Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/graphics_reps/src/HepPolyhedron.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /graphics_reps/src/HepPolyhedron.cc (Version 11.3.0) and /graphics_reps/src/HepPolyhedron.cc (Version 10.0.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: HepPolyhedron.cc 84514 2014-10-16 14:44:49Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // 
                                                   >>  30 //
 26 // G4 Polyhedron library                           31 // G4 Polyhedron library
 27 //                                                 32 //
 28 // History:                                        33 // History:
 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce     34 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version
 30 //                                                 35 //
 31 // 30.09.96 E.Chernyaev                            36 // 30.09.96 E.Chernyaev
 32 // - added GetNextVertexIndex, GetVertex by Ya     37 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada
 33 // - added GetNextUnitNormal, GetNextEdgeIndic <<  38 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge
 34 //                                                 39 //
 35 // 15.12.96 E.Chernyaev                            40 // 15.12.96 E.Chernyaev
 36 // - added GetNumberOfRotationSteps, RotateEdg     41 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences
 37 // - rewritten G4PolyhedronCons;                   42 // - rewritten G4PolyhedronCons;
 38 // - added G4PolyhedronPara, ...Trap, ...Pgon,     43 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus
 39 //                                                 44 //
 40 // 01.06.97 E.Chernyaev                            45 // 01.06.97 E.Chernyaev
 41 // - modified RotateAroundZ, added SetSideFace     46 // - modified RotateAroundZ, added SetSideFacets
 42 //                                                 47 //
 43 // 19.03.00 E.Chernyaev                            48 // 19.03.00 E.Chernyaev
 44 // - implemented boolean operations (add, subt     49 // - implemented boolean operations (add, subtract, intersect) on polyhedra;
 45 //                                                 50 //
 46 // 25.05.01 E.Chernyaev                            51 // 25.05.01 E.Chernyaev
 47 // - added GetSurfaceArea() and GetVolume()    <<  52 // - added GetSurfaceArea() and GetVolume();
 48 //                                                 53 //
 49 // 05.11.02 E.Chernyaev                            54 // 05.11.02 E.Chernyaev
 50 // - added createTwistedTrap() and createPolyh <<  55 // - added createTwistedTrap() and createPolyhedron();
 51 //                                                 56 //
 52 // 20.06.05 G.Cosmo                                57 // 20.06.05 G.Cosmo
 53 // - added HepPolyhedronEllipsoid              <<  58 // - added HepPolyhedronEllipsoid;
 54 //                                             << 
 55 // 18.07.07 T.Nikitina                         << 
 56 // - added HepPolyhedronParaboloid             << 
 57 //                                             << 
 58 // 22.02.20 E.Chernyaev                        << 
 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 
 60 //                                             << 
 61 // 12.05.21 E.Chernyaev                        << 
 62 // - added TriangulatePolygon(), RotateContour << 
 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 
 64 //                                             << 
 65 // 26.03.22 E.Chernyaev                        << 
 66 // - added SetVertex(), SetFacet()             << 
 67 // - added HepPolyhedronTetMesh                << 
 68 //                                             << 
 69 // 04.04.22 E.Chernyaev                        << 
 70 // - added JoinCoplanarFacets()                << 
 71 //                                                 59 //
 72 // 07.04.22 E.Chernyaev                        <<  60 // 18.07.07 T.Nikitin
 73 // - added HepPolyhedronBoxMesh                <<  61 // - added HepParaboloid;
 74                                                <<  62   
 75 #include "HepPolyhedron.h"                         63 #include "HepPolyhedron.h"
 76 #include "G4PhysicalConstants.hh"                  64 #include "G4PhysicalConstants.hh"
 77 #include "G4Vector3D.hh"                           65 #include "G4Vector3D.hh"
 78                                                    66 
 79 #include <cstdlib>  // Required on some compil     67 #include <cstdlib>  // Required on some compilers for std::abs(int) ...
