i-1] - dz;
2219     rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1721     rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2);
2220   }                                              1722   }
2221                                                  1723 
2222   // internal polyline                        << 1724   zz[n-1] = -halfZ;
2223   G4double dz1 = 2.*halfZ/(nz1 - 1);          << 1725   rr[n-1] = rr[0];
2224   for(G4int i = 0; i < nz1; ++i)              << 1726 
                                                   >> 1727   zz[n] = halfZ;
                                                   >> 1728   rr[n] =  std::sqrt(sqrtan1*halfZ*halfZ+k1);
                                                   >> 1729 
                                                   >> 1730   for(G4int i = n+1; i < n+n; i++)
2225   {                                              1731   {
2226     G4int j = nz2 + i;                        << 1732     zz[i] = zz[i-1] - dz;
2227     zz[j] = halfZ - dz1*i;                    << 1733     rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1);
2228     rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 
2229   }                                              1734   }
                                                   >> 1735   zz[n+n] = -halfZ;
                                                   >> 1736   rr[n+n] = rr[n];
2230                                                  1737 
2231   //   R O T A T E    P O L Y L I N E S          1738   //   R O T A T E    P O L Y L I N E S
2232                                                  1739 
2233   RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1740   RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 
2234   SetReferences();                               1741   SetReferences();
2235                                                  1742 
2236   delete [] zz;                                  1743   delete [] zz;
2237   delete [] rr;                                  1744   delete [] rr;
2238 }                                                1745 }
2239                                                  1746 
2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1747 HepPolyhedronHype::~HepPolyhedronHype() {}
2241                                                  1748 
2242 HepPolyhedronCons::HepPolyhedronCons(G4double    1749 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1,
2243                                      G4double    1750                                      G4double Rmx1,
2244                                      G4double    1751                                      G4double Rmn2,
2245                                      G4double << 1752                                      G4double Rmx2, 
2246                                      G4double    1753                                      G4double Dz,
2247                                      G4double    1754                                      G4double Phi1,
2248                                      G4double << 1755                                      G4double Dphi) 
2249 /********************************************    1756 /***********************************************************************
2250  *                                               1757  *                                                                     *
2251  * Name: HepPolyhedronCons::HepPolyhedronCons    1758  * Name: HepPolyhedronCons::HepPolyhedronCons        Date:    15.12.96 *
2252  * Author: E.Chernyaev (IHEP/Protvino)           1759  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 15.12.96 *
2253  *                                               1760  *                                                                     *
2254  * Function: Constructor for CONS, TUBS, CONE    1761  * Function: Constructor for CONS, TUBS, CONE, TUBE                    *
2255  *                                               1762  *                                                                     *
2256  * Input: Rmn1, Rmx1 - inside and outside rad    1763  * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz              *
2257  *        Rmn2, Rmx2 - inside and outside rad    1764  *        Rmn2, Rmx2 - inside and outside radiuses at +Dz              *
2258  *        Dz         - half length in Z          1765  *        Dz         - half length in Z                                *
2259  *        Phi1       - starting angle of the     1766  *        Phi1       - starting angle of the segment                   *
2260  *        Dphi       - segment range             1767  *        Dphi       - segment range                                   *
2261  *                                               1768  *                                                                     *
2262  ********************************************    1769  ***********************************************************************/
2263 {                                                1770 {
2264   static const G4double wholeCircle=twopi;       1771   static const G4double wholeCircle=twopi;
2265                                                  1772 
2266   //   C H E C K   I N P U T   P A R A M E T     1773   //   C H E C K   I N P U T   P A R A M E T E R S
2267                                                  1774 
2268   G4int k = 0;                                   1775   G4int k = 0;
2269   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. ||     1776   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.)        k = 1;
2270   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                1777   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                              k = 1;
2271   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)              1778   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)                            k = 1;
2272                                                  1779 
2273   if (Dz <= 0.) k += 2;                          1780   if (Dz <= 0.) k += 2;
2274                                               << 1781  
2275   G4double phi1, phi2, dphi;                     1782   G4double phi1, phi2, dphi;
2276   if (Dphi < 0.) {                               1783   if (Dphi < 0.) {
2277     phi2 = Phi1; phi1 = phi2 - Dphi;             1784     phi2 = Phi1; phi1 = phi2 - Dphi;
2278   }else if (Dphi == 0.) {                        1785   }else if (Dphi == 0.) {
2279     phi1 = Phi1; phi2 = phi1 + wholeCircle;      1786     phi1 = Phi1; phi2 = phi1 + wholeCircle;
2280   }else{                                         1787   }else{
2281     phi1 = Phi1; phi2 = phi1 + Dphi;             1788     phi1 = Phi1; phi2 = phi1 + Dphi;
2282   }                                              1789   }
2283   dphi  = phi2 - phi1;                           1790   dphi  = phi2 - phi1;
2284   if (std::abs(dphi-wholeCircle) < perMillion    1791   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2285   if (dphi > wholeCircle) k += 4;             << 1792   if (dphi > wholeCircle) k += 4; 
2286                                                  1793 
2287   if (k != 0) {                                  1794   if (k != 0) {
2288     std::cerr << "HepPolyhedronCone(s)/Tube(s    1795     std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters";
2289     if ((k & 1) != 0) std::cerr << " (radiuse    1796     if ((k & 1) != 0) std::cerr << " (radiuses)";
2290     if ((k & 2) != 0) std::cerr << " (half-le    1797     if ((k & 2) != 0) std::cerr << " (half-length)";
2291     if ((k & 4) != 0) std::cerr << " (angles)    1798     if ((k & 4) != 0) std::cerr << " (angles)";
2292     std::cerr << std::endl;                      1799     std::cerr << std::endl;
2293     std::cerr << " Rmn1=" << Rmn1 << " Rmx1="    1800     std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1;
2294     std::cerr << " Rmn2=" << Rmn2 << " Rmx2="    1801     std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2;
2295     std::cerr << " Dz=" << Dz << " Phi1=" <<     1802     std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi
2296               << std::endl;                      1803               << std::endl;
2297     return;                                      1804     return;
2298   }                                              1805   }
2299                                               << 1806   
2300   //   P R E P A R E   T W O   P O L Y L I N     1807   //   P R E P A R E   T W O   P O L Y L I N E S
2301                                                  1808 
2302   G4double zz[4], rr[4];                         1809   G4double zz[4], rr[4];
2303   zz[0] =  Dz;                                << 1810   zz[0] =  Dz; 
2304   zz[1] = -Dz;                                << 1811   zz[1] = -Dz; 
2305   zz[2] =  Dz;                                << 1812   zz[2] =  Dz; 
2306   zz[3] = -Dz;                                << 1813   zz[3] = -Dz; 
2307   rr[0] =  Rmx2;                                 1814   rr[0] =  Rmx2;
2308   rr[1] =  Rmx1;                                 1815   rr[1] =  Rmx1;
2309   rr[2] =  Rmn2;                                 1816   rr[2] =  Rmn2;
2310   rr[3] =  Rmn1;                                 1817   rr[3] =  Rmn1;
2311                                                  1818 
2312   //   R O T A T E    P O L Y L I N E S          1819   //   R O T A T E    P O L Y L I N E S
2313                                                  1820 
2314   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr,  << 1821   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 
2315   SetReferences();                               1822   SetReferences();
2316 }                                                1823 }
2317                                                  1824 
2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1825 HepPolyhedronCons::~HepPolyhedronCons() {}
2319                                                  1826 
2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1827 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 
2321                                      G4double    1828                                      G4double Rmn2, G4double Rmx2,
2322                                      G4double    1829                                      G4double Dz) :
2323   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D    1830   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {}
2324                                                  1831 
2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1832 HepPolyhedronCone::~HepPolyhedronCone() {}
2326                                                  1833 
2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double    1834 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax,
2328                                      G4double << 1835                                      G4double Dz, 
2329                                      G4double    1836                                      G4double Phi1, G4double Dphi)
2330   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rma    1837   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {}
2331                                                  1838 
2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1839 HepPolyhedronTubs::~HepPolyhedronTubs() {}
2333                                                  1840 
2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl    1841 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax,
2335                                       G4doubl    1842                                       G4double Dz)
2336   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax,    1843   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {}
2337                                                  1844 
