Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/graphics_reps/src/HepPolyhedron.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /graphics_reps/src/HepPolyhedron.cc (Version 11.3.0) and /graphics_reps/src/HepPolyhedron.cc (Version 10.4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: HepPolyhedron.cc 89678 2015-04-27 09:03:18Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // 
                                                   >>  30 //
 26 // G4 Polyhedron library                           31 // G4 Polyhedron library
 27 //                                                 32 //
 28 // History:                                        33 // History:
 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce     34 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version
 30 //                                                 35 //
 31 // 30.09.96 E.Chernyaev                            36 // 30.09.96 E.Chernyaev
 32 // - added GetNextVertexIndex, GetVertex by Ya     37 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada
 33 // - added GetNextUnitNormal, GetNextEdgeIndic     38 // - added GetNextUnitNormal, GetNextEdgeIndices, GetNextEdge
 34 //                                                 39 //
 35 // 15.12.96 E.Chernyaev                            40 // 15.12.96 E.Chernyaev
 36 // - added GetNumberOfRotationSteps, RotateEdg     41 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences
 37 // - rewritten G4PolyhedronCons;                   42 // - rewritten G4PolyhedronCons;
 38 // - added G4PolyhedronPara, ...Trap, ...Pgon,     43 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus
 39 //                                                 44 //
 40 // 01.06.97 E.Chernyaev                            45 // 01.06.97 E.Chernyaev
 41 // - modified RotateAroundZ, added SetSideFace     46 // - modified RotateAroundZ, added SetSideFacets
 42 //                                                 47 //
 43 // 19.03.00 E.Chernyaev                            48 // 19.03.00 E.Chernyaev
 44 // - implemented boolean operations (add, subt     49 // - implemented boolean operations (add, subtract, intersect) on polyhedra;
 45 //                                                 50 //
 46 // 25.05.01 E.Chernyaev                            51 // 25.05.01 E.Chernyaev
 47 // - added GetSurfaceArea() and GetVolume()    <<  52 // - added GetSurfaceArea() and GetVolume();
 48 //                                                 53 //
 49 // 05.11.02 E.Chernyaev                            54 // 05.11.02 E.Chernyaev
 50 // - added createTwistedTrap() and createPolyh <<  55 // - added createTwistedTrap() and createPolyhedron();
 51 //                                                 56 //
 52 // 20.06.05 G.Cosmo                                57 // 20.06.05 G.Cosmo
 53 // - added HepPolyhedronEllipsoid              <<  58 // - added HepPolyhedronEllipsoid;
 54 //                                             << 
 55 // 18.07.07 T.Nikitina                         << 
 56 // - added HepPolyhedronParaboloid             << 
 57 //                                             << 
 58 // 22.02.20 E.Chernyaev                        << 
 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 
 60 //                                             << 
 61 // 12.05.21 E.Chernyaev                        << 
 62 // - added TriangulatePolygon(), RotateContour << 
 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 
 64 //                                             << 
 65 // 26.03.22 E.Chernyaev                        << 
 66 // - added SetVertex(), SetFacet()             << 
 67 // - added HepPolyhedronTetMesh                << 
 68 //                                             << 
 69 // 04.04.22 E.Chernyaev                        << 
 70 // - added JoinCoplanarFacets()                << 
 71 //                                                 59 //
 72 // 07.04.22 E.Chernyaev                        <<  60 // 18.07.07 T.Nikitin
 73 // - added HepPolyhedronBoxMesh                <<  61 // - added HepParaboloid;
 74                                                <<  62   
 75 #include "HepPolyhedron.h"                         63 #include "HepPolyhedron.h"
 76 #include "G4PhysicalConstants.hh"                  64 #include "G4PhysicalConstants.hh"
 77 #include "G4Vector3D.hh"                           65 #include "G4Vector3D.hh"
 78                                                    66 
 79 #include <cstdlib>  // Required on some compil     67 #include <cstdlib>  // Required on some compilers for std::abs(int) ...
 80 #include <cmath>                                   68 #include <cmath>
 81 #include <algorithm>                           <<  69 #include <cassert>
 82                                                    70 
 83 using CLHEP::perMillion;                           71 using CLHEP::perMillion;
 84 using CLHEP::deg;                                  72 using CLHEP::deg;
 85 using CLHEP::pi;                                   73 using CLHEP::pi;
 86 using CLHEP::twopi;                                74 using CLHEP::twopi;
 87 using CLHEP::nm;                                   75 using CLHEP::nm;
 88 const G4double spatialTolerance = 0.01*nm;         76 const G4double spatialTolerance = 0.01*nm;
 89                                                    77 
 90 /*********************************************     78 /***********************************************************************
 91  *                                                 79  *                                                                     *
 92  * Name: HepPolyhedron operator <<                 80  * Name: HepPolyhedron operator <<                   Date:    09.05.96 *
 93  * Author: E.Chernyaev (IHEP/Protvino)             81  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
 94  *                                                 82  *                                                                     *
 95  * Function: Print contents of G4 polyhedron       83  * Function: Print contents of G4 polyhedron                           *
 96  *                                                 84  *                                                                     *
 97  *********************************************     85  ***********************************************************************/
 98 std::ostream & operator<<(std::ostream & ostr,     86 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) {
 99   for (const auto& edge : facet.edge) {        <<  87   for (G4int k=0; k<4; k++) {
100     ostr << " " << edge.v << "/" << edge.f;    <<  88     ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f;
101   }                                                89   }
102   return ostr;                                     90   return ostr;
103 }                                                  91 }
104                                                    92 
105 std::ostream & operator<<(std::ostream & ostr,     93 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) {
106   ostr << std::endl;                               94   ostr << std::endl;
107   ostr << "Nvertices=" << ph.nvert << ", Nface     95   ostr << "Nvertices=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl;
108   G4int i;                                         96   G4int i;
109   for (i=1; i<=ph.nvert; i++) {                    97   for (i=1; i<=ph.nvert; i++) {
110      ostr << "xyz(" << i << ")="                   98      ostr << "xyz(" << i << ")="
111           << ph.pV[i].x() << ' ' << ph.pV[i].y     99           << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z()
112           << std::endl;                           100           << std::endl;
113   }                                               101   }
114   for (i=1; i<=ph.nface; i++) {                   102   for (i=1; i<=ph.nface; i++) {
115     ostr << "face(" << i << ")=" << ph.pF[i] <    103     ostr << "face(" << i << ")=" << ph.pF[i] << std::endl;
116   }                                               104   }
117   return ostr;                                    105   return ostr;
118 }                                                 106 }
119                                                   107 
120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 
121 /********************************************* << 
122  *                                             << 
123  * Name: HepPolyhedron constructor with        << 
124  *       allocation of memory                  << 
125  * Author: E.Tcherniaev (E.Chernyaev)          << 
126  *                                             << 
127  ********************************************* << 
128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
129 {                                              << 
130   AllocateMemory(Nvert, Nface);                << 
131 }                                              << 
132                                                << 
133 HepPolyhedron::HepPolyhedron(const HepPolyhedr    108 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from)
134 /*********************************************    109 /***********************************************************************
135  *                                                110  *                                                                     *
136  * Name: HepPolyhedron copy constructor           111  * Name: HepPolyhedron copy constructor             Date:    23.07.96  *
137  * Author: E.Chernyaev (IHEP/Protvino)            112  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
138  *                                                113  *                                                                     *
139  *********************************************    114  ***********************************************************************/
140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 115 : nvert(0), nface(0), pV(0), pF(0)
141 {                                                 116 {
142   AllocateMemory(from.nvert, from.nface);         117   AllocateMemory(from.nvert, from.nface);
143   for (G4int i=1; i<=nvert; i++) pV[i] = from.    118   for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
144   for (G4int k=1; k<=nface; k++) pF[k] = from.    119   for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
145 }                                                 120 }
146                                                   121 
147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 
148 /********************************************* << 
149  *                                             << 
150  * Name: HepPolyhedron move constructor        << 
151  * Author: E.Tcherniaev (E.Chernyaev)          << 
152  *                                             << 
153  ********************************************* << 
154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
155 {                                              << 
156   nvert = from.nvert;                          << 
157   nface = from.nface;                          << 
158   pV = from.pV;                                << 
159   pF = from.pF;                                << 
160                                                << 
161   // Release the data from the source object   << 
162   from.nvert = 0;                              << 
163   from.nface = 0;                              << 
164   from.pV = nullptr;                           << 
165   from.pF = nullptr;                           << 
166 }                                              << 
167                                                << 
168 HepPolyhedron & HepPolyhedron::operator=(const    122 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from)
169 /*********************************************    123 /***********************************************************************
170  *                                                124  *                                                                     *
171  * Name: HepPolyhedron operator =                 125  * Name: HepPolyhedron operator =                   Date:    23.07.96  *
172  * Author: E.Chernyaev (IHEP/Protvino)            126  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
173  *                                                127  *                                                                     *
174  * Function: Copy contents of one polyhedron t    128  * Function: Copy contents of one polyhedron to another                *
175  *                                                129  *                                                                     *
176  *********************************************    130  ***********************************************************************/
177 {                                                 131 {
178   if (this != &from) {                            132   if (this != &from) {
179     AllocateMemory(from.nvert, from.nface);       133     AllocateMemory(from.nvert, from.nface);
180     for (G4int i=1; i<=nvert; i++) pV[i] = fro    134     for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
181     for (G4int k=1; k<=nface; k++) pF[k] = fro    135     for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
182   }                                               136   }
183   return *this;                                   137   return *this;
184 }                                                 138 }
185                                                   139 
186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 
187 /********************************************* << 
188  *                                             << 
189  * Name: HepPolyhedron move operator =         << 
190  * Author: E.Tcherniaev (E.Chernyaev)          << 
191  *                                             << 
192  * Function: Move contents of one polyhedron t << 
193  *                                             << 
194  ********************************************* << 
195 {                                              << 
196   if (this != &from) {                         << 
197     delete [] pV;                              << 
198     delete [] pF;                              << 
199     nvert = from.nvert;                        << 
200     nface = from.nface;                        << 
201     pV = from.pV;                              << 
202     pF = from.pF;                              << 
203                                                << 
204     // Release the data from the source object << 
205     from.nvert = 0;                            << 
206     from.nface = 0;                            << 
207     from.pV = nullptr;                         << 
208     from.pF = nullptr;                         << 
209   }                                            << 
210   return *this;                                << 
211 }                                              << 
212                                                << 
213 G4int                                             140 G4int
214 HepPolyhedron::FindNeighbour(G4int iFace, G4in    141 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const
215 /*********************************************    142 /***********************************************************************
216  *                                                143  *                                                                     *
217  * Name: HepPolyhedron::FindNeighbour             144  * Name: HepPolyhedron::FindNeighbour                Date:    22.11.99 *
218  * Author: E.Chernyaev                            145  * Author: E.Chernyaev                               Revised:          *
219  *                                                146  *                                                                     *
220  * Function: Find neighbouring face               147  * Function: Find neighbouring face                                    *
221  *                                                148  *                                                                     *
222  *********************************************    149  ***********************************************************************/
223 {                                                 150 {
224   G4int i;                                        151   G4int i;
225   for (i=0; i<4; i++) {                           152   for (i=0; i<4; i++) {
226     if (iNode == std::abs(pF[iFace].edge[i].v)    153     if (iNode == std::abs(pF[iFace].edge[i].v)) break;
227   }                                               154   }
228   if (i == 4) {                                   155   if (i == 4) {
229     std::cerr                                     156     std::cerr
230       << "HepPolyhedron::FindNeighbour: face "    157       << "HepPolyhedron::FindNeighbour: face " << iFace
231       << " has no node " << iNode                 158       << " has no node " << iNode
232       << std::endl;                            << 159       << std::endl; 
233     return 0;                                     160     return 0;
234   }                                               161   }
235   if (iOrder < 0) {                               162   if (iOrder < 0) {
236     if ( --i < 0) i = 3;                          163     if ( --i < 0) i = 3;
237     if (pF[iFace].edge[i].v == 0) i = 2;          164     if (pF[iFace].edge[i].v == 0) i = 2;
238   }                                               165   }
239   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF    166   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f;
240 }                                                 167 }
241                                                   168 
242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int    169 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const
243 /*********************************************    170 /***********************************************************************
244  *                                                171  *                                                                     *
245  * Name: HepPolyhedron::FindNodeNormal            172  * Name: HepPolyhedron::FindNodeNormal               Date:    22.11.99 *
246  * Author: E.Chernyaev                            173  * Author: E.Chernyaev                               Revised:          *
247  *                                                174  *                                                                     *
248  * Function: Find normal at given node            175  * Function: Find normal at given node                                 *
249  *                                                176  *                                                                     *
250  *********************************************    177  ***********************************************************************/
251 {                                                 178 {
252   G4Normal3D normal = GetUnitNormal(iFace);    << 179   G4Normal3D   normal = GetUnitNormal(iFace);
253   G4int      k = iFace, iOrder = 1;            << 180   G4int          k = iFace, iOrder = 1, n = 1;
254                                                   181 
255   for(;;) {                                       182   for(;;) {
256     k = FindNeighbour(k, iNode, iOrder);          183     k = FindNeighbour(k, iNode, iOrder);
257     if (k == iFace) break;                     << 184     if (k == iFace) break; 
258     if (k > 0) {                                  185     if (k > 0) {
                                                   >> 186       n++;
259       normal += GetUnitNormal(k);                 187       normal += GetUnitNormal(k);
260     }else{                                        188     }else{
261       if (iOrder < 0) break;                      189       if (iOrder < 0) break;
262       k = iFace;                                  190       k = iFace;
263       iOrder = -iOrder;                           191       iOrder = -iOrder;
264     }                                             192     }
265   }                                               193   }
266   return normal.unit();                           194   return normal.unit();
267 }                                                 195 }
268                                                   196 
269 G4int HepPolyhedron::GetNumberOfRotationSteps(    197 G4int HepPolyhedron::GetNumberOfRotationSteps()
270 /*********************************************    198 /***********************************************************************
271  *                                                199  *                                                                     *
272  * Name: HepPolyhedron::GetNumberOfRotationSte    200  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
273  * Author: J.Allison (Manchester University)      201  * Author: J.Allison (Manchester University)         Revised:          *
274  *                                                202  *                                                                     *
275  * Function: Get number of steps for whole cir    203  * Function: Get number of steps for whole circle                      *
276  *                                                204  *                                                                     *
277  *********************************************    205  ***********************************************************************/
278 {                                                 206 {
279   return fNumberOfRotationSteps;                  207   return fNumberOfRotationSteps;
280 }                                                 208 }
281                                                   209 
282 void HepPolyhedron::SetVertex(G4int index, con << 
283 /********************************************* << 
284  *                                             << 
285  * Name: HepPolyhedron::SetVertex              << 
286  * Author: E.Tcherniaev (E.Chernyaev)          << 
287  *                                             << 
288  * Function: Set vertex                        << 
289  *                                             << 
290  ********************************************* << 
291 {                                              << 
292   if (index < 1 || index > nvert)              << 
293   {                                            << 
294     std::cerr                                  << 
295       << "HepPolyhedron::SetVertex: vertex ind << 
296       << " is out of range\n"                  << 
297       << "   N. of vertices = " << nvert << "\ << 
298       << "   N. of facets = " << nface << std: << 
299     return;                                    << 
300   }                                            << 
301   pV[index] = v;                               << 
302 }                                              << 
303                                                << 
304 void                                           << 
305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 
306 /********************************************* << 
307  *                                             << 
308  * Name: HepPolyhedron::SetFacet               << 
309  * Author: E.Tcherniaev (E.Chernyaev)          << 
310  *                                             << 
311  * Function: Set facet                         << 
312  *                                             << 
313  ********************************************* << 
314 {                                              << 
315   if (index < 1 || index > nface)              << 
316   {                                            << 
317     std::cerr                                  << 
318       << "HepPolyhedron::SetFacet: facet index << 
319       << " is out of range\n"                  << 
320       << "   N. of vertices = " << nvert << "\ << 
321       << "   N. of facets = " << nface << std: << 
322     return;                                    << 
323   }                                            << 
324   if (iv1 < 1 || iv1 > nvert ||                << 
325       iv2 < 1 || iv2 > nvert ||                << 
326       iv3 < 1 || iv3 > nvert ||                << 
327       iv4 < 0 || iv4 > nvert)                  << 
328   {                                            << 
329     std::cerr                                  << 
330       << "HepPolyhedron::SetFacet: incorrectly << 
331       << " (" << iv1 << ", " << iv2 << ", " << << 
332       << "   N. of vertices = " << nvert << "\ << 
333       << "   N. of facets = " << nface << std: << 
334     return;                                    << 
335   }                                            << 
336   pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0,  << 
337 }                                              << 
338                                                << 
339 void HepPolyhedron::SetNumberOfRotationSteps(G    210 void HepPolyhedron::SetNumberOfRotationSteps(G4int n)
340 /*********************************************    211 /***********************************************************************
341  *                                                212  *                                                                     *
342  * Name: HepPolyhedron::SetNumberOfRotationSte    213  * Name: HepPolyhedron::SetNumberOfRotationSteps     Date:    24.06.97 *
343  * Author: J.Allison (Manchester University)      214  * Author: J.Allison (Manchester University)         Revised:          *
344  *                                                215  *                                                                     *
345  * Function: Set number of steps for whole cir    216  * Function: Set number of steps for whole circle                      *
346  *                                                217  *                                                                     *
347  *********************************************    218  ***********************************************************************/
348 {                                                 219 {
349   const G4int nMin = 3;                           220   const G4int nMin = 3;
350   if (n < nMin) {                                 221   if (n < nMin) {
351     std::cerr                                  << 222     std::cerr 
352       << "HepPolyhedron::SetNumberOfRotationSt    223       << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n"
353       << "number of steps per circle < " << nM    224       << "number of steps per circle < " << nMin << "; forced to " << nMin
354       << std::endl;                               225       << std::endl;
355     fNumberOfRotationSteps = nMin;                226     fNumberOfRotationSteps = nMin;
356   }else{                                          227   }else{
357     fNumberOfRotationSteps = n;                   228     fNumberOfRotationSteps = n;
358   }                                            << 229   }    
359 }                                                 230 }
360                                                   231 
361 void HepPolyhedron::ResetNumberOfRotationSteps    232 void HepPolyhedron::ResetNumberOfRotationSteps()
362 /*********************************************    233 /***********************************************************************
363  *                                                234  *                                                                     *
364  * Name: HepPolyhedron::GetNumberOfRotationSte    235  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
365  * Author: J.Allison (Manchester University)      236  * Author: J.Allison (Manchester University)         Revised:          *
366  *                                                237  *                                                                     *
367  * Function: Reset number of steps for whole c    238  * Function: Reset number of steps for whole circle to default value   *
368  *                                                239  *                                                                     *
369  *********************************************    240  ***********************************************************************/
370 {                                                 241 {
371   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S    242   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
372 }                                                 243 }
373                                                   244 
374 void HepPolyhedron::AllocateMemory(G4int Nvert    245 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface)
375 /*********************************************    246 /***********************************************************************
376  *                                                247  *                                                                     *
377  * Name: HepPolyhedron::AllocateMemory            248  * Name: HepPolyhedron::AllocateMemory               Date:    19.06.96 *
378  * Author: E.Chernyaev (IHEP/Protvino)            249  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 05.11.02 *
379  *                                                250  *                                                                     *
380  * Function: Allocate memory for GEANT4 polyhe    251  * Function: Allocate memory for GEANT4 polyhedron                     *
381  *                                                252  *                                                                     *
382  * Input: Nvert - number of nodes                 253  * Input: Nvert - number of nodes                                      *
383  *        Nface - number of faces                 254  *        Nface - number of faces                                      *
384  *                                                255  *                                                                     *
385  *********************************************    256  ***********************************************************************/
386 {                                                 257 {
387   if (nvert == Nvert && nface == Nface) return    258   if (nvert == Nvert && nface == Nface) return;
388   delete [] pV;                                << 259   if (pV != 0) delete [] pV;
389   delete [] pF;                                << 260   if (pF != 0) delete [] pF;
390   if (Nvert > 0 && Nface > 0) {                   261   if (Nvert > 0 && Nface > 0) {
391     nvert = Nvert;                                262     nvert = Nvert;
392     nface = Nface;                                263     nface = Nface;
393     pV    = new G4Point3D[nvert+1];               264     pV    = new G4Point3D[nvert+1];
394     pF    = new G4Facet[nface+1];                 265     pF    = new G4Facet[nface+1];
395   }else{                                          266   }else{
396     nvert = 0; nface = 0; pV = nullptr; pF = n << 267     nvert = 0; nface = 0; pV = 0; pF = 0;
397   }                                               268   }
398 }                                                 269 }
399                                                   270 
400 void HepPolyhedron::CreatePrism()                 271 void HepPolyhedron::CreatePrism()
401 /*********************************************    272 /***********************************************************************
402  *                                                273  *                                                                     *
403  * Name: HepPolyhedron::CreatePrism               274  * Name: HepPolyhedron::CreatePrism                  Date:    15.07.96 *
404  * Author: E.Chernyaev (IHEP/Protvino)            275  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
405  *                                                276  *                                                                     *
406  * Function: Set facets for a prism               277  * Function: Set facets for a prism                                    *
407  *                                                278  *                                                                     *
408  *********************************************    279  ***********************************************************************/
409 {                                                 280 {
410   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON    281   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP};
411                                                   282 
412   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,      283   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,  2,FRONT);
413   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM,     284   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM, 1,FRONT);
414   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM,     285   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM, 4,LEFT);
415   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM,     286   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM, 3,BACK);
416   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM,     287   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM, 2,RIGHT);
417   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,       288   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,   8,LEFT);
418 }                                                 289 }
419                                                   290 
420 void HepPolyhedron::RotateEdge(G4int k1, G4int    291 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2,
421                               G4int v1, G4int     292                               G4int v1, G4int v2, G4int vEdge,
422                               G4bool ifWholeCi    293                               G4bool ifWholeCircle, G4int nds, G4int &kface)
423 /*********************************************    294 /***********************************************************************
424  *                                                295  *                                                                     *
425  * Name: HepPolyhedron::RotateEdge                296  * Name: HepPolyhedron::RotateEdge                   Date:    05.12.96 *
426  * Author: E.Chernyaev (IHEP/Protvino)            297  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
427  *                                                298  *                                                                     *
428  * Function: Create set of facets by rotation     299  * Function: Create set of facets by rotation of an edge around Z-axis *
429  *                                                300  *                                                                     *
430  * Input: k1, k2 - end vertices of the edge       301  * Input: k1, k2 - end vertices of the edge                            *
431  *        r1, r2 - radiuses of the end vertice    302  *        r1, r2 - radiuses of the end vertices                        *
432  *        v1, v2 - visibility of edges produce    303  *        v1, v2 - visibility of edges produced by rotation of the end *
433  *                 vertices                       304  *                 vertices                                            *
434  *        vEdge  - visibility of the edge         305  *        vEdge  - visibility of the edge                              *
435  *        ifWholeCircle - is true in case of w    306  *        ifWholeCircle - is true in case of whole circle rotation     *
436  *        nds    - number of discrete steps       307  *        nds    - number of discrete steps                            *
437  *        r[]    - r-coordinates                  308  *        r[]    - r-coordinates                                       *
438  *        kface  - current free cell in the pF    309  *        kface  - current free cell in the pF array                   *
439  *                                                310  *                                                                     *
440  *********************************************    311  ***********************************************************************/
441 {                                                 312 {