 80 #include <cmath>                                   68 #include <cmath>
 81 #include <algorithm>                           << 
 82                                                    69 
 83 using CLHEP::perMillion;                           70 using CLHEP::perMillion;
 84 using CLHEP::deg;                                  71 using CLHEP::deg;
 85 using CLHEP::pi;                                   72 using CLHEP::pi;
 86 using CLHEP::twopi;                                73 using CLHEP::twopi;
 87 using CLHEP::nm;                                   74 using CLHEP::nm;
 88 const G4double spatialTolerance = 0.01*nm;         75 const G4double spatialTolerance = 0.01*nm;
 89                                                    76 
 90 /*********************************************     77 /***********************************************************************
 91  *                                                 78  *                                                                     *
 92  * Name: HepPolyhedron operator <<                 79  * Name: HepPolyhedron operator <<                   Date:    09.05.96 *
 93  * Author: E.Chernyaev (IHEP/Protvino)             80  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
 94  *                                                 81  *                                                                     *
 95  * Function: Print contents of G4 polyhedron       82  * Function: Print contents of G4 polyhedron                           *
 96  *                                                 83  *                                                                     *
 97  *********************************************     84  ***********************************************************************/
 98 std::ostream & operator<<(std::ostream & ostr,     85 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) {
 99   for (const auto& edge : facet.edge) {        <<  86   for (G4int k=0; k<4; k++) {
100     ostr << " " << edge.v << "/" << edge.f;    <<  87     ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f;
101   }                                                88   }
102   return ostr;                                     89   return ostr;
103 }                                                  90 }
104                                                    91 
105 std::ostream & operator<<(std::ostream & ostr,     92 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) {
106   ostr << std::endl;                               93   ostr << std::endl;
107   ostr << "Nvertices=" << ph.nvert << ", Nface <<  94   ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl;
108   G4int i;                                         95   G4int i;
109   for (i=1; i<=ph.nvert; i++) {                    96   for (i=1; i<=ph.nvert; i++) {
110      ostr << "xyz(" << i << ")="                   97      ostr << "xyz(" << i << ")="
111           << ph.pV[i].x() << ' ' << ph.pV[i].y     98           << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z()
112           << std::endl;                            99           << std::endl;
113   }                                               100   }
114   for (i=1; i<=ph.nface; i++) {                   101   for (i=1; i<=ph.nface; i++) {
115     ostr << "face(" << i << ")=" << ph.pF[i] <    102     ostr << "face(" << i << ")=" << ph.pF[i] << std::endl;
116   }                                               103   }
117   return ostr;                                    104   return ostr;
118 }                                                 105 }
119                                                   106 
120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 
121 /********************************************* << 
122  *                                             << 
123  * Name: HepPolyhedron constructor with        << 
124  *       allocation of memory                  << 
125  * Author: E.Tcherniaev (E.Chernyaev)          << 
126  *                                             << 
127  ********************************************* << 
128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
129 {                                              << 
130   AllocateMemory(Nvert, Nface);                << 
131 }                                              << 
132                                                << 
133 HepPolyhedron::HepPolyhedron(const HepPolyhedr    107 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from)
134 /*********************************************    108 /***********************************************************************
135  *                                                109  *                                                                     *
136  * Name: HepPolyhedron copy constructor           110  * Name: HepPolyhedron copy constructor             Date:    23.07.96  *
137  * Author: E.Chernyaev (IHEP/Protvino)            111  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
138  *                                                112  *                                                                     *
139  *********************************************    113  ***********************************************************************/
140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 114 : nvert(0), nface(0), pV(0), pF(0)
141 {                                                 115 {
142   AllocateMemory(from.nvert, from.nface);         116   AllocateMemory(from.nvert, from.nface);
143   for (G4int i=1; i<=nvert; i++) pV[i] = from.    117   for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
144   for (G4int k=1; k<=nface; k++) pF[k] = from.    118   for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
145 }                                                 119 }
146                                                   120 
147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 
148 /********************************************* << 
149  *                                             << 
150  * Name: HepPolyhedron move constructor        << 
151  * Author: E.Tcherniaev (E.Chernyaev)          << 
152  *                                             << 
153  ********************************************* << 
154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
155 {                                              << 
156   nvert = from.nvert;                          << 
157   nface = from.nface;                          << 
158   pV = from.pV;                                << 
159   pF = from.pF;                                << 
160                                                << 
161   // Release the data from the source object   << 
162   from.nvert = 0;                              << 
163   from.nface = 0;                              << 
164   from.pV = nullptr;                           << 
165   from.pF = nullptr;                           << 
166 }                                              << 
167                                                << 
168 HepPolyhedron & HepPolyhedron::operator=(const    121 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from)