2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1845 HepPolyhedronTube::~HepPolyhedronTube () {}
2339                                                  1846 
2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double    1847 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi,
2341                                      G4double    1848                                      G4double dphi,
2342                                      G4int np << 1849                                      G4int    npdv,
2343                                      G4int nz << 1850                                      G4int    nz,
2344                                      const G4    1851                                      const G4double *z,
2345                                      const G4    1852                                      const G4double *rmin,
2346                                      const G4    1853                                      const G4double *rmax)
2347 /********************************************    1854 /***********************************************************************
2348  *                                               1855  *                                                                     *
2349  * Name: HepPolyhedronPgon                       1856  * Name: HepPolyhedronPgon                           Date:    09.12.96 *
2350  * Author: E.Chernyaev                           1857  * Author: E.Chernyaev                               Revised:          *
2351  *                                               1858  *                                                                     *
2352  * Function: Constructor of polyhedron for PG    1859  * Function: Constructor of polyhedron for PGON, PCON                  *
2353  *                                               1860  *                                                                     *
2354  * Input: phi  - initial phi                     1861  * Input: phi  - initial phi                                           *
2355  *        dphi - delta phi                       1862  *        dphi - delta phi                                             *
2356  *        npdv - number of steps along phi       1863  *        npdv - number of steps along phi                             *
2357  *        nz   - number of z-planes (at least    1864  *        nz   - number of z-planes (at least two)                     *
2358  *        z[]  - z coordinates of the slices     1865  *        z[]  - z coordinates of the slices                           *
2359  *        rmin[] - smaller r at the slices       1866  *        rmin[] - smaller r at the slices                             *
2360  *        rmax[] - bigger  r at the slices       1867  *        rmax[] - bigger  r at the slices                             *
2361  *                                               1868  *                                                                     *
2362  ********************************************    1869  ***********************************************************************/
2363 {                                                1870 {
2364   //   C H E C K   I N P U T   P A R A M E T     1871   //   C H E C K   I N P U T   P A R A M E T E R S
2365                                                  1872 
2366   if (dphi <= 0. || dphi > twopi) {              1873   if (dphi <= 0. || dphi > twopi) {
2367     std::cerr                                    1874     std::cerr
2368       << "HepPolyhedronPgon/Pcon: wrong delta    1875       << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi
2369       << std::endl;                              1876       << std::endl;
2370     return;                                      1877     return;
2371   }                                           << 1878   }    
2372                                               << 1879     
2373   if (nz < 2) {                                  1880   if (nz < 2) {
2374     std::cerr                                    1881     std::cerr
2375       << "HepPolyhedronPgon/Pcon: number of z    1882       << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz
2376       << std::endl;                              1883       << std::endl;
2377     return;                                      1884     return;
2378   }                                              1885   }
2379                                                  1886 
2380   if (npdv < 0) {                                1887   if (npdv < 0) {
2381     std::cerr                                    1888     std::cerr
2382       << "HepPolyhedronPgon/Pcon: error in nu    1889       << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv
2383       << std::endl;                              1890       << std::endl;
2384     return;                                      1891     return;
2385   }                                              1892   }
2386                                                  1893 
2387   G4int i;                                       1894   G4int i;
2388   for (i=0; i<nz; i++) {                         1895   for (i=0; i<nz; i++) {
2389     if (rmin[i] < 0. || rmax[i] < 0. || rmin[    1896     if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) {
2390       std::cerr                                  1897       std::cerr
2391         << "HepPolyhedronPgon: error in radiu    1898         << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]="
2392         << rmin[i] << " rmax[" << i << "]=" <    1899         << rmin[i] << " rmax[" << i << "]=" << rmax[i]
2393         << std::endl;                            1900         << std::endl;
2394       return;                                    1901       return;
2395     }                                            1902     }
2396   }                                              1903   }
2397                                                  1904 
2398   //   P R E P A R E   T W O   P O L Y L I N     1905   //   P R E P A R E   T W O   P O L Y L I N E S
2399                                                  1906 
2400   G4double *zz, *rr;                             1907   G4double *zz, *rr;
2401   zz = new G4double[2*nz];                       1908   zz = new G4double[2*nz];
2402   rr = new G4double[2*nz];                       1909   rr = new G4double[2*nz];
2403                                                  1910 
2404   if (z[0] > z[nz-1]) {                          1911   if (z[0] > z[nz-1]) {
2405     for (i=0; i<nz; i++) {                       1912     for (i=0; i<nz; i++) {
2406       zz[i]    = z[i];                           1913       zz[i]    = z[i];
2407       rr[i]    = rmax[i];                        1914       rr[i]    = rmax[i];
2408       zz[i+nz] = z[i];                           1915       zz[i+nz] = z[i];
2409       rr[i+nz] = rmin[i];                        1916       rr[i+nz] = rmin[i];
2410     }                                            1917     }
2411   }else{                                         1918   }else{
2412     for (i=0; i<nz; i++) {                       1919     for (i=0; i<nz; i++) {
2413       zz[i]    = z[nz-i-1];                      1920       zz[i]    = z[nz-i-1];
2414       rr[i]    = rmax[nz-i-1];                   1921       rr[i]    = rmax[nz-i-1];
2415       zz[i+nz] = z[nz-i-1];                      1922       zz[i+nz] = z[nz-i-1];
2416       rr[i+nz] = rmin[nz-i-1];                   1923       rr[i+nz] = rmin[nz-i-1];
2417     }                                            1924     }
2418   }                                              1925   }
2419                                                  1926 
2420   //   R O T A T E    P O L Y L I N E S          1927   //   R O T A T E    P O L Y L I N E S
2421                                                  1928 
2422   G4int nodeVis = 1;                          << 1929   RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 
2423   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2424   RotateAroundZ(npdv, phi, dphi, nz, nz, zz,  << 
2425   SetReferences();                               1930   SetReferences();
2426                                               << 1931   
2427   delete [] zz;                                  1932   delete [] zz;
2428   delete [] rr;                                  1933   delete [] rr;
2429 }                                                1934 }
2430                                                  1935 
2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1936 HepPolyhedronPgon::~HepPolyhedronPgon() {}
2432                                      G4double << 
2433                                      G4int np << 
2434                                      const st << 
2435 /******************************************** << 
2436  *                                            << 
2437  * Name: HepPolyhedronPgon                    << 
2438  * Author: E.Tcherniaev (E.Chernyaev)         << 
2439  *                                            << 
2440  * Function: Constructor of polyhedron for PG << 
2441  *                                            << 
2442  * Input: phi  - initial phi                  << 
2443  *        dphi - delta phi                    << 
2444  *        npdv - number of steps along phi    << 
2445  *        rz   - rz-contour                   << 
2446  *                                            << 
2447  ******************************************** << 
2448 {                                             << 
2449   //   C H E C K   I N P U T   P A R A M E T  << 
2450                                               << 
2451   if (dphi <= 0. || dphi > twopi) {           << 
2452     std::cerr                                 << 
2453       << "HepPolyhedronPgon/Pcon: wrong delta << 
2454       << std::endl;                           << 
2455     return;                                   << 
2456   }                                           << 
2457                                               << 
2458   if (npdv < 0) {                             << 
2459     std::cerr                                 << 
2460       << "HepPolyhedronPgon/Pcon: error in nu << 
2461       << std::endl;                           << 
2462     return;                                   << 
2463   }                                           << 
2464                                               << 
2465   G4int nrz = (G4int)rz.size();               << 
2466   if (nrz < 3) {                              << 
2467     std::cerr                                 << 
2468       << "HepPolyhedronPgon/Pcon: invalid num << 
2469       << std::endl;                           << 
2470     return;                                   << 
2471   }                                           << 
2472                                               << 
2473   //   R O T A T E    P O L Y L I N E         << 
2474                                               << 
2475   G4int nodeVis = 1;                          << 
2476   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2477   RotateContourAroundZ(npdv, phi, dphi, rz, n << 
2478   SetReferences();                            << 
2479 }                                             << 
2480                                               << 
2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 
2482                                                  1937 
2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double    1938 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz,
2484                                      const G4    1939                                      const G4double *z,
2485                                      const G4    1940                                      const G4double *rmin,
