Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // >> 28 // >> 29 // 26 // G4 Polyhedron library 30 // G4 Polyhedron library 27 // 31 // 28 // History: 32 // History: 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce 33 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version 30 // 34 // 31 // 30.09.96 E.Chernyaev 35 // 30.09.96 E.Chernyaev 32 // - added GetNextVertexIndex, GetVertex by Ya 36 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada 33 // - added GetNextUnitNormal, GetNextEdgeIndic 37 // - added GetNextUnitNormal, GetNextEdgeIndices, GetNextEdge 34 // 38 // 35 // 15.12.96 E.Chernyaev 39 // 15.12.96 E.Chernyaev 36 // - added GetNumberOfRotationSteps, RotateEdg 40 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences 37 // - rewritten G4PolyhedronCons; 41 // - rewritten G4PolyhedronCons; 38 // - added G4PolyhedronPara, ...Trap, ...Pgon, 42 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus 39 // 43 // 40 // 01.06.97 E.Chernyaev 44 // 01.06.97 E.Chernyaev 41 // - modified RotateAroundZ, added SetSideFace 45 // - modified RotateAroundZ, added SetSideFacets 42 // 46 // 43 // 19.03.00 E.Chernyaev 47 // 19.03.00 E.Chernyaev 44 // - implemented boolean operations (add, subt 48 // - implemented boolean operations (add, subtract, intersect) on polyhedra; 45 // 49 // 46 // 25.05.01 E.Chernyaev 50 // 25.05.01 E.Chernyaev 47 // - added GetSurfaceArea() and GetVolume() << 51 // - added GetSurfaceArea() and GetVolume(); 48 // 52 // 49 // 05.11.02 E.Chernyaev 53 // 05.11.02 E.Chernyaev 50 // - added createTwistedTrap() and createPolyh << 54 // - added createTwistedTrap() and createPolyhedron(); 51 // 55 // 52 // 20.06.05 G.Cosmo 56 // 20.06.05 G.Cosmo 53 // - added HepPolyhedronEllipsoid << 57 // - added HepPolyhedronEllipsoid; 54 // << 55 // 18.07.07 T.Nikitina << 56 // - added HepPolyhedronParaboloid << 57 // << 58 // 22.02.20 E.Chernyaev << 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 60 // << 61 // 12.05.21 E.Chernyaev << 62 // - added TriangulatePolygon(), RotateContour << 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 64 // << 65 // 26.03.22 E.Chernyaev << 66 // - added SetVertex(), SetFacet() << 67 // - added HepPolyhedronTetMesh << 68 // << 69 // 04.04.22 E.Chernyaev << 70 // - added JoinCoplanarFacets() << 71 // 58 // 72 // 07.04.22 E.Chernyaev << 59 // 18.07.07 T.Nikitin 73 // - added HepPolyhedronBoxMesh << 60 // - added HepParaboloid; 74 << 61 75 #include "HepPolyhedron.h" 62 #include "HepPolyhedron.h" 76 #include "G4PhysicalConstants.hh" 63 #include "G4PhysicalConstants.hh" 77 #include "G4Vector3D.hh" 64 #include "G4Vector3D.hh" 78 65 79 #include <cstdlib> // Required on some compil 66 #include <cstdlib> // Required on some compilers for std::abs(int) ... 80 #include <cmath> 67 #include <cmath> 81 #include <algorithm> << 68 #include <cassert> 82 69 83 using CLHEP::perMillion; 70 using CLHEP::perMillion; 84 using CLHEP::deg; 71 using CLHEP::deg; 85 using CLHEP::pi; 72 using CLHEP::pi; 86 using CLHEP::twopi; 73 using CLHEP::twopi; 87 using CLHEP::nm; 74 using CLHEP::nm; 88 const G4double spatialTolerance = 0.01*nm; 75 const G4double spatialTolerance = 0.01*nm; 89 76 90 /********************************************* 77 /*********************************************************************** 91 * 78 * * 92 * Name: HepPolyhedron operator << 79 * Name: HepPolyhedron operator << Date: 09.05.96 * 93 * Author: E.Chernyaev (IHEP/Protvino) 80 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 94 * 81 * * 95 * Function: Print contents of G4 polyhedron 82 * Function: Print contents of G4 polyhedron * 96 * 83 * * 97 ********************************************* 84 ***********************************************************************/ 98 std::ostream & operator<<(std::ostream & ostr, 85 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) { 99 for (const auto& edge : facet.edge) { << 86 for (G4int k=0; k<4; k++) { 100 ostr << " " << edge.v << "/" << edge.f; << 87 ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f; 101 } 88 } 102 return ostr; 89 return ostr; 103 } 90 } 104 91 105 std::ostream & operator<<(std::ostream & ostr, 92 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) { 106 ostr << std::endl; 93 ostr << std::endl; 107 ostr << "Nvertices=" << ph.nvert << ", Nface 94 ostr << "Nvertices=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl; 108 G4int i; 95 G4int i; 109 for (i=1; i<=ph.nvert; i++) { 96 for (i=1; i<=ph.nvert; i++) { 110 ostr << "xyz(" << i << ")=" 97 ostr << "xyz(" << i << ")=" 111 << ph.pV[i].x() << ' ' << ph.pV[i].y 98 << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z() 112 << std::endl; 99 << std::endl; 113 } 100 } 114 for (i=1; i<=ph.nface; i++) { 101 for (i=1; i<=ph.nface; i++) { 115 ostr << "face(" << i << ")=" << ph.pF[i] < 102 ostr << "face(" << i << ")=" << ph.pF[i] << std::endl; 116 } 103 } 117 return ostr; 104 return ostr; 118 } 105 } 119 106 120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 121 /********************************************* << 122 * << 123 * Name: HepPolyhedron constructor with << 124 * allocation of memory << 125 * Author: E.Tcherniaev (E.Chernyaev) << 126 * << 127 ********************************************* << 128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 129 { << 130 AllocateMemory(Nvert, Nface); << 131 } << 132 << 133 HepPolyhedron::HepPolyhedron(const HepPolyhedr 107 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from) 134 /********************************************* 108 /*********************************************************************** 135 * 109 * * 136 * Name: HepPolyhedron copy constructor 110 * Name: HepPolyhedron copy constructor Date: 23.07.96 * 137 * Author: E.Chernyaev (IHEP/Protvino) 111 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 138 * 112 * * 139 ********************************************* 113 ***********************************************************************/ 140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 114 : nvert(0), nface(0), pV(0), pF(0) 141 { 115 { 142 AllocateMemory(from.nvert, from.nface); 116 AllocateMemory(from.nvert, from.nface); 143 for (G4int i=1; i<=nvert; i++) pV[i] = from. 117 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 144 for (G4int k=1; k<=nface; k++) pF[k] = from. 118 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 145 } 119 } 146 120 147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 148 /********************************************* << 149 * << 150 * Name: HepPolyhedron move constructor << 151 * Author: E.Tcherniaev (E.Chernyaev) << 152 * << 153 ********************************************* << 154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 155 { << 156 nvert = from.nvert; << 157 nface = from.nface; << 158 pV = from.pV; << 159 pF = from.pF; << 160 << 161 // Release the data from the source object << 162 from.nvert = 0; << 163 from.nface = 0; << 164 from.pV = nullptr; << 165 from.pF = nullptr; << 166 } << 167 << 168 HepPolyhedron & HepPolyhedron::operator=(const 121 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from) 169 /********************************************* 122 /*********************************************************************** 170 * 123 * * 171 * Name: HepPolyhedron operator = 124 * Name: HepPolyhedron operator = Date: 23.07.96 * 172 * Author: E.Chernyaev (IHEP/Protvino) 125 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 173 * 126 * * 174 * Function: Copy contents of one polyhedron t 127 * Function: Copy contents of one polyhedron to another * 175 * 128 * * 176 ********************************************* 129 ***********************************************************************/ 177 { 130 { 178 if (this != &from) { 131 if (this != &from) { 179 AllocateMemory(from.nvert, from.nface); 132 AllocateMemory(from.nvert, from.nface); 180 for (G4int i=1; i<=nvert; i++) pV[i] = fro 133 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 181 for (G4int k=1; k<=nface; k++) pF[k] = fro 134 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 182 } 135 } 183 return *this; 136 return *this; 184 } 137 } 185 138 186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 187 /********************************************* << 188 * << 189 * Name: HepPolyhedron move operator = << 190 * Author: E.Tcherniaev (E.Chernyaev) << 191 * << 192 * Function: Move contents of one polyhedron t << 193 * << 194 ********************************************* << 195 { << 196 if (this != &from) { << 197 delete [] pV; << 198 delete [] pF; << 199 nvert = from.nvert; << 200 nface = from.nface; << 201 pV = from.pV; << 202 pF = from.pF; << 203 << 204 // Release the data from the source object << 205 from.nvert = 0; << 206 from.nface = 0; << 207 from.pV = nullptr; << 208 from.pF = nullptr; << 209 } << 210 return *this; << 211 } << 212 << 213 G4int 139 G4int 214 HepPolyhedron::FindNeighbour(G4int iFace, G4in 140 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const 215 /********************************************* 141 /*********************************************************************** 216 * 142 * * 217 * Name: HepPolyhedron::FindNeighbour 143 * Name: HepPolyhedron::FindNeighbour Date: 22.11.99 * 218 * Author: E.Chernyaev 144 * Author: E.Chernyaev Revised: * 219 * 145 * * 220 * Function: Find neighbouring face 146 * Function: Find neighbouring face * 221 * 147 * * 222 ********************************************* 148 ***********************************************************************/ 223 { 149 { 224 G4int i; 150 G4int i; 225 for (i=0; i<4; i++) { 151 for (i=0; i<4; i++) { 226 if (iNode == std::abs(pF[iFace].edge[i].v) 152 if (iNode == std::abs(pF[iFace].edge[i].v)) break; 227 } 153 } 228 if (i == 4) { 154 if (i == 4) { 229 std::cerr 155 std::cerr 230 << "HepPolyhedron::FindNeighbour: face " 156 << "HepPolyhedron::FindNeighbour: face " << iFace 231 << " has no node " << iNode 157 << " has no node " << iNode 232 << std::endl; << 158 << std::endl; 233 return 0; 159 return 0; 234 } 160 } 235 if (iOrder < 0) { 161 if (iOrder < 0) { 236 if ( --i < 0) i = 3; 162 if ( --i < 0) i = 3; 237 if (pF[iFace].edge[i].v == 0) i = 2; 163 if (pF[iFace].edge[i].v == 0) i = 2; 238 } 164 } 239 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF 165 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f; 240 } 166 } 241 167 242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int 168 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const 243 /********************************************* 169 /*********************************************************************** 244 * 170 * * 245 * Name: HepPolyhedron::FindNodeNormal 171 * Name: HepPolyhedron::FindNodeNormal Date: 22.11.99 * 246 * Author: E.Chernyaev 172 * Author: E.Chernyaev Revised: * 247 * 173 * * 248 * Function: Find normal at given node 174 * Function: Find normal at given node * 249 * 175 * * 250 ********************************************* 176 ***********************************************************************/ 251 { 177 { 252 G4Normal3D normal = GetUnitNormal(iFace); << 178 G4Normal3D normal = GetUnitNormal(iFace); 253 G4int k = iFace, iOrder = 1; << 179 G4int k = iFace, iOrder = 1, n = 1; 254 180 255 for(;;) { 181 for(;;) { 256 k = FindNeighbour(k, iNode, iOrder); 182 k = FindNeighbour(k, iNode, iOrder); 257 if (k == iFace) break; << 183 if (k == iFace) break; 258 if (k > 0) { 184 if (k > 0) { >> 185 n++; 259 normal += GetUnitNormal(k); 186 normal += GetUnitNormal(k); 260 }else{ 187 }else{ 261 if (iOrder < 0) break; 188 if (iOrder < 0) break; 262 k = iFace; 189 k = iFace; 263 iOrder = -iOrder; 190 iOrder = -iOrder; 264 } 191 } 265 } 192 } 266 return normal.unit(); 193 return normal.unit(); 267 } 194 } 268 195 269 G4int HepPolyhedron::GetNumberOfRotationSteps( 196 G4int HepPolyhedron::GetNumberOfRotationSteps() 270 /********************************************* 197 /*********************************************************************** 271 * 198 * * 272 * Name: HepPolyhedron::GetNumberOfRotationSte 199 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 273 * Author: J.Allison (Manchester University) 200 * Author: J.Allison (Manchester University) Revised: * 274 * 201 * * 275 * Function: Get number of steps for whole cir 202 * Function: Get number of steps for whole circle * 276 * 203 * * 277 ********************************************* 204 ***********************************************************************/ 278 { 205 { 279 return fNumberOfRotationSteps; 206 return fNumberOfRotationSteps; 280 } 207 } 281 208 282 void HepPolyhedron::SetVertex(G4int index, con << 283 /********************************************* << 284 * << 285 * Name: HepPolyhedron::SetVertex << 286 * Author: E.Tcherniaev (E.Chernyaev) << 287 * << 288 * Function: Set vertex << 289 * << 290 ********************************************* << 291 { << 292 if (index < 1 || index > nvert) << 293 { << 294 std::cerr << 295 << "HepPolyhedron::SetVertex: vertex ind << 296 << " is out of range\n" << 297 << " N. of vertices = " << nvert << "\ << 298 << " N. of facets = " << nface << std: << 299 return; << 300 } << 301 pV[index] = v; << 302 } << 303 << 304 void << 305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 306 /********************************************* << 307 * << 308 * Name: HepPolyhedron::SetFacet << 309 * Author: E.Tcherniaev (E.Chernyaev) << 310 * << 311 * Function: Set facet << 312 * << 313 ********************************************* << 314 { << 315 if (index < 1 || index > nface) << 316 { << 317 std::cerr << 318 << "HepPolyhedron::SetFacet: facet index << 319 << " is out of range\n" << 320 << " N. of vertices = " << nvert << "\ << 321 << " N. of facets = " << nface << std: << 322 return; << 323 } << 324 if (iv1 < 1 || iv1 > nvert || << 325 iv2 < 1 || iv2 > nvert || << 326 iv3 < 1 || iv3 > nvert || << 327 iv4 < 0 || iv4 > nvert) << 328 { << 329 std::cerr << 330 << "HepPolyhedron::SetFacet: incorrectly << 331 << " (" << iv1 << ", " << iv2 << ", " << << 332 << " N. of vertices = " << nvert << "\ << 333 << " N. of facets = " << nface << std: << 334 return; << 335 } << 336 pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0, << 337 } << 338 << 339 void HepPolyhedron::SetNumberOfRotationSteps(G 209 void HepPolyhedron::SetNumberOfRotationSteps(G4int n) 340 /********************************************* 210 /*********************************************************************** 341 * 211 * * 342 * Name: HepPolyhedron::SetNumberOfRotationSte 212 * Name: HepPolyhedron::SetNumberOfRotationSteps Date: 24.06.97 * 343 * Author: J.Allison (Manchester University) 213 * Author: J.Allison (Manchester University) Revised: * 344 * 214 * * 345 * Function: Set number of steps for whole cir 215 * Function: Set number of steps for whole circle * 346 * 216 * * 347 ********************************************* 217 ***********************************************************************/ 348 { 218 { 349 const G4int nMin = 3; 219 const G4int nMin = 3; 350 if (n < nMin) { 220 if (n < nMin) { 351 std::cerr << 221 std::cerr 352 << "HepPolyhedron::SetNumberOfRotationSt 222 << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n" 353 << "number of steps per circle < " << nM 223 << "number of steps per circle < " << nMin << "; forced to " << nMin 354 << std::endl; 224 << std::endl; 355 fNumberOfRotationSteps = nMin; 225 fNumberOfRotationSteps = nMin; 356 }else{ 226 }else{ 357 fNumberOfRotationSteps = n; 227 fNumberOfRotationSteps = n; 358 } << 228 } 359 } 229 } 360 230 361 void HepPolyhedron::ResetNumberOfRotationSteps 231 void HepPolyhedron::ResetNumberOfRotationSteps() 362 /********************************************* 232 /*********************************************************************** 363 * 233 * * 364 * Name: HepPolyhedron::GetNumberOfRotationSte 234 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 365 * Author: J.Allison (Manchester University) 235 * Author: J.Allison (Manchester University) Revised: * 366 * 236 * * 367 * Function: Reset number of steps for whole c 237 * Function: Reset number of steps for whole circle to default value * 368 * 238 * * 369 ********************************************* 239 ***********************************************************************/ 370 { 240 { 371 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S 241 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 372 } 242 } 373 243 374 void HepPolyhedron::AllocateMemory(G4int Nvert 244 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface) 375 /********************************************* 245 /*********************************************************************** 376 * 246 * * 377 * Name: HepPolyhedron::AllocateMemory 247 * Name: HepPolyhedron::AllocateMemory Date: 19.06.96 * 378 * Author: E.Chernyaev (IHEP/Protvino) 248 * Author: E.Chernyaev (IHEP/Protvino) Revised: 05.11.02 * 379 * 249 * * 380 * Function: Allocate memory for GEANT4 polyhe 250 * Function: Allocate memory for GEANT4 polyhedron * 381 * 251 * * 382 * Input: Nvert - number of nodes 252 * Input: Nvert - number of nodes * 383 * Nface - number of faces 253 * Nface - number of faces * 384 * 254 * * 385 ********************************************* 255 ***********************************************************************/ 386 { 256 { 387 if (nvert == Nvert && nface == Nface) return 257 if (nvert == Nvert && nface == Nface) return; 388 delete [] pV; << 258 if (pV != 0) delete [] pV; 389 delete [] pF; << 259 if (pF != 0) delete [] pF; 390 if (Nvert > 0 && Nface > 0) { 260 if (Nvert > 0 && Nface > 0) { 391 nvert = Nvert; 261 nvert = Nvert; 392 nface = Nface; 262 nface = Nface; 393 pV = new G4Point3D[nvert+1]; 263 pV = new G4Point3D[nvert+1]; 394 pF = new G4Facet[nface+1]; 264 pF = new G4Facet[nface+1]; 395 }else{ 265 }else{ 396 nvert = 0; nface = 0; pV = nullptr; pF = n << 266 nvert = 0; nface = 0; pV = 0; pF = 0; 397 } 267 } 398 } 268 } 399 269 400 void HepPolyhedron::CreatePrism() 270 void HepPolyhedron::CreatePrism() 401 /********************************************* 271 /*********************************************************************** 402 * 272 * * 403 * Name: HepPolyhedron::CreatePrism 273 * Name: HepPolyhedron::CreatePrism Date: 15.07.96 * 404 * Author: E.Chernyaev (IHEP/Protvino) 274 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 405 * 275 * * 406 * Function: Set facets for a prism 276 * Function: Set facets for a prism * 407 * 277 * * 408 ********************************************* 278 ***********************************************************************/ 409 { 279 { 410 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON 280 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP}; 411 281 412 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 282 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 2,FRONT); 413 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 283 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 1,FRONT); 414 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 284 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 4,LEFT); 415 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 285 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 3,BACK); 416 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 286 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 2,RIGHT); 417 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 287 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 8,LEFT); 418 } 288 } 419 289 420 void HepPolyhedron::RotateEdge(G4int k1, G4int 290 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2, 421 G4int v1, G4int 291 G4int v1, G4int v2, G4int vEdge, 422 G4bool ifWholeCi 292 G4bool ifWholeCircle, G4int nds, G4int &kface) 423 /********************************************* 293 /*********************************************************************** 424 * 294 * * 425 * Name: HepPolyhedron::RotateEdge 295 * Name: HepPolyhedron::RotateEdge Date: 05.12.96 * 426 * Author: E.Chernyaev (IHEP/Protvino) 296 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 427 * 297 * * 428 * Function: Create set of facets by rotation 298 * Function: Create set of facets by rotation of an edge around Z-axis * 429 * 299 * * 430 * Input: k1, k2 - end vertices of the edge 300 * Input: k1, k2 - end vertices of the edge * 431 * r1, r2 - radiuses of the end vertice 301 * r1, r2 - radiuses of the end vertices * 432 * v1, v2 - visibility of edges produce 302 * v1, v2 - visibility of edges produced by rotation of the end * 433 * vertices 303 * vertices * 434 * vEdge - visibility of the edge 304 * vEdge - visibility of the edge * 435 * ifWholeCircle - is true in case of w 305 * ifWholeCircle - is true in case of whole circle