169 /*********************************************    122 /***********************************************************************
170  *                                                123  *                                                                     *
171  * Name: HepPolyhedron operator =                 124  * Name: HepPolyhedron operator =                   Date:    23.07.96  *
172  * Author: E.Chernyaev (IHEP/Protvino)            125  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
173  *                                                126  *                                                                     *
174  * Function: Copy contents of one polyhedron t    127  * Function: Copy contents of one polyhedron to another                *
175  *                                                128  *                                                                     *
176  *********************************************    129  ***********************************************************************/
177 {                                                 130 {
178   if (this != &from) {                            131   if (this != &from) {
179     AllocateMemory(from.nvert, from.nface);       132     AllocateMemory(from.nvert, from.nface);
180     for (G4int i=1; i<=nvert; i++) pV[i] = fro    133     for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
181     for (G4int k=1; k<=nface; k++) pF[k] = fro    134     for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
182   }                                               135   }
183   return *this;                                   136   return *this;
184 }                                                 137 }
185                                                   138 
186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 
187 /********************************************* << 
188  *                                             << 
189  * Name: HepPolyhedron move operator =         << 
190  * Author: E.Tcherniaev (E.Chernyaev)          << 
191  *                                             << 
192  * Function: Move contents of one polyhedron t << 
193  *                                             << 
194  ********************************************* << 
195 {                                              << 
196   if (this != &from) {                         << 
197     delete [] pV;                              << 
198     delete [] pF;                              << 
199     nvert = from.nvert;                        << 
200     nface = from.nface;                        << 
201     pV = from.pV;                              << 
202     pF = from.pF;                              << 
203                                                << 
204     // Release the data from the source object << 
205     from.nvert = 0;                            << 
206     from.nface = 0;                            << 
207     from.pV = nullptr;                         << 
208     from.pF = nullptr;                         << 
209   }                                            << 
210   return *this;                                << 
211 }                                              << 
212                                                << 
213 G4int                                             139 G4int
214 HepPolyhedron::FindNeighbour(G4int iFace, G4in    140 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const
215 /*********************************************    141 /***********************************************************************
216  *                                                142  *                                                                     *
217  * Name: HepPolyhedron::FindNeighbour             143  * Name: HepPolyhedron::FindNeighbour                Date:    22.11.99 *
218  * Author: E.Chernyaev                            144  * Author: E.Chernyaev                               Revised:          *
219  *                                                145  *                                                                     *
220  * Function: Find neighbouring face               146  * Function: Find neighbouring face                                    *
221  *                                                147  *                                                                     *
222  *********************************************    148  ***********************************************************************/
223 {                                                 149 {
224   G4int i;                                        150   G4int i;
225   for (i=0; i<4; i++) {                           151   for (i=0; i<4; i++) {
226     if (iNode == std::abs(pF[iFace].edge[i].v)    152     if (iNode == std::abs(pF[iFace].edge[i].v)) break;
227   }                                               153   }
228   if (i == 4) {                                   154   if (i == 4) {
229     std::cerr                                     155     std::cerr
230       << "HepPolyhedron::FindNeighbour: face "    156       << "HepPolyhedron::FindNeighbour: face " << iFace
231       << " has no node " << iNode                 157       << " has no node " << iNode
232       << std::endl;                            << 158       << std::endl; 
233     return 0;                                     159     return 0;
234   }                                               160   }
235   if (iOrder < 0) {                               161   if (iOrder < 0) {
236     if ( --i < 0) i = 3;                          162     if ( --i < 0) i = 3;
237     if (pF[iFace].edge[i].v == 0) i = 2;          163     if (pF[iFace].edge[i].v == 0) i = 2;
238   }                                               164   }
239   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF    165   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f;
240 }                                                 166 }
241                                                   167 
242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int    168 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const
243 /*********************************************    169 /***********************************************************************
244  *                                                170  *                                                                     *
245  * Name: HepPolyhedron::FindNodeNormal            171  * Name: HepPolyhedron::FindNodeNormal               Date:    22.11.99 *
246  * Author: E.Chernyaev                            172  * Author: E.Chernyaev                               Revised:          *
247  *                                                173  *                                                                     *
248  * Function: Find normal at given node            174  * Function: Find normal at given node                                 *
249  *                                                175  *                                                                     *