2486                                      const G4    1941                                      const G4double *rmax)
2487   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm    1942   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {}
2488                                                  1943 
2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1944 HepPolyhedronPcon::~HepPolyhedronPcon() {}
2490                                      const st << 
2491   : HepPolyhedronPgon(phi, dphi, 0, rz) {}    << 
2492                                               << 
2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 
2494                                                  1945 
2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do    1946 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax,
2496                                          G4do    1947                                          G4double phi, G4double dphi,
2497                                          G4do    1948                                          G4double the, G4double dthe)
2498 /********************************************    1949 /***********************************************************************
2499  *                                               1950  *                                                                     *
2500  * Name: HepPolyhedronSphere                     1951  * Name: HepPolyhedronSphere                         Date:    11.12.96 *
2501  * Author: E.Chernyaev (IHEP/Protvino)           1952  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2502  *                                               1953  *                                                                     *
2503  * Function: Constructor of polyhedron for SP    1954  * Function: Constructor of polyhedron for SPHERE                      *
2504  *                                               1955  *                                                                     *
2505  * Input: rmin - internal radius                 1956  * Input: rmin - internal radius                                       *
2506  *        rmax - external radius                 1957  *        rmax - external radius                                       *
2507  *        phi  - initial phi                     1958  *        phi  - initial phi                                           *
2508  *        dphi - delta phi                       1959  *        dphi - delta phi                                             *
2509  *        the  - initial theta                   1960  *        the  - initial theta                                         *
2510  *        dthe - delta theta                     1961  *        dthe - delta theta                                           *
2511  *                                               1962  *                                                                     *
2512  ********************************************    1963  ***********************************************************************/
2513 {                                                1964 {
2514   //   C H E C K   I N P U T   P A R A M E T     1965   //   C H E C K   I N P U T   P A R A M E T E R S
2515                                                  1966 
2516   if (dphi <= 0. || dphi > twopi) {              1967   if (dphi <= 0. || dphi > twopi) {
2517     std::cerr                                    1968     std::cerr
2518       << "HepPolyhedronSphere: wrong delta ph    1969       << "HepPolyhedronSphere: wrong delta phi = " << dphi
2519       << std::endl;                              1970       << std::endl;
2520     return;                                      1971     return;
2521   }                                           << 1972   }    
2522                                                  1973 
2523   if (the < 0. || the > pi) {                    1974   if (the < 0. || the > pi) {
2524     std::cerr                                    1975     std::cerr
2525       << "HepPolyhedronSphere: wrong theta =     1976       << "HepPolyhedronSphere: wrong theta = " << the
2526       << std::endl;                              1977       << std::endl;
2527     return;                                      1978     return;
2528   }                                           << 1979   }    
2529                                               << 1980   
2530   if (dthe <= 0. || dthe > pi) {                 1981   if (dthe <= 0. || dthe > pi) {
2531     std::cerr                                    1982     std::cerr
2532       << "HepPolyhedronSphere: wrong delta th    1983       << "HepPolyhedronSphere: wrong delta theta = " << dthe
2533       << std::endl;                              1984       << std::endl;
2534     return;                                      1985     return;
2535   }                                           << 1986   }    
2536                                                  1987 
2537   if (the+dthe > pi) {                           1988   if (the+dthe > pi) {
2538     std::cerr                                    1989     std::cerr
2539       << "HepPolyhedronSphere: wrong theta +     1990       << "HepPolyhedronSphere: wrong theta + delta theta = "
2540       << the << " " << dthe                      1991       << the << " " << dthe
2541       << std::endl;                              1992       << std::endl;
2542     return;                                      1993     return;
2543   }                                           << 1994   }    
2544                                               << 1995   
2545   if (rmin < 0. || rmin >= rmax) {               1996   if (rmin < 0. || rmin >= rmax) {
2546     std::cerr                                    1997     std::cerr
2547       << "HepPolyhedronSphere: error in radiu    1998       << "HepPolyhedronSphere: error in radiuses"
2548       << " rmin=" << rmin << " rmax=" << rmax    1999       << " rmin=" << rmin << " rmax=" << rmax
2549       << std::endl;                              2000       << std::endl;
2550     return;                                      2001     return;
2551   }                                              2002   }
2552                                                  2003 
2553   //   P R E P A R E   T W O   P O L Y L I N     2004   //   P R E P A R E   T W O   P O L Y L I N E S
2554                                                  2005 
2555   G4int nds = (GetNumberOfRotationSteps() + 1    2006   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2556   G4int np1 = G4int(dthe*nds/pi+.5) + 1;         2007   G4int np1 = G4int(dthe*nds/pi+.5) + 1;
2557   if (np1 <= 1) np1 = 2;                         2008   if (np1 <= 1) np1 = 2;
2558   G4int np2 = rmin < spatialTolerance ? 1 : n    2009   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2559                                                  2010 
2560   G4double *zz, *rr;                             2011   G4double *zz, *rr;
2561   zz = new G4double[np1+np2];                    2012   zz = new G4double[np1+np2];
2562   rr = new G4double[np1+np2];                    2013   rr = new G4double[np1+np2];
2563                                                  2014 
2564   G4double a = dthe/(np1-1);                     2015   G4double a = dthe/(np1-1);
2565   G4double cosa, sina;                           2016   G4double cosa, sina;
2566   for (G4int i=0; i<np1; i++) {                  2017   for (G4int i=0; i<np1; i++) {
2567     cosa  = std::cos(the+i*a);                   2018     cosa  = std::cos(the+i*a);
2568     sina  = std::sin(the+i*a);                   2019     sina  = std::sin(the+i*a);
2569     zz[i] = rmax*cosa;                           2020     zz[i] = rmax*cosa;
2570     rr[i] = rmax*sina;                           2021     rr[i] = rmax*sina;
2571     if (np2 > 1) {                               2022     if (np2 > 1) {
2572       zz[i+np1] = rmin*cosa;                     2023       zz[i+np1] = rmin*cosa;
2573       rr[i+np1] = rmin*sina;                     2024       rr[i+np1] = rmin*sina;
2574     }                                            2025     }
2575   }                                              2026   }
2576   if (np2 == 1) {                                2027   if (np2 == 1) {
2577     zz[np1] = 0.;                                2028     zz[np1] = 0.;
2578     rr[np1] = 0.;                                2029     rr[np1] = 0.;
2579   }                                              2030   }
2580                                                  2031 
2581   //   R O T A T E    P O L Y L I N E S          2032   //   R O T A T E    P O L Y L I N E S
2582                                                  2033 
2583   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 2034   RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 
2584   SetReferences();                               2035   SetReferences();
2585                                               << 2036   
2586   delete [] zz;                                  2037   delete [] zz;
2587   delete [] rr;                                  2038   delete [] rr;
2588 }                                                2039 }
2589                                                  2040 
2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 2041 HepPolyhedronSphere::~HepPolyhedronSphere() {}
2591                                                  2042 
2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub    2043 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin,
2593                                        G4doub    2044                                        G4double rmax,
2594                                        G4doub    2045                                        G4double rtor,
2595                                        G4doub    2046                                        G4double phi,
2596                                        G4doub    2047                                        G4double dphi)
2597 /********************************************    2048 /***********************************************************************
2598  *                                               2049  *                                                                     *
2599  * Name: HepPolyhedronTorus                      2050  * Name: HepPolyhedronTorus                          Date:    11.12.96 *
2600  * Author: E.Chernyaev (IHEP/Protvino)           2051  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2601  *                                               2052  *                                                                     *
2602  * Function: Constructor of polyhedron for TO    2053  * Function: Constructor of polyhedron for TORUS                       *
2603  *                                               2054  *                                                                     *
2604  * Input: rmin - internal radius                 2055  * Input: rmin - internal radius                                       *
2605  *        rmax - external radius                 2056  *        rmax - external radius                                       *
2606  *        rtor - radius of torus                 2057  *        rtor - radius of torus                                       *
2607  *        phi  - initial phi                     2058  *        phi  - initial phi                                           *
2608  *        dphi - delta phi                       2059  *        dphi - delta phi                                             *
2609  *                                               2060  *                                                                     *
2610  ********************************************    2061  ***********************************************************************/