rotation * 436 * nds - number of discrete steps 306 * nds - number of discrete steps * 437 * r[] - r-coordinates 307 * r[] - r-coordinates * 438 * kface - current free cell in the pF 308 * kface - current free cell in the pF array * 439 * 309 * * 440 ********************************************* 310 ***********************************************************************/ 441 { 311 { 442 if (r1 == 0. && r2 == 0.) return; << 312 if (r1 == 0. && r2 == 0) return; 443 313 444 G4int i; 314 G4int i; 445 G4int i1 = k1; 315 G4int i1 = k1; 446 G4int i2 = k2; 316 G4int i2 = k2; 447 G4int ii1 = ifWholeCircle ? i1 : i1+nds; 317 G4int ii1 = ifWholeCircle ? i1 : i1+nds; 448 G4int ii2 = ifWholeCircle ? i2 : i2+nds; 318 G4int ii2 = ifWholeCircle ? i2 : i2+nds; 449 G4int vv = ifWholeCircle ? vEdge : 1; 319 G4int vv = ifWholeCircle ? vEdge : 1; 450 320 451 if (nds == 1) { 321 if (nds == 1) { 452 if (r1 == 0.) { 322 if (r1 == 0.) { 453 pF[kface++] = G4Facet(i1,0, v2*i2,0 323 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0); 454 }else if (r2 == 0.) { 324 }else if (r2 == 0.) { 455 pF[kface++] = G4Facet(i1,0, i2,0, 325 pF[kface++] = G4Facet(i1,0, i2,0, v1*(i1+1),0); 456 }else{ 326 }else{ 457 pF[kface++] = G4Facet(i1,0, v2*i2,0 327 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0, v1*(i1+1),0); 458 } 328 } 459 }else{ 329 }else{ 460 if (r1 == 0.) { 330 if (r1 == 0.) { 461 pF[kface++] = G4Facet(vv*i1,0, v2*i 331 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0); 462 for (i2++,i=1; i<nds-1; i2++,i++) { 332 for (i2++,i=1; i<nds-1; i2++,i++) { 463 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 333 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0); 464 } 334 } 465 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 335 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0); 466 }else if (r2 == 0.) { 336 }else if (r2 == 0.) { 467 pF[kface++] = G4Facet(vv*i1,0, vEdg 337 pF[kface++] = G4Facet(vv*i1,0, vEdge*i2,0, v1*(i1+1),0); 468 for (i1++,i=1; i<nds-1; i1++,i++) { 338 for (i1++,i=1; i<nds-1; i1++,i++) { 469 pF[kface++] = G4Facet(vEdge*i1,0, vEdg 339 pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0); 470 } 340 } 471 pF[kface++] = G4Facet(vEdge*i1,0, vv*i 341 pF[kface++] = G4Facet(vEdge*i1,0, vv*i2,0, v1*ii1,0); 472 }else{ 342 }else{ 473 pF[kface++] = G4Facet(vv*i1,0, v2*i 343 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 474 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i 344 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) { 475 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 345 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 476 } << 346 } 477 pF[kface++] = G4Facet(vEdge*i1,0, v2*i 347 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0, v1*ii1,0); 478 } 348 } 479 } 349 } 480 } 350 } 481 351 482 void HepPolyhedron::SetSideFacets(G4int ii[4], 352 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4], 483 G4int *kk, G4 353 G4int *kk, G4double *r, 484 G4double dphi 354 G4double dphi, G4int nds, G4int &kface) 485 /********************************************* 355 /*********************************************************************** 486 * 356 * * 487 * Name: HepPolyhedron::SetSideFacets 357 * Name: HepPolyhedron::SetSideFacets Date: 20.05.97 * 488 * Author: E.Chernyaev (IHEP/Protvino) 358 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 489 * 359 * * 490 * Function: Set side facets for the case of i 360 * Function: Set side facets for the case of incomplete rotation * 491 * 361 * * 492 * Input: ii[4] - indices of original vertices 362 * Input: ii[4] - indices of original vertices * 493 * vv[4] - visibility of edges 363 * vv[4] - visibility of edges * 494 * kk[] - indices of nodes 364 * kk[] - indices of nodes * 495 * r[] - radiuses 365 * r[] - radiuses * 496 * dphi - delta phi 366 * dphi - delta phi * 497 * nds - number of discrete steps 367 * nds - number of discrete steps * 498 * kface - current free cell in the pF 368 * kface - current free cell in the pF array * 499 * 369 * * 500 ********************************************* 370 ***********************************************************************/ 501 { 371 { 502 G4int k1, k2, k3, k4; 372 G4int k1, k2, k3, k4; 503 << 373 504 if (std::abs(dphi-pi) < perMillion) { // hal << 374 if (std::abs((G4double)(dphi-pi)) < perMillion) { // half a circle 505 for (G4int i=0; i<4; i++) { 375 for (G4int i=0; i<4; i++) { 506 k1 = ii[i]; 376 k1 = ii[i]; 507 k2 = ii[(i+1)%4]; << 377 k2 = (i == 3) ? ii[0] : ii[i+1]; 508 if (r[k1] == 0. && r[k2] == 0.) vv[i] = << 378 if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1; 509 } 379 } 510 } 380 } 511 381 512 if (ii[1] == ii[2]) { 382 if (ii[1] == ii[2]) { 513 k1 = kk[ii[0]]; 383 k1 = kk[ii[0]]; 514 k2 = kk[ii[2]]; 384 k2 = kk[ii[2]]; 515 k3 = kk[ii[3]]; 385 k3 = kk[ii[3]]; 516 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2 386 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 517 if (r[ii[0]] != 0.) k1 += nds; 387 if (r[ii[0]] != 0.) k1 += nds; 518 if (r[ii[2]] != 0.) k2 += nds; 388 if (r[ii[2]] != 0.) k2 += nds; 519 if (r[ii[3]] != 0.) k3 += nds; 389 if (r[ii[3]] != 0.) k3 += nds; 520 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2 390 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 521 }else if (kk[ii[0]] == kk[ii[1]]) { 391 }else if (kk[ii[0]] == kk[ii[1]]) { 522 k1 = kk[ii[0]]; 392 k1 = kk[ii[0]]; 523 k2 = kk[ii[2]]; 393 k2 = kk[ii[2]]; 524 k3 = kk[ii[3]]; 394 k3 = kk[ii[3]]; 525 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2 395 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 526 if (r[ii[0]] != 0.) k1 += nds; 396 if (r[ii[0]] != 0.) k1 += nds; 527 if (r[ii[2]] != 0.) k2 += nds; 397 if (r[ii[2]] != 0.) k2 += nds; 528 if (r[ii[3]] != 0.) k3 += nds; 398 if (r[ii[3]] != 0.) k3 += nds; 529 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2 399 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0); 530 }else if (kk[ii[2]] == kk[ii[3]]) { 400 }else if (kk[ii[2]] == kk[ii[3]]) { 531 k1 = kk[ii[0]]; 401 k1 = kk[ii[0]]; 532 k2 = kk[ii[1]]; 402 k2 = kk[ii[1]]; 533 k3 = kk[ii[2]]; 403 k3 = kk[ii[2]]; 534 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 404 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0); 535 if (r[ii[0]] != 0.) k1 += nds; 405 if (r[ii[0]] != 0.) k1 += nds; 536 if (r[ii[1]] != 0.) k2 += nds; 406 if (r[ii[1]] != 0.) k2 += nds; 537 if (r[ii[2]] != 0.) k3 += nds; 407 if (r[ii[2]] != 0.) k3 += nds; 538 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2 408 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 539 }else{ 409 }else{ 540 k1 = kk[ii[0]]; 410 k1 = kk[ii[0]]; 541 k2 = kk[ii[1]]; 411 k2 = kk[ii[1]]; 542 k3 = kk[ii[2]]; 412 k3 = kk[ii[2]]; 543 k4 = kk[ii[3]]; 413 k4 = kk[ii[3]]; 544 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2 414 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0); 545 if (r[ii[0]] != 0.) k1 += nds; 415 if (r[ii[0]] != 0.) k1 += nds; 546 if (r[ii[1]] != 0.) k2 += nds; 416 if (r[ii[1]] != 0.) k2 += nds; 547 if (r[ii[2]] != 0.) k3 += nds; 417 if (r[ii[2]] != 0.) k3 += nds; 548 if (r[ii[3]] != 0.) k4 += nds; 418 if (r[ii[3]] != 0.) k4 += nds; 549 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3 419 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 550 } 420 } 551 } 421 } 552 422 553 void HepPolyhedron::RotateAroundZ(G4int nstep, 423 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi, 554 G4int np1, G4 424 G4int np1, G4int np2, 555 const G4doubl 425 const G4double *z, G4double *r, 556 G4int nodeVis 426 G4int nodeVis, G4int edgeVis) 557 /********************************************* 427 /*********************************************************************** 558 * 428 * * 559 * Name: HepPolyhedron::RotateAroundZ 429 * Name: HepPolyhedron::RotateAroundZ Date: 27.11.96 * 560 * Author: E.Chernyaev (IHEP/Protvino) 430 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 561 * 431 * * 562 * Function: Create HepPolyhedron for a solid 432 * Function: Create HepPolyhedron for a solid produced by rotation of * 563 * two polylines around Z-axis 433 * two polylines around Z-axis * 564 * 434 * * 565 * Input: nstep - number of discrete steps, if 435 * Input: nstep - number of discrete steps, if 0 then default * 566 * phi - starting phi angle 436 * phi - starting phi angle * 567 * dphi - delta phi 437 * dphi - delta phi * 568 * np1 - number of points in external 438 * np1 - number of points in external polyline * 569 * (must be negative in case of 439 * (must be negative in case of closed polyline) * 570 * np2 - number of points in internal 440 * np2 - number of points in internal polyline (may be 1) * 571 * z[] - z-coordinates (+z >>> -z for 441 * z[] - z-coordinates (+z >>> -z for both polylines) * 572 * r[] - r-coordinates 442 * r[] - r-coordinates * 573 * nodeVis - how to Draw edges joing co 443 * nodeVis - how to Draw edges joing consecutive positions of * 574 * node during rotation 444 * node during rotation * 575 * edgeVis - how to Draw edges 445 * edgeVis - how to Draw edges * 576 * 446 * * 577 ********************************************* 447 ***********************************************************************/ 578 { 448 { 579 static const G4double wholeCircle = twopi; 449 static const G4double wholeCircle = twopi; 580 << 450 581 // S E T R O T A T I O N P A R A M E T 451 // S E T R O T A T I O N P A R A M E T E R S 582 452 583 G4bool ifWholeCircle = std::abs(dphi-wholeCi << 453 G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false; 584 G4double delPhi = ifWholeCircle ? wholeCircl << 454 G4double delPhi = ifWholeCircle ? wholeCircle : dphi; 585 G4int nSphi = nstep; << 455 G4int nSphi = (nstep > 0) ? 586 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 456 nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5); 587 if (nSphi == 0) nSphi = 1; 457 if (nSphi == 0) nSphi = 1; 588 G4int nVphi = ifWholeCircle ? nSphi : nSphi << 458 G4int nVphi = ifWholeCircle ? nSphi : nSphi+1; 589 G4bool ifClosed = np1 <= 0; // true if exter << 459 G4bool ifClosed = np1 > 0 ? false : true; 590 << 460 591 // C O U N T V E R T I C E S << 461 // C O U N T V E R T E C E S 592 462 593 G4int absNp1 = std::abs(np1); 463 G4int absNp1 = std::abs(np1); 594 G4int absNp2 = std::abs(np2); 464 G4int absNp2 = std::abs(np2); 595 G4int i1beg = 0; 465 G4int i1beg = 0; 596 G4int i1end = absNp1-1; 466 G4int i1end = absNp1-1; 597 G4int i2beg = absNp1; 467 G4int i2beg = absNp1; 598 G4int i2end = absNp1+absNp2-1; << 468 G4int i2end = absNp1+absNp2-1; 599 G4int i, j, k; 469 G4int i, j, k; 600 470 601 for(i=i1beg; i<=i2end; i++) { 471 for(i=i1beg; i<=i2end; i++) { 602 if (std::abs(r[i]) < spatialTolerance) r[i 472 if (std::abs(r[i]) < spatialTolerance) r[i] = 0.; 603 } 473 } 604 474 605 // external polyline - check position of nod << 475 j = 0; // external nodes 606 // << 607 G4int Nverts = 0; << 608 for (i=i1beg; i<=i1end; i++) { 476 for (i=i1beg; i<=i1end; i++) { 609 Nverts += (r[i] == 0.) ? 1 : nVphi; << 477 j += (r[i] == 0.) ? 1 : nVphi; 610 } 478 } 611 479 612 // internal polyline << 480 G4bool ifSide1 = false; // internal nodes 613 // << 481 G4bool ifSide2 = false; 614 G4bool ifSide1 = false; // whether to create << 615 G4bool ifSide2 = false; // whether to create << 616 482 617 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 483 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) { 618 Nverts += (r[i2beg] == 0.) ? 1 : nVphi; << 484 j += (r[i2beg] == 0.) ? 1 : nVphi; 619 ifSide1 = true; 485 ifSide1 = true; 620 } 486 } 621 487 622 for(i=i2beg+1; i<i2end; i++) { // intermedia << 488 for(i=i2beg+1; i<i2end; i++) { 623 Nverts += (r[i] == 0.) ? 1 : nVphi; << 489 j += (r[i] == 0.) ? 1 : nVphi; 624 } 490 } 625 << 491 626 if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 492 if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) { 627 if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 493 if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi; 628 ifSide2 = true; 494 ifSide2 = true; 629 } 495 } 630 496 631 // C O U N T F A C E S 497 // C O U N T F A C E S 632 498 633 // external lateral faces << 499 k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi; // external faces 634 // << 635 G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 636 500 637 // internal lateral faces << 501 if (absNp2 > 1) { // internal faces 638 // << 639 if (absNp2 > 1) { << 640 for(i=i2beg; i<i2end; i++) { 502 for(i=i2beg; i<i2end; i++) { 641 if (r[i] > 0. || r[i+1] > 0.) Nfaces += << 503 if (r[i] > 0. || r[i+1] > 0.) k += nSphi; 642 } 504 } 643 505 644 if (ifClosed) { 506 if (ifClosed) { 645 if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 507 if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi; 646 } 508 } 647 } 509 } 648 510 649 // bottom and top faces << 511 if (!ifClosed) { // side faces 650 // << 512 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi; 651 if (!ifClosed) { << 513 if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi; 652 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] << 653 if (ifSide2 && (r[i1end] > 0. || r[i2end] << 654 } 514 } 655 515 656 // phi_wedge faces << 516 if (!ifWholeCircle) { // phi_side faces 657 // << 517 k += ifClosed ? 2*absNp1 : 2*(absNp1-1); 658 if (!ifWholeCircle) { << 659 Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 660 } 518 } 661 519 662 // A L L O C A T E M E M O R Y 520 // A L L O C A T E M E M O R Y 663 521 664 AllocateMemory(Nverts, Nfaces); << 522 AllocateMemory(j, k); 665 if (pV == nullptr || pF == nullptr) return; << 666 523 667 // G E N E R A T E V E R T I C E S << 524 // G E N E R A T E V E R T E C E S 668 525 669 G4int *kk; // array of start indices along p << 526 G4int *kk; 670 kk = new G4int[absNp1+absNp2]; 527 kk = new G4int[absNp1+absNp2]; 671 528 672 // external polyline << 529 k = 1; 673 // << 674 k = 1; // free position in array of vertices << 675 for(i=i1beg; i<=i1end; i++) { 530 for(i=i1beg; i<=i1end; i++) { 676 kk[i] = k; 531 kk[i] = k; 677 if (r[i] == 0.) 532 if (r[i] == 0.) 678 { pV[k++] = G4Point3D(0, 0, z[i]); } else 533 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 679 } 534 } 680 535 681 // first point of internal polyline << 682 // << 683 i = i2beg; 536 i = i2beg; 684 if (ifSide1) { 537 if (ifSide1) { 685 kk[i] = k; 538 kk[i] = k; 686 if (r[i] == 0.) 539 if (r[i] == 0.) 687 { pV[k++] = G4Point3D(0, 0, z[i]); } else 540 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 688 }else{ 541 }else{ 689 kk[i] = kk[i1beg]; 542 kk[i] = kk[i1beg]; 690 } 543 } 691 544 692 // intermediate points of internal polyline << 693 // << 694 for(i=i2beg+1; i<i2end; i++) { 545 for(i=i2beg+1; i<i2end; i++) { 695 kk[i] = k; 546 kk[i] = k; 696 if (r[i] == 0.) 547 if (r[i] == 0.) 697 { pV[k++] = G4Point3D(0, 0, z[i]); } else 548 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 698 } 549 } 699 550 700 // last point of internal polyline << 701 // << 702 if (absNp2 > 1) { 551 if (absNp2 > 1) { 703 i = i2end; 552 i = i2end; 704 if (ifSide2) { 553 if (ifSide2) { 705 kk[i] = k; 554 kk[i] = k; 706 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, 555 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]); 707 }else{ 556 }else{ 708 kk[i] = kk[i1end]; 557 kk[i] = kk[i1end]; 709 } 558 } 710 } 559 } 711 560 712 // set vertices << 713 // << 714 G4double cosPhi, sinPhi; 561 G4double cosPhi, sinPhi; 715 562 716 for(j=0; j<nVphi; j++) { 563 for(j=0; j<nVphi; j++) { 717 cosPhi = std::cos(phi+j*delPhi/nSphi); 564 cosPhi = std::cos(phi+j*delPhi/nSphi); 718 sinPhi = std::sin(phi+j*delPhi/nSphi); 565 sinPhi = std::sin(phi+j*delPhi/nSphi); 719 for(i=i1beg; i<=i2end; i++) { 566 for(i=i1beg; i<=i2end; i++) { 720 if (r[i] != 0.) 567 if (r[i] != 0.) 721 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[ 568 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]); 722 } 569 } 723 } 570 } 724 571 725 // G E N E R A T E F A C E S << 572 // G E N E R A T E E X T E R N A L F A C E S 726 573 727 // external faces << 728 // << 729 G4int v1,v2; 574 G4int v1,v2; 730 575 731 k = 1; // free position in array of faces pF << 576 k = 1; 732 v2 = ifClosed ? nodeVis : 1; 577 v2 = ifClosed ? nodeVis : 1; 733 for(i=i1beg; i<i1end; i++) { 578 for(i=i1beg; i<i1end; i++) { 734 v1 = v2; 579 v1 = v2; 735 if (!ifClosed && i == i1end-1) { 580 if (!ifClosed && i == i1end-1) { 736 v2 = 1; 581 v2 = 1; 737 }else{ 582 }else{ 738 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2] 583 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 739 } 584 } 740 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v 585 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2, 741 edgeVis, ifWholeCircle, nSphi, 586 edgeVis, ifWholeCircle, nSphi, k); 742 } 587 } 743 if (ifClosed) { 588 if (ifClosed) { 744 RotateEdge(kk[i1end], kk[i1beg], r[i1end], 589 RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis, 745 edgeVis, ifWholeCircle, nSphi, 590 edgeVis, ifWholeCircle, nSphi, k); 746 } 591 } 747 592 748 // internal faces << 593 // G E N E R A T E I N T E R N A L F A C E S 749 // << 594 750 if (absNp2 > 1) { 595 if (absNp2 > 1) { 751 v2 = ifClosed ? nodeVis : 1; 596 v2 = ifClosed ? nodeVis : 1; 752 for(i=i2beg; i<i2end; i++) { 597 for(i=i2beg; i<i2end; i++) { 753 v1 = v2; 598 v1 = v2; 754 if (!ifClosed && i==i2end-1) { 599 if (!ifClosed && i==i2end-1) { 755 v2 = 1; 600 v2 = 1; 756 }else{ 601 }else{ 757 v2 = (r[i] == r[i+1] && r[i+1] == r[i+ 602 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 758 } 603 } 759 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], 604 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1, 760 edgeVis, ifWholeCircle, nSphi 605 edgeVis, ifWholeCircle, nSphi, k); 761 } 606 } 762 if (ifClosed) { 607 if (ifClosed) { 763 RotateEdge(kk[i2beg], kk[i2end], r[i2beg 608 RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis, 764 edgeVis, ifWholeCircle, nSphi 609 edgeVis, ifWholeCircle, nSphi, k); 765 } 610 } 766 } 611 } 767 612 768 // bottom and top faces << 613 // G E N E R A T E S I D E F A C E S 769 // << 614 770 if (!ifClosed) { 615 if (!ifClosed) { 771 if (ifSide1) { 616 if (ifSide1) { 772 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg 617 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1, 773 -1, ifWholeCircle, nSphi, k); 618 -1, ifWholeCircle, nSphi, k); 774 } 619 } 775 if (ifSide2) { 620 if (ifSide2) { 776 RotateEdge(kk[i1end], kk[i2end], r[i1end 621 RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1, 777 -1, ifWholeCircle, nSphi, k); 622 -1, ifWholeCircle, nSphi, k); 778 } 623 } 779 } 624 } 780 625 781 // phi_wedge faces in case of incomplete cir << 626 // G E N E R A T E S I D E F A C E S for the case of incomplete circle 782 // << 627 783 if (!ifWholeCircle) { 628 if (!ifWholeCircle) { 784 629 785 G4int ii[4], vv[4]; 630 G4int ii[4], vv[4]; 786 631 787 if (ifClosed) { 632 if (ifClosed) { 788 for (i=i1beg; i<=i1end; i++) { 633 for (i=i1beg; i<=i1end; i++) { 789 ii[0] = i; 634 ii[0] = i; 790 ii[3] = (i == i1end) ? i1beg : i+1; 635 ii[3] = (i == i1end) ? i1beg : i+1; 791 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 636 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 792 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 637 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 793 vv[0] = -1; 638 vv[0] = -1; 794 vv[1] = 1; 639 vv[1] = 1; 795 vv[2] = -1; 640 vv[2] = -1; 796 vv[3] = 1; 641 vv[3] = 1; 797 SetSideFacets(ii, vv, kk, r, delPhi, n << 642 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 798 } 643 } 799 }else{ 644 }else{ 800 for (i=i1beg; i<i1end; i++) { 645 for (i=i1beg; i<i1end; i++) { 801 ii[0] = i; 646 ii[0] = i; 802 ii[3] = i+1; 647 ii[3] = i+1; 803 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+ 648 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 804 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+ 649 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 805 vv[0] = (i == i1beg) ? 1 : -1; 650 vv[0] = (i == i1beg) ? 1 : -1; 806 vv[1] = 1; 651 vv[1] = 1; 807 vv[2] = (i == i1end-1) ? 1 : -1; 652 vv[2] = (i == i1end-1) ? 