250  *********************************************    176  ***********************************************************************/
251 {                                                 177 {
252   G4Normal3D normal = GetUnitNormal(iFace);    << 178   G4Normal3D   normal = GetUnitNormal(iFace);
253   G4int      k = iFace, iOrder = 1;            << 179   G4int          k = iFace, iOrder = 1, n = 1;
254                                                   180 
255   for(;;) {                                       181   for(;;) {
256     k = FindNeighbour(k, iNode, iOrder);          182     k = FindNeighbour(k, iNode, iOrder);
257     if (k == iFace) break;                     << 183     if (k == iFace) break; 
258     if (k > 0) {                                  184     if (k > 0) {
                                                   >> 185       n++;
259       normal += GetUnitNormal(k);                 186       normal += GetUnitNormal(k);
260     }else{                                        187     }else{
261       if (iOrder < 0) break;                      188       if (iOrder < 0) break;
262       k = iFace;                                  189       k = iFace;
263       iOrder = -iOrder;                           190       iOrder = -iOrder;
264     }                                             191     }
265   }                                               192   }
266   return normal.unit();                           193   return normal.unit();
267 }                                                 194 }
268                                                   195 
269 G4int HepPolyhedron::GetNumberOfRotationSteps(    196 G4int HepPolyhedron::GetNumberOfRotationSteps()
270 /*********************************************    197 /***********************************************************************
271  *                                                198  *                                                                     *
272  * Name: HepPolyhedron::GetNumberOfRotationSte    199  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
273  * Author: J.Allison (Manchester University)      200  * Author: J.Allison (Manchester University)         Revised:          *
274  *                                                201  *                                                                     *
275  * Function: Get number of steps for whole cir    202  * Function: Get number of steps for whole circle                      *
276  *                                                203  *                                                                     *
277  *********************************************    204  ***********************************************************************/
278 {                                                 205 {
279   return fNumberOfRotationSteps;                  206   return fNumberOfRotationSteps;
280 }                                                 207 }
281                                                   208 
282 void HepPolyhedron::SetVertex(G4int index, con << 
283 /********************************************* << 
284  *                                             << 
285  * Name: HepPolyhedron::SetVertex              << 
286  * Author: E.Tcherniaev (E.Chernyaev)          << 
287  *                                             << 
288  * Function: Set vertex                        << 
289  *                                             << 
290  ********************************************* << 
291 {                                              << 
292   if (index < 1 || index > nvert)              << 
293   {                                            << 
294     std::cerr                                  << 
295       << "HepPolyhedron::SetVertex: vertex ind << 
296       << " is out of range\n"                  << 
297       << "   N. of vertices = " << nvert << "\ << 
298       << "   N. of facets = " << nface << std: << 
299     return;                                    << 
300   }                                            << 
301   pV[index] = v;                               << 
302 }                                              << 
303                                                << 
304 void                                           << 
305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 
306 /********************************************* << 
307  *                                             << 
308  * Name: HepPolyhedron::SetFacet               << 
309  * Author: E.Tcherniaev (E.Chernyaev)          << 
310  *                                             << 
311  * Function: Set facet                         << 
312  *                                             << 
313  ********************************************* << 
314 {                                              << 
315   if (index < 1 || index > nface)              << 
316   {                                            << 
317     std::cerr                                  << 
318       << "HepPolyhedron::SetFacet: facet index << 
319       << " is out of range\n"                  << 
320       << "   N. of vertices = " << nvert << "\ << 
321       << "   N. of facets = " << nface << std: << 
322     return;                                    << 
323   }                                            << 
324   if (iv1 < 1 || iv1 > nvert ||                << 
325       iv2 < 1 || iv2 > nvert ||                << 
326       iv3 < 1 || iv3 > nvert ||                << 
327       iv4 < 0 || iv4 > nvert)                  << 
328   {                                            << 
329     std::cerr                                  << 
330       << "HepPolyhedron::SetFacet: incorrectly << 
331       << " (" << iv1 << ", " << iv2 << ", " << << 
332       << "   N. of vertices = " << nvert << "\ << 
333       << "   N. of facets = " << nface << std: << 
334     return;                                    << 
335   }                                            << 
336   pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0,  << 
337 }                                              << 
338                                                << 
339 void HepPolyhedron::SetNumberOfRotationSteps(G    209 void HepPolyhedron::SetNumberOfRotationSteps(G4int n)
340 /*********************************************    210 /***********************************************************************
341  *                                                211  *                                                                     *
342  * Name: HepPolyhedron::SetNumberOfRotationSte    212  * Name: HepPolyhedron::SetNumberOfRotationSteps     Date:    24.06.97 *
343  * Author: J.Allison (Manchester University)      213  * Author: J.Allison (Manchester University)         Revised:          *
344  *                                                214  *                                                                     *
345  * Function: Set number of steps for whole cir    215  * Function: Set number of steps for whole circle                      *
346  *                                                216  *                                                                     *