2611 {                                                2062 {
2612   //   C H E C K   I N P U T   P A R A M E T     2063   //   C H E C K   I N P U T   P A R A M E T E R S
2613                                                  2064 
2614   if (dphi <= 0. || dphi > twopi) {              2065   if (dphi <= 0. || dphi > twopi) {
2615     std::cerr                                    2066     std::cerr
2616       << "HepPolyhedronTorus: wrong delta phi    2067       << "HepPolyhedronTorus: wrong delta phi = " << dphi
2617       << std::endl;                              2068       << std::endl;
2618     return;                                      2069     return;
2619   }                                              2070   }
2620                                                  2071 
2621   if (rmin < 0. || rmin >= rmax || rmax >= rt    2072   if (rmin < 0. || rmin >= rmax || rmax >= rtor) {
2622     std::cerr                                    2073     std::cerr
2623       << "HepPolyhedronTorus: error in radius    2074       << "HepPolyhedronTorus: error in radiuses"
2624       << " rmin=" << rmin << " rmax=" << rmax    2075       << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor
2625       << std::endl;                              2076       << std::endl;
2626     return;                                      2077     return;
2627   }                                              2078   }
2628                                                  2079 
2629   //   P R E P A R E   T W O   P O L Y L I N     2080   //   P R E P A R E   T W O   P O L Y L I N E S
2630                                                  2081 
2631   G4int np1 = GetNumberOfRotationSteps();        2082   G4int np1 = GetNumberOfRotationSteps();
                                                   >> 2083   assert(np1>0);
2632   G4int np2 = rmin < spatialTolerance ? 1 : n    2084   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2633                                                  2085 
2634   G4double *zz, *rr;                             2086   G4double *zz, *rr;
2635   zz = new G4double[np1+np2];                    2087   zz = new G4double[np1+np2];
2636   rr = new G4double[np1+np2];                    2088   rr = new G4double[np1+np2];
2637                                                  2089 
2638   G4double a = twopi/np1;                        2090   G4double a = twopi/np1;
2639   G4double cosa, sina;                           2091   G4double cosa, sina;
2640   for (G4int i=0; i<np1; i++) {                  2092   for (G4int i=0; i<np1; i++) {
2641     cosa  = std::cos(i*a);                       2093     cosa  = std::cos(i*a);
2642     sina  = std::sin(i*a);                       2094     sina  = std::sin(i*a);
2643     zz[i] = rmax*cosa;                           2095     zz[i] = rmax*cosa;
2644     rr[i] = rtor+rmax*sina;                      2096     rr[i] = rtor+rmax*sina;
2645     if (np2 > 1) {                               2097     if (np2 > 1) {
2646       zz[i+np1] = rmin*cosa;                     2098       zz[i+np1] = rmin*cosa;
2647       rr[i+np1] = rtor+rmin*sina;                2099       rr[i+np1] = rtor+rmin*sina;
2648     }                                            2100     }
2649   }                                              2101   }
2650   if (np2 == 1) {                                2102   if (np2 == 1) {
2651     zz[np1] = 0.;                                2103     zz[np1] = 0.;
2652     rr[np1] = rtor;                              2104     rr[np1] = rtor;
2653     np2 = -1;                                    2105     np2 = -1;
2654   }                                              2106   }
2655                                                  2107 
2656   //   R O T A T E    P O L Y L I N E S          2108   //   R O T A T E    P O L Y L I N E S
2657                                                  2109 
2658   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2110   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 
2659   SetReferences();                               2111   SetReferences();
2660                                               << 2112   
2661   delete [] zz;                                  2113   delete [] zz;
2662   delete [] rr;                                  2114   delete [] rr;
2663 }                                                2115 }
2664                                                  2116 
2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2117 HepPolyhedronTorus::~HepPolyhedronTorus() {}
2666                                               << 
2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 
2668                                    const G4do << 
2669                                    const G4do << 
2670                                    const G4do << 
2671 /******************************************** << 
2672  *                                            << 
2673  * Name: HepPolyhedronTet                     << 
2674  * Author: E.Tcherniaev (E.Chernyaev)         << 
2675  *                                            << 
2676  * Function: Constructor of polyhedron for TE << 
2677  *                                            << 
2678  * Input: p0,p1,p2,p3 - vertices              << 
2679  *                                            << 
2680  ******************************************** << 
2681 {                                             << 
2682   AllocateMemory(4,4);                        << 
2683                                               << 
2684   pV[1].set(p0[0], p0[1], p0[2]);             << 
2685   pV[2].set(p1[0], p1[1], p1[2]);             << 
2686   pV[3].set(p2[0], p2[1], p2[2]);             << 
2687   pV[4].set(p3[0], p3[1], p3[2]);             << 
2688                                               << 
2689   G4Vector3D v1(pV[2] - pV[1]);               << 
2690   G4Vector3D v2(pV[3] - pV[1]);               << 
2691   G4Vector3D v3(pV[4] - pV[1]);               << 
2692                                               << 
2693   if (v1.cross(v2).dot(v3) < 0.)              << 
2694   {                                           << 
2695     pV[3].set(p3[0], p3[1], p3[2]);           << 
2696     pV[4].set(p2[0], p2[1], p2[2]);           << 
2697   }                                           << 
2698                                               << 
2699   pF[1] = G4Facet(1,2,  3,4,  2,3);           << 
2700   pF[2] = G4Facet(1,3,  4,4,  3,1);           << 
2701   pF[3] = G4Facet(1,1,  2,4,  4,2);           << 
2702   pF[4] = G4Facet(2,1,  3,2,  4,3);           << 
2703 }                                             << 
2704                                               << 
2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 
2706                                                  2118 
2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi    2119 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by,
2708                                                  2120                                                G4double cz, G4double zCut1,
2709                                                  2121                                                G4double zCut2)
2710 /********************************************    2122 /***********************************************************************
2711  *                                               2123  *                                                                     *
2712  * Name: HepPolyhedronEllipsoid                  2124  * Name: HepPolyhedronEllipsoid                      Date:    25.02.05 *
2713  * Author: G.Guerrieri                           2125  * Author: G.Guerrieri                               Revised:          *
2714  *         Evgueni Tcherniaev                 << 
2715  *                                               2126  *                                                                     *
2716  * Function: Constructor of polyhedron for EL    2127  * Function: Constructor of polyhedron for ELLIPSOID                   *
2717  *                                               2128  *                                                                     *
2718  * Input: ax - semiaxis x                        2129  * Input: ax - semiaxis x                                              *
2719  *        by - semiaxis y                        2130  *        by - semiaxis y                                              *
2720  *        cz - semiaxis z                        2131  *        cz - semiaxis z                                              *
2721  *        zCut1 - lower cut plane level (soli    2132  *        zCut1 - lower cut plane level (solid lies above this plane)  *
2722  *        zCut2 - upper cut plane level (soli    2133  *        zCut2 - upper cut plane level (solid lies below this plane)  *
2723  *                                               2134  *                                                                     *
2724  ********************************************    2135  ***********************************************************************/
2725 {                                                2136 {
2726   //   C H E C K   I N P U T   P A R A M E T     2137   //   C H E C K   I N P U T   P A R A M E T E R S
2727                                                  2138 
2728   if (zCut1 >= cz || zCut2 <= -cz || zCut1 >     2139   if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) {
2729     std::cerr << "HepPolyhedronEllipsoid: wro    2140     std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1
2730            << " zCut2 = " << zCut2               2141            << " zCut2 = " << zCut2
2731            << " for given cz = " << cz << std    2142            << " for given cz = " << cz << std::endl;
2732     return;                                      2143     return;
2733   }                                              2144   }
2734   if (cz <= 0.0) {                               2145   if (cz <= 0.0) {
2735     std::cerr << "HepPolyhedronEllipsoid: bad    2146     std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz
2736       << std::endl;                              2147       << std::endl;
2737     return;                                      2148     return;
2738   }                                              2149   }
2739                                                  2150 
                                                   >> 2151   G4double dthe;
                                                   >> 2152   G4double sthe;
                                                   >> 2153   G4int cutflag;
                                                   >> 2154   cutflag= 0;
                                                   >> 2155   if (zCut2 >= cz)
                                                   >> 2156     {
                                                   >> 2157       sthe= 0.0;
                                                   >> 2158     }
                                                   >> 2159   else
                                                   >> 2160     {
                                                   >> 2161       sthe= std::acos(zCut2/cz);
                                                   >> 2162       cutflag++;
                                                   >> 2163     }
                                                   >> 2164   if (zCut1 <= -cz)
                                                   >> 2165     {
                                                   >> 2166       dthe= pi - sthe;
                                                   >> 2167     }
                                                   >> 2168   else
                                                   >> 2169     {