1 : -1; 808 vv[3] = 1; 653 vv[3] = 1; 809 SetSideFacets(ii, vv, kk, r, delPhi, n << 654 SetSideFacets(ii, vv, kk, r, dphi, nSphi, k); 810 } 655 } 811 } << 656 } 812 } 657 } 813 658 814 delete [] kk; // free memory << 659 delete [] kk; 815 660 816 // final check << 817 // << 818 if (k-1 != nface) { 661 if (k-1 != nface) { 819 std::cerr 662 std::cerr 820 << "HepPolyhedron::RotateAroundZ: number << 663 << "Polyhedron::RotateAroundZ: number of generated faces (" 821 << k-1 << ") is not equal to the number 664 << k-1 << ") is not equal to the number of allocated faces (" 822 << nface << ")" 665 << nface << ")" 823 << std::endl; 666 << std::endl; 824 } 667 } 825 } 668 } 826 669 827 void << 828 HepPolyhedron::RotateContourAroundZ(G4int nste << 829 G4double p << 830 G4double d << 831 const std: << 832 G4int node << 833 G4int edge << 834 /********************************************* << 835 * << 836 * Name: HepPolyhedron::RotateContourAroundZ << 837 * Author: E.Tcherniaev (E.Chernyaev) << 838 * << 839 * Function: Create HepPolyhedron for a solid << 840 * a closed polyline (rz-contour) ar << 841 * << 842 * Input: nstep - number of discrete steps, if << 843 * phi - starting phi angle << 844 * dphi - delta phi << 845 * rz - rz-contour << 846 * nodeVis - how to Draw edges joing co << 847 * node during rotation << 848 * edgeVis - how to Draw edges << 849 * << 850 ********************************************* << 851 { << 852 // S E T R O T A T I O N P A R A M E T << 853 << 854 G4bool ifWholeCircle = std::abs(dphi - twopi << 855 G4double delPhi = (ifWholeCircle) ? twopi : << 856 G4int nSphi = nstep; << 857 if (nSphi <= 0) nSphi = GetNumberOfRotationS << 858 if (nSphi == 0) nSphi = 1; << 859 G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 860 << 861 // C A L C U L A T E A R E A << 862 << 863 G4int Nrz = (G4int)rz.size(); << 864 G4double area = 0; << 865 for (G4int i = 0; i < Nrz; ++i) << 866 { << 867 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 868 area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 869 } << 870 << 871 // P R E P A R E P O L Y L I N E << 872 << 873 auto r = new G4double[Nrz]; << 874 auto z = new G4double[Nrz]; << 875 for (G4int i = 0; i < Nrz; ++i) << 876 { << 877 r[i] = rz[i].x(); << 878 z[i] = rz[i].y(); << 879 if (std::abs(r[i]) < spatialTolerance) r[i << 880 } << 881 << 882 // C O U N T V E R T I C E S A N D F << 883 << 884 G4int Nverts = 0; << 885 for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 886 << 887 G4int Nedges = Nrz; << 888 for (G4int i = 0; i < Nrz; ++i) << 889 { << 890 G4int k = (i == 0) ? Nrz - 1 : i - 1; << 891 Nedges -= static_cast<int>(r[k] == 0 && r[ << 892 } << 893 << 894 G4int Nfaces = Nedges*nSphi; / << 895 if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 896 << 897 // A L L O C A T E M E M O R Y << 898 << 899 AllocateMemory(Nverts, Nfaces); << 900 if (pV == nullptr || pF == nullptr) << 901 { << 902 delete [] r; << 903 delete [] z; << 904 return; << 905 } << 906 << 907 // S E T V E R T I C E S << 908 << 909 auto kk = new G4int[Nrz]; // start indices a << 910 G4int kfree = 1; // current free position in << 911 << 912 // set start indices, set vertices for nodes << 913 for(G4int i = 0; i < Nrz; ++i) << 914 { << 915 kk[i] = kfree; << 916 if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 917 if (r[i] != 0.) kfree += nVphi; << 918 } << 919 << 920 // set vertices by rotating r << 921 for(G4int j = 0; j < nVphi; ++j) << 922 { << 923 G4double cosPhi = std::cos(phi + j*delPhi/ << 924 G4double sinPhi = std::sin(phi + j*delPhi/ << 925 for(G4int i = 0; i < Nrz; ++i) << 926 { << 927 if (r[i] != 0.) << 928 pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 929 } << 930 } << 931 << 932 // S E T F A C E S << 933 << 934 kfree = 1; // current free position in array << 935 for(G4int i = 0; i < Nrz; ++i) << 936 { << 937 G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 938 G4int i2 = i; << 939 if (area < 0.) std::swap(i1, i2); << 940 RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 941 edgeVis, ifWholeCircle, nSphi, << 942 } << 943 << 944 // S E T P H I _ W E D G E F A C E S << 945 << 946 if (!ifWholeCircle) << 947 { << 948 std::vector<G4int> triangles; << 949 TriangulatePolygon(rz, triangles); << 950 << 951 G4int ii[4], vv[4]; << 952 G4int ntria = G4int(triangles.size()/3); << 953 for (G4int i = 0; i < ntria; ++i) << 954 { << 955 G4int i1 = triangles[0 + i*3]; << 956 G4int i2 = triangles[1 + i*3]; << 957 G4int i3 = triangles[2 + i*3]; << 958 if (area < 0.) std::swap(i1, i3); << 959 G4int v1 = (std::abs(i2-i1) == 1 || std: << 960 G4int v2 = (std::abs(i3-i2) == 1 || std: << 961 G4int v3 = (std::abs(i1-i3) == 1 || std: << 962 ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 963 vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 964 SetSideFacets(ii, vv, kk, r, delPhi, nSp << 965 } << 966 } << 967 << 968 // free memory << 969 delete [] r; << 970 delete [] z; << 971 delete [] kk; << 972 << 973 // final check << 974 if (kfree - 1 != nface) << 975 { << 976 std::cerr << 977 << "HepPolyhedron::RotateContourAroundZ: << 978 << kfree-1 << ") is not equal to the num << 979 << nface << ")" << 980 << std::endl; << 981 } << 982 } << 983 << 984 G4bool << 985 HepPolyhedron::TriangulatePolygon(const std::v << 986 std::vector< << 987 /********************************************* << 988 * << 989 * Name: HepPolyhedron::TriangulatePolygon << 990 * Author: E.Tcherniaev (E.Chernyaev) << 991 * << 992 * Function: Simple implementation of "ear cli << 993 * triangulation of a simple contour << 994 * the result in a std::vector as tr << 995 * << 996 * If triangulation is sucsessfull t << 997 * returns true, otherwise false << 998 * << 999 * Remark: It's a copy of G4GeomTools::Trian << 1000 * << 1001 ******************************************** << 1002 { << 1003 result.resize(0); << 1004 G4int n = (G4int)polygon.size(); << 1005 if (n < 3) return false; << 1006 << 1007 // calculate area << 1008 // << 1009 G4double area = 0.; << 1010 for(G4int i = 0; i < n; ++i) << 1011 { << 1012 G4int k = (i == 0) ? n - 1 : i - 1; << 1013 area += polygon[k].x()*polygon[i].y() - p << 1014 } << 1015 << 1016 // allocate and initialize list of Vertices << 1017 // we want a counter-clockwise polygon in V << 1018 // << 1019 auto V = new G4int[n]; << 1020 if (area > 0.) << 1021 for (G4int i = 0; i < n; ++i) V[i] = i; << 1022 else << 1023 for (G4int i = 0; i < n; ++i) V[i] = (n - << 1024 << 1025 // Triangulation: remove nv-2 Vertices, cr << 1026 // << 1027 G4int nv = n; << 1028 G4int count = 2*nv; // error detection coun << 1029 for(G4int b = nv - 1; nv > 2; ) << 1030 { << 1031 // ERROR: if we loop, it is probably a no << 1032 if ((count--) <= 0) << 1033 { << 1034 delete [] V; << 1035 if (area < 0.) std::reverse(result.begi << 1036 return false; << 1037 } << 1038 << 1039 // three consecutive vertices in current << 1040 G4int a = (b < nv) ? b : 0; // previo << 1041 b = (a+1 < nv) ? a+1 : 0; // curren << 1042 G4int c = (b+1 < nv) ? b+1 : 0; // next << 1043 << 1044 if (CheckSnip(polygon, a,b,c, nv,V)) << 1045 { << 1046 // output Triangle << 1047 result.push_back(V[a]); << 1048 result.push_back(V[b]); << 1049 result.push_back(V[c]); << 1050 << 1051 // remove vertex b from remaining polyg << 1052 nv--; << 1053 for(G4int i = b; i < nv; ++i) V[i] = V[ << 1054 << 1055 count = 2*nv; // resest error detection << 1056 } << 1057 } << 1058 delete [] V; << 1059 if (area < 0.) std::reverse(result.begin(), << 1060 return true; << 1061 } << 1062 << 1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 1064 G4int a, G4in << 1065 G4int n, cons << 1066 /******************************************** << 1067 * << 1068 * Name: HepPolyhedron::CheckSnip << 1069 * Author: E.Tcherniaev (E.Chernyaev) << 1070 * << 1071 * Function: Check for a valid snip, << 1072 * it is a helper functionfor Trian << 1073 * << 1074 ******************************************** << 1075 { << 1076 static const G4double kCarTolerance = 1.e-9 << 1077 << 1078 // check orientation of Triangle << 1079 G4double Ax = contour[V[a]].x(), Ay = conto << 1080 G4double Bx = contour[V[b]].x(), By = conto << 1081 G4double Cx = contour[V[c]].x(), Cy = conto << 1082 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 1083 << 1084 // check that there is no point inside Tria << 1085 G4double xmin = std::min(std::min(Ax,Bx),Cx << 1086 G4double xmax = std::max(std::max(Ax,Bx),Cx << 1087 G4double ymin = std::min(std::min(Ay,By),Cy << 1088 G4double ymax = std::max(std::max(Ay,By),Cy << 1089 << 1090 for (G4int i=0; i<n; ++i) << 1091 { << 1092 if((i == a) || (i == b) || (i == c)) cont << 1093 G4double Px = contour[V[i]].x(); << 1094 if (Px < xmin || Px > xmax) continue; << 1095 G4double Py = contour[V[i]].y(); << 1096 if (Py < ymin || Py > ymax) continue; << 1097 // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 1098 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 1099 { << 1100 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 1101 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 1102 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 1103 } << 1104 else << 1105 { << 1106 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 1107 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 1108 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 1109 } << 1110 return false; << 1111 } << 1112 return true; << 1113 } << 1114 << 1115 void HepPolyhedron::SetReferences() 670 void HepPolyhedron::SetReferences() 1116 /******************************************** 671 /*********************************************************************** 1117 * 672 * * 1118 * Name: HepPolyhedron::SetReferences 673 * Name: HepPolyhedron::SetReferences Date: 04.12.96 * 1119 * Author: E.Chernyaev (IHEP/Protvino) 674 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1120 * 675 * * 1121 * Function: For each edge set reference to n 676 * Function: For each edge set reference to neighbouring facet * 1122 * 677 * * 1123 ******************************************** 678 ***********************************************************************/ 1124 { 679 { 1125 if (nface <= 0) return; 680 if (nface <= 0) return; 1126 681 1127 struct edgeListMember { 682 struct edgeListMember { 1128 edgeListMember *next; 683 edgeListMember *next; 1129 G4int v2; 684 G4int v2; 1130 G4int iface; 685 G4int iface; 1131 G4int iedge; 686 G4int iedge; 1132 } *edgeList, *freeList, **headList; 687 } *edgeList, *freeList, **headList; 1133 688 1134 << 689 1135 // A L L O C A T E A N D I N I T I A 690 // A L L O C A T E A N D I N I T I A T E L I S T S 1136 691 1137 edgeList = new edgeListMember[2*nface]; 692 edgeList = new edgeListMember[2*nface]; 1138 headList = new edgeListMember*[nvert]; 693 headList = new edgeListMember*[nvert]; 1139 << 694 1140 G4int i; 695 G4int i; 1141 for (i=0; i<nvert; i++) { 696 for (i=0; i<nvert; i++) { 1142 headList[i] = nullptr; << 697 headList[i] = 0; 1143 } 698 } 1144 freeList = edgeList; 699 freeList = edgeList; 1145 for (i=0; i<2*nface-1; i++) { 700 for (i=0; i<2*nface-1; i++) { 1146 edgeList[i].next = &edgeList[i+1]; 701 edgeList[i].next = &edgeList[i+1]; 1147 } 702 } 1148 edgeList[2*nface-1].next = nullptr; << 703 edgeList[2*nface-1].next = 0; 1149 704 1150 // L O O P A L O N G E D G E S 705 // L O O P A L O N G E D G E S 1151 706 1152 G4int iface, iedge, nedge, i1, i2, k1, k2; 707 G4int iface, iedge, nedge, i1, i2, k1, k2; 1153 edgeListMember *prev, *cur; 708 edgeListMember *prev, *cur; 1154 << 709 1155 for(iface=1; iface<=nface; iface++) { 710 for(iface=1; iface<=nface; iface++) { 1156 nedge = (pF[iface].edge[3].v == 0) ? 3 : 711 nedge = (pF[iface].edge[3].v == 0) ? 3 : 4; 1157 for (iedge=0; iedge<nedge; iedge++) { 712 for (iedge=0; iedge<nedge; iedge++) { 1158 i1 = iedge; 713 i1 = iedge; 1159 i2 = (iedge < nedge-1) ? iedge+1 : 0; 714 i2 = (iedge < nedge-1) ? iedge+1 : 0; 1160 i1 = std::abs(pF[iface].edge[i1].v); 715 i1 = std::abs(pF[iface].edge[i1].v); 1161 i2 = std::abs(pF[iface].edge[i2].v); 716 i2 = std::abs(pF[iface].edge[i2].v); 1162 k1 = (i1 < i2) ? i1 : i2; // k 717 k1 = (i1 < i2) ? i1 : i2; // k1 = ::min(i1,i2); 1163 k2 = (i1 > i2) ? i1 : i2; // k 718 k2 = (i1 > i2) ? i1 : i2; // k2 = ::max(i1,i2); 1164 << 719 1165 // check head of the List corresponding 720 // check head of the List corresponding to k1 1166 cur = headList[k1]; 721 cur = headList[k1]; 1167 if (cur == nullptr) { << 722 if (cur == 0) { 1168 headList[k1] = freeList; 723 headList[k1] = freeList; 1169 if (freeList == nullptr) { << 724 if (!freeList) { 1170 std::cerr 725 std::cerr 1171 << "Polyhedron::SetReferences: bad 726 << "Polyhedron::SetReferences: bad link " 1172 << std::endl; 727 << std::endl; 1173 break; 728 break; 1174 } 729 } 1175 freeList = freeList->next; 730 freeList = freeList->next; 1176 cur = headList[k1]; 731 cur = headList[k1]; 1177 cur->next = nullptr; << 732 cur->next = 0; 1178 cur->v2 = k2; 733 cur->v2 = k2; 1179 cur->iface = iface; 734 cur->iface = iface; 1180 cur->iedge = iedge; 735 cur->iedge = iedge; 1181 continue; 736 continue; 1182 } 737 } 1183 738 1184 if (cur->v2 == k2) { 739 if (cur->v2 == k2) { 1185 headList[k1] = cur->next; 740 headList[k1] = cur->next; 1186 cur->next = freeList; 741 cur->next = freeList; 1187 freeList = cur; << 742 freeList = cur; 1188 pF[iface].edge[iedge].f = cur->iface; 743 pF[iface].edge[iedge].f = cur->iface; 1189 pF[cur->iface].edge[cur->iedge].f = i 744 pF[cur->iface].edge[cur->iedge].f = iface; 1190 i1 = (pF[iface].edge[iedge].v < 0) ? 745 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1191 i2 = (pF[cur->iface].edge[cur->iedge] 746 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1192 if (i1 != i2) { 747 if (i1 != i2) { 1193 std::cerr 748 std::cerr 1194 << "Polyhedron::SetReferences: di 749 << "Polyhedron::SetReferences: different edge visibility " 1195 << iface << "/" << iedge << "/" 750 << iface << "/" << iedge << "/" 1196 << pF[iface].edge[iedge].v << " a 751 << pF[iface].edge[iedge].v << " and " 1197 << cur->iface << "/" << cur->iedg 752 << cur->iface << "/" << cur->iedge << "/" 1198 << pF[cur->iface].edge[cur->iedge 753 << pF[cur->iface].edge[cur->iedge].v 1199 << std::endl; 754 << std::endl; 1200 } 755 } 1201 continue; 756 continue; 1202 } 757 } 1203 758 1204 // check List itself 759 // check List itself 1205 for (;;) { 760 for (;;) { 1206 prev = cur; 761 prev = cur; 1207 cur = prev->next; 762 cur = prev->next; 1208 if (cur == nullptr) { << 763 if (cur == 0) { 1209 prev->next = freeList; 764 prev->next = freeList; 1210 if (freeList == nullptr) { << 765 if (!freeList) { 1211 std::cerr 766 std::cerr 1212 << "Polyhedron::SetReferences: ba 767 << "Polyhedron::SetReferences: bad link " 1213 << std::endl; 768 << std::endl; 1214 break; 769 break; 1215 } 770 } 1216 freeList = freeList->next; 771 freeList = freeList->next; 1217 cur = prev->next; 772 cur = prev->next; 1218 cur->next = nullptr; << 773 cur->next = 0; 1219 cur->v2 = k2; 774 cur->v2 = k2; 1220 cur->iface = iface; 775 cur->iface = iface; 1221 cur->iedge = iedge; 776 cur->iedge = iedge; 1222 break; 777 break; 1223 } 778 } 1224 779 1225 if (cur->v2 == k2) { 780 if (cur->v2 == k2) { 1226 prev->next = cur->next; 781 prev->next = cur->next; 1227 cur->next = freeList; 782 cur->next = freeList; 1228 freeList = cur; << 783 freeList = cur; 1229 pF[iface].edge[iedge].f = cur->ifac 784 pF[iface].edge[iedge].f = cur->iface; 1230 pF[cur->iface].edge[cur->iedge].f = 785 pF[cur->iface].edge[cur->iedge].f = iface; 1231 i1 = (pF[iface].edge[iedge].v < 0) 786 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1232 i2 = (pF[cur->iface].edge[cur->iedg 787 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1233 if (i1 != i2) { 788 if (i1 != i2) { 1234 std::cerr 789 std::cerr 1235 << "Polyhedron::SetReferences 790 << "Polyhedron::SetReferences: different edge visibility " 1236 << iface << "/" << iedge << " 791 << iface << "/" << iedge << "/" 1237 << pF[iface].edge[iedge].v << 792 << pF[iface].edge[iedge].v << " and " 1238 << cur->iface << "/" << cur-> 793 << cur->iface << "/" << cur->iedge << "/" 1239 << pF[cur->iface].edge[cur->i 794 << pF[cur->iface].edge[cur->iedge].v 1240 << std::endl; 795 << std::endl; 1241 } 796 } 1242 break; 797 break; 1243 } 798 } 1244 } 799 } 1245 } 800 } 1246 } 801 } 1247 802 1248 // C H E C K T H A T A L L L I S T S 803 // C H E C K T H A T A L L L I S T S A R E E M P T Y 1249 804 1250 for (i=0; i<nvert; i++) { 805 for (i=0; i<nvert; i++) { 1251 if (headList[i] != nullptr) { << 806 if (headList[i] != 0) { 1252 std::cerr 807 std::cerr 1253 << "Polyhedron::SetReferences: List " 808 << "Polyhedron::SetReferences: List " << i << " is not empty" 1254 << std::endl; 809 << std::endl; 1255 } 810 } 1256 } 811 } 1257 812 1258 // F R E E M E M O R Y 813 // F R E E M E M O R Y 1259 814 1260 delete [] edgeList; 815 delete [] edgeList; 1261 delete [] headList; 816 delete [] headList; 1262 } 817 } 1263 818 1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 1265 /******************************************** << 1266 * << 1267 * Name: HepPolyhedron::JoinCoplanarFacets << 1268 * Author: E.Tcherniaev (E.Chernyaev) << 1269 * << 1270 * Function: Join couples of triangular facet << 1271 * where it is possible << 1272 * << 1273 ******************************************** << 1274 { << 1275 G4int njoin = 0; << 1276 for (G4int icur = 1; icur <= nface; ++icur) << 1277 { << 1278 // skip if already joined or quadrangle << 1279 if (pF[icur].edge[0].v == 0) continue; << 1280 if (pF[icur].edge[3].v != 0) continue; << 1281 // skip if all references point to alread << 1282 if (pF[icur].edge[0].f < icur && << 1283 pF[icur].edge[1].f < icur && << 1284 pF[icur].edge[2].f < icur) continue; << 1285 // compute plane equation << 1286 G4Normal3D norm = GetUnitNormal(icur); << 1287 G4double dd = norm.dot(pV[pF[icur].edge[0 << 1288 G4int vcur0 = std::abs(pF[icur].edge[0].v << 1289 G4int vcur1 = std::abs(pF[icur].edge[1].v << 1290 G4int vcur2 = std::abs(pF[icur].edge[2].v << 1291 // select neighbouring facet << 1292 G4int kcheck = 0, icheck = 0, vcheck = 0; << 1293 G4double dist = DBL_MAX; << 1294 for (G4int k = 0; k < 3; ++k) << 1295 { << 1296 G4int itmp = pF[icur].edge[k].f; << 1297 // skip if already checked, joined or q << 1298 if (itmp < icur) continue; << 1299 if (pF[itmp].edge[0].v == 0 || << 1300 pF[itmp].edge[3].v != 0) continue; << 1301 // get candidate vertex << 1302 G4int vtmp = 0; << 1303 for (G4int j = 0; j < 3; ++j) << 1304 { << 1305 vtmp = std::abs(pF[itmp].edge[j].v); << 1306 if (vtmp != vcur0 && vtmp != vcur1 && vtmp << 1307 } << 1308 // check distance to the plane << 1309 G4double dtmp = std::abs(norm.dot(pV[vt << 1310 if (dtmp > tolerance || dtmp >= dist) c << 1311 dist = dtmp; << 1312 kcheck = k; << 1313 icheck = itmp; << 1314 vcheck = vtmp; << 1315 } << 1316 if (icheck == 0) continue; // no facet se << 1317 // join facets << 1318 njoin++; << 1319 pF[icheck].edge[0].v = 0; // mark facet a << 1320 if (kcheck == 0) << 1321 { << 1322 pF[icur].edge[3].v = pF[icur].edge[2].v << 1323 pF[icur].edge[2].v = pF[icur].edge[1].v << 1324 pF[icur].edge[1].v = vcheck; << 1325 } << 1326 else if (kcheck == 1) << 1327 { << 1328 pF[icur].edge[3].v = pF[icur].edge[2].v << 1329 pF[icur].edge[2].v = vcheck; << 1330 } << 1331 else << 1332 { << 1333 pF[icur].edge[3].v = vcheck; << 1334 } << 1335 } << 1336 if (njoin == 0) return; // no joined facets << 1337 << 1338 // restructure facets << 1339 G4int nnew = 0; << 1340 for (G4int icur = 1; icur <= nface; ++icur) << 1341 { << 1342 if (pF[icur].edge[0].v == 0) continue; << 1343 nnew++; << 1344 pF[nnew].edge[0].v = pF[icur].edge[0].v; << 1345 pF[nnew].edge[1].v = pF[icur].edge[1].v; << 1346 pF[nnew].edge[2].v = pF[icur].edge[2].v; << 1347 pF[nnew].edge[3].v = pF[icur].edge[3].v; << 1348 } << 1349 nface = nnew; << 1350 SetReferences(); << 1351 } << 1352 << 1353 void HepPolyhedron::InvertFacets() 819 void HepPolyhedron::InvertFacets() 1354 /******************************************** 820 /*********************************************************************** 1355 * 821 * * 1356 * Name: HepPolyhedron::InvertFacets 822 * Name: HepPolyhedron::InvertFacets Date: 01.12.99 * 1357 * Author: E.Chernyaev 823 * Author: E.Chernyaev Revised: * 1358 * 824 * * 1359 * Function: Invert the order of the nodes in 825 * Function: Invert the order of the nodes in the facets * 1360 * 826 * * 1361 ******************************************** 827 ***********************************************************************/ 1362 { 828 { 1363 if (nface <= 0) return; 829 if (nface <= 0) return; 1364 G4int i, k, nnode, v[4],f[4]; 830 G4int i, k, nnode, v[4],f[4]; 1365 for (i=1; i<=nface; i++) { 831 for (i=1; i<=nface; i++) { 1366 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 832 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 1367 for (k=0; k<nnode; k++) { 833 for (k=0; k<nnode; k++) { 1368 v[k] = (k+1 == nnode) ? pF[i].edge[0].v 834 v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v; 1369 if (v[k] * pF[i].edge[k].v < 0) v[k] = 835 if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k]; 1370 f[k] = pF[i].edge[k].f; 836 f[k] = pF[i].edge[k].f; 1371 } 837 } 1372 for (k=0; k<nnode; k++) { 838 for (k=0; k<nnode; k++) { 1373 pF[i].edge[nnode-1-k].v = v[k]; 839 pF[i].edge[nnode-1-k].v = v[k]; 1374 pF[i].edge[nnode-1-k].f = f[k]; 840 pF[i].edge[nnode-1-k].f = f[k]; 1375 } 841 } 1376 } 842 } 1377 } 843 } 1378 844 1379 HepPolyhedron & HepPolyhedron::Transform(cons 845 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t) 1380 /******************************************** 846 /*********************************************************************** 1381 * 847 * * 1382 * Name: HepPolyhedron::Transform 848 * Name: HepPolyhedron::Transform Date: 01.12.99 * 1383 * Author: E.Chernyaev 849 * Author: E.Chernyaev Revised: * 1384 * 850 * * 1385 * Function: Make transformation of the polyh 851 * Function: Make transformation of the polyhedron * 1386 * 852 * * 1387 ******************************************** 853 ***********************************************************************/ 1388 { 854 { 1389 if (nvert > 0) { 855 if (nvert > 0) { 1390 for (G4int i=1; i<=nvert; i++) { pV[i] = 856 for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; } 1391 857 1392 // C H E C K D E T E R M I N A N T A 858 // C H E C K D E T E R M I N A N T A N D 1393 // I N V E R T F A C E T S I F I T 859 // I N V E R T F A C E T S I F I T I S N E G A T I V E 1394 860 1395 G4Vector3D d = t * G4Vector3D(0,0,0); 861 G4Vector3D d = t * G4Vector3D(0,0,0); 1396 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 862 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 1397 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 863 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 1398 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 864 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 1399 if ((x.cross(y))*z < 0) InvertFacets(); 865 if ((x.cross(y))*z < 0) InvertFacets(); 1400 } 866 } 1401 return *this; 867 return *this; 1402 } 868 } 1403 869 1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in 870 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const 1405 /******************************************** 871 /*********************************************************************** 1406 * 872 * * 1407 * Name: HepPolyhedron::GetNextVertexIndex 873 * Name: HepPolyhedron::GetNextVertexIndex Date: 03.09.96 * 1408 * Author: Yasuhide Sawada 874 * Author: Yasuhide Sawada Revised: * 1409 * 875 * * 1410 * Function: 876 * Function: * 1411 * 877 * * 1412 ******************************************** 878 ***********************************************************************/ 1413 { 879 { 1414 static G4ThreadLocal G4int iFace = 1; 880 static G4ThreadLocal G4int iFace = 1; 1415 static G4ThreadLocal G4int iQVertex = 0; 881 static G4ThreadLocal G4int iQVertex = 0; 1416 G4int vIndex = pF[iFace].edge[iQVertex].v; 882 G4int vIndex = pF[iFace].edge[iQVertex].v; 1417 883 1418 edgeFlag = (vIndex > 0) ? 