442   if (r1 == 0. && r2 == 0.) return;            << 313   if (r1 == 0. && r2 == 0) return;
443                                                   314 
444   G4int i;                                        315   G4int i;
445   G4int i1  = k1;                                 316   G4int i1  = k1;
446   G4int i2  = k2;                                 317   G4int i2  = k2;
447   G4int ii1 = ifWholeCircle ? i1 : i1+nds;        318   G4int ii1 = ifWholeCircle ? i1 : i1+nds;
448   G4int ii2 = ifWholeCircle ? i2 : i2+nds;        319   G4int ii2 = ifWholeCircle ? i2 : i2+nds;
449   G4int vv  = ifWholeCircle ? vEdge : 1;          320   G4int vv  = ifWholeCircle ? vEdge : 1;
450                                                   321 
451   if (nds == 1) {                                 322   if (nds == 1) {
452     if (r1 == 0.) {                               323     if (r1 == 0.) {
453       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    324       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0);
454     }else if (r2 == 0.) {                         325     }else if (r2 == 0.) {
455       pF[kface++]   = G4Facet(i1,0,    i2,0,      326       pF[kface++]   = G4Facet(i1,0,    i2,0,    v1*(i1+1),0);
456     }else{                                        327     }else{
457       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    328       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0, v1*(i1+1),0);
458     }                                             329     }
459   }else{                                          330   }else{
460     if (r1 == 0.) {                               331     if (r1 == 0.) {
461       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    332       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0);
462       for (i2++,i=1; i<nds-1; i2++,i++) {         333       for (i2++,i=1; i<nds-1; i2++,i++) {
463         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    334         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0);
464       }                                           335       }
465       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    336       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0);
466     }else if (r2 == 0.) {                         337     }else if (r2 == 0.) {
467       pF[kface++]   = G4Facet(vv*i1,0,    vEdg    338       pF[kface++]   = G4Facet(vv*i1,0,    vEdge*i2,0, v1*(i1+1),0);
468       for (i1++,i=1; i<nds-1; i1++,i++) {         339       for (i1++,i=1; i<nds-1; i1++,i++) {
469         pF[kface++] = G4Facet(vEdge*i1,0, vEdg    340         pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0);
470       }                                           341       }
471       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i    342       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i2,0,    v1*ii1,0);
472     }else{                                        343     }else{
473       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    344       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
474       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i    345       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) {
475         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    346         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
476       }                                        << 347       }  
477       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    348       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0,      v1*ii1,0);
478     }                                             349     }
479   }                                               350   }
480 }                                                 351 }
481                                                   352 
482 void HepPolyhedron::SetSideFacets(G4int ii[4],    353 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4],
483                                  G4int *kk, G4    354                                  G4int *kk, G4double *r,
484                                  G4double dphi    355                                  G4double dphi, G4int nds, G4int &kface)
485 /*********************************************    356 /***********************************************************************
486  *                                                357  *                                                                     *
487  * Name: HepPolyhedron::SetSideFacets             358  * Name: HepPolyhedron::SetSideFacets                Date:    20.05.97 *
488  * Author: E.Chernyaev (IHEP/Protvino)            359  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
489  *                                                360  *                                                                     *
490  * Function: Set side facets for the case of i    361  * Function: Set side facets for the case of incomplete rotation       *
491  *                                                362  *                                                                     *
492  * Input: ii[4] - indices of original vertices    363  * Input: ii[4] - indices of original vertices                         *
493  *        vv[4] - visibility of edges             364  *        vv[4] - visibility of edges                                  *
494  *        kk[]  - indices of nodes                365  *        kk[]  - indices of nodes                                     *
495  *        r[]   - radiuses                        366  *        r[]   - radiuses                                             *
496  *        dphi  - delta phi                       367  *        dphi  - delta phi                                            *
497  *        nds    - number of discrete steps       368  *        nds    - number of discrete steps                            *
498  *        kface  - current free cell in the pF    369  *        kface  - current free cell in the pF array                   *
499  *                                                370  *                                                                     *
500  *********************************************    371  ***********************************************************************/
501 {                                                 372 {
502   G4int k1, k2, k3, k4;                           373   G4int k1, k2, k3, k4;
503                                                << 374   
504   if (std::abs(dphi-pi) < perMillion) { // hal << 375   if (std::abs((G4double)(dphi-pi)) < perMillion) {          // half a circle
505     for (G4int i=0; i<4; i++) {                   376     for (G4int i=0; i<4; i++) {
506       k1 = ii[i];                                 377       k1 = ii[i];
507       k2 = ii[(i+1)%4];                        << 378       k2 = (i == 3) ? ii[0] : ii[i+1];
508       if (r[k1] == 0. && r[k2] == 0.) vv[i] =  << 379       if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1;      
509     }                                             380     }
510   }                                               381   }
511                                                   382 
512   if (ii[1] == ii[2]) {                           383   if (ii[1] == ii[2]) {
513     k1 = kk[ii[0]];                               384     k1 = kk[ii[0]];
514     k2 = kk[ii[2]];                               385     k2 = kk[ii[2]];
515     k3 = kk[ii[3]];                               386     k3 = kk[ii[3]];
516     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2    387     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
517     if (r[ii[0]] != 0.) k1 += nds;                388     if (r[ii[0]] != 0.) k1 += nds;
518     if (r[ii[2]] != 0.) k2 += nds;                389     if (r[ii[2]] != 0.) k2 += nds;
519     if (r[ii[3]] != 0.) k3 += nds;                390     if (r[ii[3]] != 0.) k3 += nds;
520     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2    391     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
521   }else if (kk[ii[0]] == kk[ii[1]]) {             392   }else if (kk[ii[0]] == kk[ii[1]]) {
522     k1 = kk[ii[0]];                               393     k1 = kk[ii[0]];
523     k2 = kk[ii[2]];                               394     k2 = kk[ii[2]];
524     k3 = kk[ii[3]];                               395     k3 = kk[ii[3]];
525     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2    396     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
526     if (r[ii[0]] != 0.) k1 += nds;                397     if (r[ii[0]] != 0.) k1 += nds;
527     if (r[ii[2]] != 0.) k2 += nds;                398     if (r[ii[2]] != 0.) k2 += nds;
528     if (r[ii[3]] != 0.) k3 += nds;                399     if (r[ii[3]] != 0.) k3 += nds;
529     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2    400     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0);
530   }else if (kk[ii[2]] == kk[ii[3]]) {             401   }else if (kk[ii[2]] == kk[ii[3]]) {
531     k1 = kk[ii[0]];                               402     k1 = kk[ii[0]];
532     k2 = kk[ii[1]];                               403     k2 = kk[ii[1]];
533     k3 = kk[ii[2]];                               404     k3 = kk[ii[2]];
534     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    405     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0);
535     if (r[ii[0]] != 0.) k1 += nds;                406     if (r[ii[0]] != 0.) k1 += nds;
536     if (r[ii[1]] != 0.) k2 += nds;                407     if (r[ii[1]] != 0.) k2 += nds;
537     if (r[ii[2]] != 0.) k3 += nds;                408     if (r[ii[2]] != 0.) k3 += nds;
538     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2    409     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
539   }else{                                          410   }else{
540     k1 = kk[ii[0]];                               411     k1 = kk[ii[0]];
541     k2 = kk[ii[1]];                               412     k2 = kk[ii[1]];
542     k3 = kk[ii[2]];                               413     k3 = kk[ii[2]];
543     k4 = kk[ii[3]];                               414     k4 = kk[ii[3]];
544     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    415     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0);
545     if (r[ii[0]] != 0.) k1 += nds;                416     if (r[ii[0]] != 0.) k1 += nds;
546     if (r[ii[1]] != 0.) k2 += nds;                417     if (r[ii[1]] != 0.) k2 += nds;
547     if (r[ii[2]] != 0.) k3 += nds;                418     if (r[ii[2]] != 0.) k3 += nds;
548     if (r[ii[3]] != 0.) k4 += nds;                419     if (r[ii[3]] != 0.) k4 += nds;
549     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3    420     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
550   }                                               421   }
551 }                                                 422 }
552                                                   423 
553 void HepPolyhedron::RotateAroundZ(G4int nstep,    424 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi,
554                                  G4int np1, G4    425                                  G4int np1, G4int np2,
555                                  const G4doubl    426                                  const G4double *z, G4double *r,
556                                  G4int nodeVis    427                                  G4int nodeVis, G4int edgeVis)
557 /*********************************************    428 /***********************************************************************
558  *                                                429  *                                                                     *
559  * Name: HepPolyhedron::RotateAroundZ             430  * Name: HepPolyhedron::RotateAroundZ                Date:    27.11.96 *
560  * Author: E.Chernyaev (IHEP/Protvino)            431  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
561  *                                                432  *                                                                     *
562  * Function: Create HepPolyhedron for a solid     433  * Function: Create HepPolyhedron for a solid produced by rotation of  *
563  *           two polylines around Z-axis          434  *           two polylines around Z-axis                               *
564  *                                                435  *                                                                     *
565  * Input: nstep - number of discrete steps, if    436  * Input: nstep - number of discrete steps, if 0 then default          *
566  *        phi   - starting phi angle              437  *        phi   - starting phi angle                                   *
567  *        dphi  - delta phi                       438  *        dphi  - delta phi                                            *
568  *        np1   - number of points in external    439  *        np1   - number of points in external polyline                *
569  *                (must be negative in case of    440  *                (must be negative in case of closed polyline)        *
570  *        np2   - number of points in internal    441  *        np2   - number of points in internal polyline (may be 1)     *
571  *        z[]   - z-coordinates (+z >>> -z for    442  *        z[]   - z-coordinates (+z >>> -z for both polylines)         *
572  *        r[]   - r-coordinates                   443  *        r[]   - r-coordinates                                        *
573  *        nodeVis - how to Draw edges joing co    444  *        nodeVis - how to Draw edges joing consecutive positions of   *
574  *                  node during rotation          445  *                  node during rotation                               *
575  *        edgeVis - how to Draw edges             446  *        edgeVis - how to Draw edges                                  *
576  *                                                447  *                                                                     *
577  *********************************************    448  ***********************************************************************/
578 {                                                 449 {
579   static const G4double wholeCircle   = twopi;    450   static const G4double wholeCircle   = twopi;
580                                                << 451     
581   //   S E T   R O T A T I O N   P A R A M E T    452   //   S E T   R O T A T I O N   P A R A M E T E R S
582                                                   453 
583   G4bool ifWholeCircle = std::abs(dphi-wholeCi << 454   G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false;
584   G4double delPhi = ifWholeCircle ? wholeCircl << 455   G4double   delPhi  = ifWholeCircle ? wholeCircle : dphi;  
585   G4int nSphi = nstep;                         << 456   G4int        nSphi    = (nstep > 0) ?
586   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 457     nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5);
587   if (nSphi == 0) nSphi = 1;                      458   if (nSphi == 0) nSphi = 1;
588   G4int nVphi = ifWholeCircle ? nSphi : nSphi  << 459   G4int        nVphi    = ifWholeCircle ? nSphi : nSphi+1;
589   G4bool ifClosed = np1 <= 0; // true if exter << 460   G4bool ifClosed = np1 > 0 ? false : true;
590                                                << 461   
591   //   C O U N T   V E R T I C E S             << 462   //   C O U N T   V E R T E C E S
592                                                   463 
593   G4int absNp1 = std::abs(np1);                   464   G4int absNp1 = std::abs(np1);
594   G4int absNp2 = std::abs(np2);                   465   G4int absNp2 = std::abs(np2);
595   G4int i1beg = 0;                                466   G4int i1beg = 0;
596   G4int i1end = absNp1-1;                         467   G4int i1end = absNp1-1;
597   G4int i2beg = absNp1;                           468   G4int i2beg = absNp1;
598   G4int i2end = absNp1+absNp2-1;               << 469   G4int i2end = absNp1+absNp2-1; 
599   G4int i, j, k;                                  470   G4int i, j, k;
600                                                   471 
601   for(i=i1beg; i<=i2end; i++) {                   472   for(i=i1beg; i<=i2end; i++) {
602     if (std::abs(r[i]) < spatialTolerance) r[i    473     if (std::abs(r[i]) < spatialTolerance) r[i] = 0.;
603   }                                               474   }
604                                                   475 
605   // external polyline - check position of nod << 476   j = 0;                                                // external nodes
606   //                                           << 
607   G4int Nverts = 0;                            << 
608   for (i=i1beg; i<=i1end; i++) {                  477   for (i=i1beg; i<=i1end; i++) {
609     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 478     j += (r[i] == 0.) ? 1 : nVphi;
610   }                                               479   }
611                                                   480 
612   // internal polyline                         << 481   G4bool ifSide1 = false;                           // internal nodes
613   //                                           << 482   G4bool ifSide2 = false;
614   G4bool ifSide1 = false; // whether to create << 
615   G4bool ifSide2 = false; // whether to create << 
616                                                   483 
617   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 484   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) {
618     Nverts += (r[i2beg] == 0.) ? 1 : nVphi;    << 485     j += (r[i2beg] == 0.) ? 1 : nVphi;
619     ifSide1 = true;                               486     ifSide1 = true;
620   }                                               487   }
621                                                   488 
622   for(i=i2beg+1; i<i2end; i++) { // intermedia << 489   for(i=i2beg+1; i<i2end; i++) {
623     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 490     j += (r[i] == 0.) ? 1 : nVphi;
624   }                                               491   }
625                                                << 492   
626   if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 493   if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) {
627     if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 494     if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi;
628     ifSide2 = true;                               495     ifSide2 = true;
629   }                                               496   }
630                                                   497 
631   //   C O U N T   F A C E S                      498   //   C O U N T   F A C E S
632                                                   499 
633   // external lateral faces                    << 500   k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi;       // external faces
634   //                                           << 
635   G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 
636                                                   501 
637   // internal lateral faces                    << 502   if (absNp2 > 1) {                                     // internal faces
638   //                                           << 
639   if (absNp2 > 1) {                            << 
640     for(i=i2beg; i<i2end; i++) {                  503     for(i=i2beg; i<i2end; i++) {
641       if (r[i] > 0. || r[i+1] > 0.) Nfaces +=  << 504       if (r[i] > 0. || r[i+1] > 0.)       k += nSphi;
642     }                                             505     }
643                                                   506 
644     if (ifClosed) {                               507     if (ifClosed) {
645       if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 508       if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi;
646     }                                             509     }
647   }                                               510   }
648                                                   511 
649   // bottom and top faces                      << 512   if (!ifClosed) {                                      // side faces
650   //                                           << 513     if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi;
651   if (!ifClosed) {                             << 514     if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi;
652     if (ifSide1 && (r[i1beg] > 0. || r[i2beg]  << 
653     if (ifSide2 && (r[i1end] > 0. || r[i2end]  << 
654   }                                               515   }
655                                                   516 
656   // phi_wedge faces                           << 517   if (!ifWholeCircle) {                                 // phi_side faces
657   //                                           << 518     k += ifClosed ? 2*absNp1 : 2*(absNp1-1);
658   if (!ifWholeCircle) {                        << 
659     Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 
660   }                                               519   }
661                                                   520 
662   //   A L L O C A T E   M E M O R Y              521   //   A L L O C A T E   M E M O R Y
663                                                   522 
664   AllocateMemory(Nverts, Nfaces);              << 523   AllocateMemory(j, k);
665   if (pV == nullptr || pF == nullptr) return;  << 
666                                                   524 
667   //   G E N E R A T E   V E R T I C E S       << 525   //   G E N E R A T E   V E R T E C E S
668                                                   526 
669   G4int *kk; // array of start indices along p << 527   G4int *kk;
670   kk = new G4int[absNp1+absNp2];                  528   kk = new G4int[absNp1+absNp2];
671                                                   529 
672   // external polyline                         << 530   k = 1;
673   //                                           << 
674   k = 1; // free position in array of vertices << 
675   for(i=i1beg; i<=i1end; i++) {                   531   for(i=i1beg; i<=i1end; i++) {
676     kk[i] = k;                                    532     kk[i] = k;
677     if (r[i] == 0.)                               533     if (r[i] == 0.)
678     { pV[k++] = G4Point3D(0, 0, z[i]); } else     534     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
679   }                                               535   }
680                                                   536 
681   // first point of internal polyline          << 
682   //                                           << 
683   i = i2beg;                                      537   i = i2beg;
684   if (ifSide1) {                                  538   if (ifSide1) {
685     kk[i] = k;                                    539     kk[i] = k;
686     if (r[i] == 0.)                               540     if (r[i] == 0.)
687     { pV[k++] = G4Point3D(0, 0, z[i]); } else     541     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
688   }else{                                          542   }else{
689     kk[i] = kk[i1beg];                            543     kk[i] = kk[i1beg];
690   }                                               544   }
691                                                   545 
692   // intermediate points of internal polyline  << 
693   //                                           << 
694   for(i=i2beg+1; i<i2end; i++) {                  546   for(i=i2beg+1; i<i2end; i++) {
695     kk[i] = k;                                    547     kk[i] = k;
696     if (r[i] == 0.)                               548     if (r[i] == 0.)
697     { pV[k++] = G4Point3D(0, 0, z[i]); } else     549     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
698   }                                               550   }
699                                                   551 
700   // last point of internal polyline           << 
701   //                                           << 
702   if (absNp2 > 1) {                               552   if (absNp2 > 1) {
703     i = i2end;                                    553     i = i2end;
704     if (ifSide2) {                                554     if (ifSide2) {
705       kk[i] = k;                                  555       kk[i] = k;
706       if (r[i] == 0.) pV[k] = G4Point3D(0, 0,     556       if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]);
707     }else{                                        557     }else{
708       kk[i] = kk[i1end];                          558       kk[i] = kk[i1end];
709     }                                             559     }
710   }                                               560   }
711                                                   561 
712   // set vertices                              << 
713   //                                           << 
714   G4double cosPhi, sinPhi;                        562   G4double cosPhi, sinPhi;
715                                                   563 
716   for(j=0; j<nVphi; j++) {                        564   for(j=0; j<nVphi; j++) {
717     cosPhi = std::cos(phi+j*delPhi/nSphi);        565     cosPhi = std::cos(phi+j*delPhi/nSphi);
718     sinPhi = std::sin(phi+j*delPhi/nSphi);        566     sinPhi = std::sin(phi+j*delPhi/nSphi);
719     for(i=i1beg; i<=i2end; i++) {                 567     for(i=i1beg; i<=i2end; i++) {
720       if (r[i] != 0.)                             568       if (r[i] != 0.)
721         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[    569         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]);
722     }                                             570     }
723   }                                               571   }
724                                                   572 
725   //   G E N E R A T E   F A C E S             << 573   //   G E N E R A T E   E X T E R N A L   F A C E S
726                                                   574 
727   //  external faces                           << 
728   //                                           << 
729   G4int v1,v2;                                    575   G4int v1,v2;
730                                                   576 
731   k = 1; // free position in array of faces pF << 577   k = 1;
732   v2 = ifClosed ? nodeVis : 1;                    578   v2 = ifClosed ? nodeVis : 1;
733   for(i=i1beg; i<i1end; i++) {                    579   for(i=i1beg; i<i1end; i++) {
734     v1 = v2;                                      580     v1 = v2;
735     if (!ifClosed && i == i1end-1) {              581     if (!ifClosed && i == i1end-1) {
736       v2 = 1;                                     582       v2 = 1;
737     }else{                                        583     }else{
738       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]    584       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis;
739     }                                             585     }
740     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v    586     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2,
741                edgeVis, ifWholeCircle, nSphi,     587                edgeVis, ifWholeCircle, nSphi, k);
742   }                                               588   }
743   if (ifClosed) {                                 589   if (ifClosed) {
744     RotateEdge(kk[i1end], kk[i1beg], r[i1end],    590     RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis,
745                edgeVis, ifWholeCircle, nSphi,     591                edgeVis, ifWholeCircle, nSphi, k);
746   }                                               592   }
747                                                   593 
748   // internal faces                            << 594   //   G E N E R A T E   I N T E R N A L   F A C E S
749   //                                           << 595 
750   if (absNp2 > 1) {                               596   if (absNp2 > 1) {
751     v2 = ifClosed ? nodeVis : 1;                  597     v2 = ifClosed ? nodeVis : 1;
752     for(i=i2beg; i<i2end; i++) {                  598     for(i=i2beg; i<i2end; i++) {
753       v1 = v2;                                    599       v1 = v2;
754       if (!ifClosed && i==i2end-1) {              600       if (!ifClosed && i==i2end-1) {
755         v2 = 1;                                   601         v2 = 1;
756       }else{                                      602       }else{
757         v2 = (r[i] == r[i+1] && r[i+1] == r[i+    603         v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 :  nodeVis;
758       }                                           604       }
759       RotateEdge(kk[i+1], kk[i], r[i+1], r[i],    605       RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1,
760                  edgeVis, ifWholeCircle, nSphi    606                  edgeVis, ifWholeCircle, nSphi, k);
761     }                                             607     }
762     if (ifClosed) {                               608     if (ifClosed) {
763       RotateEdge(kk[i2beg], kk[i2end], r[i2beg    609       RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis,
764                  edgeVis, ifWholeCircle, nSphi    610                  edgeVis, ifWholeCircle, nSphi, k);
765     }                                             611     }
766   }                                               612   }
767                                                   613 
768   // bottom and top faces                      << 614   //   G E N E R A T E   S I D E   F A C E S
769   //                                           << 615 
770   if (!ifClosed) {                                616   if (!ifClosed) {
771     if (ifSide1) {                                617     if (ifSide1) {
772       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg    618       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1,
773                  -1, ifWholeCircle, nSphi, k);    619                  -1, ifWholeCircle, nSphi, k);
774     }                                             620     }
775     if (ifSide2) {                                621     if (ifSide2) {
776       RotateEdge(kk[i1end], kk[i2end], r[i1end    622       RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1,
777                  -1, ifWholeCircle, nSphi, k);    623                  -1, ifWholeCircle, nSphi, k);
778     }                                             624     }
779   }                                               625   }
780                                                   626 
781   // phi_wedge faces in case of incomplete cir << 627   //   G E N E R A T E   S I D E   F A C E S  for the case of incomplete circle
782   //                                           << 628 
783   if (!ifWholeCircle) {                           629   if (!ifWholeCircle) {
784                                                   630 
785     G4int  ii[4], vv[4];                          631     G4int  ii[4], vv[4];
786                                                   632 
787     if (ifClosed) {                               633     if (ifClosed) {
788       for (i=i1beg; i<=i1end; i++) {              634       for (i=i1beg; i<=i1end; i++) {
789         ii[0] = i;                                635         ii[0] = i;
790         ii[3] = (i == i1end) ? i1beg : i+1;       636         ii[3] = (i == i1end) ? i1beg : i+1;
791         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    637         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
792         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    638         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
793         vv[0] = -1;                               639         vv[0] = -1;
794         vv[1] = 1;                                640         vv[1] = 1;
795         vv[2] = -1;                               641         vv[2] = -1;
796         vv[3] = 1;                                642         vv[3] = 1;
797         SetSideFacets(ii, vv, kk, r, delPhi, n << 643         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
798       }                                           644       }
799     }else{                                        645     }else{
800       for (i=i1beg; i<i1end; i++) {               646       for (i=i1beg; i<i1end; i++) {
801         ii[0] = i;                                647         ii[0] = i;
802         ii[3] = i+1;                              648         ii[3] = i+1;
803         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    649         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
804         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    650         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
805         vv[0] = (i == i1beg)   ? 1 : -1;          651         vv[0] = (i == i1beg)   ? 1 : -1;
806         vv[1] = 1;                                652         vv[1] = 1;
807         vv[2] = (i == i1end-1) ? 1 : -1;          653         vv[2] = (i == i1end-1) ? 1 : -1;
808         vv[3] = 1;                                654         vv[3] = 1;
809         SetSideFacets(ii, vv, kk, r, delPhi, n << 655         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
810       }                                           656       }
811     }                                          << 657     }      
812   }                                               658   }
813                                                   659 
814   delete [] kk; // free memory                 << 660   delete [] kk;
815                                                   661 
816   // final check                               << 
817   //                                           << 
818   if (k-1 != nface) {                             662   if (k-1 != nface) {
819     std::cerr                                     663     std::cerr
820       << "HepPolyhedron::RotateAroundZ: number << 664       << "Polyhedron::RotateAroundZ: number of generated faces ("
821       << k-1 << ") is not equal to the number     665       << k-1 << ") is not equal to the number of allocated faces ("
822       << nface << ")"                             666       << nface << ")"
823       << std::endl;                               667       << std::endl;
824   }                                               668   }
825 }                                                 669 }
826                                                   670 
827 void                                           << 
828 HepPolyhedron::RotateContourAroundZ(G4int nste << 
829                                     G4double p << 
830                                     G4double d << 
831                                     const std: << 
832                                     G4int node << 
833                                     G4int edge << 
834 /********************************************* << 
835  *                                             << 
836  * Name: HepPolyhedron::RotateContourAroundZ   << 
837  * Author: E.Tcherniaev (E.Chernyaev)          << 
838  *                                             << 
839  * Function: Create HepPolyhedron for a solid  << 
840  *           a closed polyline (rz-contour) ar << 
841  *                                             << 
842  * Input: nstep - number of discrete steps, if << 
843  *        phi   - starting phi angle           << 
844  *        dphi  - delta phi                    << 
845  *        rz    - rz-contour                   << 
846  *        nodeVis - how to Draw edges joing co << 
847  *                  node during rotation       << 
848  *        edgeVis - how to Draw edges          << 
849  *                                             << 
850  ********************************************* << 
851 {                                              << 
852   //   S E T   R O T A T I O N   P A R A M E T << 
853                                                << 
854   G4bool ifWholeCircle = std::abs(dphi - twopi << 
855   G4double delPhi = (ifWholeCircle) ? twopi :  << 
856   G4int nSphi = nstep;                         << 
857   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 
858   if (nSphi == 0) nSphi = 1;                   << 
859   G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 
860                                                << 
861   //   C A L C U L A T E   A R E A             << 
862                                                << 