347  *********************************************    217  ***********************************************************************/
348 {                                                 218 {
349   const G4int nMin = 3;                           219   const G4int nMin = 3;
350   if (n < nMin) {                                 220   if (n < nMin) {
351     std::cerr                                  << 221     std::cerr 
352       << "HepPolyhedron::SetNumberOfRotationSt    222       << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n"
353       << "number of steps per circle < " << nM    223       << "number of steps per circle < " << nMin << "; forced to " << nMin
354       << std::endl;                               224       << std::endl;
355     fNumberOfRotationSteps = nMin;                225     fNumberOfRotationSteps = nMin;
356   }else{                                          226   }else{
357     fNumberOfRotationSteps = n;                   227     fNumberOfRotationSteps = n;
358   }                                            << 228   }    
359 }                                                 229 }
360                                                   230 
361 void HepPolyhedron::ResetNumberOfRotationSteps    231 void HepPolyhedron::ResetNumberOfRotationSteps()
362 /*********************************************    232 /***********************************************************************
363  *                                                233  *                                                                     *
364  * Name: HepPolyhedron::GetNumberOfRotationSte    234  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
365  * Author: J.Allison (Manchester University)      235  * Author: J.Allison (Manchester University)         Revised:          *
366  *                                                236  *                                                                     *
367  * Function: Reset number of steps for whole c    237  * Function: Reset number of steps for whole circle to default value   *
368  *                                                238  *                                                                     *
369  *********************************************    239  ***********************************************************************/
370 {                                                 240 {
371   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S    241   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
372 }                                                 242 }
373                                                   243 
374 void HepPolyhedron::AllocateMemory(G4int Nvert    244 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface)
375 /*********************************************    245 /***********************************************************************
376  *                                                246  *                                                                     *
377  * Name: HepPolyhedron::AllocateMemory            247  * Name: HepPolyhedron::AllocateMemory               Date:    19.06.96 *
378  * Author: E.Chernyaev (IHEP/Protvino)            248  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 05.11.02 *
379  *                                                249  *                                                                     *
380  * Function: Allocate memory for GEANT4 polyhe    250  * Function: Allocate memory for GEANT4 polyhedron                     *
381  *                                                251  *                                                                     *
382  * Input: Nvert - number of nodes                 252  * Input: Nvert - number of nodes                                      *
383  *        Nface - number of faces                 253  *        Nface - number of faces                                      *
384  *                                                254  *                                                                     *
385  *********************************************    255  ***********************************************************************/
386 {                                                 256 {
387   if (nvert == Nvert && nface == Nface) return    257   if (nvert == Nvert && nface == Nface) return;
388   delete [] pV;                                << 258   if (pV != 0) delete [] pV;
389   delete [] pF;                                << 259   if (pF != 0) delete [] pF;
390   if (Nvert > 0 && Nface > 0) {                   260   if (Nvert > 0 && Nface > 0) {
391     nvert = Nvert;                                261     nvert = Nvert;
392     nface = Nface;                                262     nface = Nface;
393     pV    = new G4Point3D[nvert+1];               263     pV    = new G4Point3D[nvert+1];
394     pF    = new G4Facet[nface+1];                 264     pF    = new G4Facet[nface+1];
395   }else{                                          265   }else{
396     nvert = 0; nface = 0; pV = nullptr; pF = n << 266     nvert = 0; nface = 0; pV = 0; pF = 0;
397   }                                               267   }
398 }                                                 268 }
399                                                   269 
400 void HepPolyhedron::CreatePrism()                 270 void HepPolyhedron::CreatePrism()
401 /*********************************************    271 /***********************************************************************
402  *                                                272  *                                                                     *
403  * Name: HepPolyhedron::CreatePrism               273  * Name: HepPolyhedron::CreatePrism                  Date:    15.07.96 *
404  * Author: E.Chernyaev (IHEP/Protvino)            274  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
405  *                                                275  *                                                                     *
406  * Function: Set facets for a prism               276  * Function: Set facets for a prism                                    *
407  *                                                277  *                                                                     *
408  *********************************************    278  ***********************************************************************/
409 {                                                 279 {
410   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON    280   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP};
411                                                   281 
412   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,      282   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,  2,FRONT);
413   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM,     283   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM, 1,FRONT);
414   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM,     284   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM, 4,LEFT);