1 : 0; 884 edgeFlag = (vIndex > 0) ? 1 : 0; 1419 index = std::abs(vIndex); 885 index = std::abs(vIndex); 1420 886 1421 if (iQVertex >= 3 || pF[iFace].edge[iQVerte 887 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1422 iQVertex = 0; 888 iQVertex = 0; 1423 if (++iFace > nface) iFace = 1; 889 if (++iFace > nface) iFace = 1; 1424 return false; // Last Edge 890 return false; // Last Edge >> 891 }else{ >> 892 ++iQVertex; >> 893 return true; // not Last Edge 1425 } 894 } 1426 << 1427 ++iQVertex; << 1428 return true; // not Last Edge << 1429 } 895 } 1430 896 1431 G4Point3D HepPolyhedron::GetVertex(G4int inde 897 G4Point3D HepPolyhedron::GetVertex(G4int index) const 1432 /******************************************** 898 /*********************************************************************** 1433 * 899 * * 1434 * Name: HepPolyhedron::GetVertex 900 * Name: HepPolyhedron::GetVertex Date: 03.09.96 * 1435 * Author: Yasuhide Sawada 901 * Author: Yasuhide Sawada Revised: 17.11.99 * 1436 * 902 * * 1437 * Function: Get vertex of the index. 903 * Function: Get vertex of the index. * 1438 * 904 * * 1439 ******************************************** 905 ***********************************************************************/ 1440 { 906 { 1441 if (index <= 0 || index > nvert) { 907 if (index <= 0 || index > nvert) { 1442 std::cerr 908 std::cerr 1443 << "HepPolyhedron::GetVertex: irrelevan 909 << "HepPolyhedron::GetVertex: irrelevant index " << index 1444 << std::endl; 910 << std::endl; 1445 return G4Point3D(); 911 return G4Point3D(); 1446 } 912 } 1447 return pV[index]; 913 return pV[index]; 1448 } 914 } 1449 915 1450 G4bool 916 G4bool 1451 HepPolyhedron::GetNextVertex(G4Point3D &verte 917 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const 1452 /******************************************** 918 /*********************************************************************** 1453 * 919 * * 1454 * Name: HepPolyhedron::GetNextVertex 920 * Name: HepPolyhedron::GetNextVertex Date: 22.07.96 * 1455 * Author: John Allison 921 * Author: John Allison Revised: * 1456 * 922 * * 1457 * Function: Get vertices of the quadrilatera 923 * Function: Get vertices of the quadrilaterals in order for each * 1458 * face in face order. Returns fal 924 * face in face order. Returns false when finished each * 1459 * face. 925 * face. * 1460 * 926 * * 1461 ******************************************** 927 ***********************************************************************/ 1462 { 928 { 1463 G4int index; 929 G4int index; 1464 G4bool rep = GetNextVertexIndex(index, edge 930 G4bool rep = GetNextVertexIndex(index, edgeFlag); 1465 vertex = pV[index]; 931 vertex = pV[index]; 1466 return rep; 932 return rep; 1467 } 933 } 1468 934 1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D 935 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag, 1470 G4Normal3D 936 G4Normal3D &normal) const 1471 /******************************************** 937 /*********************************************************************** 1472 * 938 * * 1473 * Name: HepPolyhedron::GetNextVertex 939 * Name: HepPolyhedron::GetNextVertex Date: 26.11.99 * 1474 * Author: E.Chernyaev 940 * Author: E.Chernyaev Revised: * 1475 * 941 * * 1476 * Function: Get vertices with normals of the 942 * Function: Get vertices with normals of the quadrilaterals in order * 1477 * for each face in face order. 943 * for each face in face order. * 1478 * Returns false when finished each 944 * Returns false when finished each face. * 1479 * 945 * * 1480 ******************************************** 946 ***********************************************************************/ 1481 { 947 { 1482 static G4ThreadLocal G4int iFace = 1; 948 static G4ThreadLocal G4int iFace = 1; 1483 static G4ThreadLocal G4int iNode = 0; 949 static G4ThreadLocal G4int iNode = 0; 1484 950 1485 if (nface == 0) return false; // empty pol 951 if (nface == 0) return false; // empty polyhedron 1486 952 1487 G4int k = pF[iFace].edge[iNode].v; 953 G4int k = pF[iFace].edge[iNode].v; 1488 if (k > 0) { edgeFlag = 1; } else { edgeFla 954 if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; } 1489 vertex = pV[k]; 955 vertex = pV[k]; 1490 normal = FindNodeNormal(iFace,k); 956 normal = FindNodeNormal(iFace,k); 1491 if (iNode >= 3 || pF[iFace].edge[iNode+1].v 957 if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) { 1492 iNode = 0; 958 iNode = 0; 1493 if (++iFace > nface) iFace = 1; 959 if (++iFace > nface) iFace = 1; 1494 return false; // last node 960 return false; // last node >> 961 }else{ >> 962 ++iNode; >> 963 return true; // not last node 1495 } 964 } 1496 ++iNode; << 1497 return true; // not last no << 1498 } 965 } 1499 966 1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in 967 G4bool HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag, 1501 G4int 968 G4int &iface1, G4int &iface2) const 1502 /******************************************** 969 /*********************************************************************** 1503 * 970 * * 1504 * Name: HepPolyhedron::GetNextEdgeIndices 971 * Name: HepPolyhedron::GetNextEdgeIndices Date: 30.09.96 * 1505 * Author: E.Chernyaev 972 * Author: E.Chernyaev Revised: 17.11.99 * 1506 * 973 * * 1507 * Function: Get indices of the next edge tog 974 * Function: Get indices of the next edge together with indices of * 1508 * of the faces which share the edg 975 * of the faces which share the edge. * 1509 * Returns false when the last edge 976 * Returns false when the last edge. * 1510 * 977 * * 1511 ******************************************** 978 ***********************************************************************/ 1512 { 979 { 1513 static G4ThreadLocal G4int iFace = 1; 980 static G4ThreadLocal G4int iFace = 1; 1514 static G4ThreadLocal G4int iQVertex = 0; 981 static G4ThreadLocal G4int iQVertex = 0; 1515 static G4ThreadLocal G4int iOrder = 1; 982 static G4ThreadLocal G4int iOrder = 1; 1516 G4int k1, k2, kflag, kface1, kface2; 983 G4int k1, k2, kflag, kface1, kface2; 1517 984 1518 if (iFace == 1 && iQVertex == 0) { 985 if (iFace == 1 && iQVertex == 0) { 1519 k2 = pF[nface].edge[0].v; 986 k2 = pF[nface].edge[0].v; 1520 k1 = pF[nface].edge[3].v; 987 k1 = pF[nface].edge[3].v; 1521 if (k1 == 0) k1 = pF[nface].edge[2].v; 988 if (k1 == 0) k1 = pF[nface].edge[2].v; 1522 if (std::abs(k1) > std::abs(k2)) iOrder = 989 if (std::abs(k1) > std::abs(k2)) iOrder = -1; 1523 } 990 } 1524 991 1525 do { 992 do { 1526 k1 = pF[iFace].edge[iQVertex].v; 993 k1 = pF[iFace].edge[iQVertex].v; 1527 kflag = k1; 994 kflag = k1; 1528 k1 = std::abs(k1); 995 k1 = std::abs(k1); 1529 kface1 = iFace; << 996 kface1 = iFace; 1530 kface2 = pF[iFace].edge[iQVertex].f; 997 kface2 = pF[iFace].edge[iQVertex].f; 1531 if (iQVertex >= 3 || pF[iFace].edge[iQVer 998 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1532 iQVertex = 0; 999 iQVertex = 0; 1533 k2 = std::abs(pF[iFace].edge[iQVertex]. 1000 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1534 iFace++; 1001 iFace++; 1535 }else{ 1002 }else{ 1536 iQVertex++; 1003 iQVertex++; 1537 k2 = std::abs(pF[iFace].edge[iQVertex]. 1004 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1538 } 1005 } 1539 } while (iOrder*k1 > iOrder*k2); 1006 } while (iOrder*k1 > iOrder*k2); 1540 1007 1541 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1008 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0; 1542 iface1 = kface1; iface2 = kface2; << 1009 iface1 = kface1; iface2 = kface2; 1543 1010 1544 if (iFace > nface) { 1011 if (iFace > nface) { 1545 iFace = 1; iOrder = 1; 1012 iFace = 1; iOrder = 1; 1546 return false; 1013 return false; >> 1014 }else{ >> 1015 return true; 1547 } 1016 } 1548 << 1549 return true; << 1550 } 1017 } 1551 1018 1552 G4bool 1019 G4bool 1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1, 1020 HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag) const 1554 /******************************************** 1021 /*********************************************************************** 1555 * 1022 * * 1556 * Name: HepPolyhedron::GetNextEdgeIndices 1023 * Name: HepPolyhedron::GetNextEdgeIndices Date: 17.11.99 * 1557 * Author: E.Chernyaev 1024 * Author: E.Chernyaev Revised: * 1558 * 1025 * * 1559 * Function: Get indices of the next edge. 1026 * Function: Get indices of the next edge. * 1560 * Returns false when the last edge 1027 * Returns false when the last edge. * 1561 * 1028 * * 1562 ******************************************** 1029 ***********************************************************************/ 1563 { 1030 { 1564 G4int kface1, kface2; 1031 G4int kface1, kface2; 1565 return GetNextEdgeIndices(i1, i2, edgeFlag, 1032 return GetNextEdgeIndices(i1, i2, edgeFlag, kface1, kface2); 1566 } 1033 } 1567 1034 1568 G4bool 1035 G4bool 1569 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1036 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1570 G4Point3D &p2, 1037 G4Point3D &p2, 1571 G4int &edgeFlag) c 1038 G4int &edgeFlag) const 1572 /******************************************** 1039 /*********************************************************************** 1573 * 1040 * * 1574 * Name: HepPolyhedron::GetNextEdge 1041 * Name: HepPolyhedron::GetNextEdge Date: 30.09.96 * 1575 * Author: E.Chernyaev 1042 * Author: E.Chernyaev Revised: * 1576 * 1043 * * 1577 * Function: Get next edge. 1044 * Function: Get next edge. * 1578 * Returns false when the last edge 1045 * Returns false when the last edge. * 1579 * 1046 * * 1580 ******************************************** 1047 ***********************************************************************/ 1581 { 1048 { 1582 G4int i1,i2; 1049 G4int i1,i2; 1583 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF 1050 G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag); 1584 p1 = pV[i1]; 1051 p1 = pV[i1]; 1585 p2 = pV[i2]; 1052 p2 = pV[i2]; 1586 return rep; 1053 return rep; 1587 } 1054 } 1588 1055 1589 G4bool 1056 G4bool 1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P 1057 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2, 1591 G4int &edgeFlag, G4 1058 G4int &edgeFlag, G4int &iface1, G4int &iface2) const 1592 /******************************************** 1059 /*********************************************************************** 1593 * 1060 * * 1594 * Name: HepPolyhedron::GetNextEdge 1061 * Name: HepPolyhedron::GetNextEdge Date: 17.11.99 * 1595 * Author: E.Chernyaev 1062 * Author: E.Chernyaev Revised: * 1596 * 1063 * * 1597 * Function: Get next edge with indices of th 1064 * Function: Get next edge with indices of the faces which share * 1598 * the edge. 1065 * the edge. * 1599 * Returns false when the last edge 1066 * Returns false when the last edge. * 1600 * 1067 * * 1601 ******************************************** 1068 ***********************************************************************/ 1602 { 1069 { 1603 G4int i1,i2; 1070 G4int i1,i2; 1604 G4bool rep = GetNextEdgeIndices(i1,i2,edgeF 1071 G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag,iface1,iface2); 1605 p1 = pV[i1]; 1072 p1 = pV[i1]; 1606 p2 = pV[i2]; 1073 p2 = pV[i2]; 1607 return rep; 1074 return rep; 1608 } 1075 } 1609 1076 1610 void HepPolyhedron::GetFacet(G4int iFace, G4i 1077 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes, 1611 G4int *edgeFlags, 1078 G4int *edgeFlags, G4int *iFaces) const 1612 /******************************************** 1079 /*********************************************************************** 1613 * 1080 * * 1614 * Name: HepPolyhedron::GetFacet 1081 * Name: HepPolyhedron::GetFacet Date: 15.12.99 * 1615 * Author: E.Chernyaev 1082 * Author: E.Chernyaev Revised: * 1616 * 1083 * * 1617 * Function: Get face by index 1084 * Function: Get face by index * 1618 * 1085 * * 1619 ******************************************** 1086 ***********************************************************************/ 1620 { 1087 { 1621 if (iFace < 1 || iFace > nface) { 1088 if (iFace < 1 || iFace > nface) { 1622 std::cerr << 1089 std::cerr 1623 << "HepPolyhedron::GetFacet: irrelevant 1090 << "HepPolyhedron::GetFacet: irrelevant index " << iFace 1624 << std::endl; 1091 << std::endl; 1625 n = 0; 1092 n = 0; 1626 }else{ 1093 }else{ 1627 G4int i, k; 1094 G4int i, k; 1628 for (i=0; i<4; i++) { << 1095 for (i=0; i<4; i++) { 1629 k = pF[iFace].edge[i].v; 1096 k = pF[iFace].edge[i].v; 1630 if (k == 0) break; 1097 if (k == 0) break; 1631 if (iFaces != nullptr) iFaces[i] = pF[i << 1098 if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f; 1632 if (k > 0) { << 1099 if (k > 0) { 1633 iNodes[i] = k; 1100 iNodes[i] = k; 1634 if (edgeFlags != nullptr) edgeFlags[i << 1101 if (edgeFlags != 0) edgeFlags[i] = 1; 1635 }else{ 1102 }else{ 1636 iNodes[i] = -k; 1103 iNodes[i] = -k; 1637 if (edgeFlags != nullptr) edgeFlags[i << 1104 if (edgeFlags != 0) edgeFlags[i] = -1; 1638 } 1105 } 1639 } 1106 } 1640 n = i; 1107 n = i; 1641 } 1108 } 1642 } 1109 } 1643 1110 1644 void HepPolyhedron::GetFacet(G4int index, G4i 1111 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes, 1645 G4int *edgeFlags 1112 G4int *edgeFlags, G4Normal3D *normals) const 1646 /******************************************** 1113 /*********************************************************************** 1647 * 1114 * * 1648 * Name: HepPolyhedron::GetFacet 1115 * Name: HepPolyhedron::GetFacet Date: 17.11.99 * 1649 * Author: E.Chernyaev 1116 * Author: E.Chernyaev Revised: * 1650 * 1117 * * 1651 * Function: Get face by index 1118 * Function: Get face by index * 1652 * 1119 * * 1653 ******************************************** 1120 ***********************************************************************/ 1654 { 1121 { 1655 G4int iNodes[4]; 1122 G4int iNodes[4]; 1656 GetFacet(index, n, iNodes, edgeFlags); 1123 GetFacet(index, n, iNodes, edgeFlags); 1657 if (n != 0) { 1124 if (n != 0) { 1658 for (G4int i=0; i<n; i++) { 1125 for (G4int i=0; i<n; i++) { 1659 nodes[i] = pV[iNodes[i]]; 1126 nodes[i] = pV[iNodes[i]]; 1660 if (normals != nullptr) normals[i] = Fi << 1127 if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]); 1661 } 1128 } 1662 } 1129 } 1663 } 1130 } 1664 1131 1665 G4bool 1132 G4bool 1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point 1133 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes, 1667 G4int *edgeFlags, 1134 G4int *edgeFlags, G4Normal3D *normals) const 1668 /******************************************** 1135 /*********************************************************************** 1669 * 1136 * * 1670 * Name: HepPolyhedron::GetNextFacet 1137 * Name: HepPolyhedron::GetNextFacet Date: 19.11.99 * 1671 * Author: E.Chernyaev 1138 * Author: E.Chernyaev Revised: * 1672 * 1139 * * 1673 * Function: Get next face with normals of un 1140 * Function: Get next face with normals of unit length at the nodes. * 1674 * Returns false when finished all 1141 * Returns false when finished all faces. * 1675 * 1142 * * 1676 ******************************************** 1143 ***********************************************************************/ 1677 { 1144 { 1678 static G4ThreadLocal G4int iFace = 1; 1145 static G4ThreadLocal G4int iFace = 1; 1679 1146 1680 if (edgeFlags == nullptr) { << 1147 if (edgeFlags == 0) { 1681 GetFacet(iFace, n, nodes); 1148 GetFacet(iFace, n, nodes); 1682 }else if (normals == nullptr) { << 1149 }else if (normals == 0) { 1683 GetFacet(iFace, n, nodes, edgeFlags); 1150 GetFacet(iFace, n, nodes, edgeFlags); 1684 }else{ 1151 }else{ 1685 GetFacet(iFace, n, nodes, edgeFlags, norm 1152 GetFacet(iFace, n, nodes, edgeFlags, normals); 1686 } 1153 } 1687 1154 1688 if (++iFace > nface) { 1155 if (++iFace > nface) { 1689 iFace = 1; 1156 iFace = 1; 1690 return false; 1157 return false; >> 1158 }else{ >> 1159 return true; 1691 } 1160 } 1692 << 1693 return true; << 1694 } 1161 } 1695 1162 1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa 1163 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const 1697 /******************************************** 1164 /*********************************************************************** 1698 * 1165 * * 1699 * Name: HepPolyhedron::GetNormal 1166 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1700 * Author: E.Chernyaev 1167 * Author: E.Chernyaev Revised: * 1701 * 1168 * * 1702 * Function: Get normal of the face given by 1169 * Function: Get normal of the face given by index * 1703 * 1170 * * 1704 ******************************************** 1171 ***********************************************************************/ 1705 { 1172 { 1706 if (iFace < 1 || iFace > nface) { 1173 if (iFace < 1 || iFace > nface) { 1707 std::cerr << 1174 std::cerr 1708 << "HepPolyhedron::GetNormal: irrelevan << 1175 << "HepPolyhedron::GetNormal: irrelevant index " << iFace 1709 << std::endl; 1176 << std::endl; 1710 return G4Normal3D(); 1177 return G4Normal3D(); 1711 } 1178 } 1712 1179 1713 G4int i0 = std::abs(pF[iFace].edge[0].v); 1180 G4int i0 = std::abs(pF[iFace].edge[0].v); 1714 G4int i1 = std::abs(pF[iFace].edge[1].v); 1181 G4int i1 = std::abs(pF[iFace].edge[1].v); 1715 G4int i2 = std::abs(pF[iFace].edge[2].v); 1182 G4int i2 = std::abs(pF[iFace].edge[2].v); 1716 G4int i3 = std::abs(pF[iFace].edge[3].v); 1183 G4int i3 = std::abs(pF[iFace].edge[3].v); 1717 if (i3 == 0) i3 = i0; 1184 if (i3 == 0) i3 = i0; 1718 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[ 1185 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]); 1719 } 1186 } 1720 1187 1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int 1188 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const 1722 /******************************************** 1189 /*********************************************************************** 1723 * 1190 * * 1724 * Name: HepPolyhedron::GetNormal 1191 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1725 * Author: E.Chernyaev 1192 * Author: E.Chernyaev Revised: * 1726 * 1193 * * 1727 * Function: Get unit normal of the face give 1194 * Function: Get unit normal of the face given by index * 1728 * 1195 * * 1729 ******************************************** 1196 ***********************************************************************/ 1730 { 1197 { 1731 if (iFace < 1 || iFace > nface) { 1198 if (iFace < 1 || iFace > nface) { 1732 std::cerr << 1199 std::cerr 1733 << "HepPolyhedron::GetUnitNormal: irrel 1200 << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace 1734 << std::endl; 1201 << std::endl; 1735 return G4Normal3D(); 1202 return G4Normal3D(); 1736 } 1203 } 1737 1204 1738 G4int i0 = std::abs(pF[iFace].edge[0].v); 1205 G4int i0 = std::abs(pF[iFace].edge[0].v); 1739 G4int i1 = std::abs(pF[iFace].edge[1].v); 1206 G4int i1 = std::abs(pF[iFace].edge[1].v); 1740 G4int i2 = std::abs(pF[iFace].edge[2].v); 1207 G4int i2 = std::abs(pF[iFace].edge[2].v); 1741 G4int i3 = std::abs(pF[iFace].edge[3].v); 1208 G4int i3 = std::abs(pF[iFace].edge[3].v); 1742 if (i3 == 0) i3 = i0; 1209 if (i3 == 0) i3 = i0; 1743 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1210 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit(); 1744 } 1211 } 1745 1212 1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3 1213 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const 1747 /******************************************** 1214 /*********************************************************************** 1748 * 1215 * * 1749 * Name: HepPolyhedron::GetNextNormal 1216 * Name: HepPolyhedron::GetNextNormal Date: 22.07.96 * 1750 * Author: John Allison 1217 * Author: John Allison Revised: 19.11.99 * 1751 * 1218 * * 1752 * Function: Get normals of each face in face 1219 * Function: Get normals of each face in face order. Returns false * 1753 * when finished all faces. 