863   G4int Nrz = (G4int)rz.size();                << 
864   G4double area = 0;                           << 
865   for (G4int i = 0; i < Nrz; ++i)              << 
866   {                                            << 
867     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
868     area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 
869   }                                            << 
870                                                << 
871   //   P R E P A R E   P O L Y L I N E         << 
872                                                << 
873   auto r = new G4double[Nrz];                  << 
874   auto z = new G4double[Nrz];                  << 
875   for (G4int i = 0; i < Nrz; ++i)              << 
876   {                                            << 
877     r[i] = rz[i].x();                          << 
878     z[i] = rz[i].y();                          << 
879     if (std::abs(r[i]) < spatialTolerance) r[i << 
880   }                                            << 
881                                                << 
882   //   C O U N T   V E R T I C E S   A N D   F << 
883                                                << 
884   G4int Nverts = 0;                            << 
885   for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 
886                                                << 
887   G4int Nedges = Nrz;                          << 
888   for (G4int i = 0; i < Nrz; ++i)              << 
889   {                                            << 
890     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
891     Nedges -= static_cast<int>(r[k] == 0 && r[ << 
892   }                                            << 
893                                                << 
894   G4int Nfaces = Nedges*nSphi;               / << 
895   if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 
896                                                << 
897   //   A L L O C A T E   M E M O R Y           << 
898                                                << 
899   AllocateMemory(Nverts, Nfaces);              << 
900   if (pV == nullptr || pF == nullptr)          << 
901   {                                            << 
902     delete [] r;                               << 
903     delete [] z;                               << 
904     return;                                    << 
905   }                                            << 
906                                                << 
907   //   S E T   V E R T I C E S                 << 
908                                                << 
909   auto kk = new G4int[Nrz]; // start indices a << 
910   G4int kfree = 1; // current free position in << 
911                                                << 
912   // set start indices, set vertices for nodes << 
913   for(G4int i = 0; i < Nrz; ++i)               << 
914   {                                            << 
915     kk[i] = kfree;                             << 
916     if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 
917     if (r[i] != 0.) kfree += nVphi;            << 
918   }                                            << 
919                                                << 
920   // set vertices by rotating r                << 
921   for(G4int j = 0; j < nVphi; ++j)             << 
922   {                                            << 
923     G4double cosPhi = std::cos(phi + j*delPhi/ << 
924     G4double sinPhi = std::sin(phi + j*delPhi/ << 
925     for(G4int i = 0; i < Nrz; ++i)             << 
926     {                                          << 
927       if (r[i] != 0.)                          << 
928         pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 
929     }                                          << 
930   }                                            << 
931                                                << 
932   //   S E T   F A C E S                       << 
933                                                << 
934   kfree = 1; // current free position in array << 
935   for(G4int i = 0; i < Nrz; ++i)               << 
936   {                                            << 
937     G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 
938     G4int i2 = i;                              << 
939     if (area < 0.) std::swap(i1, i2);          << 
940     RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 
941                edgeVis, ifWholeCircle, nSphi,  << 
942   }                                            << 
943                                                << 
944   //    S E T   P H I _ W E D G E   F A C E S  << 
945                                                << 
946   if (!ifWholeCircle)                          << 
947   {                                            << 
948     std::vector<G4int> triangles;              << 
949     TriangulatePolygon(rz, triangles);         << 
950                                                << 
951     G4int ii[4], vv[4];                        << 
952     G4int ntria = G4int(triangles.size()/3);   << 
953     for (G4int i = 0; i < ntria; ++i)          << 
954     {                                          << 
955       G4int i1 = triangles[0 + i*3];           << 
956       G4int i2 = triangles[1 + i*3];           << 
957       G4int i3 = triangles[2 + i*3];           << 
958       if (area < 0.) std::swap(i1, i3);        << 
959       G4int v1 = (std::abs(i2-i1) == 1 || std: << 
960       G4int v2 = (std::abs(i3-i2) == 1 || std: << 
961       G4int v3 = (std::abs(i1-i3) == 1 || std: << 
962       ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 
963       vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 
964       SetSideFacets(ii, vv, kk, r, delPhi, nSp << 
965     }                                          << 
966   }                                            << 
967                                                << 
968   // free memory                               << 
969   delete [] r;                                 << 
970   delete [] z;                                 << 
971   delete [] kk;                                << 
972                                                << 
973   // final check                               << 
974   if (kfree - 1 != nface)                      << 
975   {                                            << 
976     std::cerr                                  << 
977       << "HepPolyhedron::RotateContourAroundZ: << 
978       << kfree-1 << ") is not equal to the num << 
979       << nface << ")"                          << 
980       << std::endl;                            << 
981   }                                            << 
982 }                                              << 
983                                                << 
984 G4bool                                         << 
985 HepPolyhedron::TriangulatePolygon(const std::v << 
986                                   std::vector< << 
987 /********************************************* << 
988  *                                             << 
989  * Name: HepPolyhedron::TriangulatePolygon     << 
990  * Author: E.Tcherniaev (E.Chernyaev)          << 
991  *                                             << 
992  * Function: Simple implementation of "ear cli << 
993  *           triangulation of a simple contour << 
994  *           the result in a std::vector as tr << 
995  *                                             << 
996  *           If triangulation is sucsessfull t << 
997  *           returns true, otherwise false     << 
998  *                                             << 
999  * Remark:   It's a copy of G4GeomTools::Trian << 
1000  *                                            << 
1001  ******************************************** << 
1002 {                                             << 
1003   result.resize(0);                           << 
1004   G4int n = (G4int)polygon.size();            << 
1005   if (n < 3) return false;                    << 
1006                                               << 
1007   // calculate area                           << 
1008   //                                          << 
1009   G4double area = 0.;                         << 
1010   for(G4int i = 0; i < n; ++i)                << 
1011   {                                           << 
1012     G4int k = (i == 0) ? n - 1 : i - 1;       << 
1013     area += polygon[k].x()*polygon[i].y() - p << 
1014   }                                           << 
1015                                               << 
1016   // allocate and initialize list of Vertices << 
1017   // we want a counter-clockwise polygon in V << 
1018   //                                          << 
1019   auto  V = new G4int[n];                     << 
1020   if (area > 0.)                              << 
1021     for (G4int i = 0; i < n; ++i) V[i] = i;   << 
1022   else                                        << 
1023     for (G4int i = 0; i < n; ++i) V[i] = (n - << 
1024                                               << 
1025   //  Triangulation: remove nv-2 Vertices, cr << 
1026   //                                          << 
1027   G4int nv = n;                               << 
1028   G4int count = 2*nv; // error detection coun << 
1029   for(G4int b = nv - 1; nv > 2; )             << 
1030   {                                           << 
1031     // ERROR: if we loop, it is probably a no << 
1032     if ((count--) <= 0)                       << 
1033     {                                         << 
1034       delete [] V;                            << 
1035       if (area < 0.) std::reverse(result.begi << 
1036       return false;                           << 
1037     }                                         << 
1038                                               << 
1039     // three consecutive vertices in current  << 
1040     G4int a = (b   < nv) ? b   : 0; // previo << 
1041           b = (a+1 < nv) ? a+1 : 0; // curren << 
1042     G4int c = (b+1 < nv) ? b+1 : 0; // next   << 
1043                                               << 
1044     if (CheckSnip(polygon, a,b,c, nv,V))      << 
1045     {                                         << 
1046       // output Triangle                      << 
1047       result.push_back(V[a]);                 << 
1048       result.push_back(V[b]);                 << 
1049       result.push_back(V[c]);                 << 
1050                                               << 
1051       // remove vertex b from remaining polyg << 
1052       nv--;                                   << 
1053       for(G4int i = b; i < nv; ++i) V[i] = V[ << 
1054                                               << 
1055       count = 2*nv; // resest error detection << 
1056     }                                         << 
1057   }                                           << 
1058   delete [] V;                                << 
1059   if (area < 0.) std::reverse(result.begin(), << 
1060   return true;                                << 
1061 }                                             << 
1062                                               << 
1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 
1064                                 G4int a, G4in << 
1065                                 G4int n, cons << 
1066 /******************************************** << 
1067  *                                            << 
1068  * Name: HepPolyhedron::CheckSnip             << 
1069  * Author: E.Tcherniaev (E.Chernyaev)         << 
1070  *                                            << 
1071  * Function: Check for a valid snip,          << 
1072  *           it is a helper functionfor Trian << 
1073  *                                            << 
1074  ******************************************** << 
1075 {                                             << 
1076   static const G4double kCarTolerance = 1.e-9 << 
1077                                               << 
1078   // check orientation of Triangle            << 
1079   G4double Ax = contour[V[a]].x(), Ay = conto << 
1080   G4double Bx = contour[V[b]].x(), By = conto << 
1081   G4double Cx = contour[V[c]].x(), Cy = conto << 
1082   if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 
1083                                               << 
1084   // check that there is no point inside Tria << 
1085   G4double xmin = std::min(std::min(Ax,Bx),Cx << 
1086   G4double xmax = std::max(std::max(Ax,Bx),Cx << 
1087   G4double ymin = std::min(std::min(Ay,By),Cy << 
1088   G4double ymax = std::max(std::max(Ay,By),Cy << 
1089                                               << 
1090   for (G4int i=0; i<n; ++i)                   << 
1091   {                                           << 
1092     if((i == a) || (i == b) || (i == c)) cont << 
1093     G4double Px = contour[V[i]].x();          << 
1094     if (Px < xmin || Px > xmax) continue;     << 
1095     G4double Py = contour[V[i]].y();          << 
1096     if (Py < ymin || Py > ymax) continue;     << 
1097     // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 
1098     if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 
1099     {                                         << 
1100       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 
1101       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 
1102       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 
1103     }                                         << 
1104     else                                      << 
1105     {                                         << 
1106       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 
1107       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 
1108       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 
1109     }                                         << 
1110     return false;                             << 
1111   }                                           << 
1112   return true;                                << 
1113 }                                             << 
1114                                               << 
1115 void HepPolyhedron::SetReferences()              671 void HepPolyhedron::SetReferences()
1116 /********************************************    672 /***********************************************************************
1117  *                                               673  *                                                                     *
1118  * Name: HepPolyhedron::SetReferences            674  * Name: HepPolyhedron::SetReferences                Date:    04.12.96 *
1119  * Author: E.Chernyaev (IHEP/Protvino)           675  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1120  *                                               676  *                                                                     *
1121  * Function: For each edge set reference to n    677  * Function: For each edge set reference to neighbouring facet         *
1122  *                                               678  *                                                                     *
1123  ********************************************    679  ***********************************************************************/
1124 {                                                680 {
1125   if (nface <= 0) return;                        681   if (nface <= 0) return;
1126                                                  682 
1127   struct edgeListMember {                        683   struct edgeListMember {
1128     edgeListMember *next;                        684     edgeListMember *next;
1129     G4int v2;                                    685     G4int v2;
1130     G4int iface;                                 686     G4int iface;
1131     G4int iedge;                                 687     G4int iedge;
1132   } *edgeList, *freeList, **headList;            688   } *edgeList, *freeList, **headList;
1133                                                  689 
1134                                               << 690   
1135   //   A L L O C A T E   A N D   I N I T I A     691   //   A L L O C A T E   A N D   I N I T I A T E   L I S T S
1136                                                  692 
1137   edgeList = new edgeListMember[2*nface];        693   edgeList = new edgeListMember[2*nface];
1138   headList = new edgeListMember*[nvert];         694   headList = new edgeListMember*[nvert];
1139                                               << 695   
1140   G4int i;                                       696   G4int i;
1141   for (i=0; i<nvert; i++) {                      697   for (i=0; i<nvert; i++) {
1142     headList[i] = nullptr;                    << 698     headList[i] = 0;
1143   }                                              699   }
1144   freeList = edgeList;                           700   freeList = edgeList;
1145   for (i=0; i<2*nface-1; i++) {                  701   for (i=0; i<2*nface-1; i++) {
1146     edgeList[i].next = &edgeList[i+1];           702     edgeList[i].next = &edgeList[i+1];
1147   }                                              703   }
1148   edgeList[2*nface-1].next = nullptr;         << 704   edgeList[2*nface-1].next = 0;
1149                                                  705 
1150   //   L O O P   A L O N G   E D G E S           706   //   L O O P   A L O N G   E D G E S
1151                                                  707 
1152   G4int iface, iedge, nedge, i1, i2, k1, k2;     708   G4int iface, iedge, nedge, i1, i2, k1, k2;
1153   edgeListMember *prev, *cur;                    709   edgeListMember *prev, *cur;
1154                                               << 710   
1155   for(iface=1; iface<=nface; iface++) {          711   for(iface=1; iface<=nface; iface++) {
1156     nedge = (pF[iface].edge[3].v == 0) ? 3 :     712     nedge = (pF[iface].edge[3].v == 0) ? 3 : 4;
1157     for (iedge=0; iedge<nedge; iedge++) {        713     for (iedge=0; iedge<nedge; iedge++) {
1158       i1 = iedge;                                714       i1 = iedge;
1159       i2 = (iedge < nedge-1) ? iedge+1 : 0;      715       i2 = (iedge < nedge-1) ? iedge+1 : 0;
1160       i1 = std::abs(pF[iface].edge[i1].v);       716       i1 = std::abs(pF[iface].edge[i1].v);
1161       i2 = std::abs(pF[iface].edge[i2].v);       717       i2 = std::abs(pF[iface].edge[i2].v);
1162       k1 = (i1 < i2) ? i1 : i2;          // k    718       k1 = (i1 < i2) ? i1 : i2;          // k1 = ::min(i1,i2);
1163       k2 = (i1 > i2) ? i1 : i2;          // k    719       k2 = (i1 > i2) ? i1 : i2;          // k2 = ::max(i1,i2);
1164                                               << 720       
1165       // check head of the List corresponding    721       // check head of the List corresponding to k1
1166       cur = headList[k1];                        722       cur = headList[k1];
1167       if (cur == nullptr) {                   << 723       if (cur == 0) {
1168         headList[k1] = freeList;                 724         headList[k1] = freeList;
1169         if (freeList == nullptr) {            << 725         if (!freeList) {
1170           std::cerr                              726           std::cerr
1171           << "Polyhedron::SetReferences: bad     727           << "Polyhedron::SetReferences: bad link "
1172           << std::endl;                          728           << std::endl;
1173           break;                                 729           break;
1174         }                                        730         }
1175         freeList = freeList->next;               731         freeList = freeList->next;
1176         cur = headList[k1];                      732         cur = headList[k1];
1177         cur->next = nullptr;                  << 733         cur->next = 0;
1178         cur->v2 = k2;                            734         cur->v2 = k2;
1179         cur->iface = iface;                      735         cur->iface = iface;
1180         cur->iedge = iedge;                      736         cur->iedge = iedge;
1181         continue;                                737         continue;
1182       }                                          738       }
1183                                                  739 
1184       if (cur->v2 == k2) {                       740       if (cur->v2 == k2) {
1185         headList[k1] = cur->next;                741         headList[k1] = cur->next;
1186         cur->next = freeList;                    742         cur->next = freeList;
1187         freeList = cur;                       << 743         freeList = cur;      
1188         pF[iface].edge[iedge].f = cur->iface;    744         pF[iface].edge[iedge].f = cur->iface;
1189         pF[cur->iface].edge[cur->iedge].f = i    745         pF[cur->iface].edge[cur->iedge].f = iface;
1190         i1 = (pF[iface].edge[iedge].v < 0) ?     746         i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1191         i2 = (pF[cur->iface].edge[cur->iedge]    747         i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1192         if (i1 != i2) {                          748         if (i1 != i2) {
1193           std::cerr                              749           std::cerr
1194             << "Polyhedron::SetReferences: di    750             << "Polyhedron::SetReferences: different edge visibility "
1195             << iface << "/" << iedge << "/"      751             << iface << "/" << iedge << "/"
1196             << pF[iface].edge[iedge].v << " a    752             << pF[iface].edge[iedge].v << " and "
1197             << cur->iface << "/" << cur->iedg    753             << cur->iface << "/" << cur->iedge << "/"
1198             << pF[cur->iface].edge[cur->iedge    754             << pF[cur->iface].edge[cur->iedge].v
1199             << std::endl;                        755             << std::endl;
1200         }                                        756         }
1201         continue;                                757         continue;
1202       }                                          758       }
1203                                                  759 
1204       // check List itself                       760       // check List itself
1205       for (;;) {                                 761       for (;;) {
1206         prev = cur;                              762         prev = cur;
1207         cur = prev->next;                        763         cur = prev->next;
1208         if (cur == nullptr) {                 << 764         if (cur == 0) {
1209           prev->next = freeList;                 765           prev->next = freeList;
1210           if (freeList == nullptr) {          << 766           if (!freeList) {
1211             std::cerr                            767             std::cerr
1212             << "Polyhedron::SetReferences: ba    768             << "Polyhedron::SetReferences: bad link "
1213             << std::endl;                        769             << std::endl;
1214             break;                               770             break;
1215           }                                      771           }
1216           freeList = freeList->next;             772           freeList = freeList->next;
1217           cur = prev->next;                      773           cur = prev->next;
1218           cur->next = nullptr;                << 774           cur->next = 0;
1219           cur->v2 = k2;                          775           cur->v2 = k2;
1220           cur->iface = iface;                    776           cur->iface = iface;
1221           cur->iedge = iedge;                    777           cur->iedge = iedge;
1222           break;                                 778           break;
1223         }                                        779         }
1224                                                  780 
1225         if (cur->v2 == k2) {                     781         if (cur->v2 == k2) {
1226           prev->next = cur->next;                782           prev->next = cur->next;
1227           cur->next = freeList;                  783           cur->next = freeList;
1228           freeList = cur;                     << 784           freeList = cur;      
1229           pF[iface].edge[iedge].f = cur->ifac    785           pF[iface].edge[iedge].f = cur->iface;
1230           pF[cur->iface].edge[cur->iedge].f =    786           pF[cur->iface].edge[cur->iedge].f = iface;
1231           i1 = (pF[iface].edge[iedge].v < 0)     787           i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1232           i2 = (pF[cur->iface].edge[cur->iedg    788           i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1233             if (i1 != i2) {                      789             if (i1 != i2) {
1234               std::cerr                          790               std::cerr
1235                 << "Polyhedron::SetReferences    791                 << "Polyhedron::SetReferences: different edge visibility "
1236                 << iface << "/" << iedge << "    792                 << iface << "/" << iedge << "/"
1237                 << pF[iface].edge[iedge].v <<    793                 << pF[iface].edge[iedge].v << " and "
1238                 << cur->iface << "/" << cur->    794                 << cur->iface << "/" << cur->iedge << "/"
1239                 << pF[cur->iface].edge[cur->i    795                 << pF[cur->iface].edge[cur->iedge].v
1240                 << std::endl;                    796                 << std::endl;
1241             }                                    797             }
1242           break;                                 798           break;
1243         }                                        799         }
1244       }                                          800       }
1245     }                                            801     }
1246   }                                              802   }
1247                                                  803 
1248   //  C H E C K   T H A T   A L L   L I S T S    804   //  C H E C K   T H A T   A L L   L I S T S   A R E   E M P T Y
1249                                                  805 
1250   for (i=0; i<nvert; i++) {                      806   for (i=0; i<nvert; i++) {
1251     if (headList[i] != nullptr) {             << 807     if (headList[i] != 0) {
1252       std::cerr                                  808       std::cerr
1253         << "Polyhedron::SetReferences: List "    809         << "Polyhedron::SetReferences: List " << i << " is not empty"
1254         << std::endl;                            810         << std::endl;
1255     }                                            811     }
1256   }                                              812   }
1257                                                  813 
1258   //   F R E E   M E M O R Y                     814   //   F R E E   M E M O R Y
1259                                                  815 
1260   delete [] edgeList;                            816   delete [] edgeList;
1261   delete [] headList;                            817   delete [] headList;
1262 }                                                818 }
1263                                                  819 
1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 
1265 /******************************************** << 
1266  *                                            << 
1267  * Name: HepPolyhedron::JoinCoplanarFacets    << 
1268  * Author: E.Tcherniaev (E.Chernyaev)         << 
1269  *                                            << 
1270  * Function: Join couples of triangular facet << 
1271  *           where it is possible             << 
1272  *                                            << 
1273  ******************************************** << 
1274 {                                             << 
1275   G4int njoin = 0;                            << 
1276   for (G4int icur = 1; icur <= nface; ++icur) << 
1277   {                                           << 
1278     // skip if already joined or quadrangle   << 
1279     if (pF[icur].edge[0].v == 0) continue;    << 
1280     if (pF[icur].edge[3].v != 0) continue;    << 
1281     // skip if all references point to alread << 
1282     if (pF[icur].edge[0].f < icur &&          << 
1283         pF[icur].edge[1].f < icur &&          << 
1284         pF[icur].edge[2].f < icur) continue;  << 
1285     // compute plane equation                 << 
1286     G4Normal3D norm = GetUnitNormal(icur);    << 
1287     G4double dd = norm.dot(pV[pF[icur].edge[0 << 
1288     G4int vcur0 = std::abs(pF[icur].edge[0].v << 
1289     G4int vcur1 = std::abs(pF[icur].edge[1].v << 
1290     G4int vcur2 = std::abs(pF[icur].edge[2].v << 
1291     // select neighbouring facet              << 
1292     G4int kcheck = 0, icheck = 0, vcheck = 0; << 
1293     G4double dist = DBL_MAX;                  << 
1294     for (G4int k = 0; k < 3; ++k)             << 
1295     {                                         << 
1296       G4int itmp = pF[icur].edge[k].f;        << 
1297       // skip if already checked, joined or q << 
1298       if (itmp < icur) continue;              << 
1299       if (pF[itmp].edge[0].v == 0 ||          << 
1300           pF[itmp].edge[3].v != 0) continue;  << 
1301       // get candidate vertex                 << 
1302       G4int vtmp = 0;                         << 
1303       for (G4int j = 0; j < 3; ++j)           << 
1304       {                                       << 
1305         vtmp = std::abs(pF[itmp].edge[j].v);  << 
1306   if (vtmp != vcur0 && vtmp != vcur1 && vtmp  << 
1307       }                                       << 
1308       // check distance to the plane          << 
1309       G4double dtmp = std::abs(norm.dot(pV[vt << 
1310       if (dtmp > tolerance || dtmp >= dist) c << 
1311       dist = dtmp;                            << 
1312       kcheck = k;                             << 
1313       icheck = itmp;                          << 
1314       vcheck = vtmp;                          << 
1315     }                                         << 
1316     if (icheck == 0) continue; // no facet se << 
1317     // join facets                            << 
1318     njoin++;                                  << 
1319     pF[icheck].edge[0].v = 0; // mark facet a << 
1320     if (kcheck == 0)                          << 
1321     {                                         << 
1322       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1323       pF[icur].edge[2].v = pF[icur].edge[1].v << 
1324       pF[icur].edge[1].v = vcheck;            << 
1325     }                                         << 
1326     else if (kcheck == 1)                     << 
1327     {                                         << 
1328       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1329       pF[icur].edge[2].v = vcheck;            << 
1330     }                                         << 
1331     else                                      << 
1332     {                                         << 
1333       pF[icur].edge[3].v = vcheck;            << 
1334     }                                         << 
1335   }                                           << 
1336   if (njoin == 0) return; // no joined facets << 
1337                                               << 
1338   // restructure facets                       << 
1339   G4int nnew = 0;                             << 
1340   for (G4int icur = 1; icur <= nface; ++icur) << 
1341   {                                           << 
1342     if (pF[icur].edge[0].v == 0) continue;    << 
1343     nnew++;                                   << 
1344     pF[nnew].edge[0].v = pF[icur].edge[0].v;  << 
1345     pF[nnew].edge[1].v = pF[icur].edge[1].v;  << 
1346     pF[nnew].edge[2].v = pF[icur].edge[2].v;  << 
1347     pF[nnew].edge[3].v = pF[icur].edge[3].v;  << 
1348   }                                           << 
1349   nface = nnew;                               << 
1350   SetReferences();                            << 
1351 }                                             << 
1352                                               << 
1353 void HepPolyhedron::InvertFacets()               820 void HepPolyhedron::InvertFacets()
1354 /********************************************    821 /***********************************************************************
1355  *                                               822  *                                                                     *
1356  * Name: HepPolyhedron::InvertFacets             823  * Name: HepPolyhedron::InvertFacets                Date:    01.12.99  *
1357  * Author: E.Chernyaev                           824  * Author: E.Chernyaev                              Revised:           *
1358  *                                               825  *                                                                     *
1359  * Function: Invert the order of the nodes in    826  * Function: Invert the order of the nodes in the facets               *
1360  *                                               827  *                                                                     *
1361  ********************************************    828  ***********************************************************************/
1362 {                                                829 {
1363   if (nface <= 0) return;                        830   if (nface <= 0) return;
1364   G4int i, k, nnode, v[4],f[4];                  831   G4int i, k, nnode, v[4],f[4];
1365   for (i=1; i<=nface; i++) {                     832   for (i=1; i<=nface; i++) {
1366     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;     833     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;
1367     for (k=0; k<nnode; k++) {                    834     for (k=0; k<nnode; k++) {
1368       v[k] = (k+1 == nnode) ? pF[i].edge[0].v    835       v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v;
1369       if (v[k] * pF[i].edge[k].v < 0) v[k] =     836       if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k];
1370       f[k] = pF[i].edge[k].f;                    837       f[k] = pF[i].edge[k].f;
1371     }                                            838     }
1372     for (k=0; k<nnode; k++) {                    839     for (k=0; k<nnode; k++) {
1373       pF[i].edge[nnode-1-k].v = v[k];            840       pF[i].edge[nnode-1-k].v = v[k];
1374       pF[i].edge[nnode-1-k].f = f[k];            841       pF[i].edge[nnode-1-k].f = f[k];
1375     }                                            842     }
1376   }                                              843   }
1377 }                                                844 }
1378                                                  845 
1379 HepPolyhedron & HepPolyhedron::Transform(cons    846 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t)
1380 /********************************************    847 /***********************************************************************
1381  *                                               848  *                                                                     *
1382  * Name: HepPolyhedron::Transform                849  * Name: HepPolyhedron::Transform                    Date:    01.12.99  *
1383  * Author: E.Chernyaev                           850  * Author: E.Chernyaev                              Revised:           *
1384  *                                               851  *                                                                     *
1385  * Function: Make transformation of the polyh    852  * Function: Make transformation of the polyhedron                     *
1386  *                                               853  *                                                                     *
1387  ********************************************    854  ***********************************************************************/
1388 {                                                855 {
1389   if (nvert > 0) {                               856   if (nvert > 0) {
1390     for (G4int i=1; i<=nvert; i++) { pV[i] =     857     for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; }
1391                                                  858 
1392     //  C H E C K   D E T E R M I N A N T   A    859     //  C H E C K   D E T E R M I N A N T   A N D
1393     //  I N V E R T   F A C E T S   I F   I T    860     //  I N V E R T   F A C E T S   I F   I T   I S   N E G A T I V E