415   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM,     285   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM, 3,BACK);
416   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM,     286   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM, 2,RIGHT);
417   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,       287   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,   8,LEFT);
418 }                                                 288 }
419                                                   289 
420 void HepPolyhedron::RotateEdge(G4int k1, G4int    290 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2,
421                               G4int v1, G4int     291                               G4int v1, G4int v2, G4int vEdge,
422                               G4bool ifWholeCi    292                               G4bool ifWholeCircle, G4int nds, G4int &kface)
423 /*********************************************    293 /***********************************************************************
424  *                                                294  *                                                                     *
425  * Name: HepPolyhedron::RotateEdge                295  * Name: HepPolyhedron::RotateEdge                   Date:    05.12.96 *
426  * Author: E.Chernyaev (IHEP/Protvino)            296  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
427  *                                                297  *                                                                     *
428  * Function: Create set of facets by rotation     298  * Function: Create set of facets by rotation of an edge around Z-axis *
429  *                                                299  *                                                                     *
430  * Input: k1, k2 - end vertices of the edge       300  * Input: k1, k2 - end vertices of the edge                            *
431  *        r1, r2 - radiuses of the end vertice    301  *        r1, r2 - radiuses of the end vertices                        *
432  *        v1, v2 - visibility of edges produce    302  *        v1, v2 - visibility of edges produced by rotation of the end *
433  *                 vertices                       303  *                 vertices                                            *
434  *        vEdge  - visibility of the edge         304  *        vEdge  - visibility of the edge                              *
435  *        ifWholeCircle - is true in case of w    305  *        ifWholeCircle - is true in case of whole circle rotation     *
436  *        nds    - number of discrete steps       306  *        nds    - number of discrete steps                            *
437  *        r[]    - r-coordinates                  307  *        r[]    - r-coordinates                                       *
438  *        kface  - current free cell in the pF    308  *        kface  - current free cell in the pF array                   *
439  *                                                309  *                                                                     *
440  *********************************************    310  ***********************************************************************/
441 {                                                 311 {
442   if (r1 == 0. && r2 == 0.) return;            << 312   if (r1 == 0. && r2 == 0) return;
443                                                   313 
444   G4int i;                                        314   G4int i;
445   G4int i1  = k1;                                 315   G4int i1  = k1;
446   G4int i2  = k2;                                 316   G4int i2  = k2;
447   G4int ii1 = ifWholeCircle ? i1 : i1+nds;        317   G4int ii1 = ifWholeCircle ? i1 : i1+nds;
448   G4int ii2 = ifWholeCircle ? i2 : i2+nds;        318   G4int ii2 = ifWholeCircle ? i2 : i2+nds;
449   G4int vv  = ifWholeCircle ? vEdge : 1;          319   G4int vv  = ifWholeCircle ? vEdge : 1;
450                                                   320 
451   if (nds == 1) {                                 321   if (nds == 1) {
452     if (r1 == 0.) {                               322     if (r1 == 0.) {
453       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    323       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0);
454     }else if (r2 == 0.) {                         324     }else if (r2 == 0.) {
455       pF[kface++]   = G4Facet(i1,0,    i2,0,      325       pF[kface++]   = G4Facet(i1,0,    i2,0,    v1*(i1+1),0);
456     }else{                                        326     }else{
457       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    327       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0, v1*(i1+1),0);
458     }                                             328     }
459   }else{                                          329   }else{
460     if (r1 == 0.) {                               330     if (r1 == 0.) {
461       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    331       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0);
462       for (i2++,i=1; i<nds-1; i2++,i++) {         332       for (i2++,i=1; i<nds-1; i2++,i++) {
463         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    333         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0);
464       }                                           334       }
465       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    335       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0);
466     }else if (r2 == 0.) {                         336     }else if (r2 == 0.) {
467       pF[kface++]   = G4Facet(vv*i1,0,    vEdg    337       pF[kface++]   = G4Facet(vv*i1,0,    vEdge*i2,0, v1*(i1+1),0);
468       for (i1++,i=1; i<nds-1; i1++,i++) {         338       for (i1++,i=1; i<nds-1; i1++,i++) {
469         pF[kface++] = G4Facet(vEdge*i1,0, vEdg    339         pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0);
470       }                                           340       }
471       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i    341       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i2,0,    v1*ii1,0);
472     }else{                                        342     }else{
473       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    343       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
474       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i    344       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) {
475         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    345         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
476       }                                        << 346       }  
477       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    347       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0,      v1*ii1,0);
478     }                                             348     }
479   }                                               349   }
480 }                                                 350 }
481                                                   351 