1220 * when finished all faces. * 1754 * 1221 * * 1755 ******************************************** 1222 ***********************************************************************/ 1756 { 1223 { 1757 static G4ThreadLocal G4int iFace = 1; 1224 static G4ThreadLocal G4int iFace = 1; 1758 normal = GetNormal(iFace); 1225 normal = GetNormal(iFace); 1759 if (++iFace > nface) { 1226 if (++iFace > nface) { 1760 iFace = 1; 1227 iFace = 1; 1761 return false; 1228 return false; >> 1229 }else{ >> 1230 return true; 1762 } 1231 } 1763 return true; << 1764 } 1232 } 1765 1233 1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor 1234 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const 1767 /******************************************** 1235 /*********************************************************************** 1768 * 1236 * * 1769 * Name: HepPolyhedron::GetNextUnitNormal 1237 * Name: HepPolyhedron::GetNextUnitNormal Date: 16.09.96 * 1770 * Author: E.Chernyaev 1238 * Author: E.Chernyaev Revised: * 1771 * 1239 * * 1772 * Function: Get normals of unit length of ea 1240 * Function: Get normals of unit length of each face in face order. * 1773 * Returns false when finished all 1241 * Returns false when finished all faces. * 1774 * 1242 * * 1775 ******************************************** 1243 ***********************************************************************/ 1776 { 1244 { 1777 G4bool rep = GetNextNormal(normal); 1245 G4bool rep = GetNextNormal(normal); 1778 normal = normal.unit(); 1246 normal = normal.unit(); 1779 return rep; 1247 return rep; 1780 } 1248 } 1781 1249 1782 G4double HepPolyhedron::GetSurfaceArea() cons 1250 G4double HepPolyhedron::GetSurfaceArea() const 1783 /******************************************** 1251 /*********************************************************************** 1784 * 1252 * * 1785 * Name: HepPolyhedron::GetSurfaceArea 1253 * Name: HepPolyhedron::GetSurfaceArea Date: 25.05.01 * 1786 * Author: E.Chernyaev 1254 * Author: E.Chernyaev Revised: * 1787 * 1255 * * 1788 * Function: Returns area of the surface of t 1256 * Function: Returns area of the surface of the polyhedron. * 1789 * 1257 * * 1790 ******************************************** 1258 ***********************************************************************/ 1791 { 1259 { 1792 G4double srf = 0.; 1260 G4double srf = 0.; 1793 for (G4int iFace=1; iFace<=nface; iFace++) 1261 for (G4int iFace=1; iFace<=nface; iFace++) { 1794 G4int i0 = std::abs(pF[iFace].edge[0].v); 1262 G4int i0 = std::abs(pF[iFace].edge[0].v); 1795 G4int i1 = std::abs(pF[iFace].edge[1].v); 1263 G4int i1 = std::abs(pF[iFace].edge[1].v); 1796 G4int i2 = std::abs(pF[iFace].edge[2].v); 1264 G4int i2 = std::abs(pF[iFace].edge[2].v); 1797 G4int i3 = std::abs(pF[iFace].edge[3].v); 1265 G4int i3 = std::abs(pF[iFace].edge[3].v); 1798 if (i3 == 0) i3 = i0; 1266 if (i3 == 0) i3 = i0; 1799 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - 1267 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag(); 1800 } 1268 } 1801 return srf/2.; 1269 return srf/2.; 1802 } 1270 } 1803 1271 1804 G4double HepPolyhedron::GetVolume() const 1272 G4double HepPolyhedron::GetVolume() const 1805 /******************************************** 1273 /*********************************************************************** 1806 * 1274 * * 1807 * Name: HepPolyhedron::GetVolume 1275 * Name: HepPolyhedron::GetVolume Date: 25.05.01 * 1808 * Author: E.Chernyaev 1276 * Author: E.Chernyaev Revised: * 1809 * 1277 * * 1810 * Function: Returns volume of the polyhedron 1278 * Function: Returns volume of the polyhedron. * 1811 * 1279 * * 1812 ******************************************** 1280 ***********************************************************************/ 1813 { 1281 { 1814 G4double v = 0.; 1282 G4double v = 0.; 1815 for (G4int iFace=1; iFace<=nface; iFace++) 1283 for (G4int iFace=1; iFace<=nface; iFace++) { 1816 G4int i0 = std::abs(pF[iFace].edge[0].v); 1284 G4int i0 = std::abs(pF[iFace].edge[0].v); 1817 G4int i1 = std::abs(pF[iFace].edge[1].v); 1285 G4int i1 = std::abs(pF[iFace].edge[1].v); 1818 G4int i2 = std::abs(pF[iFace].edge[2].v); 1286 G4int i2 = std::abs(pF[iFace].edge[2].v); 1819 G4int i3 = std::abs(pF[iFace].edge[3].v); 1287 G4int i3 = std::abs(pF[iFace].edge[3].v); 1820 G4Point3D pt; 1288 G4Point3D pt; 1821 if (i3 == 0) { 1289 if (i3 == 0) { 1822 i3 = i0; 1290 i3 = i0; 1823 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1291 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1824 }else{ 1292 }else{ 1825 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0. 1293 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25; 1826 } 1294 } 1827 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV 1295 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt); 1828 } 1296 } 1829 return v/6.; 1297 return v/6.; 1830 } 1298 } 1831 1299 1832 G4int 1300 G4int 1833 HepPolyhedron::createTwistedTrap(G4double Dz, 1301 HepPolyhedron::createTwistedTrap(G4double Dz, 1834 const G4doub 1302 const G4double xy1[][2], 1835 const G4doub 1303 const G4double xy2[][2]) 1836 /******************************************** 1304 /*********************************************************************** 1837 * 1305 * * 1838 * Name: createTwistedTrap 1306 * Name: createTwistedTrap Date: 05.11.02 * 1839 * Author: E.Chernyaev (IHEP/Protvino) 1307 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1840 * 1308 * * 1841 * Function: Creates polyhedron for twisted t 1309 * Function: Creates polyhedron for twisted trapezoid * 1842 * 1310 * * 1843 * Input: Dz - half-length along Z 1311 * Input: Dz - half-length along Z 8----7 * 1844 * xy1[2,4] - quadrilateral at Z=-Dz 1312 * xy1[2,4] - quadrilateral at Z=-Dz 5----6 ! * 1845 * xy2[2,4] - quadrilateral at Z=+Dz 1313 * xy2[2,4] - quadrilateral at Z=+Dz ! 4-!--3 * 1846 * 1314 * 1----2 * 1847 * 1315 * * 1848 ******************************************** 1316 ***********************************************************************/ 1849 { 1317 { 1850 AllocateMemory(12,18); 1318 AllocateMemory(12,18); 1851 1319 1852 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz) 1320 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz); 1853 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz) 1321 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz); 1854 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz) 1322 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz); 1855 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz) 1323 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz); 1856 1324 1857 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz) 1325 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz); 1858 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz) 1326 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz); 1859 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz) 1327 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz); 1860 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz) 1328 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz); 1861 1329 1862 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1330 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1863 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1331 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1864 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1332 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1865 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1333 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1866 1334 1867 enum {DUMMY, BOTTOM, 1335 enum {DUMMY, BOTTOM, 1868 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, 1336 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, LEFT_BACK, 1869 BACK_BOTTOM, BACK_LEFT, BACK_TOP, 1337 BACK_BOTTOM, BACK_LEFT, BACK_TOP, BACK_RIGHT, 1870 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP 1338 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP, RIGHT_FRONT, 1871 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP 1339 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP, FRONT_LEFT, 1872 TOP}; 1340 TOP}; 1873 1341 1874 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM 1342 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM); 1875 1343 1876 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, 1344 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, -12,LEFT_BACK, 0,0); 1877 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, 1345 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, -12,LEFT_BOTTOM, 0,0); 1878 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, 1346 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, -12,LEFT_FRONT, 0,0); 1879 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM 1347 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM, -12,LEFT_TOP, 0,0); 1880 1348 1881 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, 1349 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, -11,BACK_RIGHT, 0,0); 1882 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, 1350 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, -11,BACK_BOTTOM, 0,0); 1883 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, 1351 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, -11,BACK_LEFT, 0,0); 1884 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM 1352 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP, 0,0); 1885 1353 1886 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, 1354 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, -10,RIGHT_FRONT, 0,0); 1887 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, 1355 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, -10,RIGHT_BOTTOM, 0,0); 1888 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT 1356 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT, -10,RIGHT_BACK, 0,0); 1889 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO 1357 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP, 0,0); 1890 1358 1891 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT 1359 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT, -9,FRONT_LEFT, 0,0); 1892 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, 1360 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, -9,FRONT_BOTTOM, 0,0); 1893 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, 1361 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, -9,FRONT_RIGHT, 0,0); 1894 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO 1362 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP, 0,0); 1895 << 1363 1896 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7, 1364 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP); 1897 1365 1898 return 0; 1366 return 0; 1899 } 1367 } 1900 1368 1901 G4int 1369 G4int 1902 HepPolyhedron::createPolyhedron(G4int Nnodes, 1370 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces, 1903 const G4doubl 1371 const G4double xyz[][3], 1904 const G4int 1372 const G4int faces[][4]) 1905 /******************************************** 1373 /*********************************************************************** 1906 * 1374 * * 1907 * Name: createPolyhedron 1375 * Name: createPolyhedron Date: 05.11.02 * 1908 * Author: E.Chernyaev (IHEP/Protvino) 1376 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1909 * 1377 * * 1910 * Function: Creates user defined polyhedron 1378 * Function: Creates user defined polyhedron * 1911 * 1379 * * 1912 * Input: Nnodes - number of nodes 1380 * Input: Nnodes - number of nodes * 1913 * Nfaces - number of faces 1381 * Nfaces - number of faces * 1914 * nodes[][3] - node coordinates 1382 * nodes[][3] - node coordinates * 1915 * faces[][4] - faces 1383 * faces[][4] - faces * 1916 * 1384 * * 1917 ******************************************** 1385 ***********************************************************************/ 1918 { 1386 { 1919 AllocateMemory(Nnodes, Nfaces); 1387 AllocateMemory(Nnodes, Nfaces); 1920 if (nvert == 0) return 1; 1388 if (nvert == 0) return 1; 1921 1389 1922 for (G4int i=0; i<Nnodes; i++) { 1390 for (G4int i=0; i<Nnodes; i++) { 1923 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], 1391 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]); 1924 } 1392 } 1925 for (G4int k=0; k<Nfaces; k++) { 1393 for (G4int k=0; k<Nfaces; k++) { 1926 pF[k+1] = G4Facet(faces[k][0],0,faces[k][ 1394 pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0); 1927 } 1395 } 1928 SetReferences(); 1396 SetReferences(); 1929 return 0; 1397 return 0; 1930 } 1398 } 1931 1399 1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 1933 /****************************************** << 1934 * << 1935 * Name: vertexUnweightedMean << 1936 * Author: S. Boogert (Manchester) << 1937 * << 1938 * Function: Calculate the unweighted mean << 1939 * in the polyhedron. Not to be confused wi << 1940 * centre of mass << 1941 ****************************************** << 1942 << 1943 auto centre = G4Point3D(); << 1944 for(int i=1;i<=nvert;i++) { << 1945 centre += pV[i]; << 1946 } << 1947 centre = centre/nvert; << 1948 return centre; << 1949 } << 1950 << 1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double 1400 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2, 1952 G4double 1401 G4double Dy1, G4double Dy2, 1953 G4double 1402 G4double Dz) 1954 /******************************************** 1403 /*********************************************************************** 1955 * 1404 * * 1956 * Name: HepPolyhedronTrd2 1405 * Name: HepPolyhedronTrd2 Date: 22.07.96 * 1957 * Author: E.Chernyaev (IHEP/Protvino) 1406 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1958 * 1407 * * 1959 * Function: Create GEANT4 TRD2-trapezoid 1408 * Function: Create GEANT4 TRD2-trapezoid * 1960 * 1409 * * 1961 * Input: Dx1 - half-length along X at -Dz 1410 * Input: Dx1 - half-length along X at -Dz 8----7 * 1962 * Dx2 - half-length along X ay +Dz 1411 * Dx2 - half-length along X ay +Dz 5----6 ! * 1963 * Dy1 - half-length along Y ay -Dz 1412 * Dy1 - half-length along Y ay -Dz ! 4-!--3 * 1964 * Dy2 - half-length along Y ay +Dz 1413 * Dy2 - half-length along Y ay +Dz 1----2 * 1965 * Dz - half-length along Z 1414 * Dz - half-length along Z * 1966 * 1415 * * 1967 ******************************************** 1416 ***********************************************************************/ 1968 { 1417 { 1969 AllocateMemory(8,6); 1418 AllocateMemory(8,6); 1970 1419 1971 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1420 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1972 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1421 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1973 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1422 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1974 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1423 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1975 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1424 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1976 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1425 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1977 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1426 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1978 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1427 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1979 1428 1980 CreatePrism(); 1429 CreatePrism(); 1981 } 1430 } 1982 1431 1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1432 HepPolyhedronTrd2::~HepPolyhedronTrd2() {} 1984 1433 1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double 1434 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2, 1986 G4double 1435 G4double Dy, G4double Dz) 1987 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) { 1436 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {} 1988 1437 1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1438 HepPolyhedronTrd1::~HepPolyhedronTrd1() {} 1990 1439 1991 HepPolyhedronBox::HepPolyhedronBox(G4double D 1440 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz) 1992 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1441 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1993 1442 1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1443 HepPolyhedronBox::~HepPolyhedronBox() {} 1995 1444 1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double 1445 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz, 1997 G4double 1446 G4double Theta, 1998 G4double 1447 G4double Phi, 1999 G4double 1448 G4double Dy1, 2000 G4double 1449 G4double Dx1, 2001 G4double 1450 G4double Dx2, 2002 G4double 1451 G4double Alp1, 2003 G4double 1452 G4double Dy2, 2004 G4double 1453 G4double Dx3, 2005 G4double 1454 G4double Dx4, 2006 G4double 1455 G4double Alp2) 2007 /******************************************** 1456 /*********************************************************************** 2008 * 1457 * * 2009 * Name: HepPolyhedronTrap 1458 * Name: HepPolyhedronTrap Date: 20.11.96 * 2010 * Author: E.Chernyaev 1459 * Author: E.Chernyaev Revised: * 2011 * 1460 * * 2012 * Function: Create GEANT4 TRAP-trapezoid 1461 * Function: Create GEANT4 TRAP-trapezoid * 2013 * 1462 * * 2014 * Input: DZ - half-length in Z 1463 * Input: DZ - half-length in Z * 2015 * Theta,Phi - polar angles of the lin 1464 * Theta,Phi - polar angles of the line joining centres of the * 2016 * faces at Z=-Dz and Z=+D 1465 * faces at Z=-Dz and Z=+Dz * 2017 * Dy1 - half-length in Y of the face 1466 * Dy1 - half-length in Y of the face at Z=-Dz * 2018 * Dx1 - half-length in X of low edge 1467 * Dx1 - half-length in X of low edge of the face at Z=-Dz * 2019 * Dx2 - half-length in X of top edge 1468 * Dx2 - half-length in X of top edge of the face at Z=-Dz * 2020 * Alp1 - angle between Y-axis and the 1469 * Alp1 - angle between Y-axis and the median joining top and * 2021 * low edges of the face at Z=- 1470 * low edges of the face at Z=-Dz * 2022 * Dy2 - half-length in Y of the face 1471 * Dy2 - half-length in Y of the face at Z=+Dz * 2023 * Dx3 - half-length in X of low edge 1472 * Dx3 - half-length in X of low edge of the face at Z=+Dz * 2024 * Dx4 - half-length in X of top edge 1473 * Dx4 - half-length in X of top edge of the face at Z=+Dz * 2025 * Alp2 - angle between Y-axis and the 1474 * Alp2 - angle between Y-axis and the median joining top and * 2026 * low edges of the face at Z=+ 1475 * low edges of the face at Z=+Dz * 2027 * 1476 * * 2028 ******************************************** 1477 ***********************************************************************/ 2029 { 1478 { 2030 G4double DzTthetaCphi = Dz*std::tan(Theta)* 1479 G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi); 2031 G4double DzTthetaSphi = Dz*std::tan(Theta)* 1480 G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi); 2032 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 1481 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 2033 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 1482 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 2034 << 1483 2035 AllocateMemory(8,6); 1484 AllocateMemory(8,6); 2036 1485 2037 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx 1486 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz); 2038 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx 1487 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz); 2039 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx 1488 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz); 2040 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx 1489 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz); 2041 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx 1490 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz); 2042 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx 1491 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz); 2043 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx 1492 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz); 2044 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx 1493 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz); 2045 1494 2046 CreatePrism(); 1495 CreatePrism(); 2047 } 1496 } 2048 1497 2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1498 HepPolyhedronTrap::~HepPolyhedronTrap() {} 2050 1499 2051 HepPolyhedronPara::HepPolyhedronPara(G4double 1500 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz, 2052 G4double 1501 G4double Alpha, G4double Theta, 2053 G4double 1502 G4double Phi) 2054 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, 1503 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {} 2055 1504 2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1505 HepPolyhedronPara::~HepPolyhedronPara() {} 2057 1506 2058 HepPolyhedronParaboloid::HepPolyhedronParabol 1507 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1, 2059 1508 G4double r2, 2060 1509 G4double dz, 2061 1510 G4double sPhi, 2062 << 1511 G4double dPhi) 2063 /******************************************** 1512 /*********************************************************************** 2064 * 1513 * * 2065 * Name: HepPolyhedronParaboloid 1514 * Name: HepPolyhedronParaboloid Date: 28.06.07 * 2066 * Author: L.Lindroos, T.Nikitina (CERN), Jul 1515 * Author: L.Lindroos, T.Nikitina (CERN), July 2007 Revised: 28.06.07 * 2067 * 1516 * * 2068 * Function: Constructor for paraboloid 1517 * Function: Constructor for paraboloid * 2069 * 1518 * * 2070 * Input: r1 - inside and outside radiuses 1519 * Input: r1 - inside and outside radiuses at -Dz * 2071 * r2 - inside and outside radiuses 1520 * r2 - inside and outside radiuses at +Dz * 2072 * dz - half length in Z 1521 * dz - half length in Z * 2073 * sPhi - starting angle of the segme 1522 * sPhi - starting angle of the segment * 2074 * dPhi - segment range 1523 * dPhi - segment range * 2075 * 1524 * * 2076 ******************************************** 1525 ***********************************************************************/ 2077 { 1526 { 2078 static const G4double wholeCircle=twopi; 1527 static const G4double wholeCircle=twopi; 2079 1528 2080 // C H E C K I N P U T P A R A M E T 1529 // C H E C K I N P U T P A R A M E T E R S 2081 1530 2082 G4int k = 0; 1531 G4int k = 0; 2083 if (r1 < 0. || r2 <= 0.) k = 1; 1532 if (r1 < 0. || r2 <= 0.) k = 1; 2084 1533 2085 if (dz <= 0.) k += 2; 1534 if (dz <= 0.) k += 2; 2086 1535 2087 G4double phi1, phi2, dphi; 1536 G4double phi1, phi2, dphi; 2088 1537 2089 if(dPhi < 0.) 