1394                                                  861 
1395     G4Vector3D d = t * G4Vector3D(0,0,0);        862     G4Vector3D d = t * G4Vector3D(0,0,0);
1396     G4Vector3D x = t * G4Vector3D(1,0,0) - d;    863     G4Vector3D x = t * G4Vector3D(1,0,0) - d;
1397     G4Vector3D y = t * G4Vector3D(0,1,0) - d;    864     G4Vector3D y = t * G4Vector3D(0,1,0) - d;
1398     G4Vector3D z = t * G4Vector3D(0,0,1) - d;    865     G4Vector3D z = t * G4Vector3D(0,0,1) - d;
1399     if ((x.cross(y))*z < 0) InvertFacets();      866     if ((x.cross(y))*z < 0) InvertFacets();
1400   }                                              867   }
1401   return *this;                                  868   return *this;
1402 }                                                869 }
1403                                                  870 
1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in    871 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const
1405 /********************************************    872 /***********************************************************************
1406  *                                               873  *                                                                     *
1407  * Name: HepPolyhedron::GetNextVertexIndex       874  * Name: HepPolyhedron::GetNextVertexIndex          Date:    03.09.96  *
1408  * Author: Yasuhide Sawada                       875  * Author: Yasuhide Sawada                          Revised:           *
1409  *                                               876  *                                                                     *
1410  * Function:                                     877  * Function:                                                           *
1411  *                                               878  *                                                                     *
1412  ********************************************    879  ***********************************************************************/
1413 {                                                880 {
1414   static G4ThreadLocal G4int iFace = 1;          881   static G4ThreadLocal G4int iFace = 1;
1415   static G4ThreadLocal G4int iQVertex = 0;       882   static G4ThreadLocal G4int iQVertex = 0;
1416   G4int vIndex = pF[iFace].edge[iQVertex].v;     883   G4int vIndex = pF[iFace].edge[iQVertex].v;
1417                                                  884 
1418   edgeFlag = (vIndex > 0) ? 1 : 0;               885   edgeFlag = (vIndex > 0) ? 1 : 0;
1419   index = std::abs(vIndex);                      886   index = std::abs(vIndex);
1420                                                  887 
1421   if (iQVertex >= 3 || pF[iFace].edge[iQVerte    888   if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1422     iQVertex = 0;                                889     iQVertex = 0;
1423     if (++iFace > nface) iFace = 1;              890     if (++iFace > nface) iFace = 1;
1424     return false;  // Last Edge                  891     return false;  // Last Edge
                                                   >> 892   }else{
                                                   >> 893     ++iQVertex;
                                                   >> 894     return true;  // not Last Edge
1425   }                                              895   }
1426                                               << 
1427   ++iQVertex;                                 << 
1428   return true;  // not Last Edge              << 
1429 }                                                896 }
1430                                                  897 
1431 G4Point3D HepPolyhedron::GetVertex(G4int inde    898 G4Point3D HepPolyhedron::GetVertex(G4int index) const
1432 /********************************************    899 /***********************************************************************
1433  *                                               900  *                                                                     *
1434  * Name: HepPolyhedron::GetVertex                901  * Name: HepPolyhedron::GetVertex                   Date:    03.09.96  *
1435  * Author: Yasuhide Sawada                       902  * Author: Yasuhide Sawada                          Revised: 17.11.99  *
1436  *                                               903  *                                                                     *
1437  * Function: Get vertex of the index.            904  * Function: Get vertex of the index.                                  *
1438  *                                               905  *                                                                     *
1439  ********************************************    906  ***********************************************************************/
1440 {                                                907 {
1441   if (index <= 0 || index > nvert) {             908   if (index <= 0 || index > nvert) {
1442     std::cerr                                    909     std::cerr
1443       << "HepPolyhedron::GetVertex: irrelevan    910       << "HepPolyhedron::GetVertex: irrelevant index " << index
1444       << std::endl;                              911       << std::endl;
1445     return G4Point3D();                          912     return G4Point3D();
1446   }                                              913   }
1447   return pV[index];                              914   return pV[index];
1448 }                                                915 }
1449                                                  916 
1450 G4bool                                           917 G4bool
1451 HepPolyhedron::GetNextVertex(G4Point3D &verte    918 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const
1452 /********************************************    919 /***********************************************************************
1453  *                                               920  *                                                                     *
1454  * Name: HepPolyhedron::GetNextVertex            921  * Name: HepPolyhedron::GetNextVertex               Date:    22.07.96  *
1455  * Author: John Allison                          922  * Author: John Allison                             Revised:           *
1456  *                                               923  *                                                                     *
1457  * Function: Get vertices of the quadrilatera    924  * Function: Get vertices of the quadrilaterals in order for each      *
1458  *           face in face order.  Returns fal    925  *           face in face order.  Returns false when finished each     *
1459  *           face.                               926  *           face.                                                     *
1460  *                                               927  *                                                                     *
1461  ********************************************    928  ***********************************************************************/
1462 {                                                929 {
1463   G4int index;                                   930   G4int index;
1464   G4bool rep = GetNextVertexIndex(index, edge    931   G4bool rep = GetNextVertexIndex(index, edgeFlag);
1465   vertex = pV[index];                            932   vertex = pV[index];
1466   return rep;                                    933   return rep;
1467 }                                                934 }
1468                                                  935 
1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D    936 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag,
1470                                   G4Normal3D     937                                   G4Normal3D &normal) const
1471 /********************************************    938 /***********************************************************************
1472  *                                               939  *                                                                     *
1473  * Name: HepPolyhedron::GetNextVertex            940  * Name: HepPolyhedron::GetNextVertex               Date:    26.11.99  *
1474  * Author: E.Chernyaev                           941  * Author: E.Chernyaev                              Revised:           *
1475  *                                               942  *                                                                     *
1476  * Function: Get vertices with normals of the    943  * Function: Get vertices with normals of the quadrilaterals in order  *
1477  *           for each face in face order.        944  *           for each face in face order.                              *
1478  *           Returns false when finished each    945  *           Returns false when finished each face.                    *
1479  *                                               946  *                                                                     *
1480  ********************************************    947  ***********************************************************************/
1481 {                                                948 {
1482   static G4ThreadLocal G4int iFace = 1;          949   static G4ThreadLocal G4int iFace = 1;
1483   static G4ThreadLocal G4int iNode = 0;          950   static G4ThreadLocal G4int iNode = 0;
1484                                                  951 
1485   if (nface == 0) return false;  // empty pol    952   if (nface == 0) return false;  // empty polyhedron
1486                                                  953 
1487   G4int k = pF[iFace].edge[iNode].v;             954   G4int k = pF[iFace].edge[iNode].v;
1488   if (k > 0) { edgeFlag = 1; } else { edgeFla    955   if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; }
1489   vertex = pV[k];                                956   vertex = pV[k];
1490   normal = FindNodeNormal(iFace,k);              957   normal = FindNodeNormal(iFace,k);
1491   if (iNode >= 3 || pF[iFace].edge[iNode+1].v    958   if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) {
1492     iNode = 0;                                   959     iNode = 0;
1493     if (++iFace > nface) iFace = 1;              960     if (++iFace > nface) iFace = 1;
1494     return false;                // last node    961     return false;                // last node
                                                   >> 962   }else{
                                                   >> 963     ++iNode;
                                                   >> 964     return true;                 // not last node
1495   }                                              965   }
1496   ++iNode;                                    << 
1497   return true;                 // not last no << 
1498 }                                                966 }
1499                                                  967 
1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in    968 G4bool HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag,
1501                                        G4int     969                                        G4int &iface1, G4int &iface2) const
1502 /********************************************    970 /***********************************************************************
1503  *                                               971  *                                                                     *
1504  * Name: HepPolyhedron::GetNextEdgeIndices       972  * Name: HepPolyhedron::GetNextEdgeIndices          Date:    30.09.96  *
1505  * Author: E.Chernyaev                           973  * Author: E.Chernyaev                              Revised: 17.11.99  *
1506  *                                               974  *                                                                     *
1507  * Function: Get indices of the next edge tog    975  * Function: Get indices of the next edge together with indices of     *
1508  *           of the faces which share the edg    976  *           of the faces which share the edge.                        *
1509  *           Returns false when the last edge    977  *           Returns false when the last edge.                         *
1510  *                                               978  *                                                                     *
1511  ********************************************    979  ***********************************************************************/
1512 {                                                980 {
1513   static G4ThreadLocal G4int iFace    = 1;       981   static G4ThreadLocal G4int iFace    = 1;
1514   static G4ThreadLocal G4int iQVertex = 0;       982   static G4ThreadLocal G4int iQVertex = 0;
1515   static G4ThreadLocal G4int iOrder   = 1;       983   static G4ThreadLocal G4int iOrder   = 1;
1516   G4int  k1, k2, kflag, kface1, kface2;          984   G4int  k1, k2, kflag, kface1, kface2;
1517                                                  985 
1518   if (iFace == 1 && iQVertex == 0) {             986   if (iFace == 1 && iQVertex == 0) {
1519     k2 = pF[nface].edge[0].v;                    987     k2 = pF[nface].edge[0].v;
1520     k1 = pF[nface].edge[3].v;                    988     k1 = pF[nface].edge[3].v;
1521     if (k1 == 0) k1 = pF[nface].edge[2].v;       989     if (k1 == 0) k1 = pF[nface].edge[2].v;
1522     if (std::abs(k1) > std::abs(k2)) iOrder =    990     if (std::abs(k1) > std::abs(k2)) iOrder = -1;
1523   }                                              991   }
1524                                                  992 
1525   do {                                           993   do {
1526     k1     = pF[iFace].edge[iQVertex].v;         994     k1     = pF[iFace].edge[iQVertex].v;
1527     kflag  = k1;                                 995     kflag  = k1;
1528     k1     = std::abs(k1);                       996     k1     = std::abs(k1);
1529     kface1 = iFace;                           << 997     kface1 = iFace; 
1530     kface2 = pF[iFace].edge[iQVertex].f;         998     kface2 = pF[iFace].edge[iQVertex].f;
1531     if (iQVertex >= 3 || pF[iFace].edge[iQVer    999     if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1532       iQVertex = 0;                              1000       iQVertex = 0;
1533       k2 = std::abs(pF[iFace].edge[iQVertex].    1001       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1534       iFace++;                                   1002       iFace++;
1535     }else{                                       1003     }else{
1536       iQVertex++;                                1004       iQVertex++;
1537       k2 = std::abs(pF[iFace].edge[iQVertex].    1005       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1538     }                                            1006     }
1539   } while (iOrder*k1 > iOrder*k2);               1007   } while (iOrder*k1 > iOrder*k2);
1540                                                  1008 
1541   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ?     1009   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0;
1542   iface1 = kface1; iface2 = kface2;           << 1010   iface1 = kface1; iface2 = kface2; 
1543                                                  1011 
1544   if (iFace > nface) {                           1012   if (iFace > nface) {
1545     iFace  = 1; iOrder = 1;                      1013     iFace  = 1; iOrder = 1;
1546     return false;                                1014     return false;
                                                   >> 1015   }else{
                                                   >> 1016     return true;
1547   }                                              1017   }
1548                                               << 
1549   return true;                                << 
1550 }                                                1018 }
1551                                                  1019 
1552 G4bool                                           1020 G4bool
1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1,     1021 HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag) const
1554 /********************************************    1022 /***********************************************************************
1555  *                                               1023  *                                                                     *
1556  * Name: HepPolyhedron::GetNextEdgeIndices       1024  * Name: HepPolyhedron::GetNextEdgeIndices          Date:    17.11.99  *
1557  * Author: E.Chernyaev                           1025  * Author: E.Chernyaev                              Revised:           *
1558  *                                               1026  *                                                                     *
1559  * Function: Get indices of the next edge.       1027  * Function: Get indices of the next edge.                             *
1560  *           Returns false when the last edge    1028  *           Returns false when the last edge.                         *
1561  *                                               1029  *                                                                     *
1562  ********************************************    1030  ***********************************************************************/
1563 {                                                1031 {
1564   G4int kface1, kface2;                          1032   G4int kface1, kface2;
1565   return GetNextEdgeIndices(i1, i2, edgeFlag,    1033   return GetNextEdgeIndices(i1, i2, edgeFlag, kface1, kface2);
1566 }                                                1034 }
1567                                                  1035 
1568 G4bool                                           1036 G4bool
1569 HepPolyhedron::GetNextEdge(G4Point3D &p1,        1037 HepPolyhedron::GetNextEdge(G4Point3D &p1,
1570                            G4Point3D &p2,        1038                            G4Point3D &p2,
1571                            G4int &edgeFlag) c    1039                            G4int &edgeFlag) const
1572 /********************************************    1040 /***********************************************************************
1573  *                                               1041  *                                                                     *
1574  * Name: HepPolyhedron::GetNextEdge              1042  * Name: HepPolyhedron::GetNextEdge                 Date:    30.09.96  *
1575  * Author: E.Chernyaev                           1043  * Author: E.Chernyaev                              Revised:           *
1576  *                                               1044  *                                                                     *
1577  * Function: Get next edge.                      1045  * Function: Get next edge.                                            *
1578  *           Returns false when the last edge    1046  *           Returns false when the last edge.                         *
1579  *                                               1047  *                                                                     *
1580  ********************************************    1048  ***********************************************************************/
1581 {                                                1049 {
1582   G4int i1,i2;                                   1050   G4int i1,i2;
1583   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF    1051   G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag);
1584   p1 = pV[i1];                                   1052   p1 = pV[i1];
1585   p2 = pV[i2];                                   1053   p2 = pV[i2];
1586   return rep;                                    1054   return rep;
1587 }                                                1055 }
1588                                                  1056 
1589 G4bool                                           1057 G4bool
1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P    1058 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2,
1591                           G4int &edgeFlag, G4    1059                           G4int &edgeFlag, G4int &iface1, G4int &iface2) const
1592 /********************************************    1060 /***********************************************************************
1593  *                                               1061  *                                                                     *
1594  * Name: HepPolyhedron::GetNextEdge              1062  * Name: HepPolyhedron::GetNextEdge                 Date:    17.11.99  *
1595  * Author: E.Chernyaev                           1063  * Author: E.Chernyaev                              Revised:           *
1596  *                                               1064  *                                                                     *
1597  * Function: Get next edge with indices of th    1065  * Function: Get next edge with indices of the faces which share       *
1598  *           the edge.                           1066  *           the edge.                                                 *
1599  *           Returns false when the last edge    1067  *           Returns false when the last edge.                         *
1600  *                                               1068  *                                                                     *
1601  ********************************************    1069  ***********************************************************************/
1602 {                                                1070 {
1603   G4int i1,i2;                                   1071   G4int i1,i2;
1604   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF    1072   G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag,iface1,iface2);
1605   p1 = pV[i1];                                   1073   p1 = pV[i1];
1606   p2 = pV[i2];                                   1074   p2 = pV[i2];
1607   return rep;                                    1075   return rep;
1608 }                                                1076 }
1609                                                  1077 
1610 void HepPolyhedron::GetFacet(G4int iFace, G4i    1078 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes,
1611                             G4int *edgeFlags,    1079                             G4int *edgeFlags, G4int *iFaces) const
1612 /********************************************    1080 /***********************************************************************
1613  *                                               1081  *                                                                     *
1614  * Name: HepPolyhedron::GetFacet                 1082  * Name: HepPolyhedron::GetFacet                    Date:    15.12.99  *
1615  * Author: E.Chernyaev                           1083  * Author: E.Chernyaev                              Revised:           *
1616  *                                               1084  *                                                                     *
1617  * Function: Get face by index                   1085  * Function: Get face by index                                         *
1618  *                                               1086  *                                                                     *
1619  ********************************************    1087  ***********************************************************************/
1620 {                                                1088 {
1621   if (iFace < 1 || iFace > nface) {              1089   if (iFace < 1 || iFace > nface) {
1622     std::cerr                                 << 1090     std::cerr 
1623       << "HepPolyhedron::GetFacet: irrelevant    1091       << "HepPolyhedron::GetFacet: irrelevant index " << iFace
1624       << std::endl;                              1092       << std::endl;
1625     n = 0;                                       1093     n = 0;
1626   }else{                                         1094   }else{
1627     G4int i, k;                                  1095     G4int i, k;
1628     for (i=0; i<4; i++) {                     << 1096     for (i=0; i<4; i++) { 
1629       k = pF[iFace].edge[i].v;                   1097       k = pF[iFace].edge[i].v;
1630       if (k == 0) break;                         1098       if (k == 0) break;
1631       if (iFaces != nullptr) iFaces[i] = pF[i << 1099       if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f;
1632       if (k > 0) {                            << 1100       if (k > 0) { 
1633         iNodes[i] = k;                           1101         iNodes[i] = k;
1634         if (edgeFlags != nullptr) edgeFlags[i << 1102         if (edgeFlags != 0) edgeFlags[i] = 1;
1635       }else{                                     1103       }else{
1636         iNodes[i] = -k;                          1104         iNodes[i] = -k;
1637         if (edgeFlags != nullptr) edgeFlags[i << 1105         if (edgeFlags != 0) edgeFlags[i] = -1;
1638       }                                          1106       }
1639     }                                            1107     }
1640     n = i;                                       1108     n = i;
1641   }                                              1109   }
1642 }                                                1110 }
1643                                                  1111 
1644 void HepPolyhedron::GetFacet(G4int index, G4i    1112 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes,
1645                              G4int *edgeFlags    1113                              G4int *edgeFlags, G4Normal3D *normals) const
1646 /********************************************    1114 /***********************************************************************
1647  *                                               1115  *                                                                     *
1648  * Name: HepPolyhedron::GetFacet                 1116  * Name: HepPolyhedron::GetFacet                    Date:    17.11.99  *
1649  * Author: E.Chernyaev                           1117  * Author: E.Chernyaev                              Revised:           *
1650  *                                               1118  *                                                                     *
1651  * Function: Get face by index                   1119  * Function: Get face by index                                         *
1652  *                                               1120  *                                                                     *
1653  ********************************************    1121  ***********************************************************************/
1654 {                                                1122 {
1655   G4int iNodes[4];                               1123   G4int iNodes[4];
1656   GetFacet(index, n, iNodes, edgeFlags);         1124   GetFacet(index, n, iNodes, edgeFlags);
1657   if (n != 0) {                                  1125   if (n != 0) {
1658     for (G4int i=0; i<n; i++) {                  1126     for (G4int i=0; i<n; i++) {
1659       nodes[i] = pV[iNodes[i]];                  1127       nodes[i] = pV[iNodes[i]];
1660       if (normals != nullptr) normals[i] = Fi << 1128       if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]);
1661     }                                            1129     }
1662   }                                              1130   }
1663 }                                                1131 }
1664                                                  1132 
1665 G4bool                                           1133 G4bool
1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point    1134 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes,
1667                            G4int *edgeFlags,     1135                            G4int *edgeFlags, G4Normal3D *normals) const
1668 /********************************************    1136 /***********************************************************************
1669  *                                               1137  *                                                                     *
1670  * Name: HepPolyhedron::GetNextFacet             1138  * Name: HepPolyhedron::GetNextFacet                Date:    19.11.99  *
1671  * Author: E.Chernyaev                           1139  * Author: E.Chernyaev                              Revised:           *
1672  *                                               1140  *                                                                     *
1673  * Function: Get next face with normals of un    1141  * Function: Get next face with normals of unit length at the nodes.   *
1674  *           Returns false when finished all     1142  *           Returns false when finished all faces.                    *
1675  *                                               1143  *                                                                     *
1676  ********************************************    1144  ***********************************************************************/
1677 {                                                1145 {
1678   static G4ThreadLocal G4int iFace = 1;          1146   static G4ThreadLocal G4int iFace = 1;
1679                                                  1147 
1680   if (edgeFlags == nullptr) {                 << 1148   if (edgeFlags == 0) {
1681     GetFacet(iFace, n, nodes);                   1149     GetFacet(iFace, n, nodes);
1682   }else if (normals == nullptr) {             << 1150   }else if (normals == 0) {
1683     GetFacet(iFace, n, nodes, edgeFlags);        1151     GetFacet(iFace, n, nodes, edgeFlags);
1684   }else{                                         1152   }else{
1685     GetFacet(iFace, n, nodes, edgeFlags, norm    1153     GetFacet(iFace, n, nodes, edgeFlags, normals);
1686   }                                              1154   }
1687                                                  1155 
1688   if (++iFace > nface) {                         1156   if (++iFace > nface) {
1689     iFace  = 1;                                  1157     iFace  = 1;
1690     return false;                                1158     return false;
                                                   >> 1159   }else{
                                                   >> 1160     return true;
1691   }                                              1161   }
1692                                               << 
1693   return true;                                << 
1694 }                                                1162 }
1695                                                  1163 
1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa    1164 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const
1697 /********************************************    1165 /***********************************************************************
1698  *                                               1166  *                                                                     *
1699  * Name: HepPolyhedron::GetNormal                1167  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1700  * Author: E.Chernyaev                           1168  * Author: E.Chernyaev                               Revised:          *
1701  *                                               1169  *                                                                     *
1702  * Function: Get normal of the face given by     1170  * Function: Get normal of the face given by index                     *
1703  *                                               1171  *                                                                     *
1704  ********************************************    1172  ***********************************************************************/
1705 {                                                1173 {
1706   if (iFace < 1 || iFace > nface) {              1174   if (iFace < 1 || iFace > nface) {
1707     std::cerr                                 << 1175     std::cerr 
1708       << "HepPolyhedron::GetNormal: irrelevan << 1176       << "HepPolyhedron::GetNormal: irrelevant index " << iFace 
1709       << std::endl;                              1177       << std::endl;
1710     return G4Normal3D();                         1178     return G4Normal3D();
1711   }                                              1179   }
1712                                                  1180 
1713   G4int i0  = std::abs(pF[iFace].edge[0].v);     1181   G4int i0  = std::abs(pF[iFace].edge[0].v);
1714   G4int i1  = std::abs(pF[iFace].edge[1].v);     1182   G4int i1  = std::abs(pF[iFace].edge[1].v);
1715   G4int i2  = std::abs(pF[iFace].edge[2].v);     1183   G4int i2  = std::abs(pF[iFace].edge[2].v);
1716   G4int i3  = std::abs(pF[iFace].edge[3].v);     1184   G4int i3  = std::abs(pF[iFace].edge[3].v);
1717   if (i3 == 0) i3 = i0;                          1185   if (i3 == 0) i3 = i0;
1718   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[    1186   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]);
1719 }                                                1187 }
1720                                                  1188 
1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int    1189 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const
1722 /********************************************    1190 /***********************************************************************
1723  *                                               1191  *                                                                     *
1724  * Name: HepPolyhedron::GetNormal                1192  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1725  * Author: E.Chernyaev                           1193  * Author: E.Chernyaev                               Revised:          *
1726  *                                               1194  *                                                                     *
1727  * Function: Get unit normal of the face give    1195  * Function: Get unit normal of the face given by index                *
1728  *                                               1196  *                                                                     *
1729  ********************************************    1197  ***********************************************************************/
1730 {                                                1198 {
1731   if (iFace < 1 || iFace > nface) {              1199   if (iFace < 1 || iFace > nface) {
1732     std::cerr                                 << 1200     std::cerr 
1733       << "HepPolyhedron::GetUnitNormal: irrel    1201       << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace
1734       << std::endl;                              1202       << std::endl;
1735     return G4Normal3D();                         1203     return G4Normal3D();
1736   }                                              1204   }
1737                                                  1205 
1738   G4int i0  = std::abs(pF[iFace].edge[0].v);     1206   G4int i0  = std::abs(pF[iFace].edge[0].v);
1739   G4int i1  = std::abs(pF[iFace].edge[1].v);     1207   G4int i1  = std::abs(pF[iFace].edge[1].v);
1740   G4int i2  = std::abs(pF[iFace].edge[2].v);     1208   G4int i2  = std::abs(pF[iFace].edge[2].v);
1741   G4int i3  = std::abs(pF[iFace].edge[3].v);     1209   G4int i3  = std::abs(pF[iFace].edge[3].v);
1742   if (i3 == 0) i3 = i0;                          1210   if (i3 == 0) i3 = i0;
1743   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1211   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit();
1744 }                                                1212 }
1745                                                  1213 
1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3    1214 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const
1747 /********************************************    1215 /***********************************************************************
1748  *                                               1216  *                                                                     *
1749  * Name: HepPolyhedron::GetNextNormal            1217  * Name: HepPolyhedron::GetNextNormal               Date:    22.07.96  *
1750  * Author: John Allison                          1218  * Author: John Allison                             Revised: 19.11.99  *