                                                   >> 2170       dthe= std::acos(zCut1/cz)-sthe;
                                                   >> 2171       cutflag++;
                                                   >> 2172     }
                                                   >> 2173 
2740   //   P R E P A R E   T W O   P O L Y L I N     2174   //   P R E P A R E   T W O   P O L Y L I N E S
2741   //   generate sphere of radius cz first, th    2175   //   generate sphere of radius cz first, then rescale x and y later
2742                                                  2176 
2743   G4double sthe = std::acos(zCut2/cz);        << 2177   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2744   G4double dthe = std::acos(zCut1/cz) - sthe; << 2178   G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag;
2745   G4int nds = (GetNumberOfRotationSteps() + 1 << 
2746   G4int np1 = G4int(dthe*nds/pi + 0.5) + 1;   << 
2747   if (np1 <= 1) np1 = 2;                      << 
2748   G4int np2 = 2;                              << 
2749                                                  2179 
2750   G4double *zz, *rr;                             2180   G4double *zz, *rr;
2751   zz = new G4double[np1 + np2];               << 2181   zz = new G4double[np1+1];
2752   rr = new G4double[np1 + np2];               << 2182   rr = new G4double[np1+1];
2753   if ((zz == nullptr) || (rr == nullptr))     << 2183   if (!zz || !rr)
2754   {                                           << 2184     {
2755     G4Exception("HepPolyhedronEllipsoid::HepP << 2185       G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid",
2756                 "greps1002", FatalException,  << 2186                   "greps1002", FatalException, "Out of memory");
2757   }                                           << 2187     }
2758                                                  2188 
2759   G4double a = dthe/(np1 - 1);                << 2189   G4double a = dthe/(np1-cutflag-1);
2760   G4double cosa, sina;                           2190   G4double cosa, sina;
2761   for (G4int i = 0; i < np1; ++i)             << 2191   G4int j=0;
2762   {                                           << 2192   if (sthe > 0.0)
2763     cosa  = std::cos(sthe + i*a);             << 2193     {
2764     sina  = std::sin(sthe + i*a);             << 2194       zz[j]= zCut2;
2765     zz[i] = cz*cosa;                          << 2195       rr[j]= 0.;
2766     rr[i] = cz*sina;                          << 2196       j++;
2767   }                                           << 2197     }
2768   zz[np1 + 0] = zCut2;                        << 2198   for (G4int i=0; i<np1-cutflag; i++) {
2769   rr[np1 + 0] = 0.;                           << 2199     cosa  = std::cos(sthe+i*a);
2770   zz[np1 + 1] = zCut1;                        << 2200     sina  = std::sin(sthe+i*a);
2771   rr[np1 + 1] = 0.;                           << 2201     zz[j] = cz*cosa;
                                                   >> 2202     rr[j] = cz*sina;
                                                   >> 2203     j++;
                                                   >> 2204   }
                                                   >> 2205   if (j < np1)
                                                   >> 2206     {
                                                   >> 2207       zz[j]= zCut1;
                                                   >> 2208       rr[j]= 0.;
                                                   >> 2209       j++;
                                                   >> 2210     }
                                                   >> 2211   if (j > np1)
                                                   >> 2212     {
                                                   >> 2213       std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!"
                                                   >> 2214                 << std::endl;
                                                   >> 2215     }
                                                   >> 2216   if (j < np1)
                                                   >> 2217     {
                                                   >> 2218       std::cerr << "Warning: logic error in HepPolyhedronEllipsoid."
                                                   >> 2219                 << std::endl;
                                                   >> 2220       np1= j;
                                                   >> 2221     }
                                                   >> 2222   zz[j] = 0.;
                                                   >> 2223   rr[j] = 0.;
2772                                                  2224 
                                                   >> 2225   
2773   //   R O T A T E    P O L Y L I N E S          2226   //   R O T A T E    P O L Y L I N E S
2774                                                  2227 
2775   RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2228   RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 
2776   SetReferences();                               2229   SetReferences();
2777                                                  2230 
2778   delete [] zz;                                  2231   delete [] zz;
2779   delete [] rr;                                  2232   delete [] rr;
2780                                                  2233 
2781   // rescale x and y vertex coordinates          2234   // rescale x and y vertex coordinates
2782   G4double kx = ax/cz;                        << 
2783   G4double ky = by/cz;                        << 
2784   G4Point3D* p = pV;                          << 
2785   for (G4int i = 0; i < nvert; ++i, ++p)      << 
2786   {                                              2235   {
2787     p->setX(p->x()*kx);                       << 2236     G4Point3D * p= pV;
2788     p->setY(p->y()*ky);                       << 2237     for (G4int i=0; i<nvert; i++, p++) {
                                                   >> 2238       p->setX( p->x() * ax/cz );
                                                   >> 2239       p->setY( p->y() * by/cz );
                                                   >> 2240     }
2789   }                                              2241   }
2790 }                                                2242 }
2791                                                  2243 
2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2244 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {}
2793                                                  2245 
2794 HepPolyhedronEllipticalCone::HepPolyhedronEll    2246 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax,
2795                                                  2247                                                          G4double ay,
2796                                                  2248                                                          G4double h,
2797                                               << 2249                                                          G4double zTopCut) 
2798 /********************************************    2250 /***********************************************************************
2799  *                                               2251  *                                                                     *
2800  * Name: HepPolyhedronEllipticalCone             2252  * Name: HepPolyhedronEllipticalCone                 Date:    8.9.2005 *
2801  * Author: D.Anninos                             2253  * Author: D.Anninos                                 Revised: 9.9.2005 *
2802  *                                               2254  *                                                                     *
2803  * Function: Constructor for EllipticalCone      2255  * Function: Constructor for EllipticalCone                            *
2804  *                                               2256  *                                                                     *
2805  * Input: ax, ay     - X & Y semi axes at z =    2257  * Input: ax, ay     - X & Y semi axes at z = 0                        *
2806  *        h          - height of full cone       2258  *        h          - height of full cone                             *
2807  *        zTopCut    - Top Cut in Z Axis         2259  *        zTopCut    - Top Cut in Z Axis                               *
2808  *                                               2260  *                                                                     *
2809  ********************************************    2261  ***********************************************************************/
2810 {                                                2262 {
2811   //   C H E C K   I N P U T   P A R A M E T     2263   //   C H E C K   I N P U T   P A R A M E T E R S
2812                                                  2264 
2813   G4int k = 0;                                   2265   G4int k = 0;
2814   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.)     2266   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; }
2815                                                  2267 
2816   if (k != 0) {                                  2268   if (k != 0) {
2817     std::cerr << "HepPolyhedronCone: error in    2269     std::cerr << "HepPolyhedronCone: error in input parameters";
2818     std::cerr << std::endl;                      2270     std::cerr << std::endl;
2819     return;                                      2271     return;
2820   }                                              2272   }
2821                                               << 2273   
2822   //   P R E P A R E   T W O   P O L Y L I N     2274   //   P R E P A R E   T W O   P O L Y L I N E S
2823                                                  2275 
2824   zTopCut = (h >= zTopCut ? zTopCut : h);        2276   zTopCut = (h >= zTopCut ? zTopCut : h);
2825                                                  2277 
2826   G4double *zz, *rr;                             2278   G4double *zz, *rr;
2827   zz = new G4double[4];                          2279   zz = new G4double[4];
2828   rr = new G4double[4];                          2280   rr = new G4double[4];
2829   zz[0] =   zTopCut;                          << 2281   zz[0] =   zTopCut; 
2830   zz[1] =  -zTopCut;                          << 2282   zz[1] =  -zTopCut; 
2831   zz[2] =   zTopCut;                          << 2283   zz[2] =   zTopCut; 
2832   zz[3] =  -zTopCut;                          << 2284   zz[3] =  -zTopCut; 
2833   rr[0] =  (h-zTopCut);                          2285   rr[0] =  (h-zTopCut);
2834   rr[1] =  (h+zTopCut);                          2286   rr[1] =  (h+zTopCut);
2835   rr[2] =  0.;                                   2287   rr[2] =  0.;
2836   rr[3] =  0.;                                   2288   rr[3] =  0.;
2837                                                  2289 
2838   //   R O T A T E    P O L Y L I N E S          2290   //   R O T A T E    P O L Y L I N E S
2839                                                  2291 
2840   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2292   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 
2841   SetReferences();                               2293   SetReferences();
2842                                                  2294 
2843   delete [] zz;                                  2295   delete [] zz;
2844   delete [] rr;                                  2296   delete [] rr;
2845                                                  2297 
2846   // rescale x and y vertex coordinates          2298   // rescale x and y vertex coordinates
2847  {                                               2299  {
2848    G4Point3D * p= pV;                            2300    G4Point3D * p= pV;