1538 if(dPhi < 0.) 2090 { 1539 { 2091 phi2 = sPhi; phi1 = phi2 + dPhi; 1540 phi2 = sPhi; phi1 = phi2 + dPhi; 2092 } 1541 } 2093 else if(dPhi == 0.) << 1542 else if(dPhi == 0.) 2094 { 1543 { 2095 phi1 = sPhi; phi2 = phi1 + wholeCircle; 1544 phi1 = sPhi; phi2 = phi1 + wholeCircle; 2096 } 1545 } 2097 else 1546 else 2098 { 1547 { 2099 phi1 = sPhi; phi2 = phi1 + dPhi; 1548 phi1 = sPhi; phi2 = phi1 + dPhi; 2100 } 1549 } 2101 dphi = phi2 - phi1; 1550 dphi = phi2 - phi1; 2102 1551 2103 if (std::abs(dphi-wholeCircle) < perMillion 1552 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2104 if (dphi > wholeCircle) k += 4; << 1553 if (dphi > wholeCircle) k += 4; 2105 1554 2106 if (k != 0) { 1555 if (k != 0) { 2107 std::cerr << "HepPolyhedronParaboloid: er 1556 std::cerr << "HepPolyhedronParaboloid: error in input parameters"; 2108 if ((k & 1) != 0) std::cerr << " (radiuse 1557 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2109 if ((k & 2) != 0) std::cerr << " (half-le 1558 if ((k & 2) != 0) std::cerr << " (half-length)"; 2110 if ((k & 4) != 0) std::cerr << " (angles) 1559 if ((k & 4) != 0) std::cerr << " (angles)"; 2111 std::cerr << std::endl; 1560 std::cerr << std::endl; 2112 std::cerr << " r1=" << r1; 1561 std::cerr << " r1=" << r1; 2113 std::cerr << " r2=" << r2; 1562 std::cerr << " r2=" << r2; 2114 std::cerr << " dz=" << dz << " sPhi=" << 1563 std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi 2115 << std::endl; 1564 << std::endl; 2116 return; 1565 return; 2117 } 1566 } 2118 << 1567 2119 // P R E P A R E T W O P O L Y L I N 1568 // P R E P A R E T W O P O L Y L I N E S 2120 1569 2121 G4int n = GetNumberOfRotationSteps(); 1570 G4int n = GetNumberOfRotationSteps(); 2122 G4double dl = (r2 - r1) / n; 1571 G4double dl = (r2 - r1) / n; 2123 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 1572 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 2124 G4double k2 = (r2*r2 + r1*r1) / 2; 1573 G4double k2 = (r2*r2 + r1*r1) / 2; 2125 1574 2126 auto zz = new G4double[n + 2], rr = new G4d << 1575 G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2]; 2127 1576 2128 zz[0] = dz; 1577 zz[0] = dz; 2129 rr[0] = r2; 1578 rr[0] = r2; 2130 1579 2131 for(G4int i = 1; i < n - 1; i++) 1580 for(G4int i = 1; i < n - 1; i++) 2132 { 1581 { 2133 rr[i] = rr[i-1] - dl; 1582 rr[i] = rr[i-1] - dl; 2134 zz[i] = (rr[i]*rr[i] - k2) / k1; 1583 zz[i] = (rr[i]*rr[i] - k2) / k1; 2135 if(rr[i] < 0) 1584 if(rr[i] < 0) 2136 { 1585 { 2137 rr[i] = 0; 1586 rr[i] = 0; 2138 zz[i] = 0; 1587 zz[i] = 0; 2139 } 1588 } 2140 } 1589 } 2141 1590 2142 zz[n-1] = -dz; 1591 zz[n-1] = -dz; 2143 rr[n-1] = r1; 1592 rr[n-1] = r1; 2144 1593 2145 zz[n] = dz; 1594 zz[n] = dz; 2146 rr[n] = 0; 1595 rr[n] = 0; 2147 1596 2148 zz[n+1] = -dz; 1597 zz[n+1] = -dz; 2149 rr[n+1] = 0; 1598 rr[n+1] = 0; 2150 1599 2151 // R O T A T E P O L Y L I N E S 1600 // R O T A T E P O L Y L I N E S 2152 1601 2153 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, << 1602 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 2154 SetReferences(); 1603 SetReferences(); 2155 1604 2156 delete [] zz; 1605 delete [] zz; 2157 delete [] rr; 1606 delete [] rr; 2158 } 1607 } 2159 1608 2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1609 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {} 2161 1610 2162 HepPolyhedronHype::HepPolyhedronHype(G4double 1611 HepPolyhedronHype::HepPolyhedronHype(G4double r1, 2163 G4double 1612 G4double r2, 2164 G4double 1613 G4double sqrtan1, 2165 G4double 1614 G4double sqrtan2, 2166 G4double << 1615 G4double halfZ) 2167 /******************************************** 1616 /*********************************************************************** 2168 * 1617 * * 2169 * Name: HepPolyhedronHype 1618 * Name: HepPolyhedronHype Date: 14.04.08 * 2170 * Author: Tatiana Nikitina (CERN) 1619 * Author: Tatiana Nikitina (CERN) Revised: 14.04.08 * 2171 * Evgueni Tcherniaev << 2172 * 1620 * * 2173 * Function: Constructor for Hype 1621 * Function: Constructor for Hype * 2174 * 1622 * * 2175 * Input: r1 - inside radius at z=0 1623 * Input: r1 - inside radius at z=0 * 2176 * r2 - outside radiuses at z=0 1624 * r2 - outside radiuses at z=0 * 2177 * sqrtan1 - sqr of tan of Inner Ster 1625 * sqrtan1 - sqr of tan of Inner Stereo Angle * 2178 * sqrtan2 - sqr of tan of Outer Ster 1626 * sqrtan2 - sqr of tan of Outer Stereo Angle * 2179 * halfZ - half length in Z 1627 * halfZ - half length in Z * 2180 * 1628 * * 2181 ******************************************** 1629 ***********************************************************************/ 2182 { 1630 { 2183 static const G4double wholeCircle = twopi; << 1631 static const G4double wholeCircle=twopi; 2184 1632 2185 // C H E C K I N P U T P A R A M E T 1633 // C H E C K I N P U T P A R A M E T E R S 2186 1634 2187 G4int k = 0; 1635 G4int k = 0; 2188 if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1; << 1636 if (r2 < 0. || r1 < 0. ) k = 1; 2189 if (halfZ <= 0.) k += 2; << 1637 if (r1 > r2 ) k = 1; 2190 if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4; << 1638 if (r1 == r2) k = 1; 2191 1639 >> 1640 if (halfZ <= 0.) k += 2; >> 1641 >> 1642 if (sqrtan1<0.||sqrtan2<0.) k += 4; >> 1643 2192 if (k != 0) 1644 if (k != 0) 2193 { 1645 { 2194 std::cerr << "HepPolyhedronHype: error in 1646 std::cerr << "HepPolyhedronHype: error in input parameters"; 2195 if ((k & 1) != 0) std::cerr << " (radiuse 1647 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2196 if ((k & 2) != 0) std::cerr << " (half-le 1648 if ((k & 2) != 0) std::cerr << " (half-length)"; 2197 if ((k & 4) != 0) std::cerr << " (angles) 1649 if ((k & 4) != 0) std::cerr << " (angles)"; 2198 std::cerr << std::endl; 1650 std::cerr << std::endl; 2199 std::cerr << " r1=" << r1 << " r2=" << r2 1651 std::cerr << " r1=" << r1 << " r2=" << r2; 2200 std::cerr << " halfZ=" << halfZ << " sqrT 1652 std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1 2201 << " sqrTan2=" << sqrtan2 1653 << " sqrTan2=" << sqrtan2 2202 << std::endl; 1654 << std::endl; 2203 return; 1655 return; 2204 } 1656 } 2205 << 1657 2206 // P R E P A R E T W O P O L Y L I N 1658 // P R E P A R E T W O P O L Y L I N E S 2207 1659 2208 G4int ns = std::max(3, GetNumberOfRotationS << 1660 G4int n = GetNumberOfRotationSteps(); 2209 G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1; << 1661 G4double dz = 2.*halfZ / n; 2210 G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1; << 1662 G4double k1 = r1*r1; 2211 auto zz = new G4double[nz1 + nz2]; << 1663 G4double k2 = r2*r2; 2212 auto rr = new G4double[nz1 + nz2]; << 1664 2213 << 1665 G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1]; 2214 // external polyline << 1666 2215 G4double dz2 = 2.*halfZ/(nz2 - 1); << 1667 zz[0] = halfZ; 2216 for(G4int i = 0; i < nz2; ++i) << 1668 rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2); >> 1669 >> 1670 for(G4int i = 1; i < n-1; i++) 2217 { 1671 { 2218 zz[i] = halfZ - dz2*i; << 1672 zz[i] = zz[i-1] - dz; 2219 rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1673 rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2); 2220 } 1674 } 2221 1675 2222 // internal polyline << 1676 zz[n-1] = -halfZ; 2223 G4double dz1 = 2.*halfZ/(nz1 - 1); << 1677 rr[n-1] = rr[0]; 2224 for(G4int i = 0; i < nz1; ++i) << 1678 >> 1679 zz[n] = halfZ; >> 1680 rr[n] = std::sqrt(sqrtan1*halfZ*halfZ+k1); >> 1681 >> 1682 for(G4int i = n+1; i < n+n; i++) 2225 { 1683 { 2226 G4int j = nz2 + i; << 1684 zz[i] = zz[i-1] - dz; 2227 zz[j] = halfZ - dz1*i; << 1685 rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1); 2228 rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 2229 } 1686 } >> 1687 zz[n+n] = -halfZ; >> 1688 rr[n+n] = rr[n]; 2230 1689 2231 // R O T A T E P O L Y L I N E S 1690 // R O T A T E P O L Y L I N E S 2232 1691 2233 RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1692 RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 2234 SetReferences(); 1693 SetReferences(); 2235 1694 2236 delete [] zz; 1695 delete [] zz; 2237 delete [] rr; 1696 delete [] rr; 2238 } 1697 } 2239 1698 2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1699 HepPolyhedronHype::~HepPolyhedronHype() {} 2241 1700 2242 HepPolyhedronCons::HepPolyhedronCons(G4double 1701 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1, 2243 G4double 1702 G4double Rmx1, 2244 G4double 1703 G4double Rmn2, 2245 G4double << 1704 G4double Rmx2, 2246 G4double 1705 G4double Dz, 2247 G4double 1706 G4double Phi1, 2248 G4double << 1707 G4double Dphi) 2249 /******************************************** 1708 /*********************************************************************** 2250 * 1709 * * 2251 * Name: HepPolyhedronCons::HepPolyhedronCons 1710 * Name: HepPolyhedronCons::HepPolyhedronCons Date: 15.12.96 * 2252 * Author: E.Chernyaev (IHEP/Protvino) 1711 * Author: E.Chernyaev (IHEP/Protvino) Revised: 15.12.96 * 2253 * 1712 * * 2254 * Function: Constructor for CONS, TUBS, CONE 1713 * Function: Constructor for CONS, TUBS, CONE, TUBE * 2255 * 1714 * * 2256 * Input: Rmn1, Rmx1 - inside and outside rad 1715 * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz * 2257 * Rmn2, Rmx2 - inside and outside rad 1716 * Rmn2, Rmx2 - inside and outside radiuses at +Dz * 2258 * Dz - half length in Z 1717 * Dz - half length in Z * 2259 * Phi1 - starting angle of the 1718 * Phi1 - starting angle of the segment * 2260 * Dphi - segment range 1719 * Dphi - segment range * 2261 * 1720 * * 2262 ******************************************** 1721 ***********************************************************************/ 2263 { 1722 { 2264 static const G4double wholeCircle=twopi; 1723 static const G4double wholeCircle=twopi; 2265 1724 2266 // C H E C K I N P U T P A R A M E T 1725 // C H E C K I N P U T P A R A M E T E R S 2267 1726 2268 G4int k = 0; 1727 G4int k = 0; 2269 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || 1728 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.) k = 1; 2270 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) 1729 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) k = 1; 2271 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) 1730 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) k = 1; 2272 1731 2273 if (Dz <= 0.) k += 2; 1732 if (Dz <= 0.) k += 2; 2274 << 1733 2275 G4double phi1, phi2, dphi; 1734 G4double phi1, phi2, dphi; 2276 if (Dphi < 0.) { 1735 if (Dphi < 0.) { 2277 phi2 = Phi1; phi1 = phi2 - Dphi; 1736 phi2 = Phi1; phi1 = phi2 - Dphi; 2278 }else if (Dphi == 0.) { 1737 }else if (Dphi == 0.) { 2279 phi1 = Phi1; phi2 = phi1 + wholeCircle; 1738 phi1 = Phi1; phi2 = phi1 + wholeCircle; 2280 }else{ 1739 }else{ 2281 phi1 = Phi1; phi2 = phi1 + Dphi; 1740 phi1 = Phi1; phi2 = phi1 + Dphi; 2282 } 1741 } 2283 dphi = phi2 - phi1; 1742 dphi = phi2 - phi1; 2284 if (std::abs(dphi-wholeCircle) < perMillion 1743 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2285 if (dphi > wholeCircle) k += 4; << 1744 if (dphi > wholeCircle) k += 4; 2286 1745 2287 if (k != 0) { 1746 if (k != 0) { 2288 std::cerr << "HepPolyhedronCone(s)/Tube(s 1747 std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters"; 2289 if ((k & 1) != 0) std::cerr << " (radiuse 1748 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2290 if ((k & 2) != 0) std::cerr << " (half-le 1749 if ((k & 2) != 0) std::cerr << " (half-length)"; 2291 if ((k & 4) != 0) std::cerr << " (angles) 1750 if ((k & 4) != 0) std::cerr << " (angles)"; 2292 std::cerr << std::endl; 1751 std::cerr << std::endl; 2293 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" 1752 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1; 2294 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" 1753 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2; 2295 std::cerr << " Dz=" << Dz << " Phi1=" << 1754 std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi 2296 << std::endl; 1755 << std::endl; 2297 return; 1756 return; 2298 } 1757 } 2299 << 1758 2300 // P R E P A R E T W O P O L Y L I N 1759 // P R E P A R E T W O P O L Y L I N E S 2301 1760 2302 G4double zz[4], rr[4]; 1761 G4double zz[4], rr[4]; 2303 zz[0] = Dz; << 1762 zz[0] = Dz; 2304 zz[1] = -Dz; << 1763 zz[1] = -Dz; 2305 zz[2] = Dz; << 1764 zz[2] = Dz; 2306 zz[3] = -Dz; << 1765 zz[3] = -Dz; 2307 rr[0] = Rmx2; 1766 rr[0] = Rmx2; 2308 rr[1] = Rmx1; 1767 rr[1] = Rmx1; 2309 rr[2] = Rmn2; 1768 rr[2] = Rmn2; 2310 rr[3] = Rmn1; 1769 rr[3] = Rmn1; 2311 1770 2312 // R O T A T E P O L Y L I N E S 1771 // R O T A T E P O L Y L I N E S 2313 1772 2314 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, << 1773 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 2315 SetReferences(); 1774 SetReferences(); 2316 } 1775 } 2317 1776 2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1777 HepPolyhedronCons::~HepPolyhedronCons() {} 2319 1778 2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1779 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 2321 G4double 1780 G4double Rmn2, G4double Rmx2, 2322 G4double 1781 G4double Dz) : 2323 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D 1782 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {} 2324 1783 2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1784 HepPolyhedronCone::~HepPolyhedronCone() {} 2326 1785 2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double 1786 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax, 2328 G4double << 1787 G4double Dz, 2329 G4double 1788 G4double Phi1, G4double Dphi) 2330 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rma 1789 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {} 2331 1790 2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1791 HepPolyhedronTubs::~HepPolyhedronTubs() {} 2333 1792 2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl 1793 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax, 2335 G4doubl 1794 G4double Dz) 2336 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, 1795 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {} 2337 1796 2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1797 HepPolyhedronTube::~HepPolyhedronTube () {} 2339 1798 2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double 1799 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi, 2341 G4double 1800 G4double dphi, 2342 G4int np << 1801 G4int npdv, 2343 G4int nz << 1802 G4int nz, 2344 const G4 1803 const G4double *z, 2345 const G4 1804 const G4double *rmin, 2346 const G4 1805 const G4double *rmax) 2347 /******************************************** 1806 /*********************************************************************** 2348 * 1807 * * 2349 * Name: HepPolyhedronPgon 1808 * Name: HepPolyhedronPgon Date: 09.12.96 * 2350 * Author: E.Chernyaev 1809 * Author: E.Chernyaev Revised: * 2351 * 1810 * * 2352 * Function: Constructor of polyhedron for PG 1811 * Function: Constructor of polyhedron for PGON, PCON * 2353 * 1812 * * 2354 * Input: phi - initial phi 1813 * Input: phi - initial phi * 2355 * dphi - delta phi 1814 * dphi - delta phi * 2356 * npdv - number of steps along phi 1815 * npdv - number of steps along phi * 2357 * nz - number of z-planes (at least 1816 * nz - number of z-planes (at least two) * 2358 * z[] - z coordinates of the slices 1817 * z[] - z coordinates of the slices * 2359 * rmin[] - smaller r at the slices 1818 * rmin[] - smaller r at the slices * 2360 * rmax[] - bigger r at the slices 1819 * rmax[] - bigger r at the slices * 2361 * 1820 * * 2362 ******************************************** 1821 ***********************************************************************/ 2363 { 1822 { 2364 // C H E C K I N P U T P A R A M E T 1823 // C H E C K I N P U T P A R A M E T E R S 2365 1824 2366 if (dphi <= 0. || dphi > twopi) { 1825 if (dphi <= 0. || dphi > twopi) { 2367 std::cerr 1826 std::cerr 2368 << "HepPolyhedronPgon/Pcon: wrong delta 1827 << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi 2369 << std::endl; 1828 << std::endl; 2370 return; 1829 return; 2371 } << 1830 } 2372 << 1831 2373 if (nz < 2) { 1832 if (nz < 2) { 2374 std::cerr 1833 std::cerr 2375 << "HepPolyhedronPgon/Pcon: number of z 1834 << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz 2376 << std::endl; 1835 << std::endl; 2377 return; 1836 return; 2378 } 1837 } 2379 1838 2380 if (npdv < 0) { 1839 if (npdv < 0) { 2381 std::cerr 1840 std::cerr 2382 << "HepPolyhedronPgon/Pcon: error in nu 1841 << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv 2383 << std::endl; 1842 << std::endl; 2384 return; 1843 return; 2385 } 1844 } 2386 1845 2387 G4int i; 1846 G4int i; 2388 for (i=0; i<nz; i++) { 1847 for (i=0; i<nz; i++) { 2389 if (rmin[i] < 0. || rmax[i] < 0. || rmin[ 1848 if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) { 2390 std::cerr 1849 std::cerr 2391 << "HepPolyhedronPgon: error in radiu 1850 << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]=" 2392 << rmin[i] << " rmax[" << i << "]=" < 1851 << rmin[i] << " rmax[" << i << "]=" << rmax[i] 2393 << std::endl; 1852 << std::endl; 2394 return; 1853 return; 2395 } 1854 } 2396 } 1855 } 2397 1856 2398 // P R E P A R E T W O P O L Y L I N 1857 // P R E P A R E T W O P O L Y L I N E S 2399 1858 2400 G4double *zz, *rr; 1859 G4double *zz, *rr; 2401 zz = new G4double[2*nz]; 1860 zz = new G4double[2*nz]; 2402 rr = new G4double[2*nz]; 1861 rr = new G4double[2*nz]; 2403 1862 2404 if (z[0] > z[nz-1]) { 1863 if (z[0] > z[nz-1]) { 2405 for (i=0; i<nz; i++) { 1864 for (i=0; i<nz; i++) { 2406 zz[i] = z[i]; 1865 zz[i] = z[i]; 2407 rr[i] = rmax[i]; 1866 rr[i] = rmax[i]; 2408 zz[i+nz] = z[i]; 1867 zz[i+nz] = z[i]; 2409 rr[i+nz] = rmin[i]; 1868 rr[i+nz] = rmin[i]; 2410 } 1869 } 2411 }else{ 1870 }else{ 2412 for (i=0; i<nz; i++) { 1871 for (i=0; i<nz; i++) { 2413 zz[i] = z[nz-i-1]; 1872 zz[i] = z[nz-i-1]; 2414 rr[i] = rmax[nz-i-1]; 