1751  *                                               1219  *                                                                     *
1752  * Function: Get normals of each face in face    1220  * Function: Get normals of each face in face order.  Returns false    *
1753  *           when finished all faces.            1221  *           when finished all faces.                                  *
1754  *                                               1222  *                                                                     *
1755  ********************************************    1223  ***********************************************************************/
1756 {                                                1224 {
1757   static G4ThreadLocal G4int iFace = 1;          1225   static G4ThreadLocal G4int iFace = 1;
1758   normal = GetNormal(iFace);                     1226   normal = GetNormal(iFace);
1759   if (++iFace > nface) {                         1227   if (++iFace > nface) {
1760     iFace = 1;                                   1228     iFace = 1;
1761     return false;                                1229     return false;
                                                   >> 1230   }else{
                                                   >> 1231     return true;
1762   }                                              1232   }
1763   return true;                                << 
1764 }                                                1233 }
1765                                                  1234 
1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor    1235 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const
1767 /********************************************    1236 /***********************************************************************
1768  *                                               1237  *                                                                     *
1769  * Name: HepPolyhedron::GetNextUnitNormal        1238  * Name: HepPolyhedron::GetNextUnitNormal           Date:    16.09.96  *
1770  * Author: E.Chernyaev                           1239  * Author: E.Chernyaev                              Revised:           *
1771  *                                               1240  *                                                                     *
1772  * Function: Get normals of unit length of ea    1241  * Function: Get normals of unit length of each face in face order.    *
1773  *           Returns false when finished all     1242  *           Returns false when finished all faces.                    *
1774  *                                               1243  *                                                                     *
1775  ********************************************    1244  ***********************************************************************/
1776 {                                                1245 {
1777   G4bool rep = GetNextNormal(normal);            1246   G4bool rep = GetNextNormal(normal);
1778   normal = normal.unit();                        1247   normal = normal.unit();
1779   return rep;                                    1248   return rep;
1780 }                                                1249 }
1781                                                  1250 
1782 G4double HepPolyhedron::GetSurfaceArea() cons    1251 G4double HepPolyhedron::GetSurfaceArea() const
1783 /********************************************    1252 /***********************************************************************
1784  *                                               1253  *                                                                     *
1785  * Name: HepPolyhedron::GetSurfaceArea           1254  * Name: HepPolyhedron::GetSurfaceArea              Date:    25.05.01  *
1786  * Author: E.Chernyaev                           1255  * Author: E.Chernyaev                              Revised:           *
1787  *                                               1256  *                                                                     *
1788  * Function: Returns area of the surface of t    1257  * Function: Returns area of the surface of the polyhedron.            *
1789  *                                               1258  *                                                                     *
1790  ********************************************    1259  ***********************************************************************/
1791 {                                                1260 {
1792   G4double srf = 0.;                             1261   G4double srf = 0.;
1793   for (G4int iFace=1; iFace<=nface; iFace++)     1262   for (G4int iFace=1; iFace<=nface; iFace++) {
1794     G4int i0 = std::abs(pF[iFace].edge[0].v);    1263     G4int i0 = std::abs(pF[iFace].edge[0].v);
1795     G4int i1 = std::abs(pF[iFace].edge[1].v);    1264     G4int i1 = std::abs(pF[iFace].edge[1].v);
1796     G4int i2 = std::abs(pF[iFace].edge[2].v);    1265     G4int i2 = std::abs(pF[iFace].edge[2].v);
1797     G4int i3 = std::abs(pF[iFace].edge[3].v);    1266     G4int i3 = std::abs(pF[iFace].edge[3].v);
1798     if (i3 == 0) i3 = i0;                        1267     if (i3 == 0) i3 = i0;
1799     srf += ((pV[i2] - pV[i0]).cross(pV[i3] -     1268     srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag();
1800   }                                              1269   }
1801   return srf/2.;                                 1270   return srf/2.;
1802 }                                                1271 }
1803                                                  1272 
1804 G4double HepPolyhedron::GetVolume() const        1273 G4double HepPolyhedron::GetVolume() const
1805 /********************************************    1274 /***********************************************************************
1806  *                                               1275  *                                                                     *
1807  * Name: HepPolyhedron::GetVolume                1276  * Name: HepPolyhedron::GetVolume                   Date:    25.05.01  *
1808  * Author: E.Chernyaev                           1277  * Author: E.Chernyaev                              Revised:           *
1809  *                                               1278  *                                                                     *
1810  * Function: Returns volume of the polyhedron    1279  * Function: Returns volume of the polyhedron.                         *
1811  *                                               1280  *                                                                     *
1812  ********************************************    1281  ***********************************************************************/
1813 {                                                1282 {
1814   G4double v = 0.;                               1283   G4double v = 0.;
1815   for (G4int iFace=1; iFace<=nface; iFace++)     1284   for (G4int iFace=1; iFace<=nface; iFace++) {
1816     G4int i0 = std::abs(pF[iFace].edge[0].v);    1285     G4int i0 = std::abs(pF[iFace].edge[0].v);
1817     G4int i1 = std::abs(pF[iFace].edge[1].v);    1286     G4int i1 = std::abs(pF[iFace].edge[1].v);
1818     G4int i2 = std::abs(pF[iFace].edge[2].v);    1287     G4int i2 = std::abs(pF[iFace].edge[2].v);
1819     G4int i3 = std::abs(pF[iFace].edge[3].v);    1288     G4int i3 = std::abs(pF[iFace].edge[3].v);
1820     G4Point3D pt;                                1289     G4Point3D pt;
1821     if (i3 == 0) {                               1290     if (i3 == 0) {
1822       i3 = i0;                                   1291       i3 = i0;
1823       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);     1292       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);
1824     }else{                                       1293     }else{
1825       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.    1294       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25;
1826     }                                            1295     }
1827     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1296     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt);
1828   }                                              1297   }
1829   return v/6.;                                   1298   return v/6.;
1830 }                                                1299 }
1831                                                  1300 
1832 G4int                                            1301 G4int
1833 HepPolyhedron::createTwistedTrap(G4double Dz,    1302 HepPolyhedron::createTwistedTrap(G4double Dz,
1834                                  const G4doub    1303                                  const G4double xy1[][2],
1835                                  const G4doub    1304                                  const G4double xy2[][2])
1836 /********************************************    1305 /***********************************************************************
1837  *                                               1306  *                                                                     *
1838  * Name: createTwistedTrap                       1307  * Name: createTwistedTrap                           Date:    05.11.02 *
1839  * Author: E.Chernyaev (IHEP/Protvino)           1308  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1840  *                                               1309  *                                                                     *
1841  * Function: Creates polyhedron for twisted t    1310  * Function: Creates polyhedron for twisted trapezoid                  *
1842  *                                               1311  *                                                                     *
1843  * Input: Dz       - half-length along Z         1312  * Input: Dz       - half-length along Z             8----7            *
1844  *        xy1[2,4] - quadrilateral at Z=-Dz      1313  *        xy1[2,4] - quadrilateral at Z=-Dz       5----6  !            *
1845  *        xy2[2,4] - quadrilateral at Z=+Dz      1314  *        xy2[2,4] - quadrilateral at Z=+Dz       !  4-!--3            *
1846  *                                               1315  *                                                1----2               *
1847  *                                               1316  *                                                                     *
1848  ********************************************    1317  ***********************************************************************/
1849 {                                                1318 {
1850   AllocateMemory(12,18);                         1319   AllocateMemory(12,18);
1851                                                  1320 
1852   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz)    1321   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz);
1853   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz)    1322   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz);
1854   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz)    1323   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz);
1855   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz)    1324   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz);
1856                                                  1325 
1857   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz)    1326   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz);
1858   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz)    1327   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz);
1859   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz)    1328   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz);
1860   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz)    1329   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz);
1861                                                  1330 
1862   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;         1331   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;
1863   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;         1332   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;
1864   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;         1333   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;
1865   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;         1334   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;
1866                                                  1335 
1867   enum {DUMMY, BOTTOM,                           1336   enum {DUMMY, BOTTOM,
1868         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,    1337         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,  LEFT_BACK,
1869         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,    1338         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,  BACK_RIGHT,
1870         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP    1339         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP, RIGHT_FRONT,
1871         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP    1340         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP, FRONT_LEFT,
1872         TOP};                                    1341         TOP};
1873                                                  1342 
1874   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM    1343   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM);
1875                                                  1344 
1876   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,    1345   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,  -12,LEFT_BACK,    0,0);
1877   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,      1346   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,    -12,LEFT_BOTTOM,  0,0);
1878   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,     1347   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,   -12,LEFT_FRONT,   0,0);
1879   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM    1348   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM, -12,LEFT_TOP,     0,0);
1880                                                  1349 
1881   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,     1350   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,   -11,BACK_RIGHT,   0,0);
1882   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,      1351   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,    -11,BACK_BOTTOM,  0,0);
1883   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,    1352   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,  -11,BACK_LEFT,    0,0);
1884   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM    1353   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP,     0,0);
1885                                                  1354 
1886   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,    1355   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,  -10,RIGHT_FRONT,  0,0);
1887   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,     1356   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,   -10,RIGHT_BOTTOM, 0,0);
1888   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT    1357   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT, -10,RIGHT_BACK,   0,0);
1889   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO    1358   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP,    0,0);
1890                                                  1359 
1891   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT    1360   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT,  -9,FRONT_LEFT,   0,0);
1892   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,     1361   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,    -9,FRONT_BOTTOM, 0,0);
1893   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,    1362   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,   -9,FRONT_RIGHT,  0,0);
1894   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO    1363   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP,    0,0);
1895                                               << 1364  
1896   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,    1365   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP);
1897                                                  1366 
1898   return 0;                                      1367   return 0;
1899 }                                                1368 }
1900                                                  1369 
1901 G4int                                            1370 G4int
1902 HepPolyhedron::createPolyhedron(G4int Nnodes,    1371 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces,
1903                                 const G4doubl    1372                                 const G4double xyz[][3],
1904                                 const G4int      1373                                 const G4int  faces[][4])
1905 /********************************************    1374 /***********************************************************************
1906  *                                               1375  *                                                                     *
1907  * Name: createPolyhedron                        1376  * Name: createPolyhedron                            Date:    05.11.02 *
1908  * Author: E.Chernyaev (IHEP/Protvino)           1377  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1909  *                                               1378  *                                                                     *
1910  * Function: Creates user defined polyhedron     1379  * Function: Creates user defined polyhedron                           *
1911  *                                               1380  *                                                                     *
1912  * Input: Nnodes  - number of nodes              1381  * Input: Nnodes  - number of nodes                                    *
1913  *        Nfaces  - number of faces              1382  *        Nfaces  - number of faces                                    *
1914  *        nodes[][3] - node coordinates          1383  *        nodes[][3] - node coordinates                                *
1915  *        faces[][4] - faces                     1384  *        faces[][4] - faces                                           *
1916  *                                               1385  *                                                                     *
1917  ********************************************    1386  ***********************************************************************/
1918 {                                                1387 {
1919   AllocateMemory(Nnodes, Nfaces);                1388   AllocateMemory(Nnodes, Nfaces);
1920   if (nvert == 0) return 1;                      1389   if (nvert == 0) return 1;
1921                                                  1390 
1922   for (G4int i=0; i<Nnodes; i++) {               1391   for (G4int i=0; i<Nnodes; i++) {
1923     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1],    1392     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]);
1924   }                                              1393   }
1925   for (G4int k=0; k<Nfaces; k++) {               1394   for (G4int k=0; k<Nfaces; k++) {
1926     pF[k+1] = G4Facet(faces[k][0],0,faces[k][    1395     pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0);
1927   }                                              1396   }
1928   SetReferences();                               1397   SetReferences();
1929   return 0;                                      1398   return 0;
1930 }                                                1399 }
1931                                                  1400 
1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 
1933   /****************************************** << 
1934    *                                          << 
1935    * Name: vertexUnweightedMean               << 
1936    * Author: S. Boogert (Manchester)          << 
1937    *                                          << 
1938    * Function: Calculate the unweighted mean  << 
1939    * in the polyhedron. Not to be confused wi << 
1940    * centre of mass                           << 
1941    ****************************************** << 
1942                                               << 
1943   auto centre = G4Point3D();                  << 
1944   for(int i=1;i<=nvert;i++) {                 << 
1945     centre += pV[i];                          << 
1946   }                                           << 
1947   centre = centre/nvert;                      << 
1948   return centre;                              << 
1949 }                                             << 
1950                                               << 
1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double    1401 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2,
1952                                      G4double    1402                                      G4double Dy1, G4double Dy2,
1953                                      G4double    1403                                      G4double Dz)
1954 /********************************************    1404 /***********************************************************************
1955  *                                               1405  *                                                                     *
1956  * Name: HepPolyhedronTrd2                       1406  * Name: HepPolyhedronTrd2                           Date:    22.07.96 *
1957  * Author: E.Chernyaev (IHEP/Protvino)           1407  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1958  *                                               1408  *                                                                     *
1959  * Function: Create GEANT4 TRD2-trapezoid        1409  * Function: Create GEANT4 TRD2-trapezoid                              *
1960  *                                               1410  *                                                                     *
1961  * Input: Dx1 - half-length along X at -Dz       1411  * Input: Dx1 - half-length along X at -Dz           8----7            *
1962  *        Dx2 - half-length along X ay +Dz       1412  *        Dx2 - half-length along X ay +Dz        5----6  !            *
1963  *        Dy1 - half-length along Y ay -Dz       1413  *        Dy1 - half-length along Y ay -Dz        !  4-!--3            *
1964  *        Dy2 - half-length along Y ay +Dz       1414  *        Dy2 - half-length along Y ay +Dz        1----2               *
1965  *        Dz  - half-length along Z              1415  *        Dz  - half-length along Z                                    *
1966  *                                               1416  *                                                                     *
1967  ********************************************    1417  ***********************************************************************/
1968 {                                                1418 {
1969   AllocateMemory(8,6);                           1419   AllocateMemory(8,6);
1970                                                  1420 
1971   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);              1421   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);
1972   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);              1422   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);
1973   pV[3] = G4Point3D( Dx1, Dy1,-Dz);              1423   pV[3] = G4Point3D( Dx1, Dy1,-Dz);
1974   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);              1424   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);
1975   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);              1425   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);
1976   pV[6] = G4Point3D( Dx2,-Dy2, Dz);              1426   pV[6] = G4Point3D( Dx2,-Dy2, Dz);
1977   pV[7] = G4Point3D( Dx2, Dy2, Dz);              1427   pV[7] = G4Point3D( Dx2, Dy2, Dz);
1978   pV[8] = G4Point3D(-Dx2, Dy2, Dz);              1428   pV[8] = G4Point3D(-Dx2, Dy2, Dz);
1979                                                  1429 
1980   CreatePrism();                                 1430   CreatePrism();
1981 }                                                1431 }
1982                                                  1432 
1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1433 HepPolyhedronTrd2::~HepPolyhedronTrd2() {}
1984                                                  1434 
1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double    1435 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2,
1986                                      G4double    1436                                      G4double Dy, G4double Dz)
1987   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {    1437   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {}
1988                                                  1438 
1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1439 HepPolyhedronTrd1::~HepPolyhedronTrd1() {}
1990                                                  1440 
1991 HepPolyhedronBox::HepPolyhedronBox(G4double D    1441 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz)
1992   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}     1442   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}
1993                                                  1443 
1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1444 HepPolyhedronBox::~HepPolyhedronBox() {}
1995                                                  1445 
1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double    1446 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz,
1997                                      G4double    1447                                      G4double Theta,
1998                                      G4double    1448                                      G4double Phi,
1999                                      G4double    1449                                      G4double Dy1,
2000                                      G4double    1450                                      G4double Dx1,
2001                                      G4double    1451                                      G4double Dx2,
2002                                      G4double    1452                                      G4double Alp1,
2003                                      G4double    1453                                      G4double Dy2,
2004                                      G4double    1454                                      G4double Dx3,
2005                                      G4double    1455                                      G4double Dx4,
2006                                      G4double    1456                                      G4double Alp2)
2007 /********************************************    1457 /***********************************************************************
2008  *                                               1458  *                                                                     *
2009  * Name: HepPolyhedronTrap                       1459  * Name: HepPolyhedronTrap                           Date:    20.11.96 *
2010  * Author: E.Chernyaev                           1460  * Author: E.Chernyaev                               Revised:          *
2011  *                                               1461  *                                                                     *
2012  * Function: Create GEANT4 TRAP-trapezoid        1462  * Function: Create GEANT4 TRAP-trapezoid                              *
2013  *                                               1463  *                                                                     *
2014  * Input: DZ   - half-length in Z                1464  * Input: DZ   - half-length in Z                                      *
2015  *        Theta,Phi - polar angles of the lin    1465  *        Theta,Phi - polar angles of the line joining centres of the  *
2016  *                    faces at Z=-Dz and Z=+D    1466  *                    faces at Z=-Dz and Z=+Dz                         *
2017  *        Dy1  - half-length in Y of the face    1467  *        Dy1  - half-length in Y of the face at Z=-Dz                 *
2018  *        Dx1  - half-length in X of low edge    1468  *        Dx1  - half-length in X of low edge of the face at Z=-Dz     *
2019  *        Dx2  - half-length in X of top edge    1469  *        Dx2  - half-length in X of top edge of the face at Z=-Dz     *
2020  *        Alp1 - angle between Y-axis and the    1470  *        Alp1 - angle between Y-axis and the median joining top and   *
2021  *               low edges of the face at Z=-    1471  *               low edges of the face at Z=-Dz                        *
2022  *        Dy2  - half-length in Y of the face    1472  *        Dy2  - half-length in Y of the face at Z=+Dz                 *
2023  *        Dx3  - half-length in X of low edge    1473  *        Dx3  - half-length in X of low edge of the face at Z=+Dz     *
2024  *        Dx4  - half-length in X of top edge    1474  *        Dx4  - half-length in X of top edge of the face at Z=+Dz     *
2025  *        Alp2 - angle between Y-axis and the    1475  *        Alp2 - angle between Y-axis and the median joining top and   *
2026  *               low edges of the face at Z=+    1476  *               low edges of the face at Z=+Dz                        *
2027  *                                               1477  *                                                                     *
2028  ********************************************    1478  ***********************************************************************/
2029 {                                                1479 {
2030   G4double DzTthetaCphi = Dz*std::tan(Theta)*    1480   G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi);
2031   G4double DzTthetaSphi = Dz*std::tan(Theta)*    1481   G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi);
2032   G4double Dy1Talp1 = Dy1*std::tan(Alp1);        1482   G4double Dy1Talp1 = Dy1*std::tan(Alp1);
2033   G4double Dy2Talp2 = Dy2*std::tan(Alp2);        1483   G4double Dy2Talp2 = Dy2*std::tan(Alp2);
2034                                               << 1484   
2035   AllocateMemory(8,6);                           1485   AllocateMemory(8,6);
2036                                                  1486 
2037   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx    1487   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz);
2038   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx    1488   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz);
2039   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx    1489   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz);
2040   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx    1490   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz);
2041   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx    1491   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz);
2042   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx    1492   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz);
2043   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx    1493   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz);
2044   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx    1494   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz);
2045                                                  1495 
2046   CreatePrism();                                 1496   CreatePrism();
2047 }                                                1497 }
2048                                                  1498 
2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1499 HepPolyhedronTrap::~HepPolyhedronTrap() {}
2050                                                  1500 
2051 HepPolyhedronPara::HepPolyhedronPara(G4double    1501 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz,
2052                                      G4double    1502                                      G4double Alpha, G4double Theta,
2053                                      G4double    1503                                      G4double Phi)
2054   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx,    1504   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {}
2055                                                  1505 
2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1506 HepPolyhedronPara::~HepPolyhedronPara() {}
2057                                                  1507 
2058 HepPolyhedronParaboloid::HepPolyhedronParabol    1508 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1,
2059                                                  1509                                                  G4double r2,
2060                                                  1510                                                  G4double dz,
2061                                                  1511                                                  G4double sPhi,
2062                                               << 1512                                                  G4double dPhi) 
2063 /********************************************    1513 /***********************************************************************
2064  *                                               1514  *                                                                     *
2065  * Name: HepPolyhedronParaboloid                 1515  * Name: HepPolyhedronParaboloid                     Date:    28.06.07 *
2066  * Author: L.Lindroos, T.Nikitina (CERN), Jul    1516  * Author: L.Lindroos, T.Nikitina (CERN), July 2007  Revised: 28.06.07 *
2067  *                                               1517  *                                                                     *
2068  * Function: Constructor for paraboloid          1518  * Function: Constructor for paraboloid                                *
2069  *                                               1519  *                                                                     *
2070  * Input: r1    - inside and outside radiuses    1520  * Input: r1    - inside and outside radiuses at -Dz                   *
2071  *        r2    - inside and outside radiuses    1521  *        r2    - inside and outside radiuses at +Dz                   *
2072  *        dz    - half length in Z               1522  *        dz    - half length in Z                                     *
2073  *        sPhi  - starting angle of the segme    1523  *        sPhi  - starting angle of the segment                        *
2074  *        dPhi  - segment range                  1524  *        dPhi  - segment range                                        *
2075  *                                               1525  *                                                                     *
2076  ********************************************    1526  ***********************************************************************/
2077 {                                                1527 {
2078   static const G4double wholeCircle=twopi;       1528   static const G4double wholeCircle=twopi;
2079                                                  1529 
2080   //   C H E C K   I N P U T   P A R A M E T     1530   //   C H E C K   I N P U T   P A R A M E T E R S
2081                                                  1531 
2082   G4int k = 0;                                   1532   G4int k = 0;
2083   if (r1 < 0. || r2 <= 0.)        k = 1;         1533   if (r1 < 0. || r2 <= 0.)        k = 1;
2084                                                  1534 
2085   if (dz <= 0.) k += 2;                          1535   if (dz <= 0.) k += 2;
2086                                                  1536 
2087   G4double phi1, phi2, dphi;                     1537   G4double phi1, phi2, dphi;
2088                                                  1538 
2089   if(dPhi < 0.)                                  1539   if(dPhi < 0.)
2090   {                                              1540   {
2091     phi2 = sPhi; phi1 = phi2 + dPhi;             1541     phi2 = sPhi; phi1 = phi2 + dPhi;
2092   }                                              1542   }
2093   else if(dPhi == 0.)                         << 1543   else if(dPhi == 0.) 