2849    for (G4int i=0; i<nvert; i++, p++) {          2301    for (G4int i=0; i<nvert; i++, p++) {
2850      p->setX( p->x() * ax );                     2302      p->setX( p->x() * ax );
2851      p->setY( p->y() * ay );                     2303      p->setY( p->y() * ay );
2852    }                                             2304    }
2853  }                                               2305  }
2854 }                                                2306 }
2855                                                  2307 
2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2308 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {}
2857                                                  2309 
2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 2310 G4ThreadLocal G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
2859                                               << 
2860                                               << 
2861 /******************************************** << 
2862  *                                            << 
2863  * Name: HepPolyhedronHyperbolicMirror        << 
2864  * Author: E.Tcherniaev (E.Chernyaev)         << 
2865  *                                            << 
2866  * Function: Create polyhedron for Hyperbolic << 
2867  *                                            << 
2868  * Input: a - half-separation                 << 
2869  *        h - height                          << 
2870  *        r - radius                          << 
2871  *                                            << 
2872  ******************************************** << 
2873 {                                             << 
2874   G4double H = std::abs(h);                   << 
2875   G4double R = std::abs(r);                   << 
2876   G4double A = std::abs(a);                   << 
2877   G4double B = A*R/std::sqrt(2*A*H + H*H);    << 
2878                                               << 
2879   //   P R E P A R E   T W O   P O L Y L I N  << 
2880                                               << 
2881   G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 
2882   G4int np2 = 2;                              << 
2883   G4double maxAng = (A == 0.) ? 0. : std::aco << 
2884   G4double delAng = maxAng/(np1 - 1);         << 
2885                                               << 
2886   auto zz = new G4double[np1 + np2];          << 
2887   auto rr = new G4double[np1 + np2];          << 
2888                                               << 
2889   // 1st polyline                             << 
2890   zz[0] = H;                                  << 
2891   rr[0] = R;                                  << 
2892   for (G4int iz = 1; iz < np1 - 1; ++iz)      << 
2893   {                                           << 
2894     G4double ang = maxAng - iz*delAng;        << 
2895     zz[iz] = A*std::cosh(ang) - A;            << 
2896     rr[iz] = B*std::sinh(ang);                << 
2897   }                                           << 
2898   zz[np1 - 1] = 0.;                           << 
2899   rr[np1 - 1] = 0.;                           << 
2900                                               << 
2901   // 2nd polyline                             << 
2902   zz[np1] = H;                                << 
2903   rr[np1] = 0.;                               << 
2904   zz[np1 + 1] = 0.;                           << 
2905   rr[np1 + 1] = 0.;                           << 
2906                                               << 
2907   //   R O T A T E    P O L Y L I N E S       << 
2908                                               << 
2909   G4double phi  = 0.;                         << 
2910   G4double dphi = CLHEP::twopi;               << 
2911   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 
2912   SetReferences();                            << 
2913                                               << 
2914   delete [] zz;                               << 
2915   delete [] rr;                               << 
2916 }                                             << 
2917                                               << 
2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 
2919                                               << 
2920 HepPolyhedronTetMesh::                        << 
2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 
2922 /******************************************** << 
2923  *                                            << 
2924  * Name: HepPolyhedronTetMesh                 << 
2925  * Author: E.Tcherniaev (E.Chernyaev)         << 
2926  *                                            << 
2927  * Function: Create polyhedron for tetrahedro << 
2928  *                                            << 
2929  * Input: tetrahedra - array of tetrahedron v << 
2930  *                     per tetrahedron        << 
2931  *                                            << 
2932  ******************************************** << 
2933 {                                             << 
2934   // Check size of input vector               << 
2935   G4int nnodes = (G4int)tetrahedra.size();    << 
2936   if (nnodes == 0)                            << 
2937   {                                           << 
2938     std::cerr                                 << 
2939       << "HepPolyhedronTetMesh: Empty tetrahe << 
2940     return;                                   << 
2941   }                                           << 
2942   G4int ntet = nnodes/4;                      << 
2943   if (nnodes != ntet*4)                       << 
2944   {                                           << 
2945     std::cerr << "HepPolyhedronTetMesh: Numbe << 
2946               << " in tetrahedron mesh is NOT << 
2947               << std::endl;                   << 
2948     return;                                   << 
2949   }                                           << 
2950                                               << 
2951   // Find coincident vertices using hash tabl << 
2952   // This could be done using std::unordered_ << 
2953   // below runs faster.                       << 
2954   std::vector<G4int> iheads(nnodes, -1);      << 
2955   std::vector<std::pair<G4int,G4int>> ipairs( << 
2956   for (G4int i = 0; i < nnodes; ++i)          << 
2957   {                                           << 
2958     // Generate hash key                      << 
2959     G4ThreeVector point = tetrahedra[i];      << 
2960     auto key = std::hash<G4double>()(point.x( << 
2961     key ^= std::hash<G4double>()(point.y());  << 
2962     key ^= std::hash<G4double>()(point.z());  << 
2963     key %= nnodes;                            << 
2964     // Check head of the list                 << 
2965     if (iheads[key] < 0)                      << 
2966     {                                         << 
2967       iheads[key] = i;                        << 
2968       ipairs[i].first = i;                    << 
2969       continue;                               << 
2970     }                                         << 
2971     // Loop along the list                    << 
2972     for (G4int icur = iheads[key], iprev = 0; << 
2973     {                                         << 
2974       G4int icheck = ipairs[icur].first;      << 
2975       if (tetrahedra[icheck] == point)        << 
2976       {                                       << 
2977         ipairs[i].first = icheck; // coincide << 
2978         break;                                << 
2979       }                                       << 
2980       iprev = icur;                           << 
2981       icur = ipairs[icur].second;             << 
2982       // Append vertex to the list            << 
2983       if (icur < 0)                           << 
2984       {                                       << 
2985         ipairs[i].first = i;                  << 
2986         ipairs[iprev].second = i;             << 
2987         break;                                << 
2988       }                                       << 
2989     }                                         << 
2990   }                                           << 
2991                                               << 
2992   // Create vector of original facets         << 
2993   struct facet                                << 
2994   {                                           << 
2995     G4int i1, i2, i3;                         << 
2996     facet() : i1(0), i2(0), i3(0) {};         << 
2997     facet(G4int k1, G4int k2, G4int k3) : i1( << 
2998   };                                          << 
2999   G4int nfacets = nnodes;                     << 
3000   std::vector<facet> ifacets(nfacets);        << 
3001   for (G4int i = 0; i < nfacets; i += 4)      << 
3002   {                                           << 
3003     G4int i0 = ipairs[i + 0].first;           << 
3004     G4int i1 = ipairs[i + 1].first;           << 
3005     G4int i2 = ipairs[i + 2].first;           << 
3006     G4int i3 = ipairs[i + 3].first;           << 
3007     if (i0 > i1) std::swap(i0, i1);           << 
3008     if (i0 > i2) std::swap(i0, i2);           << 
3009     if (i0 > i3) std::swap(i0, i3);           << 
3010     if (i1 > i2) std::swap(i1, i2);           << 
3011     if (i1 > i3) std::swap(i1, i3);           << 
3012     G4ThreeVector e1 = tetrahedra[i1] - tetra << 
3013     G4ThreeVector e2 = tetrahedra[i2] - tetra << 
3014     G4ThreeVector e3 = tetrahedra[i3] - tetra << 
3015     G4double volume = (e1.cross(e2)).dot(e3); << 
3016     if (volume > 0.) std::swap(i2, i3);       << 
3017     ifacets[i + 0] = facet(i0, i1, i2);       << 
3018     ifacets[i + 1] = facet(i0, i2, i3);       << 
3019     ifacets[i + 2] = facet(i0, i3, i1);       << 
3020     ifacets[i + 3] = facet(i1, i3, i2);       << 
3021   }                                           << 
3022                                               << 
3023   // Find shared facets                       << 
3024   std::fill(iheads.begin(), iheads.end(), -1) << 
3025   std::fill(ipairs.begin(), ipairs.end(), std << 
3026   for (G4int i = 0; i < nfacets; ++i)         << 
3027   {                                           << 
3028     // Check head of the list                 << 
3029     G4int key = ifacets[i].i1;                << 
3030     if (iheads[key] < 0)                      << 
3031     {                                         << 
3032       iheads[key] = i;                        << 
3033       ipairs[i].first = i;                    << 
3034       continue;                               << 
3035     }                                         << 
3036     // Loop along the list                    << 
3037     G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 
3038     for (G4int icur = iheads[key], iprev = -1 << 
3039     {                                         << 
3040       G4int icheck = ipairs[icur].first;      << 
3041       if (ifacets[icheck].i2 == i3 && ifacets << 
3042       {                                       << 
3043         if (iprev < 0)                        << 
3044         {                                     << 
3045           iheads[key] = ipairs[icur].second;  << 
3046         }                                     << 
3047         else                                  << 
3048         {                                     << 
3049           ipairs[iprev].second = ipairs[icur] << 
3050         }                                     << 
3051         ipairs[icur].first = -1; // shared fa << 
3052         ipairs[icur].second = -1;             << 
3053         break;                                << 
3054       }                                       << 
3055       iprev = icur;                           << 
3056       icur = ipairs[icur].second;             << 