482 void HepPolyhedron::SetSideFacets(G4int ii[4],    352 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4],
483                                  G4int *kk, G4    353                                  G4int *kk, G4double *r,
484                                  G4double dphi    354                                  G4double dphi, G4int nds, G4int &kface)
485 /*********************************************    355 /***********************************************************************
486  *                                                356  *                                                                     *
487  * Name: HepPolyhedron::SetSideFacets             357  * Name: HepPolyhedron::SetSideFacets                Date:    20.05.97 *
488  * Author: E.Chernyaev (IHEP/Protvino)            358  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
489  *                                                359  *                                                                     *
490  * Function: Set side facets for the case of i    360  * Function: Set side facets for the case of incomplete rotation       *
491  *                                                361  *                                                                     *
492  * Input: ii[4] - indices of original vertices << 362  * Input: ii[4] - indeces of original verteces                         *
493  *        vv[4] - visibility of edges             363  *        vv[4] - visibility of edges                                  *
494  *        kk[]  - indices of nodes             << 364  *        kk[]  - indeces of nodes                                     *
495  *        r[]   - radiuses                        365  *        r[]   - radiuses                                             *
496  *        dphi  - delta phi                       366  *        dphi  - delta phi                                            *
497  *        nds    - number of discrete steps       367  *        nds    - number of discrete steps                            *
498  *        kface  - current free cell in the pF    368  *        kface  - current free cell in the pF array                   *
499  *                                                369  *                                                                     *
500  *********************************************    370  ***********************************************************************/
501 {                                                 371 {
502   G4int k1, k2, k3, k4;                           372   G4int k1, k2, k3, k4;
503                                                << 373   
504   if (std::abs(dphi-pi) < perMillion) { // hal << 374   if (std::abs((G4double)(dphi-pi)) < perMillion) {          // half a circle
505     for (G4int i=0; i<4; i++) {                   375     for (G4int i=0; i<4; i++) {
506       k1 = ii[i];                                 376       k1 = ii[i];
507       k2 = ii[(i+1)%4];                        << 377       k2 = (i == 3) ? ii[0] : ii[i+1];
508       if (r[k1] == 0. && r[k2] == 0.) vv[i] =  << 378       if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1;      
509     }                                             379     }
510   }                                               380   }
511                                                   381 
512   if (ii[1] == ii[2]) {                           382   if (ii[1] == ii[2]) {
513     k1 = kk[ii[0]];                               383     k1 = kk[ii[0]];
514     k2 = kk[ii[2]];                               384     k2 = kk[ii[2]];
515     k3 = kk[ii[3]];                               385     k3 = kk[ii[3]];
516     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2    386     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
517     if (r[ii[0]] != 0.) k1 += nds;                387     if (r[ii[0]] != 0.) k1 += nds;
518     if (r[ii[2]] != 0.) k2 += nds;                388     if (r[ii[2]] != 0.) k2 += nds;
519     if (r[ii[3]] != 0.) k3 += nds;                389     if (r[ii[3]] != 0.) k3 += nds;
520     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2    390     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
521   }else if (kk[ii[0]] == kk[ii[1]]) {             391   }else if (kk[ii[0]] == kk[ii[1]]) {
522     k1 = kk[ii[0]];                               392     k1 = kk[ii[0]];
523     k2 = kk[ii[2]];                               393     k2 = kk[ii[2]];
524     k3 = kk[ii[3]];                               394     k3 = kk[ii[3]];
525     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2    395     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
526     if (r[ii[0]] != 0.) k1 += nds;                396     if (r[ii[0]] != 0.) k1 += nds;
527     if (r[ii[2]] != 0.) k2 += nds;                397     if (r[ii[2]] != 0.) k2 += nds;
528     if (r[ii[3]] != 0.) k3 += nds;                398     if (r[ii[3]] != 0.) k3 += nds;
529     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2    399     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0);
530   }else if (kk[ii[2]] == kk[ii[3]]) {             400   }else if (kk[ii[2]] == kk[ii[3]]) {
531     k1 = kk[ii[0]];                               401     k1 = kk[ii[0]];
532     k2 = kk[ii[1]];                               402     k2 = kk[ii[1]];
533     k3 = kk[ii[2]];                               403     k3 = kk[ii[2]];
534     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    404     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0);
535     if (r[ii[0]] != 0.) k1 += nds;                405     if (r[ii[0]] != 0.) k1 += nds;
536     if (r[ii[1]] != 0.) k2 += nds;                406     if (r[ii[1]] != 0.) k2 += nds;
537     if (r[ii[2]] != 0.) k3 += nds;                407     if (r[ii[2]] != 0.) k3 += nds;
538     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2    408     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
539   }else{                                          409   }else{
540     k1 = kk[ii[0]];                               410     k1 = kk[ii[0]];
541     k2 = kk[ii[1]];                               411     k2 = kk[ii[1]];
542     k3 = kk[ii[2]];                               412     k3 = kk[ii[2]];
543     k4 = kk[ii[3]];                               413     k4 = kk[ii[3]];
544     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    414     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0);
545     if (r[ii[0]] != 0.) k1 += nds;                415     if (r[ii[0]] != 0.) k1 += nds;
546     if (r[ii[1]] != 0.) k2 += nds;                416     if (r[ii[1]] != 0.) k2 += nds;
547     if (r[ii[2]] != 0.) k3 += nds;                417     if (r[ii[2]] != 0.) k3 += nds;
548     if (r[ii[3]] != 0.) k4 += nds;                418     if (r[ii[3]] != 0.) k4 += nds;
549     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3    419     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
550   }                                               420   }
551 }                                                 421 }
552                                                   422 