2094   {                                              1544   {
2095     phi1 = sPhi; phi2 = phi1 + wholeCircle;      1545     phi1 = sPhi; phi2 = phi1 + wholeCircle;
2096   }                                              1546   }
2097   else                                           1547   else
2098   {                                              1548   {
2099     phi1 = sPhi; phi2 = phi1 + dPhi;             1549     phi1 = sPhi; phi2 = phi1 + dPhi;
2100   }                                              1550   }
2101   dphi  = phi2 - phi1;                           1551   dphi  = phi2 - phi1;
2102                                                  1552 
2103   if (std::abs(dphi-wholeCircle) < perMillion    1553   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2104   if (dphi > wholeCircle) k += 4;             << 1554   if (dphi > wholeCircle) k += 4; 
2105                                                  1555 
2106   if (k != 0) {                                  1556   if (k != 0) {
2107     std::cerr << "HepPolyhedronParaboloid: er    1557     std::cerr << "HepPolyhedronParaboloid: error in input parameters";
2108     if ((k & 1) != 0) std::cerr << " (radiuse    1558     if ((k & 1) != 0) std::cerr << " (radiuses)";
2109     if ((k & 2) != 0) std::cerr << " (half-le    1559     if ((k & 2) != 0) std::cerr << " (half-length)";
2110     if ((k & 4) != 0) std::cerr << " (angles)    1560     if ((k & 4) != 0) std::cerr << " (angles)";
2111     std::cerr << std::endl;                      1561     std::cerr << std::endl;
2112     std::cerr << " r1=" << r1;                   1562     std::cerr << " r1=" << r1;
2113     std::cerr << " r2=" << r2;                   1563     std::cerr << " r2=" << r2;
2114     std::cerr << " dz=" << dz << " sPhi=" <<     1564     std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi
2115               << std::endl;                      1565               << std::endl;
2116     return;                                      1566     return;
2117   }                                              1567   }
2118                                               << 1568   
2119   //   P R E P A R E   T W O   P O L Y L I N     1569   //   P R E P A R E   T W O   P O L Y L I N E S
2120                                                  1570 
2121   G4int n = GetNumberOfRotationSteps();          1571   G4int n = GetNumberOfRotationSteps();
2122   G4double dl = (r2 - r1) / n;                   1572   G4double dl = (r2 - r1) / n;
2123   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;        1573   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;
2124   G4double k2 = (r2*r2 + r1*r1) / 2;             1574   G4double k2 = (r2*r2 + r1*r1) / 2;
2125                                                  1575 
2126   auto zz = new G4double[n + 2], rr = new G4d << 1576   G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2];
2127                                                  1577 
2128   zz[0] = dz;                                    1578   zz[0] = dz;
2129   rr[0] = r2;                                    1579   rr[0] = r2;
2130                                                  1580 
2131   for(G4int i = 1; i < n - 1; i++)               1581   for(G4int i = 1; i < n - 1; i++)
2132   {                                              1582   {
2133     rr[i] = rr[i-1] - dl;                        1583     rr[i] = rr[i-1] - dl;
2134     zz[i] = (rr[i]*rr[i] - k2) / k1;             1584     zz[i] = (rr[i]*rr[i] - k2) / k1;
2135     if(rr[i] < 0)                                1585     if(rr[i] < 0)
2136     {                                            1586     {
2137       rr[i] = 0;                                 1587       rr[i] = 0;
2138       zz[i] = 0;                                 1588       zz[i] = 0;
2139     }                                            1589     }
2140   }                                              1590   }
2141                                                  1591 
2142   zz[n-1] = -dz;                                 1592   zz[n-1] = -dz;
2143   rr[n-1] = r1;                                  1593   rr[n-1] = r1;
2144                                                  1594 
2145   zz[n] = dz;                                    1595   zz[n] = dz;
2146   rr[n] = 0;                                     1596   rr[n] = 0;
2147                                                  1597 
2148   zz[n+1] = -dz;                                 1598   zz[n+1] = -dz;
2149   rr[n+1] = 0;                                   1599   rr[n+1] = 0;
2150                                                  1600 
2151   //   R O T A T E    P O L Y L I N E S          1601   //   R O T A T E    P O L Y L I N E S
2152                                                  1602 
2153   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr,  << 1603   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 
2154   SetReferences();                               1604   SetReferences();
2155                                                  1605 
2156   delete [] zz;                                  1606   delete [] zz;
2157   delete [] rr;                                  1607   delete [] rr;
2158 }                                                1608 }
2159                                                  1609 
2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1610 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {}
2161                                                  1611 
2162 HepPolyhedronHype::HepPolyhedronHype(G4double    1612 HepPolyhedronHype::HepPolyhedronHype(G4double r1,
2163                                      G4double    1613                                      G4double r2,
2164                                      G4double    1614                                      G4double sqrtan1,
2165                                      G4double    1615                                      G4double sqrtan2,
2166                                      G4double << 1616                                      G4double halfZ) 
2167 /********************************************    1617 /***********************************************************************
2168  *                                               1618  *                                                                     *
2169  * Name: HepPolyhedronHype                       1619  * Name: HepPolyhedronHype                           Date:    14.04.08 *
2170  * Author: Tatiana Nikitina (CERN)               1620  * Author: Tatiana Nikitina (CERN)                   Revised: 14.04.08 *
2171  *         Evgueni Tcherniaev                 << 
2172  *                                               1621  *                                                                     *
2173  * Function: Constructor for Hype                1622  * Function: Constructor for Hype                                      *
2174  *                                               1623  *                                                                     *
2175  * Input: r1       - inside radius at z=0        1624  * Input: r1       - inside radius at z=0                              *
2176  *        r2       - outside radiuses at z=0     1625  *        r2       - outside radiuses at z=0                           *
2177  *        sqrtan1  - sqr of tan of Inner Ster    1626  *        sqrtan1  - sqr of tan of Inner Stereo Angle                  *
2178  *        sqrtan2  - sqr of tan of Outer Ster    1627  *        sqrtan2  - sqr of tan of Outer Stereo Angle                  *
2179  *        halfZ    - half length in Z            1628  *        halfZ    - half length in Z                                  *
2180  *                                               1629  *                                                                     *
2181  ********************************************    1630  ***********************************************************************/
2182 {                                                1631 {
2183   static const G4double wholeCircle = twopi;  << 1632   static const G4double wholeCircle=twopi;
2184                                                  1633 
2185   //   C H E C K   I N P U T   P A R A M E T     1634   //   C H E C K   I N P U T   P A R A M E T E R S
2186                                                  1635 
2187   G4int k = 0;                                   1636   G4int k = 0;
2188   if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1;  << 1637   if (r2 < 0. || r1 < 0. )        k = 1;
2189   if (halfZ <= 0.) k += 2;                    << 1638   if (r1 > r2 )                   k = 1;
2190   if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4;    << 1639   if (r1 == r2)                   k = 1;
2191                                                  1640 
                                                   >> 1641   if (halfZ <= 0.) k += 2;
                                                   >> 1642  
                                                   >> 1643   if (sqrtan1<0.||sqrtan2<0.) k += 4;  
                                                   >> 1644  
2192   if (k != 0)                                    1645   if (k != 0)
2193   {                                              1646   {
2194     std::cerr << "HepPolyhedronHype: error in    1647     std::cerr << "HepPolyhedronHype: error in input parameters";
2195     if ((k & 1) != 0) std::cerr << " (radiuse    1648     if ((k & 1) != 0) std::cerr << " (radiuses)";
2196     if ((k & 2) != 0) std::cerr << " (half-le    1649     if ((k & 2) != 0) std::cerr << " (half-length)";
2197     if ((k & 4) != 0) std::cerr << " (angles)    1650     if ((k & 4) != 0) std::cerr << " (angles)";
2198     std::cerr << std::endl;                      1651     std::cerr << std::endl;
2199     std::cerr << " r1=" << r1 << " r2=" << r2    1652     std::cerr << " r1=" << r1 << " r2=" << r2;
2200     std::cerr << " halfZ=" << halfZ << " sqrT    1653     std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1
2201               << " sqrTan2=" << sqrtan2          1654               << " sqrTan2=" << sqrtan2
2202               << std::endl;                      1655               << std::endl;
2203     return;                                      1656     return;
2204   }                                              1657   }
2205                                               << 1658   
2206   //   P R E P A R E   T W O   P O L Y L I N     1659   //   P R E P A R E   T W O   P O L Y L I N E S
2207                                                  1660 
2208   G4int ns = std::max(3, GetNumberOfRotationS << 1661   G4int n = GetNumberOfRotationSteps();
2209   G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1;   << 1662   G4double dz = 2.*halfZ / n;
2210   G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1;   << 1663   G4double k1 = r1*r1;
2211   auto  zz = new G4double[nz1 + nz2];         << 1664   G4double k2 = r2*r2;
2212   auto  rr = new G4double[nz1 + nz2];         << 1665 
2213                                               << 1666   G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1];
2214   // external polyline                        << 1667 
2215   G4double dz2 = 2.*halfZ/(nz2 - 1);          << 1668   zz[0] = halfZ;
2216   for(G4int i = 0; i < nz2; ++i)              << 1669   rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2);
                                                   >> 1670 
                                                   >> 1671   for(G4int i = 1; i < n-1; i++)
2217   {                                              1672   {
2218     zz[i] = halfZ - dz2*i;                    << 1673     zz[i] = zz[i-1] - dz;
2219     rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1674     rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2);
2220   }                                              1675   }
2221                                                  1676 
2222   // internal polyline                        << 1677   zz[n-1] = -halfZ;
2223   G4double dz1 = 2.*halfZ/(nz1 - 1);          << 1678   rr[n-1] = rr[0];
2224   for(G4int i = 0; i < nz1; ++i)              << 1679 
                                                   >> 1680   zz[n] = halfZ;
                                                   >> 1681   rr[n] =  std::sqrt(sqrtan1*halfZ*halfZ+k1);
                                                   >> 1682 
                                                   >> 1683   for(G4int i = n+1; i < n+n; i++)
2225   {                                              1684   {
2226     G4int j = nz2 + i;                        << 1685     zz[i] = zz[i-1] - dz;
2227     zz[j] = halfZ - dz1*i;                    << 1686     rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1);
2228     rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 
2229   }                                              1687   }
                                                   >> 1688   zz[n+n] = -halfZ;
                                                   >> 1689   rr[n+n] = rr[n];
2230                                                  1690 
2231   //   R O T A T E    P O L Y L I N E S          1691   //   R O T A T E    P O L Y L I N E S
2232                                                  1692 
2233   RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1693   RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 
2234   SetReferences();                               1694   SetReferences();
2235                                                  1695 
2236   delete [] zz;                                  1696   delete [] zz;
2237   delete [] rr;                                  1697   delete [] rr;
2238 }                                                1698 }
2239                                                  1699 
2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1700 HepPolyhedronHype::~HepPolyhedronHype() {}
2241                                                  1701 
2242 HepPolyhedronCons::HepPolyhedronCons(G4double    1702 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1,
2243                                      G4double    1703                                      G4double Rmx1,
2244                                      G4double    1704                                      G4double Rmn2,
2245                                      G4double << 1705                                      G4double Rmx2, 
2246                                      G4double    1706                                      G4double Dz,
2247                                      G4double    1707                                      G4double Phi1,
2248                                      G4double << 1708                                      G4double Dphi) 
2249 /********************************************    1709 /***********************************************************************
2250  *                                               1710  *                                                                     *
2251  * Name: HepPolyhedronCons::HepPolyhedronCons    1711  * Name: HepPolyhedronCons::HepPolyhedronCons        Date:    15.12.96 *
2252  * Author: E.Chernyaev (IHEP/Protvino)           1712  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 15.12.96 *
2253  *                                               1713  *                                                                     *
2254  * Function: Constructor for CONS, TUBS, CONE    1714  * Function: Constructor for CONS, TUBS, CONE, TUBE                    *
2255  *                                               1715  *                                                                     *
2256  * Input: Rmn1, Rmx1 - inside and outside rad    1716  * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz              *
2257  *        Rmn2, Rmx2 - inside and outside rad    1717  *        Rmn2, Rmx2 - inside and outside radiuses at +Dz              *
2258  *        Dz         - half length in Z          1718  *        Dz         - half length in Z                                *
2259  *        Phi1       - starting angle of the     1719  *        Phi1       - starting angle of the segment                   *
2260  *        Dphi       - segment range             1720  *        Dphi       - segment range                                   *
2261  *                                               1721  *                                                                     *
2262  ********************************************    1722  ***********************************************************************/
2263 {                                                1723 {
2264   static const G4double wholeCircle=twopi;       1724   static const G4double wholeCircle=twopi;
2265                                                  1725 
2266   //   C H E C K   I N P U T   P A R A M E T     1726   //   C H E C K   I N P U T   P A R A M E T E R S
2267                                                  1727 
2268   G4int k = 0;                                   1728   G4int k = 0;
2269   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. ||     1729   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.)        k = 1;
2270   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                1730   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                              k = 1;
2271   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)              1731   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)                            k = 1;
2272                                                  1732 
2273   if (Dz <= 0.) k += 2;                          1733   if (Dz <= 0.) k += 2;
2274                                               << 1734  
2275   G4double phi1, phi2, dphi;                     1735   G4double phi1, phi2, dphi;
2276   if (Dphi < 0.) {                               1736   if (Dphi < 0.) {
2277     phi2 = Phi1; phi1 = phi2 - Dphi;             1737     phi2 = Phi1; phi1 = phi2 - Dphi;
2278   }else if (Dphi == 0.) {                        1738   }else if (Dphi == 0.) {
2279     phi1 = Phi1; phi2 = phi1 + wholeCircle;      1739     phi1 = Phi1; phi2 = phi1 + wholeCircle;
2280   }else{                                         1740   }else{
2281     phi1 = Phi1; phi2 = phi1 + Dphi;             1741     phi1 = Phi1; phi2 = phi1 + Dphi;
2282   }                                              1742   }
2283   dphi  = phi2 - phi1;                           1743   dphi  = phi2 - phi1;
2284   if (std::abs(dphi-wholeCircle) < perMillion    1744   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2285   if (dphi > wholeCircle) k += 4;             << 1745   if (dphi > wholeCircle) k += 4; 
2286                                                  1746 
2287   if (k != 0) {                                  1747   if (k != 0) {
2288     std::cerr << "HepPolyhedronCone(s)/Tube(s    1748     std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters";
2289     if ((k & 1) != 0) std::cerr << " (radiuse    1749     if ((k & 1) != 0) std::cerr << " (radiuses)";
2290     if ((k & 2) != 0) std::cerr << " (half-le    1750     if ((k & 2) != 0) std::cerr << " (half-length)";
2291     if ((k & 4) != 0) std::cerr << " (angles)    1751     if ((k & 4) != 0) std::cerr << " (angles)";
2292     std::cerr << std::endl;                      1752     std::cerr << std::endl;
2293     std::cerr << " Rmn1=" << Rmn1 << " Rmx1="    1753     std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1;
2294     std::cerr << " Rmn2=" << Rmn2 << " Rmx2="    1754     std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2;
2295     std::cerr << " Dz=" << Dz << " Phi1=" <<     1755     std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi
2296               << std::endl;                      1756               << std::endl;
2297     return;                                      1757     return;
2298   }                                              1758   }
2299                                               << 1759   
2300   //   P R E P A R E   T W O   P O L Y L I N     1760   //   P R E P A R E   T W O   P O L Y L I N E S
2301                                                  1761 
2302   G4double zz[4], rr[4];                         1762   G4double zz[4], rr[4];
2303   zz[0] =  Dz;                                << 1763   zz[0] =  Dz; 
2304   zz[1] = -Dz;                                << 1764   zz[1] = -Dz; 
2305   zz[2] =  Dz;                                << 1765   zz[2] =  Dz; 
2306   zz[3] = -Dz;                                << 1766   zz[3] = -Dz; 
2307   rr[0] =  Rmx2;                                 1767   rr[0] =  Rmx2;
2308   rr[1] =  Rmx1;                                 1768   rr[1] =  Rmx1;
2309   rr[2] =  Rmn2;                                 1769   rr[2] =  Rmn2;
2310   rr[3] =  Rmn1;                                 1770   rr[3] =  Rmn1;
2311                                                  1771 
2312   //   R O T A T E    P O L Y L I N E S          1772   //   R O T A T E    P O L Y L I N E S
2313                                                  1773 
2314   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr,  << 1774   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 
2315   SetReferences();                               1775   SetReferences();
2316 }                                                1776 }
2317                                                  1777 
2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1778 HepPolyhedronCons::~HepPolyhedronCons() {}
2319                                                  1779 
2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1780 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 
2321                                      G4double    1781                                      G4double Rmn2, G4double Rmx2,
2322                                      G4double    1782                                      G4double Dz) :
2323   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D    1783   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {}
2324                                                  1784 
2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1785 HepPolyhedronCone::~HepPolyhedronCone() {}
2326                                                  1786 
2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double    1787 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax,
2328                                      G4double << 1788                                      G4double Dz, 
2329                                      G4double    1789                                      G4double Phi1, G4double Dphi)
2330   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rma    1790   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {}
2331                                                  1791 
2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1792 HepPolyhedronTubs::~HepPolyhedronTubs() {}
2333                                                  1793 
2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl    1794 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax,
2335                                       G4doubl    1795                                       G4double Dz)
2336   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax,    1796   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {}
2337                                                  1797 
2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1798 HepPolyhedronTube::~HepPolyhedronTube () {}
2339                                                  1799 
2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double    1800 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi,
2341                                      G4double    1801                                      G4double dphi,
2342                                      G4int np << 1802                                      G4int    npdv,
2343                                      G4int nz << 1803                                      G4int    nz,
2344                                      const G4    1804                                      const G4double *z,
2345                                      const G4    1805                                      const G4double *rmin,
2346                                      const G4    1806                                      const G4double *rmax)
2347 /********************************************    1807 /***********************************************************************
2348  *                                               1808  *                                                                     *
2349  * Name: HepPolyhedronPgon                       1809  * Name: HepPolyhedronPgon                           Date:    09.12.96 *
2350  * Author: E.Chernyaev                           1810  * Author: E.Chernyaev                               Revised:          *
2351  *                                               1811  *                                                                     *
2352  * Function: Constructor of polyhedron for PG    1812  * Function: Constructor of polyhedron for PGON, PCON                  *
2353  *                                               1813  *                                                                     *
2354  * Input: phi  - initial phi                     1814  * Input: phi  - initial phi                                           *
2355  *        dphi - delta phi                       1815  *        dphi - delta phi                                             *
2356  *        npdv - number of steps along phi       1816  *        npdv - number of steps along phi                             *
2357  *        nz   - number of z-planes (at least    1817  *        nz   - number of z-planes (at least two)                     *
2358  *        z[]  - z coordinates of the slices     1818  *        z[]  - z coordinates of the slices                           *
2359  *        rmin[] - smaller r at the slices       1819  *        rmin[] - smaller r at the slices                             *
2360  *        rmax[] - bigger  r at the slices       1820  *        rmax[] - bigger  r at the slices                             *
2361  *                                               1821  *                                                                     *
2362  ********************************************    1822  ***********************************************************************/
2363 {                                                1823 {
2364   //   C H E C K   I N P U T   P A R A M E T     1824   //   C H E C K   I N P U T   P A R A M E T E R S
2365                                                  1825 
2366   if (dphi <= 0. || dphi > twopi) {              1826   if (dphi <= 0. || dphi > twopi) {
2367     std::cerr                                    1827     std::cerr
2368       << "HepPolyhedronPgon/Pcon: wrong delta    1828       << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi
2369       << std::endl;                              1829       << std::endl;
2370     return;                                      1830     return;
2371   }                                           << 1831   }    
2372                                               << 1832     
2373   if (nz < 2) {                                  1833   if (nz < 2) {
2374     std::cerr                                    1834     std::cerr
2375       << "HepPolyhedronPgon/Pcon: number of z    1835       << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz
2376       << std::endl;                              1836       << std::endl;
2377     return;                                      1837     return;
2378   }                                              1838   }
2379                                                  1839 
2380   if (npdv < 0) {                                1840   if (npdv < 0) {
2381     std::cerr                                    1841     std::cerr
2382       << "HepPolyhedronPgon/Pcon: error in nu    1842       << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv
2383       << std::endl;                              1843       << std::endl;
2384     return;                                      1844     return;
2385   }                                              1845   }
2386                                                  1846 
2387   G4int i;                                       1847   G4int i;
2388   for (i=0; i<nz; i++) {                         1848   for (i=0; i<nz; i++) {
2389     if (rmin[i] < 0. || rmax[i] < 0. || rmin[    1849     if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) {
2390       std::cerr                                  1850       std::cerr
2391         << "HepPolyhedronPgon: error in radiu    1851         << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]="
2392         << rmin[i] << " rmax[" << i << "]=" <    1852         << rmin[i] << " rmax[" << i << "]=" << rmax[i]
2393         << std::endl;                            1853         << std::endl;
2394       return;                                    1854       return;
2395     }                                            1855     }
2396   }                                              1856   }
2397                                                  1857 
2398   //   P R E P A R E   T W O   P O L Y L I N     1858   //   P R E P A R E   T W O   P O L Y L I N E S
2399                                                  1859 
2400   G4double *zz, *rr;                             1860   G4double *zz, *rr;
2401   zz = new G4double[2*nz];                       1861   zz = new G4double[2*nz];
2402   rr = new G4double[2*nz];                       1862   rr = new G4double[2*nz];
2403                                                  1863 
2404   if (z[0] > z[nz-1]) {                          1864   if (z[0] > z[nz-1]) {
2405     for (i=0; i<nz; i++) {                       1865     for (i=0; i<nz; i++) {
2406       zz[i]    = z[i];                           1866       zz[i]    = z[i];
2407       rr[i]    = rmax[i];                        1867       rr[i]    = rmax[i];
2408       zz[i+nz] = z[i];                           1868       zz[i+nz] = z[i];
2409       rr[i+nz] = rmin[i];                        1869       rr[i+nz] = rmin[i];
2410     }                                            1870     }
2411   }else{                                         1871   }else{
2412     for (i=0; i<nz; i++) {                       1872     for (i=0; i<nz; i++) {
2413       zz[i]    = z[nz-i-1];                      1873       zz[i]    = z[nz-i-1];
2414       rr[i]    = rmax[nz-i-1];                   1874       rr[i]    = rmax[nz-i-1];
2415       zz[i+nz] = z[nz-i-1];                      1875       zz[i+nz] = z[nz-i-1];
2416       rr[i+nz] = rmin[nz-i-1];                   1876       rr[i+nz] = rmin[nz-i-1];
2417     }                                            1877     }
2418   }                                              1878   }
2419                                                  1879 
2420   //   R O T A T E    P O L Y L I N E S          1880   //   R O T A T E    P O L Y L I N E S
2421                                                  1881 
2422   G4int nodeVis = 1;                          << 1882   RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 
2423   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2424   RotateAroundZ(npdv, phi, dphi, nz, nz, zz,  << 