3057       // Append facet to the list             << 
3058       if (icur < 0)                           << 
3059       {                                       << 
3060         ipairs[i].first = i;                  << 
3061         ipairs[iprev].second = i;             << 
3062         break;                                << 
3063       }                                       << 
3064     }                                         << 
3065   }                                           << 
3066                                               << 
3067   // Count vertices and facets skipping share << 
3068   std::fill(iheads.begin(), iheads.end(), -1) << 
3069   G4int nver = 0, nfac = 0;                   << 
3070   for (G4int i = 0; i < nfacets; ++i)         << 
3071   {                                           << 
3072     if (ipairs[i].first < 0) continue;        << 
3073     G4int i1 = ifacets[i].i1;                 << 
3074     G4int i2 = ifacets[i].i2;                 << 
3075     G4int i3 = ifacets[i].i3;                 << 
3076     if (iheads[i1] < 0) iheads[i1] = nver++;  << 
3077     if (iheads[i2] < 0) iheads[i2] = nver++;  << 
3078     if (iheads[i3] < 0) iheads[i3] = nver++;  << 
3079     nfac++;                                   << 
3080   }                                           << 
3081                                               << 
3082   // Construct polyhedron                     << 
3083   AllocateMemory(nver, nfac);                 << 
3084   for (G4int i = 0; i < nnodes; ++i)          << 
3085   {                                           << 
3086     G4int k = iheads[i];                      << 
3087     if (k >= 0) SetVertex(k + 1, tetrahedra[i << 
3088   }                                           << 
3089   for (G4int i = 0, k = 0; i < nfacets; ++i)  << 
3090   {                                           << 
3091     if (ipairs[i].first < 0) continue;        << 
3092     G4int i1 = iheads[ifacets[i].i1] + 1;     << 
3093     G4int i2 = iheads[ifacets[i].i2] + 1;     << 
3094     G4int i3 = iheads[ifacets[i].i3] + 1;     << 
3095     SetFacet(++k, i1, i2, i3);                << 
3096   }                                           << 
3097   SetReferences();                            << 
3098 }                                             << 
3099                                               << 
3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 
3101                                               << 
3102 HepPolyhedronBoxMesh::                        << 
3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 
3104                      const std::vector<G4Thre << 
3105 /******************************************** << 
3106  *                                            << 
3107  * Name: HepPolyhedronBoxMesh                 << 
3108  * Author: E.Tcherniaev (E.Chernyaev)         << 
3109  *                                            << 
3110  * Function: Create polyhedron for box mesh   << 
3111  *                                            << 
3112  * Input: sizeX, sizeY, sizeZ - dimensions of << 
3113  *        positions - vector of cell centres  << 
3114  *                                            << 
3115  ******************************************** << 
3116 {                                             << 
3117   G4int nbox = (G4int)positions.size();       << 
3118   if (nbox == 0)                              << 
3119   {                                           << 
3120     std::cerr << "HepPolyhedronBoxMesh: Empty << 
3121     return;                                   << 
3122   }                                           << 
3123   // compute inverse dimensions               << 
3124   G4double invx = 1./sizeX, invy = 1./sizeY,  << 
3125   // find mesh bounding box                   << 
3126   G4ThreeVector pmin = positions[0], pmax = p << 
3127   for (const auto& p: positions)              << 
3128   {                                           << 
3129     if (pmin.x() > p.x()) pmin.setX(p.x());   << 
3130     if (pmin.y() > p.y()) pmin.setY(p.y());   << 
3131     if (pmin.z() > p.z()) pmin.setZ(p.z());   << 
3132     if (pmax.x() < p.x()) pmax.setX(p.x());   << 
3133     if (pmax.y() < p.y()) pmax.setY(p.y());   << 
3134     if (pmax.z() < p.z()) pmax.setZ(p.z());   << 
3135   }                                           << 
3136   // find number of voxels                    << 
3137   G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 
3138   G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 
3139   G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 
3140   // create structures for voxels and node in << 
3141   std::vector<char> voxels(nx*ny*nz, 0);      << 
3142   std::vector<G4int> indices((nx+1)*(ny+1)*(n << 
3143   // mark voxels listed in positions          << 
3144   G4int kx =  ny*nz, ky = nz;                 << 
3145   for (const auto& p: positions)              << 
3146   {                                           << 
3147     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3148     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3149     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3150     G4int i = ix*kx + iy*ky + iz;             << 
3151     voxels[i] = 1;                            << 
3152   }                                           << 
3153   // count number of vertices and facets      << 
3154   // set indices                              << 
3155   G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 
3156   G4int nver = 0, nfac = 0;                   << 
3157   for (const auto& p: positions)              << 
3158   {                                           << 
3159     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3160     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3161     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3162     //                                        << 
3163     //    011       111                       << 
3164     //      +---–---+                       << 
3165     //      | 001   |   101                   << 
3166     //      |   +---–---+                   << 
3167     //      |   |   |   |                     << 
3168     //      +---|---+   |                     << 
3169     //    010   |   110 |                     << 
3170     //          +-------+                     << 
3171     //        000       100                   << 
3172     //                                        << 
3173     G4int vcheck = 0;                         << 
3174     // check (ix - 1) side                    << 
3175     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3176     if (vcheck == 0)                          << 
3177     {                                         << 
3178       nfac++;                                 << 
3179       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3180       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3181       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3182       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3183       if (indices[i1] == 0) indices[i1] = ++n << 
3184       if (indices[i2] == 0) indices[i2] = ++n << 
3185       if (indices[i3] == 0) indices[i3] = ++n << 
3186       if (indices[i4] == 0) indices[i4] = ++n << 
3187     }                                         << 
3188     // check (ix + 1) side                    << 
3189     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3190     if (vcheck == 0)                          << 
3191     {                                         << 
3192       nfac++;                                 << 
3193       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3194       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3195       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3196       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3197       if (indices[i1] == 0) indices[i1] = ++n << 
3198       if (indices[i2] == 0) indices[i2] = ++n << 
3199       if (indices[i3] == 0) indices[i3] = ++n << 
3200       if (indices[i4] == 0) indices[i4] = ++n << 
3201     }                                         << 
3202     // check (iy - 1) side                    << 
3203     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3204     if (vcheck == 0)                          << 
3205     {                                         << 
3206       nfac++;                                 << 
3207       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3208       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3209       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3210       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3211       if (indices[i1] == 0) indices[i1] = ++n << 
3212       if (indices[i2] == 0) indices[i2] = ++n << 
3213       if (indices[i3] == 0) indices[i3] = ++n << 
3214       if (indices[i4] == 0) indices[i4] = ++n << 
3215     }                                         << 
3216     // check (iy + 1) side                    << 
3217     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3218     if (vcheck == 0)                          << 
3219     {                                         << 
3220       nfac++;                                 << 
3221       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3222       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3223       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3224       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3225       if (indices[i1] == 0) indices[i1] = ++n << 
3226       if (indices[i2] == 0) indices[i2] = ++n << 
3227       if (indices[i3] == 0) indices[i3] = ++n << 
3228       if (indices[i4] == 0) indices[i4] = ++n << 
3229     }                                         << 
3230     // check (iz - 1) side                    << 
3231     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3232     if (vcheck == 0)                          << 
3233     {                                         << 
3234       nfac++;                                 << 
3235       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3236       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3237       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3238       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3239       if (indices[i1] == 0) indices[i1] = ++n << 
3240       if (indices[i2] == 0) indices[i2] = ++n << 
3241       if (indices[i3] == 0) indices[i3] = ++n << 
3242       if (indices[i4] == 0) indices[i4] = ++n << 
3243     }                                         << 
3244     // check (iz + 1) side                    << 
3245     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3246     if (vcheck == 0)                          << 
3247     {                                         << 
3248       nfac++;                                 << 
3249       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3250       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3251       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3252       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3253       if (indices[i1] == 0) indices[i1] = ++n << 
3254       if (indices[i2] == 0) indices[i2] = ++n << 
3255       if (indices[i3] == 0) indices[i3] = ++n << 
3256       if (indices[i4] == 0) indices[i4] = ++n << 
3257     }                                         << 
3258   }                                           << 
3259   // Construct polyhedron                     << 
3260   AllocateMemory(nver, nfac);                 << 
3261   G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 
3262   for (G4int ix = 0; ix <= nx; ++ix)          << 
3263   {                                           << 