1873 rr[i] = rmax[nz-i-1]; 2415 zz[i+nz] = z[nz-i-1]; 1874 zz[i+nz] = z[nz-i-1]; 2416 rr[i+nz] = rmin[nz-i-1]; 1875 rr[i+nz] = rmin[nz-i-1]; 2417 } 1876 } 2418 } 1877 } 2419 1878 2420 // R O T A T E P O L Y L I N E S 1879 // R O T A T E P O L Y L I N E S 2421 1880 2422 G4int nodeVis = 1; << 1881 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 2423 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2424 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, << 2425 SetReferences(); 1882 SetReferences(); 2426 << 1883 2427 delete [] zz; 1884 delete [] zz; 2428 delete [] rr; 1885 delete [] rr; 2429 } 1886 } 2430 1887 2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1888 HepPolyhedronPgon::~HepPolyhedronPgon() {} 2432 G4double << 2433 G4int np << 2434 const st << 2435 /******************************************** << 2436 * << 2437 * Name: HepPolyhedronPgon << 2438 * Author: E.Tcherniaev (E.Chernyaev) << 2439 * << 2440 * Function: Constructor of polyhedron for PG << 2441 * << 2442 * Input: phi - initial phi << 2443 * dphi - delta phi << 2444 * npdv - number of steps along phi << 2445 * rz - rz-contour << 2446 * << 2447 ******************************************** << 2448 { << 2449 // C H E C K I N P U T P A R A M E T << 2450 << 2451 if (dphi <= 0. || dphi > twopi) { << 2452 std::cerr << 2453 << "HepPolyhedronPgon/Pcon: wrong delta << 2454 << std::endl; << 2455 return; << 2456 } << 2457 << 2458 if (npdv < 0) { << 2459 std::cerr << 2460 << "HepPolyhedronPgon/Pcon: error in nu << 2461 << std::endl; << 2462 return; << 2463 } << 2464 << 2465 G4int nrz = (G4int)rz.size(); << 2466 if (nrz < 3) { << 2467 std::cerr << 2468 << "HepPolyhedronPgon/Pcon: invalid num << 2469 << std::endl; << 2470 return; << 2471 } << 2472 << 2473 // R O T A T E P O L Y L I N E << 2474 << 2475 G4int nodeVis = 1; << 2476 G4int edgeVis = (npdv == 0) ? -1 : 1; << 2477 RotateContourAroundZ(npdv, phi, dphi, rz, n << 2478 SetReferences(); << 2479 } << 2480 << 2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 2482 1889 2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double 1890 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz, 2484 const G4 1891 const G4double *z, 2485 const G4 1892 const G4double *rmin, 2486 const G4 1893 const G4double *rmax) 2487 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm 1894 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {} 2488 1895 2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1896 HepPolyhedronPcon::~HepPolyhedronPcon() {} 2490 const st << 2491 : HepPolyhedronPgon(phi, dphi, 0, rz) {} << 2492 << 2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 2494 1897 2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do 1898 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax, 2496 G4do 1899 G4double phi, G4double dphi, 2497 G4do 1900 G4double the, G4double dthe) 2498 /******************************************** 1901 /*********************************************************************** 2499 * 1902 * * 2500 * Name: HepPolyhedronSphere 1903 * Name: HepPolyhedronSphere Date: 11.12.96 * 2501 * Author: E.Chernyaev (IHEP/Protvino) 1904 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2502 * 1905 * * 2503 * Function: Constructor of polyhedron for SP 1906 * Function: Constructor of polyhedron for SPHERE * 2504 * 1907 * * 2505 * Input: rmin - internal radius 1908 * Input: rmin - internal radius * 2506 * rmax - external radius 1909 * rmax - external radius * 2507 * phi - initial phi 1910 * phi - initial phi * 2508 * dphi - delta phi 1911 * dphi - delta phi * 2509 * the - initial theta 1912 * the - initial theta * 2510 * dthe - delta theta 1913 * dthe - delta theta * 2511 * 1914 * * 2512 ******************************************** 1915 ***********************************************************************/ 2513 { 1916 { 2514 // C H E C K I N P U T P A R A M E T 1917 // C H E C K I N P U T P A R A M E T E R S 2515 1918 2516 if (dphi <= 0. || dphi > twopi) { 1919 if (dphi <= 0. || dphi > twopi) { 2517 std::cerr 1920 std::cerr 2518 << "HepPolyhedronSphere: wrong delta ph 1921 << "HepPolyhedronSphere: wrong delta phi = " << dphi 2519 << std::endl; 1922 << std::endl; 2520 return; 1923 return; 2521 } << 1924 } 2522 1925 2523 if (the < 0. || the > pi) { 1926 if (the < 0. || the > pi) { 2524 std::cerr 1927 std::cerr 2525 << "HepPolyhedronSphere: wrong theta = 1928 << "HepPolyhedronSphere: wrong theta = " << the 2526 << std::endl; 1929 << std::endl; 2527 return; 1930 return; 2528 } << 1931 } 2529 << 1932 2530 if (dthe <= 0. || dthe > pi) { 1933 if (dthe <= 0. || dthe > pi) { 2531 std::cerr 1934 std::cerr 2532 << "HepPolyhedronSphere: wrong delta th 1935 << "HepPolyhedronSphere: wrong delta theta = " << dthe 2533 << std::endl; 1936 << std::endl; 2534 return; 1937 return; 2535 } << 1938 } 2536 1939 2537 if (the+dthe > pi) { 1940 if (the+dthe > pi) { 2538 std::cerr 1941 std::cerr 2539 << "HepPolyhedronSphere: wrong theta + 1942 << "HepPolyhedronSphere: wrong theta + delta theta = " 2540 << the << " " << dthe 1943 << the << " " << dthe 2541 << std::endl; 1944 << std::endl; 2542 return; 1945 return; 2543 } << 1946 } 2544 << 1947 2545 if (rmin < 0. || rmin >= rmax) { 1948 if (rmin < 0. || rmin >= rmax) { 2546 std::cerr 1949 std::cerr 2547 << "HepPolyhedronSphere: error in radiu 1950 << "HepPolyhedronSphere: error in radiuses" 2548 << " rmin=" << rmin << " rmax=" << rmax 1951 << " rmin=" << rmin << " rmax=" << rmax 2549 << std::endl; 1952 << std::endl; 2550 return; 1953 return; 2551 } 1954 } 2552 1955 2553 // P R E P A R E T W O P O L Y L I N 1956 // P R E P A R E T W O P O L Y L I N E S 2554 1957 2555 G4int nds = (GetNumberOfRotationSteps() + 1 1958 G4int nds = (GetNumberOfRotationSteps() + 1) / 2; 2556 G4int np1 = G4int(dthe*nds/pi+.5) + 1; 1959 G4int np1 = G4int(dthe*nds/pi+.5) + 1; 2557 if (np1 <= 1) np1 = 2; 1960 if (np1 <= 1) np1 = 2; 2558 G4int np2 = rmin < spatialTolerance ? 1 : n 1961 G4int np2 = rmin < spatialTolerance ? 1 : np1; 2559 1962 2560 G4double *zz, *rr; 1963 G4double *zz, *rr; 2561 zz = new G4double[np1+np2]; 1964 zz = new G4double[np1+np2]; 2562 rr = new G4double[np1+np2]; 1965 rr = new G4double[np1+np2]; 2563 1966 2564 G4double a = dthe/(np1-1); 1967 G4double a = dthe/(np1-1); 2565 G4double cosa, sina; 1968 G4double cosa, sina; 2566 for (G4int i=0; i<np1; i++) { 1969 for (G4int i=0; i<np1; i++) { 2567 cosa = std::cos(the+i*a); 1970 cosa = std::cos(the+i*a); 2568 sina = std::sin(the+i*a); 1971 sina = std::sin(the+i*a); 2569 zz[i] = rmax*cosa; 1972 zz[i] = rmax*cosa; 2570 rr[i] = rmax*sina; 1973 rr[i] = rmax*sina; 2571 if (np2 > 1) { 1974 if (np2 > 1) { 2572 zz[i+np1] = rmin*cosa; 1975 zz[i+np1] = rmin*cosa; 2573 rr[i+np1] = rmin*sina; 1976 rr[i+np1] = rmin*sina; 2574 } 1977 } 2575 } 1978 } 2576 if (np2 == 1) { 1979 if (np2 == 1) { 2577 zz[np1] = 0.; 1980 zz[np1] = 0.; 2578 rr[np1] = 0.; 1981 rr[np1] = 0.; 2579 } 1982 } 2580 1983 2581 // R O T A T E P O L Y L I N E S 1984 // R O T A T E P O L Y L I N E S 2582 1985 2583 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1986 RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 2584 SetReferences(); 1987 SetReferences(); 2585 << 1988 2586 delete [] zz; 1989 delete [] zz; 2587 delete [] rr; 1990 delete [] rr; 2588 } 1991 } 2589 1992 2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1993 HepPolyhedronSphere::~HepPolyhedronSphere() {} 2591 1994 2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub 1995 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin, 2593 G4doub 1996 G4double rmax, 2594 G4doub 1997 G4double rtor, 2595 G4doub 1998 G4double phi, 2596 G4doub 1999 G4double dphi) 2597 /******************************************** 2000 /*********************************************************************** 2598 * 2001 * * 2599 * Name: HepPolyhedronTorus 2002 * Name: HepPolyhedronTorus Date: 11.12.96 * 2600 * Author: E.Chernyaev (IHEP/Protvino) 2003 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2601 * 2004 * * 2602 * Function: Constructor of polyhedron for TO 2005 * Function: Constructor of polyhedron for TORUS * 2603 * 2006 * * 2604 * Input: rmin - internal radius 2007 * Input: rmin - internal radius * 2605 * rmax - external radius 2008 * rmax - external radius * 2606 * rtor - radius of torus 2009 * rtor - radius of torus * 2607 * phi - initial phi 2010 * phi - initial phi * 2608 * dphi - delta phi 2011 * dphi - delta phi * 2609 * 2012 * * 2610 ******************************************** 2013 ***********************************************************************/ 2611 { 2014 { 2612 // C H E C K I N P U T P A R A M E T 2015 // C H E C K I N P U T P A R A M E T E R S 2613 2016 2614 if (dphi <= 0. || dphi > twopi) { 2017 if (dphi <= 0. || dphi > twopi) { 2615 std::cerr 2018 std::cerr 2616 << "HepPolyhedronTorus: wrong delta phi 2019 << "HepPolyhedronTorus: wrong delta phi = " << dphi 2617 << std::endl; 2020 << std::endl; 2618 return; 2021 return; 2619 } 2022 } 2620 2023 2621 if (rmin < 0. || rmin >= rmax || rmax >= rt 2024 if (rmin < 0. || rmin >= rmax || rmax >= rtor) { 2622 std::cerr 2025 std::cerr 2623 << "HepPolyhedronTorus: error in radius 2026 << "HepPolyhedronTorus: error in radiuses" 2624 << " rmin=" << rmin << " rmax=" << rmax 2027 << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor 2625 << std::endl; 2028 << std::endl; 2626 return; 2029 return; 2627 } 2030 } 2628 2031 2629 // P R E P A R E T W O P O L Y L I N 2032 // P R E P A R E T W O P O L Y L I N E S 2630 2033 2631 G4int np1 = GetNumberOfRotationSteps(); 2034 G4int np1 = GetNumberOfRotationSteps(); >> 2035 assert(np1>0); 2632 G4int np2 = rmin < spatialTolerance ? 1 : n 2036 G4int np2 = rmin < spatialTolerance ? 1 : np1; 2633 2037 2634 G4double *zz, *rr; 2038 G4double *zz, *rr; 2635 zz = new G4double[np1+np2]; 2039 zz = new G4double[np1+np2]; 2636 rr = new G4double[np1+np2]; 2040 rr = new G4double[np1+np2]; 2637 2041 2638 G4double a = twopi/np1; 2042 G4double a = twopi/np1; 2639 G4double cosa, sina; 2043 G4double cosa, sina; 2640 for (G4int i=0; i<np1; i++) { 2044 for (G4int i=0; i<np1; i++) { 2641 cosa = std::cos(i*a); 2045 cosa = std::cos(i*a); 2642 sina = std::sin(i*a); 2046 sina = std::sin(i*a); 2643 zz[i] = rmax*cosa; 2047 zz[i] = rmax*cosa; 2644 rr[i] = rtor+rmax*sina; 2048 rr[i] = rtor+rmax*sina; 2645 if (np2 > 1) { 2049 if (np2 > 1) { 2646 zz[i+np1] = rmin*cosa; 2050 zz[i+np1] = rmin*cosa; 2647 rr[i+np1] = rtor+rmin*sina; 2051 rr[i+np1] = rtor+rmin*sina; 2648 } 2052 } 2649 } 2053 } 2650 if (np2 == 1) { 2054 if (np2 == 1) { 2651 zz[np1] = 0.; 2055 zz[np1] = 0.; 2652 rr[np1] = rtor; 2056 rr[np1] = rtor; 2653 np2 = -1; 2057 np2 = -1; 2654 } 2058 } 2655 2059 2656 // R O T A T E P O L Y L I N E S 2060 // R O T A T E P O L Y L I N E S 2657 2061 2658 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2062 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 2659 SetReferences(); 2063 SetReferences(); 2660 << 2064 2661 delete [] zz; 2065 delete [] zz; 2662 delete [] rr; 2066 delete [] rr; 2663 } 2067 } 2664 2068 2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2069 HepPolyhedronTorus::~HepPolyhedronTorus() {} 2666 << 2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 2668 const G4do << 2669 const G4do << 2670 const G4do << 2671 /******************************************** << 2672 * << 2673 * Name: HepPolyhedronTet << 2674 * Author: E.Tcherniaev (E.Chernyaev) << 2675 * << 2676 * Function: Constructor of polyhedron for TE << 2677 * << 2678 * Input: p0,p1,p2,p3 - vertices << 2679 * << 2680 ******************************************** << 2681 { << 2682 AllocateMemory(4,4); << 2683 << 2684 pV[1].set(p0[0], p0[1], p0[2]); << 2685 pV[2].set(p1[0], p1[1], p1[2]); << 2686 pV[3].set(p2[0], p2[1], p2[2]); << 2687 pV[4].set(p3[0], p3[1], p3[2]); << 2688 << 2689 G4Vector3D v1(pV[2] - pV[1]); << 2690 G4Vector3D v2(pV[3] - pV[1]); << 2691 G4Vector3D v3(pV[4] - pV[1]); << 2692 << 2693 if (v1.cross(v2).dot(v3) < 0.) << 2694 { << 2695 pV[3].set(p3[0], p3[1], p3[2]); << 2696 pV[4].set(p2[0], p2[1], p2[2]); << 2697 } << 2698 << 2699 pF[1] = G4Facet(1,2, 3,4, 2,3); << 2700 pF[2] = G4Facet(1,3, 4,4, 3,1); << 2701 pF[3] = G4Facet(1,1, 2,4, 4,2); << 2702 pF[4] = G4Facet(2,1, 3,2, 4,3); << 2703 } << 2704 << 2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 2706 2070 2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi 2071 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by, 2708 2072 G4double cz, G4double zCut1, 2709 2073 G4double zCut2) 2710 /******************************************** 2074 /*********************************************************************** 2711 * 2075 * * 2712 * Name: HepPolyhedronEllipsoid 2076 * Name: HepPolyhedronEllipsoid Date: 25.02.05 * 2713 * Author: G.Guerrieri 2077 * Author: G.Guerrieri Revised: * 2714 * Evgueni Tcherniaev << 2715 * 2078 * * 2716 * Function: Constructor of polyhedron for EL 2079 * Function: Constructor of polyhedron for ELLIPSOID * 2717 * 2080 * * 2718 * Input: ax - semiaxis x 2081 * Input: ax - semiaxis x * 2719 * by - semiaxis y 2082 * by - semiaxis y * 2720 * cz - semiaxis z 2083 * cz - semiaxis z * 2721 * zCut1 - lower cut plane level (soli 2084 * zCut1 - lower cut plane level (solid lies above this plane) * 2722 * zCut2 - upper cut plane level (soli 2085 * zCut2 - upper cut plane level (solid lies below this plane) * 2723 * 2086 * * 2724 ******************************************** 2087 ***********************************************************************/ 2725 { 2088 { 2726 // C H E C K I N P U T P A R A M E T 2089 // C H E C K I N P U T P A R A M E T E R S 2727 2090 2728 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > 2091 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) { 2729 std::cerr << "HepPolyhedronEllipsoid: wro 2092 std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1 2730 << " zCut2 = " << zCut2 2093 << " zCut2 = " << zCut2 2731 << " for given cz = " << cz << std 2094 << " for given cz = " << cz << std::endl; 2732 return; 2095 return; 2733 } 2096 } 2734 if (cz <= 0.0) { 2097 if (cz <= 0.0) { 2735 std::cerr << "HepPolyhedronEllipsoid: bad 2098 std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz 2736 << std::endl; 2099 << std::endl; 2737 return; 2100 return; 2738 } 2101 } 2739 2102 >> 2103 G4double dthe; >> 2104 G4double sthe; >> 2105 G4int cutflag; >> 2106 cutflag= 0; >> 2107 if (zCut2 >= cz) >> 2108 { >> 2109 sthe= 0.0; >> 2110 } >> 2111 else >> 2112 { >> 2113 sthe= std::acos(zCut2/cz); >> 2114 cutflag++; >> 2115 } >> 2116 if (zCut1 <= -cz) >> 2117 { >> 2118 dthe= pi - sthe; >> 2119 } >> 2120 else >> 2121 { >> 2122 dthe= std::acos(zCut1/cz)-sthe; >> 2123 cutflag++; >> 2124 } >> 2125 2740 // P R E P A R E T W O P O L Y L I N 2126 // P R E P A R E T W O P O L Y L I N E S 2741 // generate sphere of radius cz first, th 2127 // generate sphere of radius cz first, then rescale x and y later 2742 2128 2743 G4double sthe = std::acos(zCut2/cz); << 2129 G4int nds = (GetNumberOfRotationSteps() + 1) / 2; 2744 G4double dthe = std::acos(zCut1/cz) - sthe; << 2130 G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag; 2745 G4int nds = (GetNumberOfRotationSteps() + 1 << 2746 G4int np1 = G4int(dthe*nds/pi + 0.5) + 1; << 2747 if (np1 <= 1) np1 = 2; << 2748 G4int np2 = 2; << 2749 2131 2750 G4double *zz, *rr; 2132 G4double *zz, *rr; 2751 zz = new G4double[np1 + np2]; << 2133 zz = new G4double[np1+1]; 2752 rr = new G4double[np1 + np2]; << 2134 rr = new G4double[np1+1]; 2753 if ((zz == nullptr) || (rr == nullptr)) << 2135 if (!zz || !rr) 2754 { << 2136 { 2755 G4Exception("HepPolyhedronEllipsoid::HepP << 2137 G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid", 2756 "greps1002", FatalException, << 2138 "greps1002", FatalException, "Out of memory"); 2757 } << 2139 } 2758 2140 2759 G4double a = dthe/(np1 - 1); << 2141 G4double a = dthe/(np1-cutflag-1); 2760 G4double cosa, sina; 2142 G4double cosa, sina; 2761 for (G4int i = 0; i < np1; ++i) << 2143 G4int j=0; 2762 { << 2144 if (sthe > 0.0) 2763 cosa = std::cos(sthe + i*a); << 2145 { 2764 sina = std::sin(sthe + i*a); << 2146 zz[j]= zCut2; 2765 zz[i] = cz*cosa; << 2147 rr[j]= 0.; 2766 rr[i] = cz*sina; << 2148 j++; 2767 } << 2149 } 2768 zz[np1 + 0] = zCut2; << 2150 for (G4int i=0; i<np1-cutflag; i++) { 2769 rr[np1 + 0] = 0.; << 2151 cosa = std::cos(sthe+i*a); 2770 zz[np1 + 1] = zCut1; << 2152 sina = std::sin(sthe+i*a); 2771 rr[np1 + 1] = 0.; << 2153 zz[j] = cz*cosa; >> 2154 rr[j] = cz*sina; >> 2155 j++; >> 2156 } >> 2157 if (j < np1) >> 2158 { >> 2159 zz[j]= zCut1; >> 2160 rr[j]= 0.; >> 2161 j++; >> 2162 } >> 2163 if (j > np1) >> 2164 { >> 2165 std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!" >> 2166 << std::endl; >> 2167 } >> 2168 if (j < np1) >> 2169 { >> 2170 std::cerr << "Warning: logic error in HepPolyhedronEllipsoid." >> 2171 << std::endl; >> 2172 np1= j; >> 2173 } >> 2174 zz[j] = 0.; >> 2175 rr[j] = 0.; 2772 2176 >> 2177 2773 // R O T A T E P O L Y L I N E S 2178 // R O T A T E P O L Y L I N E S 2774 2179 2775 RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2180 RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 2776 SetReferences(); 2181 SetReferences(); 2777 2182 2778 delete [] zz; 2183 delete [] zz; 2779 delete [] rr; 2184 delete [] rr; 2780 2185 2781 // rescale x and y vertex coordinates 2186 // rescale x and y vertex coordinates 2782 G4double kx = ax/cz; << 2783 G4double ky = by/cz; << 2784 G4Point3D* p = pV; << 2785 for (G4int i = 0; i < nvert; ++i, ++p) << 2786 { 2187 { 2787 p->setX(p->x()*kx); << 2188 G4Point3D * p= pV; 2788 p->setY(p->y()*ky); << 2189 for (G4int i=0; i<nvert; i++, p++) { >> 2190 p->setX( p->x() * ax/cz ); >> 2191 p->setY( p->y() * by/cz ); >> 2192 } 2789 } 2193 } 2790 } 2194 } 2791 2195 2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2196 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {} 2793 2197 2794 HepPolyhedronEllipticalCone::HepPolyhedronEll 2198 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax, 2795 2199 G4double ay, 2796 2200 G4double h, 2797 << 2201 G4double zTopCut) 2798 /******************************************** 2202 /*********************************************************************** 2799 * 2203 * * 2800 * Name: HepPolyhedronEllipticalCone 2204 * Name: HepPolyhedronEllipticalCone Date: 8.9.2005 * 2801 * Author: D.Anninos 2205 * Author: D.Anninos Revised: 9.9.2005 * 2802 * 2206 * * 2803 * Function: Constructor for EllipticalCone 2207 * Function: Constructor for EllipticalCone * 2804 * 2208 * * 2805 * Input: ax, ay - X & Y semi axes at z = 2209 * Input: ax, ay - X & Y semi axes at z = 0 * 2806 * h - height of full cone 2210 * h - height of full cone * 2807 * zTopCut - Top Cut in Z Axis 2211 * zTopCut - Top Cut in Z Axis * 2808 * 2212 * * 2809 ******************************************** 2213 ***********************************************************************/ 2810 { 2214 { 2811 // C H E C K I N P U T P A R A M E T 2215 // C H E C K I N P U T P A R A M E T E R S 2812 2216 2813 G4int k = 0; 2217 G4int k = 0; 2814 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) 2218 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; } 2815 2219 2816 if (k != 0) { 2220 if (k != 0) { 2817 std::cerr << "HepPolyhedronCone: error in 2221 std::cerr << "HepPolyhedronCone: error in input parameters"; 2818 std::cerr << std::endl; 2222 std::cerr << std::endl; 2819 return; 2223 return; 2820 } 2224 } 2821 << 2225 2822 // P R E P A R E T W O P O L Y L I N 2226 // P R E P A R E T W O P O L Y L I N E S 2823 2227 2824 zTopCut = (h >= zTopCut ? zTopCut : h); 2228 zTopCut = (h >= zTopCut ? zTopCut : h); 2825 2229 2826 G4double *zz, *rr; 2230 G4double *zz, *rr; 2827 zz = new G4double[4]; 2231 zz = new G4double[4]; 2828 rr = new G4double[4]; 2232 rr = new G4double[4]; 2829 zz[0] = zTopCut; << 2233 zz[0] = zTopCut; 2830 zz[1] = -zTopCut; << 2234 zz[1] = -zTopCut; 2831 zz[2] = zTopCut; << 2235 zz[2] = zTopCut; 2832 zz[3] = -zTopCut; << 2236 zz[3] = -zTopCut; 2833 rr[0] = (h-zTopCut); 2237 rr[0] = (h-zTopCut); 2834 rr[1] = (h+zTopCut); 2238 rr[1] = (h+zTopCut); 2835 rr[2] = 0.; 2239 rr[2] = 0.; 2836 rr[3] = 0.; 2240 rr[3] = 0.; 2837 2241 2838 // R O T A T E P O L Y L I N E S 2242 // R O T A T E P O L Y L I N E S 2839 2243 2840 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2244 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 2841 SetReferences(); 2245 SetReferences(); 2842 2246 2843 delete [] zz; 2247 delete [] zz; 2844 delete [] rr; 2248 delete [] rr; 2845 2249 2846 // rescale x and y vertex coordinates 2250 // rescale x and y vertex coordinates 2847 { 2251 { 2848 G4Point3D * p= pV; 2252 G4Point3D * p= pV; 2849 for (G4int i=0; i<nvert; i++, p++) { 2253 for (G4int i=0; i<nvert; i++, p++) { 2850 p->setX( p->x() * ax ); 2254 p->setX( p->x() * ax ); 2851 p->setY( p->y() * ay ); 2255 p->setY( p->y() * ay ); 2852 } 2256 } 2853 } 2257 } 2854 } 2258 } 2855 2259 2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2260 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {} 2857 << 2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 2859 << 2860 << 2861 /******************************************** << 2862 * << 2863 * Name: HepPolyhedronHyperbolicMirror << 2864 * Author: E.Tcherniaev (E.Chernyaev) << 2865 * << 2866 * Function: Create polyhedron for Hyperbolic << 2867 * << 2868 * Input: a - half-separation << 2869 * h - height << 2870 * r - radius << 2871 * << 2872 ******************************************** << 2873 { << 2874 G4double H = std::abs(h); << 2875 G4double R = std::abs(r); << 2876 G4double A = std::abs(a); << 2877 G4double B = A*R/std::sqrt(2*A*H + H*H); << 2878 << 2879 // P R E P A R E T W O P O L Y L I N << 2880 << 2881 G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 2882 G4int np2 = 2; << 2883 G4double maxAng = (A == 0.) ? 