2425   SetReferences();                               1883   SetReferences();
2426                                               << 1884   
2427   delete [] zz;                                  1885   delete [] zz;
2428   delete [] rr;                                  1886   delete [] rr;
2429 }                                                1887 }
2430                                                  1888 
2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1889 HepPolyhedronPgon::~HepPolyhedronPgon() {}
2432                                      G4double << 
2433                                      G4int np << 
2434                                      const st << 
2435 /******************************************** << 
2436  *                                            << 
2437  * Name: HepPolyhedronPgon                    << 
2438  * Author: E.Tcherniaev (E.Chernyaev)         << 
2439  *                                            << 
2440  * Function: Constructor of polyhedron for PG << 
2441  *                                            << 
2442  * Input: phi  - initial phi                  << 
2443  *        dphi - delta phi                    << 
2444  *        npdv - number of steps along phi    << 
2445  *        rz   - rz-contour                   << 
2446  *                                            << 
2447  ******************************************** << 
2448 {                                             << 
2449   //   C H E C K   I N P U T   P A R A M E T  << 
2450                                               << 
2451   if (dphi <= 0. || dphi > twopi) {           << 
2452     std::cerr                                 << 
2453       << "HepPolyhedronPgon/Pcon: wrong delta << 
2454       << std::endl;                           << 
2455     return;                                   << 
2456   }                                           << 
2457                                               << 
2458   if (npdv < 0) {                             << 
2459     std::cerr                                 << 
2460       << "HepPolyhedronPgon/Pcon: error in nu << 
2461       << std::endl;                           << 
2462     return;                                   << 
2463   }                                           << 
2464                                               << 
2465   G4int nrz = (G4int)rz.size();               << 
2466   if (nrz < 3) {                              << 
2467     std::cerr                                 << 
2468       << "HepPolyhedronPgon/Pcon: invalid num << 
2469       << std::endl;                           << 
2470     return;                                   << 
2471   }                                           << 
2472                                               << 
2473   //   R O T A T E    P O L Y L I N E         << 
2474                                               << 
2475   G4int nodeVis = 1;                          << 
2476   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2477   RotateContourAroundZ(npdv, phi, dphi, rz, n << 
2478   SetReferences();                            << 
2479 }                                             << 
2480                                               << 
2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 
2482                                                  1890 
2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double    1891 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz,
2484                                      const G4    1892                                      const G4double *z,
2485                                      const G4    1893                                      const G4double *rmin,
2486                                      const G4    1894                                      const G4double *rmax)
2487   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm    1895   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {}
2488                                                  1896 
2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1897 HepPolyhedronPcon::~HepPolyhedronPcon() {}
2490                                      const st << 
2491   : HepPolyhedronPgon(phi, dphi, 0, rz) {}    << 
2492                                               << 
2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 
2494                                                  1898 
2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do    1899 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax,
2496                                          G4do    1900                                          G4double phi, G4double dphi,
2497                                          G4do    1901                                          G4double the, G4double dthe)
2498 /********************************************    1902 /***********************************************************************
2499  *                                               1903  *                                                                     *
2500  * Name: HepPolyhedronSphere                     1904  * Name: HepPolyhedronSphere                         Date:    11.12.96 *
2501  * Author: E.Chernyaev (IHEP/Protvino)           1905  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2502  *                                               1906  *                                                                     *
2503  * Function: Constructor of polyhedron for SP    1907  * Function: Constructor of polyhedron for SPHERE                      *
2504  *                                               1908  *                                                                     *
2505  * Input: rmin - internal radius                 1909  * Input: rmin - internal radius                                       *
2506  *        rmax - external radius                 1910  *        rmax - external radius                                       *
2507  *        phi  - initial phi                     1911  *        phi  - initial phi                                           *
2508  *        dphi - delta phi                       1912  *        dphi - delta phi                                             *
2509  *        the  - initial theta                   1913  *        the  - initial theta                                         *
2510  *        dthe - delta theta                     1914  *        dthe - delta theta                                           *
2511  *                                               1915  *                                                                     *
2512  ********************************************    1916  ***********************************************************************/
2513 {                                                1917 {
2514   //   C H E C K   I N P U T   P A R A M E T     1918   //   C H E C K   I N P U T   P A R A M E T E R S
2515                                                  1919 
2516   if (dphi <= 0. || dphi > twopi) {              1920   if (dphi <= 0. || dphi > twopi) {
2517     std::cerr                                    1921     std::cerr
2518       << "HepPolyhedronSphere: wrong delta ph    1922       << "HepPolyhedronSphere: wrong delta phi = " << dphi
2519       << std::endl;                              1923       << std::endl;
2520     return;                                      1924     return;
2521   }                                           << 1925   }    
2522                                                  1926 
2523   if (the < 0. || the > pi) {                    1927   if (the < 0. || the > pi) {
2524     std::cerr                                    1928     std::cerr
2525       << "HepPolyhedronSphere: wrong theta =     1929       << "HepPolyhedronSphere: wrong theta = " << the
2526       << std::endl;                              1930       << std::endl;
2527     return;                                      1931     return;
2528   }                                           << 1932   }    
2529                                               << 1933   
2530   if (dthe <= 0. || dthe > pi) {                 1934   if (dthe <= 0. || dthe > pi) {
2531     std::cerr                                    1935     std::cerr
2532       << "HepPolyhedronSphere: wrong delta th    1936       << "HepPolyhedronSphere: wrong delta theta = " << dthe
2533       << std::endl;                              1937       << std::endl;
2534     return;                                      1938     return;
2535   }                                           << 1939   }    
2536                                                  1940 
2537   if (the+dthe > pi) {                           1941   if (the+dthe > pi) {
2538     std::cerr                                    1942     std::cerr
2539       << "HepPolyhedronSphere: wrong theta +     1943       << "HepPolyhedronSphere: wrong theta + delta theta = "
2540       << the << " " << dthe                      1944       << the << " " << dthe
2541       << std::endl;                              1945       << std::endl;
2542     return;                                      1946     return;
2543   }                                           << 1947   }    
2544                                               << 1948   
2545   if (rmin < 0. || rmin >= rmax) {               1949   if (rmin < 0. || rmin >= rmax) {
2546     std::cerr                                    1950     std::cerr
2547       << "HepPolyhedronSphere: error in radiu    1951       << "HepPolyhedronSphere: error in radiuses"
2548       << " rmin=" << rmin << " rmax=" << rmax    1952       << " rmin=" << rmin << " rmax=" << rmax
2549       << std::endl;                              1953       << std::endl;
2550     return;                                      1954     return;
2551   }                                              1955   }
2552                                                  1956 
2553   //   P R E P A R E   T W O   P O L Y L I N     1957   //   P R E P A R E   T W O   P O L Y L I N E S
2554                                                  1958 
2555   G4int nds = (GetNumberOfRotationSteps() + 1    1959   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2556   G4int np1 = G4int(dthe*nds/pi+.5) + 1;         1960   G4int np1 = G4int(dthe*nds/pi+.5) + 1;
2557   if (np1 <= 1) np1 = 2;                         1961   if (np1 <= 1) np1 = 2;
2558   G4int np2 = rmin < spatialTolerance ? 1 : n    1962   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2559                                                  1963 
2560   G4double *zz, *rr;                             1964   G4double *zz, *rr;
2561   zz = new G4double[np1+np2];                    1965   zz = new G4double[np1+np2];
2562   rr = new G4double[np1+np2];                    1966   rr = new G4double[np1+np2];
2563                                                  1967 
2564   G4double a = dthe/(np1-1);                     1968   G4double a = dthe/(np1-1);
2565   G4double cosa, sina;                           1969   G4double cosa, sina;
2566   for (G4int i=0; i<np1; i++) {                  1970   for (G4int i=0; i<np1; i++) {
2567     cosa  = std::cos(the+i*a);                   1971     cosa  = std::cos(the+i*a);
2568     sina  = std::sin(the+i*a);                   1972     sina  = std::sin(the+i*a);
2569     zz[i] = rmax*cosa;                           1973     zz[i] = rmax*cosa;
2570     rr[i] = rmax*sina;                           1974     rr[i] = rmax*sina;
2571     if (np2 > 1) {                               1975     if (np2 > 1) {
2572       zz[i+np1] = rmin*cosa;                     1976       zz[i+np1] = rmin*cosa;
2573       rr[i+np1] = rmin*sina;                     1977       rr[i+np1] = rmin*sina;
2574     }                                            1978     }
2575   }                                              1979   }
2576   if (np2 == 1) {                                1980   if (np2 == 1) {
2577     zz[np1] = 0.;                                1981     zz[np1] = 0.;
2578     rr[np1] = 0.;                                1982     rr[np1] = 0.;
2579   }                                              1983   }
2580                                                  1984 
2581   //   R O T A T E    P O L Y L I N E S          1985   //   R O T A T E    P O L Y L I N E S
2582                                                  1986 
2583   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1987   RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 
2584   SetReferences();                               1988   SetReferences();
2585                                               << 1989   
2586   delete [] zz;                                  1990   delete [] zz;
2587   delete [] rr;                                  1991   delete [] rr;
2588 }                                                1992 }
2589                                                  1993 
2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1994 HepPolyhedronSphere::~HepPolyhedronSphere() {}
2591                                                  1995 
2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub    1996 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin,
2593                                        G4doub    1997                                        G4double rmax,
2594                                        G4doub    1998                                        G4double rtor,
2595                                        G4doub    1999                                        G4double phi,
2596                                        G4doub    2000                                        G4double dphi)
2597 /********************************************    2001 /***********************************************************************
2598  *                                               2002  *                                                                     *
2599  * Name: HepPolyhedronTorus                      2003  * Name: HepPolyhedronTorus                          Date:    11.12.96 *
2600  * Author: E.Chernyaev (IHEP/Protvino)           2004  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2601  *                                               2005  *                                                                     *
2602  * Function: Constructor of polyhedron for TO    2006  * Function: Constructor of polyhedron for TORUS                       *
2603  *                                               2007  *                                                                     *
2604  * Input: rmin - internal radius                 2008  * Input: rmin - internal radius                                       *
2605  *        rmax - external radius                 2009  *        rmax - external radius                                       *
2606  *        rtor - radius of torus                 2010  *        rtor - radius of torus                                       *
2607  *        phi  - initial phi                     2011  *        phi  - initial phi                                           *
2608  *        dphi - delta phi                       2012  *        dphi - delta phi                                             *
2609  *                                               2013  *                                                                     *
2610  ********************************************    2014  ***********************************************************************/
2611 {                                                2015 {
2612   //   C H E C K   I N P U T   P A R A M E T     2016   //   C H E C K   I N P U T   P A R A M E T E R S
2613                                                  2017 
2614   if (dphi <= 0. || dphi > twopi) {              2018   if (dphi <= 0. || dphi > twopi) {
2615     std::cerr                                    2019     std::cerr
2616       << "HepPolyhedronTorus: wrong delta phi    2020       << "HepPolyhedronTorus: wrong delta phi = " << dphi
2617       << std::endl;                              2021       << std::endl;
2618     return;                                      2022     return;
2619   }                                              2023   }
2620                                                  2024 
2621   if (rmin < 0. || rmin >= rmax || rmax >= rt    2025   if (rmin < 0. || rmin >= rmax || rmax >= rtor) {
2622     std::cerr                                    2026     std::cerr
2623       << "HepPolyhedronTorus: error in radius    2027       << "HepPolyhedronTorus: error in radiuses"
2624       << " rmin=" << rmin << " rmax=" << rmax    2028       << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor
2625       << std::endl;                              2029       << std::endl;
2626     return;                                      2030     return;
2627   }                                              2031   }
2628                                                  2032 
2629   //   P R E P A R E   T W O   P O L Y L I N     2033   //   P R E P A R E   T W O   P O L Y L I N E S
2630                                                  2034 
2631   G4int np1 = GetNumberOfRotationSteps();        2035   G4int np1 = GetNumberOfRotationSteps();
                                                   >> 2036   assert(np1>0);
2632   G4int np2 = rmin < spatialTolerance ? 1 : n    2037   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2633                                                  2038 
2634   G4double *zz, *rr;                             2039   G4double *zz, *rr;
2635   zz = new G4double[np1+np2];                    2040   zz = new G4double[np1+np2];
2636   rr = new G4double[np1+np2];                    2041   rr = new G4double[np1+np2];
2637                                                  2042 
2638   G4double a = twopi/np1;                        2043   G4double a = twopi/np1;
2639   G4double cosa, sina;                           2044   G4double cosa, sina;
2640   for (G4int i=0; i<np1; i++) {                  2045   for (G4int i=0; i<np1; i++) {
2641     cosa  = std::cos(i*a);                       2046     cosa  = std::cos(i*a);
2642     sina  = std::sin(i*a);                       2047     sina  = std::sin(i*a);
2643     zz[i] = rmax*cosa;                           2048     zz[i] = rmax*cosa;
2644     rr[i] = rtor+rmax*sina;                      2049     rr[i] = rtor+rmax*sina;
2645     if (np2 > 1) {                               2050     if (np2 > 1) {
2646       zz[i+np1] = rmin*cosa;                     2051       zz[i+np1] = rmin*cosa;
2647       rr[i+np1] = rtor+rmin*sina;                2052       rr[i+np1] = rtor+rmin*sina;
2648     }                                            2053     }
2649   }                                              2054   }
2650   if (np2 == 1) {                                2055   if (np2 == 1) {
2651     zz[np1] = 0.;                                2056     zz[np1] = 0.;
2652     rr[np1] = rtor;                              2057     rr[np1] = rtor;
2653     np2 = -1;                                    2058     np2 = -1;
2654   }                                              2059   }
2655                                                  2060 
2656   //   R O T A T E    P O L Y L I N E S          2061   //   R O T A T E    P O L Y L I N E S
2657                                                  2062 
2658   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2063   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 
2659   SetReferences();                               2064   SetReferences();
2660                                               << 2065   
2661   delete [] zz;                                  2066   delete [] zz;
2662   delete [] rr;                                  2067   delete [] rr;
2663 }                                                2068 }
2664                                                  2069 
2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2070 HepPolyhedronTorus::~HepPolyhedronTorus() {}
2666                                               << 
2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 
2668                                    const G4do << 
2669                                    const G4do << 
2670                                    const G4do << 
2671 /******************************************** << 
2672  *                                            << 
2673  * Name: HepPolyhedronTet                     << 
2674  * Author: E.Tcherniaev (E.Chernyaev)         << 
2675  *                                            << 
2676  * Function: Constructor of polyhedron for TE << 
2677  *                                            << 
2678  * Input: p0,p1,p2,p3 - vertices              << 
2679  *                                            << 
2680  ******************************************** << 
2681 {                                             << 
2682   AllocateMemory(4,4);                        << 
2683                                               << 
2684   pV[1].set(p0[0], p0[1], p0[2]);             << 
2685   pV[2].set(p1[0], p1[1], p1[2]);             << 
2686   pV[3].set(p2[0], p2[1], p2[2]);             << 
2687   pV[4].set(p3[0], p3[1], p3[2]);             << 
2688                                               << 
2689   G4Vector3D v1(pV[2] - pV[1]);               << 
2690   G4Vector3D v2(pV[3] - pV[1]);               << 
2691   G4Vector3D v3(pV[4] - pV[1]);               << 
2692                                               << 
2693   if (v1.cross(v2).dot(v3) < 0.)              << 
2694   {                                           << 
2695     pV[3].set(p3[0], p3[1], p3[2]);           << 
2696     pV[4].set(p2[0], p2[1], p2[2]);           << 
2697   }                                           << 
2698                                               << 
2699   pF[1] = G4Facet(1,2,  3,4,  2,3);           << 
2700   pF[2] = G4Facet(1,3,  4,4,  3,1);           << 
2701   pF[3] = G4Facet(1,1,  2,4,  4,2);           << 
2702   pF[4] = G4Facet(2,1,  3,2,  4,3);           << 
2703 }                                             << 
2704                                               << 
2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 
2706                                                  2071 
2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi    2072 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by,
2708                                                  2073                                                G4double cz, G4double zCut1,
2709                                                  2074                                                G4double zCut2)
2710 /********************************************    2075 /***********************************************************************
2711  *                                               2076  *                                                                     *
2712  * Name: HepPolyhedronEllipsoid                  2077  * Name: HepPolyhedronEllipsoid                      Date:    25.02.05 *
2713  * Author: G.Guerrieri                           2078  * Author: G.Guerrieri                               Revised:          *
2714  *         Evgueni Tcherniaev                 << 
2715  *                                               2079  *                                                                     *
2716  * Function: Constructor of polyhedron for EL    2080  * Function: Constructor of polyhedron for ELLIPSOID                   *
2717  *                                               2081  *                                                                     *
2718  * Input: ax - semiaxis x                        2082  * Input: ax - semiaxis x                                              *
2719  *        by - semiaxis y                        2083  *        by - semiaxis y                                              *
2720  *        cz - semiaxis z                        2084  *        cz - semiaxis z                                              *
2721  *        zCut1 - lower cut plane level (soli    2085  *        zCut1 - lower cut plane level (solid lies above this plane)  *
2722  *        zCut2 - upper cut plane level (soli    2086  *        zCut2 - upper cut plane level (solid lies below this plane)  *
2723  *                                               2087  *                                                                     *
2724  ********************************************    2088  ***********************************************************************/
2725 {                                                2089 {
2726   //   C H E C K   I N P U T   P A R A M E T     2090   //   C H E C K   I N P U T   P A R A M E T E R S
2727                                                  2091 
2728   if (zCut1 >= cz || zCut2 <= -cz || zCut1 >     2092   if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) {
2729     std::cerr << "HepPolyhedronEllipsoid: wro    2093     std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1
2730            << " zCut2 = " << zCut2               2094            << " zCut2 = " << zCut2
2731            << " for given cz = " << cz << std    2095            << " for given cz = " << cz << std::endl;
2732     return;                                      2096     return;
2733   }                                              2097   }
2734   if (cz <= 0.0) {                               2098   if (cz <= 0.0) {
2735     std::cerr << "HepPolyhedronEllipsoid: bad    2099     std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz
2736       << std::endl;                              2100       << std::endl;
2737     return;                                      2101     return;
2738   }                                              2102   }
2739                                                  2103 
                                                   >> 2104   G4double dthe;
                                                   >> 2105   G4double sthe;
                                                   >> 2106   G4int cutflag;
                                                   >> 2107   cutflag= 0;
                                                   >> 2108   if (zCut2 >= cz)
                                                   >> 2109     {
                                                   >> 2110       sthe= 0.0;
                                                   >> 2111     }
                                                   >> 2112   else
                                                   >> 2113     {
                                                   >> 2114       sthe= std::acos(zCut2/cz);
                                                   >> 2115       cutflag++;
                                                   >> 2116     }
                                                   >> 2117   if (zCut1 <= -cz)
                                                   >> 2118     {
                                                   >> 2119       dthe= pi - sthe;
                                                   >> 2120     }
                                                   >> 2121   else
                                                   >> 2122     {
                                                   >> 2123       dthe= std::acos(zCut1/cz)-sthe;
                                                   >> 2124       cutflag++;
                                                   >> 2125     }
                                                   >> 2126 
2740   //   P R E P A R E   T W O   P O L Y L I N     2127   //   P R E P A R E   T W O   P O L Y L I N E S
2741   //   generate sphere of radius cz first, th    2128   //   generate sphere of radius cz first, then rescale x and y later
2742                                                  2129 
2743   G4double sthe = std::acos(zCut2/cz);        << 2130   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2744   G4double dthe = std::acos(zCut1/cz) - sthe; << 2131   G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag;
2745   G4int nds = (GetNumberOfRotationSteps() + 1 << 
2746   G4int np1 = G4int(dthe*nds/pi + 0.5) + 1;   << 
2747   if (np1 <= 1) np1 = 2;                      << 
2748   G4int np2 = 2;                              << 
2749                                                  2132 
2750   G4double *zz, *rr;                             2133   G4double *zz, *rr;
2751   zz = new G4double[np1 + np2];               << 2134   zz = new G4double[np1+1];
2752   rr = new G4double[np1 + np2];               << 2135   rr = new G4double[np1+1];
2753   if ((zz == nullptr) || (rr == nullptr))     << 2136   if (!zz || !rr)
2754   {                                           << 2137     {
2755     G4Exception("HepPolyhedronEllipsoid::HepP << 2138       G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid",
2756                 "greps1002", FatalException,  << 2139                   "greps1002", FatalException, "Out of memory");
2757   }                                           << 2140     }
2758                                                  2141 
2759   G4double a = dthe/(np1 - 1);                << 2142   G4double a = dthe/(np1-cutflag-1);
2760   G4double cosa, sina;                           2143   G4double cosa, sina;
2761   for (G4int i = 0; i < np1; ++i)             << 2144   G4int j=0;
2762   {                                           << 2145   if (sthe > 0.0)
2763     cosa  = std::cos(sthe + i*a);             << 2146     {
2764     sina  = std::sin(sthe + i*a);             << 2147       zz[j]= zCut2;
2765     zz[i] = cz*cosa;                          << 2148       rr[j]= 0.;
2766     rr[i] = cz*sina;                          << 2149       j++;
2767   }                                           << 2150     }
2768   zz[np1 + 0] = zCut2;                        << 2151   for (G4int i=0; i<np1-cutflag; i++) {
2769   rr[np1 + 0] = 0.;                           << 2152     cosa  = std::cos(sthe+i*a);
2770   zz[np1 + 1] = zCut1;                        << 2153     sina  = std::sin(sthe+i*a);
2771   rr[np1 + 1] = 0.;                           << 2154     zz[j] = cz*cosa;
                                                   >> 2155     rr[j] = cz*sina;
                                                   >> 2156     j++;
                                                   >> 2157   }
                                                   >> 2158   if (j < np1)
                                                   >> 2159     {
                                                   >> 2160       zz[j]= zCut1;
                                                   >> 2161       rr[j]= 0.;
                                                   >> 2162       j++;
                                                   >> 2163     }
                                                   >> 2164   if (j > np1)
                                                   >> 2165     {
                                                   >> 2166       std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!"
                                                   >> 2167                 << std::endl;
                                                   >> 2168     }
                                                   >> 2169   if (j < np1)
                                                   >> 2170     {
                                                   >> 2171       std::cerr << "Warning: logic error in HepPolyhedronEllipsoid."