3264     for (G4int iy = 0; iy <= ny; ++iy)        << 
3265     {                                         << 
3266       for (G4int iz = 0; iz <= nz; ++iz)      << 
3267       {                                       << 
3268   G4int i = ix*kvx + iy*kvy + iz;             << 
3269   if (indices[i] == 0) continue;              << 
3270   SetVertex(indices[i], p0 + G4ThreeVector(ix << 
3271       }                                       << 
3272     }                                         << 
3273   }                                           << 
3274   nfac = 0;                                   << 
3275   for (const auto& p: positions)              << 
3276   {                                           << 
3277     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3278     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3279     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3280     G4int vcheck = 0;                         << 
3281     // check (ix - 1) side                    << 
3282     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3283     if (vcheck == 0)                          << 
3284     {                                         << 
3285       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3286       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3287       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3288       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3289       SetFacet(++nfac, indices[i1], indices[i << 
3290     }                                         << 
3291     // check (ix + 1) side                    << 
3292     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3293     if (vcheck == 0)                          << 
3294     {                                         << 
3295       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3296       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3297       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3298       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3299       SetFacet(++nfac, indices[i1], indices[i << 
3300                                               << 
3301     }                                         << 
3302     // check (iy - 1) side                    << 
3303     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3304     if (vcheck == 0)                          << 
3305     {                                         << 
3306       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3307       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3308       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3309       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3310       SetFacet(++nfac, indices[i1], indices[i << 
3311     }                                         << 
3312     // check (iy + 1) side                    << 
3313     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3314     if (vcheck == 0)                          << 
3315     {                                         << 
3316       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3317       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3318       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3319       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3320       SetFacet(++nfac, indices[i1], indices[i << 
3321     }                                         << 
3322     // check (iz - 1) side                    << 
3323     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3324     if (vcheck == 0)                          << 
3325     {                                         << 
3326       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3327       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3328       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3329       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3330       SetFacet(++nfac, indices[i1], indices[i << 
3331     }                                         << 
3332     // check (iz + 1) side                    << 
3333     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3334     if (vcheck == 0)                          << 
3335     {                                         << 
3336       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3337       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3338       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3339       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3340       SetFacet(++nfac, indices[i1], indices[i << 
3341     }                                         << 
3342   }                                           << 
3343   SetReferences();                            << 
3344 }                                             << 
3345                                               << 
3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 
3347                                               << 
3348 G4ThreadLocal                                 << 
3349 G4int HepPolyhedron::fNumberOfRotationSteps = << 
3350 /********************************************    2311 /***********************************************************************
3351  *                                               2312  *                                                                     *
3352  * Name: HepPolyhedron::fNumberOfRotationStep    2313  * Name: HepPolyhedron::fNumberOfRotationSteps       Date:    24.06.97 *
3353  * Author: J.Allison (Manchester University)     2314  * Author: J.Allison (Manchester University)         Revised:          *
3354  *                                               2315  *                                                                     *
3355  * Function: Number of steps for whole circle    2316  * Function: Number of steps for whole circle                          *
3356  *                                               2317  *                                                                     *
3357  ********************************************    2318  ***********************************************************************/
3358                                                  2319 
3359 #include "BooleanProcessor.src"                  2320 #include "BooleanProcessor.src"
3360                                                  2321 
3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2322 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 
3362 /********************************************    2323 /***********************************************************************
3363  *                                               2324  *                                                                     *
3364  * Name: HepPolyhedron::add                      2325  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3365  * Author: E.Chernyaev                           2326  * Author: E.Chernyaev                               Revised:          *
3366  *                                               2327  *                                                                     *
3367  * Function: Boolean "union" of two polyhedra    2328  * Function: Boolean "union" of two polyhedra                          *
3368  *                                               2329  *                                                                     *
3369  ********************************************    2330  ***********************************************************************/
3370 {                                                2331 {
3371   G4int ierr;                                    2332   G4int ierr;
3372   BooleanProcessor processor;                    2333   BooleanProcessor processor;
3373   return processor.execute(OP_UNION, *this, p    2334   return processor.execute(OP_UNION, *this, p,ierr);
3374 }                                                2335 }
3375                                                  2336 
3376 HepPolyhedron HepPolyhedron::intersect(const  << 2337 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 
3377 /********************************************    2338 /***********************************************************************
3378  *                                               2339  *                                                                     *
3379  * Name: HepPolyhedron::intersect                2340  * Name: HepPolyhedron::intersect                    Date:    19.03.00 *
3380  * Author: E.Chernyaev                           2341  * Author: E.Chernyaev                               Revised:          *
3381  *                                               2342  *                                                                     *
3382  * Function: Boolean "intersection" of two po    2343  * Function: Boolean "intersection" of two polyhedra                   *
3383  *                                               2344  *                                                                     *
3384  ********************************************    2345  ***********************************************************************/
3385 {                                                2346 {
3386   G4int ierr;                                    2347   G4int ierr;
3387   BooleanProcessor processor;                    2348   BooleanProcessor processor;
3388   return processor.execute(OP_INTERSECTION, *    2349   return processor.execute(OP_INTERSECTION, *this, p,ierr);
3389 }                                                2350 }
3390                                                  2351 
3391 HepPolyhedron HepPolyhedron::subtract(const H << 2352 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 
3392 /********************************************    2353 /***********************************************************************
3393  *                                               2354  *                                                                     *
3394  * Name: HepPolyhedron::add                      2355  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3395  * Author: E.Chernyaev                           2356  * Author: E.Chernyaev                               Revised:          *
3396  *                                               2357  *                                                                     *
3397  * Function: Boolean "subtraction" of "p" fro    2358  * Function: Boolean "subtraction" of "p" from "this"                  *
3398  *                                               2359  *                                                                     *
3399  ********************************************    2360  ***********************************************************************/
3400 {                                                2361 {
3401   G4int ierr;                                    2362   G4int ierr;
3402   BooleanProcessor processor;                    2363   BooleanProcessor processor;
3403   return processor.execute(OP_SUBTRACTION, *t    2364   return processor.execute(OP_SUBTRACTION, *this, p,ierr);
3404 }                                                2365 }
3405                                                  2366 
3406 //NOTE : include the code of HepPolyhedronPro    2367 //NOTE : include the code of HepPolyhedronProcessor here
3407 //       since there is no BooleanProcessor.h    2368 //       since there is no BooleanProcessor.h
3408                                                  2369 
3409 #undef INTERSECTION                              2370 #undef INTERSECTION
3410                                                  2371 
3411 #include "HepPolyhedronProcessor.src"            2372 #include "HepPolyhedronProcessor.src"
                                                   >> 2373 
3412                                                  2374