0. : std::aco << 2884 G4double delAng = maxAng/(np1 - 1); << 2885 << 2886 auto zz = new G4double[np1 + np2]; << 2887 auto rr = new G4double[np1 + np2]; << 2888 << 2889 // 1st polyline << 2890 zz[0] = H; << 2891 rr[0] = R; << 2892 for (G4int iz = 1; iz < np1 - 1; ++iz) << 2893 { << 2894 G4double ang = maxAng - iz*delAng; << 2895 zz[iz] = A*std::cosh(ang) - A; << 2896 rr[iz] = B*std::sinh(ang); << 2897 } << 2898 zz[np1 - 1] = 0.; << 2899 rr[np1 - 1] = 0.; << 2900 << 2901 // 2nd polyline << 2902 zz[np1] = H; << 2903 rr[np1] = 0.; << 2904 zz[np1 + 1] = 0.; << 2905 rr[np1 + 1] = 0.; << 2906 << 2907 // R O T A T E P O L Y L I N E S << 2908 << 2909 G4double phi = 0.; << 2910 G4double dphi = CLHEP::twopi; << 2911 RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 2912 SetReferences(); << 2913 << 2914 delete [] zz; << 2915 delete [] rr; << 2916 } << 2917 << 2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 2919 2261 2920 HepPolyhedronTetMesh:: << 2262 G4ThreadLocal G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 2922 /******************************************** << 2923 * << 2924 * Name: HepPolyhedronTetMesh << 2925 * Author: E.Tcherniaev (E.Chernyaev) << 2926 * << 2927 * Function: Create polyhedron for tetrahedro << 2928 * << 2929 * Input: tetrahedra - array of tetrahedron v << 2930 * per tetrahedron << 2931 * << 2932 ******************************************** << 2933 { << 2934 // Check size of input vector << 2935 G4int nnodes = (G4int)tetrahedra.size(); << 2936 if (nnodes == 0) << 2937 { << 2938 std::cerr << 2939 << "HepPolyhedronTetMesh: Empty tetrahe << 2940 return; << 2941 } << 2942 G4int ntet = nnodes/4; << 2943 if (nnodes != ntet*4) << 2944 { << 2945 std::cerr << "HepPolyhedronTetMesh: Numbe << 2946 << " in tetrahedron mesh is NOT << 2947 << std::endl; << 2948 return; << 2949 } << 2950 << 2951 // Find coincident vertices using hash tabl << 2952 // This could be done using std::unordered_ << 2953 // below runs faster. << 2954 std::vector<G4int> iheads(nnodes, -1); << 2955 std::vector<std::pair<G4int,G4int>> ipairs( << 2956 for (G4int i = 0; i < nnodes; ++i) << 2957 { << 2958 // Generate hash key << 2959 G4ThreeVector point = tetrahedra[i]; << 2960 auto key = std::hash<G4double>()(point.x( << 2961 key ^= std::hash<G4double>()(point.y()); << 2962 key ^= std::hash<G4double>()(point.z()); << 2963 key %= nnodes; << 2964 // Check head of the list << 2965 if (iheads[key] < 0) << 2966 { << 2967 iheads[key] = i; << 2968 ipairs[i].first = i; << 2969 continue; << 2970 } << 2971 // Loop along the list << 2972 for (G4int icur = iheads[key], iprev = 0; << 2973 { << 2974 G4int icheck = ipairs[icur].first; << 2975 if (tetrahedra[icheck] == point) << 2976 { << 2977 ipairs[i].first = icheck; // coincide << 2978 break; << 2979 } << 2980 iprev = icur; << 2981 icur = ipairs[icur].second; << 2982 // Append vertex to the list << 2983 if (icur < 0) << 2984 { << 2985 ipairs[i].first = i; << 2986 ipairs[iprev].second = i; << 2987 break; << 2988 } << 2989 } << 2990 } << 2991 << 2992 // Create vector of original facets << 2993 struct facet << 2994 { << 2995 G4int i1, i2, i3; << 2996 facet() : i1(0), i2(0), i3(0) {}; << 2997 facet(G4int k1, G4int k2, G4int k3) : i1( << 2998 }; << 2999 G4int nfacets = nnodes; << 3000 std::vector<facet> ifacets(nfacets); << 3001 for (G4int i = 0; i < nfacets; i += 4) << 3002 { << 3003 G4int i0 = ipairs[i + 0].first; << 3004 G4int i1 = ipairs[i + 1].first; << 3005 G4int i2 = ipairs[i + 2].first; << 3006 G4int i3 = ipairs[i + 3].first; << 3007 if (i0 > i1) std::swap(i0, i1); << 3008 if (i0 > i2) std::swap(i0, i2); << 3009 if (i0 > i3) std::swap(i0, i3); << 3010 if (i1 > i2) std::swap(i1, i2); << 3011 if (i1 > i3) std::swap(i1, i3); << 3012 G4ThreeVector e1 = tetrahedra[i1] - tetra << 3013 G4ThreeVector e2 = tetrahedra[i2] - tetra << 3014 G4ThreeVector e3 = tetrahedra[i3] - tetra << 3015 G4double volume = (e1.cross(e2)).dot(e3); << 3016 if (volume > 0.) std::swap(i2, i3); << 3017 ifacets[i + 0] = facet(i0, i1, i2); << 3018 ifacets[i + 1] = facet(i0, i2, i3); << 3019 ifacets[i + 2] = facet(i0, i3, i1); << 3020 ifacets[i + 3] = facet(i1, i3, i2); << 3021 } << 3022 << 3023 // Find shared facets << 3024 std::fill(iheads.begin(), iheads.end(), -1) << 3025 std::fill(ipairs.begin(), ipairs.end(), std << 3026 for (G4int i = 0; i < nfacets; ++i) << 3027 { << 3028 // Check head of the list << 3029 G4int key = ifacets[i].i1; << 3030 if (iheads[key] < 0) << 3031 { << 3032 iheads[key] = i; << 3033 ipairs[i].first = i; << 3034 continue; << 3035 } << 3036 // Loop along the list << 3037 G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 3038 for (G4int icur = iheads[key], iprev = -1 << 3039 { << 3040 G4int icheck = ipairs[icur].first; << 3041 if (ifacets[icheck].i2 == i3 && ifacets << 3042 { << 3043 if (iprev < 0) << 3044 { << 3045 iheads[key] = ipairs[icur].second; << 3046 } << 3047 else << 3048 { << 3049 ipairs[iprev].second = ipairs[icur] << 3050 } << 3051 ipairs[icur].first = -1; // shared fa << 3052 ipairs[icur].second = -1; << 3053 break; << 3054 } << 3055 iprev = icur; << 3056 icur = ipairs[icur].second; << 3057 // Append facet to the list << 3058 if (icur < 0) << 3059 { << 3060 ipairs[i].first = i; << 3061 ipairs[iprev].second = i; << 3062 break; << 3063 } << 3064 } << 3065 } << 3066 << 3067 // Count vertices and facets skipping share << 3068 std::fill(iheads.begin(), iheads.end(), -1) << 3069 G4int nver = 0, nfac = 0; << 3070 for (G4int i = 0; i < nfacets; ++i) << 3071 { << 3072 if (ipairs[i].first < 0) continue; << 3073 G4int i1 = ifacets[i].i1; << 3074 G4int i2 = ifacets[i].i2; << 3075 G4int i3 = ifacets[i].i3; << 3076 if (iheads[i1] < 0) iheads[i1] = nver++; << 3077 if (iheads[i2] < 0) iheads[i2] = nver++; << 3078 if (iheads[i3] < 0) iheads[i3] = nver++; << 3079 nfac++; << 3080 } << 3081 << 3082 // Construct polyhedron << 3083 AllocateMemory(nver, nfac); << 3084 for (G4int i = 0; i < nnodes; ++i) << 3085 { << 3086 G4int k = iheads[i]; << 3087 if (k >= 0) SetVertex(k + 1, tetrahedra[i << 3088 } << 3089 for (G4int i = 0, k = 0; i < nfacets; ++i) << 3090 { << 3091 if (ipairs[i].first < 0) continue; << 3092 G4int i1 = iheads[ifacets[i].i1] + 1; << 3093 G4int i2 = iheads[ifacets[i].i2] + 1; << 3094 G4int i3 = iheads[ifacets[i].i3] + 1; << 3095 SetFacet(++k, i1, i2, i3); << 3096 } << 3097 SetReferences(); << 3098 } << 3099 << 3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 3101 << 3102 HepPolyhedronBoxMesh:: << 3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 3104 const std::vector<G4Thre << 3105 /******************************************** << 3106 * << 3107 * Name: HepPolyhedronBoxMesh << 3108 * Author: E.Tcherniaev (E.Chernyaev) << 3109 * << 3110 * Function: Create polyhedron for box mesh << 3111 * << 3112 * Input: sizeX, sizeY, sizeZ - dimensions of << 3113 * positions - vector of cell centres << 3114 * << 3115 ******************************************** << 3116 { << 3117 G4int nbox = (G4int)positions.size(); << 3118 if (nbox == 0) << 3119 { << 3120 std::cerr << "HepPolyhedronBoxMesh: Empty << 3121 return; << 3122 } << 3123 // compute inverse dimensions << 3124 G4double invx = 1./sizeX, invy = 1./sizeY, << 3125 // find mesh bounding box << 3126 G4ThreeVector pmin = positions[0], pmax = p << 3127 for (const auto& p: positions) << 3128 { << 3129 if (pmin.x() > p.x()) pmin.setX(p.x()); << 3130 if (pmin.y() > p.y()) pmin.setY(p.y()); << 3131 if (pmin.z() > p.z()) pmin.setZ(p.z()); << 3132 if (pmax.x() < p.x()) pmax.setX(p.x()); << 3133 if (pmax.y() < p.y()) pmax.setY(p.y()); << 3134 if (pmax.z() < p.z()) pmax.setZ(p.z()); << 3135 } << 3136 // find number of voxels << 3137 G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 3138 G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 3139 G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 3140 // create structures for voxels and node in << 3141 std::vector<char> voxels(nx*ny*nz, 0); << 3142 std::vector<G4int> indices((nx+1)*(ny+1)*(n << 3143 // mark voxels listed in positions << 3144 G4int kx = ny*nz, ky = nz; << 3145 for (const auto& p: positions) << 3146 { << 3147 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3148 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3149 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3150 G4int i = ix*kx + iy*ky + iz; << 3151 voxels[i] = 1; << 3152 } << 3153 // count number of vertices and facets << 3154 // set indices << 3155 G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 3156 G4int nver = 0, nfac = 0; << 3157 for (const auto& p: positions) << 3158 { << 3159 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3160 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3161 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3162 // << 3163 // 011 111 << 3164 // +---–---+ << 3165 // | 001 | 101 << 3166 // | +---–---+ << 3167 // | | | | << 3168 // +---|---+ | << 3169 // 010 | 110 | << 3170 // +-------+ << 3171 // 000 100 << 3172 // << 3173 G4int vcheck = 0; << 3174 // check (ix - 1) side << 3175 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3176 if (vcheck == 0) << 3177 { << 3178 nfac++; << 3179 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3180 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3181 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3182 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3183 if (indices[i1] == 0) indices[i1] = ++n << 3184 if (indices[i2] == 0) indices[i2] = ++n << 3185 if (indices[i3] == 0) indices[i3] = ++n << 3186 if (indices[i4] == 0) indices[i4] = ++n << 3187 } << 3188 // check (ix + 1) side << 3189 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3190 if (vcheck == 0) << 3191 { << 3192 nfac++; << 3193 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3194 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3195 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3196 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3197 if (indices[i1] == 0) indices[i1] = ++n << 3198 if (indices[i2] == 0) indices[i2] = ++n << 3199 if (indices[i3] == 0) indices[i3] = ++n << 3200 if (indices[i4] == 0) indices[i4] = ++n << 3201 } << 3202 // check (iy - 1) side << 3203 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3204 if (vcheck == 0) << 3205 { << 3206 nfac++; << 3207 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3208 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3209 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3210 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3211 if (indices[i1] == 0) indices[i1] = ++n << 3212 if (indices[i2] == 0) indices[i2] = ++n << 3213 if (indices[i3] == 0) indices[i3] = ++n << 3214 if (indices[i4] == 0) indices[i4] = ++n << 3215 } << 3216 // check (iy + 1) side << 3217 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3218 if (vcheck == 0) << 3219 { << 3220 nfac++; << 3221 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3222 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3223 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3224 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3225 if (indices[i1] == 0) indices[i1] = ++n << 3226 if (indices[i2] == 0) indices[i2] = ++n << 3227 if (indices[i3] == 0) indices[i3] = ++n << 3228 if (indices[i4] == 0) indices[i4] = ++n << 3229 } << 3230 // check (iz - 1) side << 3231 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3232 if (vcheck == 0) << 3233 { << 3234 nfac++; << 3235 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3236 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3237 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3238 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3239 if (indices[i1] == 0) indices[i1] = ++n << 3240 if (indices[i2] == 0) indices[i2] = ++n << 3241 if (indices[i3] == 0) indices[i3] = ++n << 3242 if (indices[i4] == 0) indices[i4] = ++n << 3243 } << 3244 // check (iz + 1) side << 3245 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3246 if (vcheck == 0) << 3247 { << 3248 nfac++; << 3249 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3250 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3251 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3252 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3253 if (indices[i1] == 0) indices[i1] = ++n << 3254 if (indices[i2] == 0) indices[i2] = ++n << 3255 if (indices[i3] == 0) indices[i3] = ++n << 3256 if (indices[i4] == 0) indices[i4] = ++n << 3257 } << 3258 } << 3259 // Construct polyhedron << 3260 AllocateMemory(nver, nfac); << 3261 G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 3262 for (G4int ix = 0; ix <= nx; ++ix) << 3263 { << 3264 for (G4int iy = 0; iy <= ny; ++iy) << 3265 { << 3266 for (G4int iz = 0; iz <= nz; ++iz) << 3267 { << 3268 G4int i = ix*kvx + iy*kvy + iz; << 3269 if (indices[i] == 0) continue; << 3270 SetVertex(indices[i], p0 + G4ThreeVector(ix << 3271 } << 3272 } << 3273 } << 3274 nfac = 0; << 3275 for (const auto& p: positions) << 3276 { << 3277 G4int ix = (p.x() - pmin.x())*invx + 0.5; << 3278 G4int iy = (p.y() - pmin.y())*invy + 0.5; << 3279 G4int iz = (p.z() - pmin.z())*invz + 0.5; << 3280 G4int vcheck = 0; << 3281 // check (ix - 1) side << 3282 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 3283 if (vcheck == 0) << 3284 { << 3285 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3286 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 3287 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 3288 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3289 SetFacet(++nfac, indices[i1], indices[i << 3290 } << 3291 // check (ix + 1) side << 3292 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 3293 if (vcheck == 0) << 3294 { << 3295 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 3296 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 3297 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3298 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3299 SetFacet(++nfac, indices[i1], indices[i << 3300 << 3301 } << 3302 // check (iy - 1) side << 3303 vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 3304 if (vcheck == 0) << 3305 { << 3306 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3307 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3308 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 3309 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 3310 SetFacet(++nfac, indices[i1], indices[i << 3311 } << 3312 // check (iy + 1) side << 3313 vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 3314 if (vcheck == 0) << 3315 { << 3316 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 3317 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3318 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3319 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 3320 SetFacet(++nfac, indices[i1], indices[i << 3321 } << 3322 // check (iz - 1) side << 3323 vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 3324 if (vcheck == 0) << 3325 { << 3326 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3327 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 3328 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3329 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 3330 SetFacet(++nfac, indices[i1], indices[i << 3331 } << 3332 // check (iz + 1) side << 3333 vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 3334 if (vcheck == 0) << 3335 { << 3336 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 3337 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 3338 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 3339 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 3340 SetFacet(++nfac, indices[i1], indices[i << 3341 } << 3342 } << 3343 SetReferences(); << 3344 } << 3345 << 3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 3347 << 3348 G4ThreadLocal << 3349 G4int HepPolyhedron::fNumberOfRotationSteps = << 3350 /******************************************** 2263 /*********************************************************************** 3351 * 2264 * * 3352 * Name: HepPolyhedron::fNumberOfRotationStep 2265 * Name: HepPolyhedron::fNumberOfRotationSteps Date: 24.06.97 * 3353 * Author: J.Allison (Manchester University) 2266 * Author: J.Allison (Manchester University) Revised: * 3354 * 2267 * * 3355 * Function: Number of steps for whole circle 2268 * Function: Number of steps for whole circle * 3356 * 2269 * * 3357 ******************************************** 2270 ***********************************************************************/ 3358 2271 3359 #include "BooleanProcessor.src" 2272 #include "BooleanProcessor.src" 3360 2273 3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2274 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 3362 /******************************************** 2275 /*********************************************************************** 3363 * 2276 * * 3364 * Name: HepPolyhedron::add 2277 * Name: HepPolyhedron::add Date: 19.03.00 * 3365 * Author: E.Chernyaev 2278 * Author: E.Chernyaev Revised: * 3366 * 2279 * * 3367 * Function: Boolean "union" of two polyhedra 2280 * Function: Boolean "union" of two polyhedra * 3368 * 2281 * * 3369 ******************************************** 2282 ***********************************************************************/ 3370 { 2283 { 3371 G4int ierr; 2284 G4int ierr; 3372 BooleanProcessor processor; 2285 BooleanProcessor processor; 3373 return processor.execute(OP_UNION, *this, p 2286 return processor.execute(OP_UNION, *this, p,ierr); 3374 } 2287 } 3375 2288 3376 HepPolyhedron HepPolyhedron::intersect(const << 2289 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 3377 /******************************************** 2290 /*********************************************************************** 3378 * 2291 * * 3379 * Name: HepPolyhedron::intersect 2292 * Name: HepPolyhedron::intersect Date: 19.03.00 * 3380 * Author: E.Chernyaev 2293 * Author: E.Chernyaev Revised: * 3381 * 2294 * * 3382 * Function: Boolean "intersection" of two po 2295 * Function: Boolean "intersection" of two polyhedra * 3383 * 2296 * * 3384 ******************************************** 2297 ***********************************************************************/ 3385 { 2298 { 3386 G4int ierr; 2299 G4int ierr; 3387 BooleanProcessor processor; 2300 BooleanProcessor processor; 3388 return processor.execute(OP_INTERSECTION, * 2301 return processor.execute(OP_INTERSECTION, *this, p,ierr); 3389 } 2302 } 3390 2303 3391 HepPolyhedron HepPolyhedron::subtract(const H << 2304 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 3392 /******************************************** 2305 /*********************************************************************** 3393 * 2306 * * 3394 * Name: HepPolyhedron::add 2307 * Name: HepPolyhedron::add Date: 19.03.00 * 3395 * Author: E.Chernyaev 2308 * Author: E.Chernyaev Revised: * 3396 * 2309 * * 3397 * Function: Boolean "subtraction" of "p" fro 2310 * Function: Boolean "subtraction" of "p" from "this" * 3398 * 2311 * * 3399 ******************************************** 2312 ***********************************************************************/ 3400 { 2313 { 3401 G4int ierr; 2314 G4int ierr; 3402 BooleanProcessor processor; 2315 BooleanProcessor processor; 3403 return processor.execute(OP_SUBTRACTION, *t 2316 return processor.execute(OP_SUBTRACTION, *this, p,ierr); 3404 } 2317 } 3405 2318 3406 //NOTE : include the code of HepPolyhedronPro 2319 //NOTE : include the code of HepPolyhedronProcessor here 3407 // since there is no BooleanProcessor.h 2320 // since there is no BooleanProcessor.h 3408 2321 3409 #undef INTERSECTION 2322 #undef INTERSECTION 3410 2323 3411 #include "HepPolyhedronProcessor.src" 2324 #include "HepPolyhedronProcessor.src" >> 2325 3412 2326