                                                   >> 2172                 << std::endl;
                                                   >> 2173       np1= j;
                                                   >> 2174     }
                                                   >> 2175   zz[j] = 0.;
                                                   >> 2176   rr[j] = 0.;
2772                                                  2177 
                                                   >> 2178   
2773   //   R O T A T E    P O L Y L I N E S          2179   //   R O T A T E    P O L Y L I N E S
2774                                                  2180 
2775   RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2181   RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 
2776   SetReferences();                               2182   SetReferences();
2777                                                  2183 
2778   delete [] zz;                                  2184   delete [] zz;
2779   delete [] rr;                                  2185   delete [] rr;
2780                                                  2186 
2781   // rescale x and y vertex coordinates          2187   // rescale x and y vertex coordinates
2782   G4double kx = ax/cz;                        << 
2783   G4double ky = by/cz;                        << 
2784   G4Point3D* p = pV;                          << 
2785   for (G4int i = 0; i < nvert; ++i, ++p)      << 
2786   {                                              2188   {
2787     p->setX(p->x()*kx);                       << 2189     G4Point3D * p= pV;
2788     p->setY(p->y()*ky);                       << 2190     for (G4int i=0; i<nvert; i++, p++) {
                                                   >> 2191       p->setX( p->x() * ax/cz );
                                                   >> 2192       p->setY( p->y() * by/cz );
                                                   >> 2193     }
2789   }                                              2194   }
2790 }                                                2195 }
2791                                                  2196 
2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2197 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {}
2793                                                  2198 
2794 HepPolyhedronEllipticalCone::HepPolyhedronEll    2199 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax,
2795                                                  2200                                                          G4double ay,
2796                                                  2201                                                          G4double h,
2797                                               << 2202                                                          G4double zTopCut) 
2798 /********************************************    2203 /***********************************************************************
2799  *                                               2204  *                                                                     *
2800  * Name: HepPolyhedronEllipticalCone             2205  * Name: HepPolyhedronEllipticalCone                 Date:    8.9.2005 *
2801  * Author: D.Anninos                             2206  * Author: D.Anninos                                 Revised: 9.9.2005 *
2802  *                                               2207  *                                                                     *
2803  * Function: Constructor for EllipticalCone      2208  * Function: Constructor for EllipticalCone                            *
2804  *                                               2209  *                                                                     *
2805  * Input: ax, ay     - X & Y semi axes at z =    2210  * Input: ax, ay     - X & Y semi axes at z = 0                        *
2806  *        h          - height of full cone       2211  *        h          - height of full cone                             *
2807  *        zTopCut    - Top Cut in Z Axis         2212  *        zTopCut    - Top Cut in Z Axis                               *
2808  *                                               2213  *                                                                     *
2809  ********************************************    2214  ***********************************************************************/
2810 {                                                2215 {
2811   //   C H E C K   I N P U T   P A R A M E T     2216   //   C H E C K   I N P U T   P A R A M E T E R S
2812                                                  2217 
2813   G4int k = 0;                                   2218   G4int k = 0;
2814   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.)     2219   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; }
2815                                                  2220 
2816   if (k != 0) {                                  2221   if (k != 0) {
2817     std::cerr << "HepPolyhedronCone: error in    2222     std::cerr << "HepPolyhedronCone: error in input parameters";
2818     std::cerr << std::endl;                      2223     std::cerr << std::endl;
2819     return;                                      2224     return;
2820   }                                              2225   }
2821                                               << 2226   
2822   //   P R E P A R E   T W O   P O L Y L I N     2227   //   P R E P A R E   T W O   P O L Y L I N E S
2823                                                  2228 
2824   zTopCut = (h >= zTopCut ? zTopCut : h);        2229   zTopCut = (h >= zTopCut ? zTopCut : h);
2825                                                  2230 
2826   G4double *zz, *rr;                             2231   G4double *zz, *rr;
2827   zz = new G4double[4];                          2232   zz = new G4double[4];
2828   rr = new G4double[4];                          2233   rr = new G4double[4];
2829   zz[0] =   zTopCut;                          << 2234   zz[0] =   zTopCut; 
2830   zz[1] =  -zTopCut;                          << 2235   zz[1] =  -zTopCut; 
2831   zz[2] =   zTopCut;                          << 2236   zz[2] =   zTopCut; 
2832   zz[3] =  -zTopCut;                          << 2237   zz[3] =  -zTopCut; 
2833   rr[0] =  (h-zTopCut);                          2238   rr[0] =  (h-zTopCut);
2834   rr[1] =  (h+zTopCut);                          2239   rr[1] =  (h+zTopCut);
2835   rr[2] =  0.;                                   2240   rr[2] =  0.;
2836   rr[3] =  0.;                                   2241   rr[3] =  0.;
2837                                                  2242 
2838   //   R O T A T E    P O L Y L I N E S          2243   //   R O T A T E    P O L Y L I N E S
2839                                                  2244 
2840   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2245   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 
2841   SetReferences();                               2246   SetReferences();
2842                                                  2247 
2843   delete [] zz;                                  2248   delete [] zz;
2844   delete [] rr;                                  2249   delete [] rr;
2845                                                  2250 
2846   // rescale x and y vertex coordinates          2251   // rescale x and y vertex coordinates
2847  {                                               2252  {
2848    G4Point3D * p= pV;                            2253    G4Point3D * p= pV;
2849    for (G4int i=0; i<nvert; i++, p++) {          2254    for (G4int i=0; i<nvert; i++, p++) {
2850      p->setX( p->x() * ax );                     2255      p->setX( p->x() * ax );
2851      p->setY( p->y() * ay );                     2256      p->setY( p->y() * ay );
2852    }                                             2257    }
2853  }                                               2258  }
2854 }                                                2259 }
2855                                                  2260 
2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2261 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {}
2857                                               << 
2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 
2859                                               << 
2860                                               << 
2861 /******************************************** << 
2862  *                                            << 
2863  * Name: HepPolyhedronHyperbolicMirror        << 
2864  * Author: E.Tcherniaev (E.Chernyaev)         << 
2865  *                                            << 
2866  * Function: Create polyhedron for Hyperbolic << 
2867  *                                            << 
2868  * Input: a - half-separation                 << 
2869  *        h - height                          << 
2870  *        r - radius                          << 
2871  *                                            << 
2872  ******************************************** << 
2873 {                                             << 
2874   G4double H = std::abs(h);                   << 
2875   G4double R = std::abs(r);                   << 
2876   G4double A = std::abs(a);                   << 
2877   G4double B = A*R/std::sqrt(2*A*H + H*H);    << 
2878                                               << 
2879   //   P R E P A R E   T W O   P O L Y L I N  << 
2880                                               << 
2881   G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 
2882   G4int np2 = 2;                              << 
2883   G4double maxAng = (A == 0.) ? 0. : std::aco << 
2884   G4double delAng = maxAng/(np1 - 1);         << 
2885                                               << 
2886   auto zz = new G4double[np1 + np2];          << 
2887   auto rr = new G4double[np1 + np2];          << 
2888                                               << 
2889   // 1st polyline                             << 
2890   zz[0] = H;                                  << 
2891   rr[0] = R;                                  << 
2892   for (G4int iz = 1; iz < np1 - 1; ++iz)      << 
2893   {                                           << 
2894     G4double ang = maxAng - iz*delAng;        << 
2895     zz[iz] = A*std::cosh(ang) - A;            << 
2896     rr[iz] = B*std::sinh(ang);                << 
2897   }                                           << 
2898   zz[np1 - 1] = 0.;                           << 
2899   rr[np1 - 1] = 0.;                           << 
2900                                               << 
2901   // 2nd polyline                             << 
2902   zz[np1] = H;                                << 
2903   rr[np1] = 0.;                               << 
2904   zz[np1 + 1] = 0.;                           << 
2905   rr[np1 + 1] = 0.;                           << 
2906                                               << 
2907   //   R O T A T E    P O L Y L I N E S       << 
2908                                               << 
2909   G4double phi  = 0.;                         << 
2910   G4double dphi = CLHEP::twopi;               << 
2911   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 
2912   SetReferences();                            << 
2913                                               << 
2914   delete [] zz;                               << 
2915   delete [] rr;                               << 
2916 }                                             << 
2917                                               << 
2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 
2919                                                  2262 
2920 HepPolyhedronTetMesh::                        << 2263 G4ThreadLocal G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 
2922 /******************************************** << 
2923  *                                            << 
2924  * Name: HepPolyhedronTetMesh                 << 
2925  * Author: E.Tcherniaev (E.Chernyaev)         << 
2926  *                                            << 
2927  * Function: Create polyhedron for tetrahedro << 
2928  *                                            << 
2929  * Input: tetrahedra - array of tetrahedron v << 
2930  *                     per tetrahedron        << 
2931  *                                            << 
2932  ******************************************** << 
2933 {                                             << 
2934   // Check size of input vector               << 
2935   G4int nnodes = (G4int)tetrahedra.size();    << 
2936   if (nnodes == 0)                            << 
2937   {                                           << 
2938     std::cerr                                 << 
2939       << "HepPolyhedronTetMesh: Empty tetrahe << 
2940     return;                                   << 
2941   }                                           << 
2942   G4int ntet = nnodes/4;                      << 
2943   if (nnodes != ntet*4)                       << 
2944   {                                           << 
2945     std::cerr << "HepPolyhedronTetMesh: Numbe << 
2946               << " in tetrahedron mesh is NOT << 
2947               << std::endl;                   << 
2948     return;                                   << 
2949   }                                           << 
2950                                               << 
2951   // Find coincident vertices using hash tabl << 
2952   // This could be done using std::unordered_ << 
2953   // below runs faster.                       << 
2954   std::vector<G4int> iheads(nnodes, -1);      << 
2955   std::vector<std::pair<G4int,G4int>> ipairs( << 
2956   for (G4int i = 0; i < nnodes; ++i)          << 
2957   {                                           << 
2958     // Generate hash key                      << 
2959     G4ThreeVector point = tetrahedra[i];      << 
2960     auto key = std::hash<G4double>()(point.x( << 
2961     key ^= std::hash<G4double>()(point.y());  << 
2962     key ^= std::hash<G4double>()(point.z());  << 
2963     key %= nnodes;                            << 
2964     // Check head of the list                 << 
2965     if (iheads[key] < 0)                      << 
2966     {                                         << 
2967       iheads[key] = i;                        << 
2968       ipairs[i].first = i;                    << 
2969       continue;                               << 
2970     }                                         << 
2971     // Loop along the list                    << 
2972     for (G4int icur = iheads[key], iprev = 0; << 
2973     {                                         << 
2974       G4int icheck = ipairs[icur].first;      << 
2975       if (tetrahedra[icheck] == point)        << 
2976       {                                       << 
2977         ipairs[i].first = icheck; // coincide << 
2978         break;                                << 
2979       }                                       << 
2980       iprev = icur;                           << 
2981       icur = ipairs[icur].second;             << 
2982       // Append vertex to the list            << 
2983       if (icur < 0)                           << 
2984       {                                       << 
2985         ipairs[i].first = i;                  << 
2986         ipairs[iprev].second = i;             << 
2987         break;                                << 
2988       }                                       << 
2989     }                                         << 
2990   }                                           << 
2991                                               << 
2992   // Create vector of original facets         << 
2993   struct facet                                << 
2994   {                                           << 
2995     G4int i1, i2, i3;                         << 
2996     facet() : i1(0), i2(0), i3(0) {};         << 
2997     facet(G4int k1, G4int k2, G4int k3) : i1( << 
2998   };                                          << 
2999   G4int nfacets = nnodes;                     << 
3000   std::vector<facet> ifacets(nfacets);        << 
3001   for (G4int i = 0; i < nfacets; i += 4)      << 
3002   {                                           << 
3003     G4int i0 = ipairs[i + 0].first;           << 
3004     G4int i1 = ipairs[i + 1].first;           << 
3005     G4int i2 = ipairs[i + 2].first;           << 
3006     G4int i3 = ipairs[i + 3].first;           << 
3007     if (i0 > i1) std::swap(i0, i1);           << 
3008     if (i0 > i2) std::swap(i0, i2);           << 
3009     if (i0 > i3) std::swap(i0, i3);           << 
3010     if (i1 > i2) std::swap(i1, i2);           << 
3011     if (i1 > i3) std::swap(i1, i3);           << 
3012     G4ThreeVector e1 = tetrahedra[i1] - tetra << 
3013     G4ThreeVector e2 = tetrahedra[i2] - tetra << 
3014     G4ThreeVector e3 = tetrahedra[i3] - tetra << 
3015     G4double volume = (e1.cross(e2)).dot(e3); << 
3016     if (volume > 0.) std::swap(i2, i3);       << 
3017     ifacets[i + 0] = facet(i0, i1, i2);       << 
3018     ifacets[i + 1] = facet(i0, i2, i3);       << 
3019     ifacets[i + 2] = facet(i0, i3, i1);       << 
3020     ifacets[i + 3] = facet(i1, i3, i2);       << 
3021   }                                           << 
3022                                               << 
3023   // Find shared facets                       << 
3024   std::fill(iheads.begin(), iheads.end(), -1) << 
3025   std::fill(ipairs.begin(), ipairs.end(), std << 
3026   for (G4int i = 0; i < nfacets; ++i)         << 
3027   {                                           << 
3028     // Check head of the list                 << 
3029     G4int key = ifacets[i].i1;                << 
3030     if (iheads[key] < 0)                      << 
3031     {                                         << 
3032       iheads[key] = i;                        << 
3033       ipairs[i].first = i;                    << 
3034       continue;                               << 
3035     }                                         << 
3036     // Loop along the list                    << 
3037     G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 
3038     for (G4int icur = iheads[key], iprev = -1 << 
3039     {                                         << 
3040       G4int icheck = ipairs[icur].first;      << 
3041       if (ifacets[icheck].i2 == i3 && ifacets << 
3042       {                                       << 
3043         if (iprev < 0)                        << 
3044         {                                     << 
3045           iheads[key] = ipairs[icur].second;  << 
3046         }                                     << 
3047         else                                  << 
3048         {                                     << 
3049           ipairs[iprev].second = ipairs[icur] << 
3050         }                                     << 
3051         ipairs[icur].first = -1; // shared fa << 
3052         ipairs[icur].second = -1;             << 
3053         break;                                << 
3054       }                                       << 
3055       iprev = icur;                           << 
3056       icur = ipairs[icur].second;             << 
3057       // Append facet to the list             << 
3058       if (icur < 0)                           << 
3059       {                                       << 
3060         ipairs[i].first = i;                  << 
3061         ipairs[iprev].second = i;             << 
3062         break;                                << 
3063       }                                       << 
3064     }                                         << 
3065   }                                           << 
3066                                               << 
3067   // Count vertices and facets skipping share << 
3068   std::fill(iheads.begin(), iheads.end(), -1) << 
3069   G4int nver = 0, nfac = 0;                   << 
3070   for (G4int i = 0; i < nfacets; ++i)         << 
3071   {                                           << 
3072     if (ipairs[i].first < 0) continue;        << 
3073     G4int i1 = ifacets[i].i1;                 << 
3074     G4int i2 = ifacets[i].i2;                 << 
3075     G4int i3 = ifacets[i].i3;                 << 
3076     if (iheads[i1] < 0) iheads[i1] = nver++;  << 
3077     if (iheads[i2] < 0) iheads[i2] = nver++;  << 
3078     if (iheads[i3] < 0) iheads[i3] = nver++;  << 
3079     nfac++;                                   << 
3080   }                                           << 
3081                                               << 
3082   // Construct polyhedron                     << 
3083   AllocateMemory(nver, nfac);                 << 
3084   for (G4int i = 0; i < nnodes; ++i)          << 
3085   {                                           << 
3086     G4int k = iheads[i];                      << 
3087     if (k >= 0) SetVertex(k + 1, tetrahedra[i << 
3088   }                                           << 
3089   for (G4int i = 0, k = 0; i < nfacets; ++i)  << 
3090   {                                           << 
3091     if (ipairs[i].first < 0) continue;        << 
3092     G4int i1 = iheads[ifacets[i].i1] + 1;     << 
3093     G4int i2 = iheads[ifacets[i].i2] + 1;     << 
3094     G4int i3 = iheads[ifacets[i].i3] + 1;     << 
3095     SetFacet(++k, i1, i2, i3);                << 
3096   }                                           << 
3097   SetReferences();                            << 
3098 }                                             << 
3099                                               << 
3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 
3101                                               << 
3102 HepPolyhedronBoxMesh::                        << 
3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 
3104                      const std::vector<G4Thre << 
3105 /******************************************** << 
3106  *                                            << 
3107  * Name: HepPolyhedronBoxMesh                 << 
3108  * Author: E.Tcherniaev (E.Chernyaev)         << 
3109  *                                            << 
3110  * Function: Create polyhedron for box mesh   << 
3111  *                                            << 
3112  * Input: sizeX, sizeY, sizeZ - dimensions of << 
3113  *        positions - vector of cell centres  << 
3114  *                                            << 
3115  ******************************************** << 
3116 {                                             << 
3117   G4int nbox = (G4int)positions.size();       << 
3118   if (nbox == 0)                              << 
3119   {                                           << 
3120     std::cerr << "HepPolyhedronBoxMesh: Empty << 
3121     return;                                   << 
3122   }                                           << 
3123   // compute inverse dimensions               << 
3124   G4double invx = 1./sizeX, invy = 1./sizeY,  << 
3125   // find mesh bounding box                   << 
3126   G4ThreeVector pmin = positions[0], pmax = p << 
3127   for (const auto& p: positions)              << 
3128   {                                           << 
3129     if (pmin.x() > p.x()) pmin.setX(p.x());   << 
3130     if (pmin.y() > p.y()) pmin.setY(p.y());   << 
3131     if (pmin.z() > p.z()) pmin.setZ(p.z());   << 
3132     if (pmax.x() < p.x()) pmax.setX(p.x());   << 
3133     if (pmax.y() < p.y()) pmax.setY(p.y());   << 
3134     if (pmax.z() < p.z()) pmax.setZ(p.z());   << 
3135   }                                           << 
3136   // find number of voxels                    << 
3137   G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 
3138   G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 
3139   G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 
3140   // create structures for voxels and node in << 
3141   std::vector<char> voxels(nx*ny*nz, 0);      << 
3142   std::vector<G4int> indices((nx+1)*(ny+1)*(n << 
3143   // mark voxels listed in positions          << 
3144   G4int kx =  ny*nz, ky = nz;                 << 
3145   for (const auto& p: positions)              << 
3146   {                                           << 
3147     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3148     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3149     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3150     G4int i = ix*kx + iy*ky + iz;             << 
3151     voxels[i] = 1;                            << 
3152   }                                           << 
3153   // count number of vertices and facets      << 
3154   // set indices                              << 
3155   G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 
3156   G4int nver = 0, nfac = 0;                   << 
3157   for (const auto& p: positions)              << 
3158   {                                           << 
3159     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3160     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3161     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3162     //                                        << 
3163     //    011       111                       << 
3164     //      +---–---+                       << 
3165     //      | 001   |   101                   << 
3166     //      |   +---–---+                   << 
3167     //      |   |   |   |                     << 
3168     //      +---|---+   |                     << 
3169     //    010   |   110 |                     << 
3170     //          +-------+                     << 
3171     //        000       100                   << 
3172     //                                        << 
3173     G4int vcheck = 0;                         << 
3174     // check (ix - 1) side                    << 
3175     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3176     if (vcheck == 0)                          << 
3177     {                                         << 
3178       nfac++;                                 << 
3179       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3180       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3181       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3182       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3183       if (indices[i1] == 0) indices[i1] = ++n << 
3184       if (indices[i2] == 0) indices[i2] = ++n << 
3185       if (indices[i3] == 0) indices[i3] = ++n << 
3186       if (indices[i4] == 0) indices[i4] = ++n << 
3187     }                                         << 
3188     // check (ix + 1) side                    << 
3189     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3190     if (vcheck == 0)                          << 
3191     {                                         << 
3192       nfac++;                                 << 
3193       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3194       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3195       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3196       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3197       if (indices[i1] == 0) indices[i1] = ++n << 
3198       if (indices[i2] == 0) indices[i2] = ++n << 
3199       if (indices[i3] == 0) indices[i3] = ++n << 
3200       if (indices[i4] == 0) indices[i4] = ++n << 
3201     }                                         << 
3202     // check (iy - 1) side                    << 
3203     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3204     if (vcheck == 0)                          << 
3205     {                                         << 
3206       nfac++;                                 << 
3207       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3208       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3209       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3210       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3211       if (indices[i1] == 0) indices[i1] = ++n << 
3212       if (indices[i2] == 0) indices[i2] = ++n << 
3213       if (indices[i3] == 0) indices[i3] = ++n << 
3214       if (indices[i4] == 0) indices[i4] = ++n << 
3215     }                                         << 
3216     // check (iy + 1) side                    << 
3217     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3218     if (vcheck == 0)                          << 
3219     {                                         << 
3220       nfac++;                                 << 
3221       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3222       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3223       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3224       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3225       if (indices[i1] == 0) indices[i1] = ++n << 
3226       if (indices[i2] == 0) indices[i2] = ++n << 
3227       if (indices[i3] == 0) indices[i3] = ++n << 
3228       if (indices[i4] == 0) indices[i4] = ++n << 
3229     }                                         << 
3230     // check (iz - 1) side                    << 
3231     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3232     if (vcheck == 0)                          << 
3233     {                                         << 
3234       nfac++;                                 << 
3235       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3236       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3237       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3238       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3239       if (indices[i1] == 0) indices[i1] = ++n << 
3240       if (indices[i2] == 0) indices[i2] = ++n << 
3241       if (indices[i3] == 0) indices[i3] = ++n << 
3242       if (indices[i4] == 0) indices[i4] = ++n << 
3243     }                                         << 
3244     // check (iz + 1) side                    << 
3245     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3246     if (vcheck == 0)                          << 
3247     {                                         << 
3248       nfac++;                                 << 
3249       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3250       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3251       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3252       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3253       if (indices[i1] == 0) indices[i1] = ++n << 
3254       if (indices[i2] == 0) indices[i2] = ++n << 
3255       if (indices[i3] == 0) indices[i3] = ++n << 
3256       if (indices[i4] == 0) indices[i4] = ++n << 
3257     }                                         << 
3258   }                                           << 
3259   // Construct polyhedron                     << 
3260   AllocateMemory(nver, nfac);                 << 
3261   G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 
3262   for (G4int ix = 0; ix <= nx; ++ix)          << 
3263   {                                           << 
3264     for (G4int iy = 0; iy <= ny; ++iy)        << 
3265     {                                         << 
3266       for (G4int iz = 0; iz <= nz; ++iz)      << 
3267       {                                       << 
3268   G4int i = ix*kvx + iy*kvy + iz;             << 
3269   if (indices[i] == 0) continue;              << 
3270   SetVertex(indices[i], p0 + G4ThreeVector(ix << 
3271       }                                       << 
3272     }                                         << 
3273   }                                           << 
3274   nfac = 0;                                   << 
3275   for (const auto& p: positions)              << 
3276   {                                           << 
3277     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3278     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3279     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3280     G4int vcheck = 0;                         << 
3281     // check (ix - 1) side                    << 
3282     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3283     if (vcheck == 0)                          << 
3284     {                                         << 
3285       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3286       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3287       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3288       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3289       SetFacet(++nfac, indices[i1], indices[i << 
3290     }                                         << 
3291     // check (ix + 1) side                    << 
3292     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3293     if (vcheck == 0)                          << 
3294     {                                         << 
3295       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3296       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3297       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3298       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3299       SetFacet(++nfac, indices[i1], indices[i << 
3300                                               << 
3301     }                                         << 
3302     // check (iy - 1) side                    << 
3303     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3304     if (vcheck == 0)                          << 
3305     {                                         << 
3306       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3307       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3308       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3309       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3310       SetFacet(++nfac, indices[i1], indices[i << 
3311     }                                         << 
3312     // check (iy + 1) side                    << 
3313     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3314     if (vcheck == 0)                          << 
3315     {                                         << 
3316       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3317       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3318       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3319       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3320       SetFacet(++nfac, indices[i1], indices[i << 
3321     }                                         << 
3322     // check (iz - 1) side                    << 
3323     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3324     if (vcheck == 0)                          << 
3325     {                                         << 
3326       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3327       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3328       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3329       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3330       SetFacet(++nfac, indices[i1], indices[i << 
3331     }                                         << 
3332     // check (iz + 1) side                    << 
3333     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3334     if (vcheck == 0)                          << 
3335     {                                         << 
3336       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3337       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3338       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3339       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3340       SetFacet(++nfac, indices[i1], indices[i << 
3341     }                                         << 
3342   }                                           << 
3343   SetReferences();                            << 
3344 }                                             << 
3345                                               << 
3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 
3347                                               << 
3348 G4ThreadLocal                                 << 
3349 G4int HepPolyhedron::fNumberOfRotationSteps = << 
3350 /********************************************    2264 /***********************************************************************
3351  *                                               2265  *                                                                     *
3352  * Name: HepPolyhedron::fNumberOfRotationStep    2266  * Name: HepPolyhedron::fNumberOfRotationSteps       Date:    24.06.97 *
3353  * Author: J.Allison (Manchester University)     2267  * Author: J.Allison (Manchester University)         Revised:          *
3354  *                                               2268  *                                                                     *
3355  * Function: Number of steps for whole circle    2269  * Function: Number of steps for whole circle                          *
3356  *                                               2270  *                                                                     *
3357  ********************************************    2271  ***********************************************************************/
3358                                                  2272 
3359 #include "BooleanProcessor.src"                  2273 #include "BooleanProcessor.src"
3360                                                  2274 
3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2275 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 
3362 /********************************************    2276 /***********************************************************************
3363  *                                               2277  *                                                                     *
3364  * Name: HepPolyhedron::add                      2278  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3365  * Author: E.Chernyaev                           2279  * Author: E.Chernyaev                               Revised:          *
3366  *                                               2280  *                                                                     *
3367  * Function: Boolean "union" of two polyhedra    2281  * Function: Boolean "union" of two polyhedra                          *
3368  *                                               2282  *                                                                     *
3369  ********************************************    2283  ***********************************************************************/
3370 {                                                2284 {
3371   G4int ierr;                                    2285   G4int ierr;
3372   BooleanProcessor processor;                    2286   BooleanProcessor processor;
3373   return processor.execute(OP_UNION, *this, p    2287   return processor.execute(OP_UNION, *this, p,ierr);
3374 }                                                2288 }
3375                                                  2289 
3376 HepPolyhedron HepPolyhedron::intersect(const  << 2290 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 
3377 /********************************************    2291 /***********************************************************************
3378  *                                               2292  *                                                                     *
3379  * Name: HepPolyhedron::intersect                2293  * Name: HepPolyhedron::intersect                    Date:    19.03.00 *
3380  * Author: E.Chernyaev                           2294  * Author: E.Chernyaev                               Revised:          *
3381  *                                               2295  *                                                                     *
3382  * Function: Boolean "intersection" of two po    2296  * Function: Boolean "intersection" of two polyhedra                   *
3383  *                                               2297  *                                                                     *
3384  ********************************************    2298  ***********************************************************************/
3385 {                                                2299 {
3386   G4int ierr;                                    2300   G4int ierr;
3387   BooleanProcessor processor;                    2301   BooleanProcessor processor;
3388   return processor.execute(OP_INTERSECTION, *    2302   return processor.execute(OP_INTERSECTION, *this, p,ierr);
3389 }                                                2303 }
3390                                                  2304 
3391 HepPolyhedron HepPolyhedron::subtract(const H << 2305 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 
3392 /********************************************    2306 /***********************************************************************
3393  *                                               2307  *                                                                     *
3394  * Name: HepPolyhedron::add                      2308  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3395  * Author: E.Chernyaev                           2309  * Author: E.Chernyaev                               Revised:          *
3396  *                                               2310  *                                                                     *
3397  * Function: Boolean "subtraction" of "p" fro    2311  * Function: Boolean "subtraction" of "p" from "this"                  *
3398  *                                               2312  *                                                                     *
3399  ********************************************    2313  ***********************************************************************/
3400 {                                                2314 {
3401   G4int ierr;                                    2315   G4int ierr;
3402   BooleanProcessor processor;                    2316   BooleanProcessor processor;
3403   return processor.execute(OP_SUBTRACTION, *t    2317   return processor.execute(OP_SUBTRACTION, *this, p,ierr);
3404 }                                                2318 }
3405                                                  2319 
3406 //NOTE : include the code of HepPolyhedronPro    2320 //NOTE : include the code of HepPolyhedronProcessor here
3407 //       since there is no BooleanProcessor.h    2321 //       since there is no BooleanProcessor.h
3408                                                  2322 
3409 #undef INTERSECTION                              2323 #undef INTERSECTION
3410                                                  2324 
3411 #include "HepPolyhedronProcessor.src"            2325 #include "HepPolyhedronProcessor.src"
                                                   >> 2326 
3412                                                  2327