553 void HepPolyhedron::RotateAroundZ(G4int nstep,    423 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi,
554                                  G4int np1, G4    424                                  G4int np1, G4int np2,
555                                  const G4doubl    425                                  const G4double *z, G4double *r,
556                                  G4int nodeVis    426                                  G4int nodeVis, G4int edgeVis)
557 /*********************************************    427 /***********************************************************************
558  *                                                428  *                                                                     *
559  * Name: HepPolyhedron::RotateAroundZ             429  * Name: HepPolyhedron::RotateAroundZ                Date:    27.11.96 *
560  * Author: E.Chernyaev (IHEP/Protvino)            430  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
561  *                                                431  *                                                                     *
562  * Function: Create HepPolyhedron for a solid     432  * Function: Create HepPolyhedron for a solid produced by rotation of  *
563  *           two polylines around Z-axis          433  *           two polylines around Z-axis                               *
564  *                                                434  *                                                                     *
565  * Input: nstep - number of discrete steps, if    435  * Input: nstep - number of discrete steps, if 0 then default          *
566  *        phi   - starting phi angle              436  *        phi   - starting phi angle                                   *
567  *        dphi  - delta phi                       437  *        dphi  - delta phi                                            *
568  *        np1   - number of points in external    438  *        np1   - number of points in external polyline                *
569  *                (must be negative in case of    439  *                (must be negative in case of closed polyline)        *
570  *        np2   - number of points in internal    440  *        np2   - number of points in internal polyline (may be 1)     *
571  *        z[]   - z-coordinates (+z >>> -z for    441  *        z[]   - z-coordinates (+z >>> -z for both polylines)         *
572  *        r[]   - r-coordinates                   442  *        r[]   - r-coordinates                                        *
573  *        nodeVis - how to Draw edges joing co    443  *        nodeVis - how to Draw edges joing consecutive positions of   *
574  *                  node during rotation          444  *                  node during rotation                               *
575  *        edgeVis - how to Draw edges             445  *        edgeVis - how to Draw edges                                  *
576  *                                                446  *                                                                     *
577  *********************************************    447  ***********************************************************************/
578 {                                                 448 {
579   static const G4double wholeCircle   = twopi;    449   static const G4double wholeCircle   = twopi;
580                                                << 450     
581   //   S E T   R O T A T I O N   P A R A M E T    451   //   S E T   R O T A T I O N   P A R A M E T E R S
582                                                   452 
583   G4bool ifWholeCircle = std::abs(dphi-wholeCi << 453   G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false;
584   G4double delPhi = ifWholeCircle ? wholeCircl << 454   G4double   delPhi  = ifWholeCircle ? wholeCircle : dphi;  
585   G4int nSphi = nstep;                         << 455   G4int        nSphi    = (nstep > 0) ?
586   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 456     nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5);
587   if (nSphi == 0) nSphi = 1;                      457   if (nSphi == 0) nSphi = 1;
588   G4int nVphi = ifWholeCircle ? nSphi : nSphi  << 458   G4int        nVphi    = ifWholeCircle ? nSphi : nSphi+1;
589   G4bool ifClosed = np1 <= 0; // true if exter << 459   G4bool ifClosed = np1 > 0 ? false : true;
590                                                << 460   
591   //   C O U N T   V E R T I C E S             << 461   //   C O U N T   V E R T E C E S
592                                                   462 
593   G4int absNp1 = std::abs(np1);                   463   G4int absNp1 = std::abs(np1);
594   G4int absNp2 = std::abs(np2);                   464   G4int absNp2 = std::abs(np2);
595   G4int i1beg = 0;                                465   G4int i1beg = 0;
596   G4int i1end = absNp1-1;                         466   G4int i1end = absNp1-1;
597   G4int i2beg = absNp1;                           467   G4int i2beg = absNp1;
598   G4int i2end = absNp1+absNp2-1;               << 468   G4int i2end = absNp1+absNp2-1; 
599   G4int i, j, k;                                  469   G4int i, j, k;
600                                                   470 
601   for(i=i1beg; i<=i2end; i++) {                   471   for(i=i1beg; i<=i2end; i++) {
602     if (std::abs(r[i]) < spatialTolerance) r[i    472     if (std::abs(r[i]) < spatialTolerance) r[i] = 0.;
603   }                                               473   }
604                                                   474 
605   // external polyline - check position of nod << 475   j = 0;                                                // external nodes
606   //                                           << 
607   G4int Nverts = 0;                            << 
608   for (i=i1beg; i<=i1end; i++) {                  476   for (i=i1beg; i<=i1end; i++) {
609     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 477     j += (r[i] == 0.) ? 1 : nVphi;
610   }                                               478   }
611                                                   479 
612   // internal polyline                         << 480   G4bool ifSide1 = false;                           // internal nodes
613   //                                           << 481   G4bool ifSide2 = false;
614   G4bool ifSide1 = false; // whether to create << 
615   G4bool ifSide2 = false; // whether to create << 
616                                                   482 
617   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 483   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) {
618     Nverts += (r[i2beg] == 0.) ? 1 : nVphi;    << 484     j += (r[i2beg] == 0.) ? 1 : nVphi;
619     ifSide1 = true;                               485     ifSide1 = true;
620   }                                               486   }
621                                                   487 
622   for(i=i2beg+1; i<i2end; i++) { // intermedia << 488   for(i=i2beg+1; i<i2end; i++) {
623     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 489     j += (r[i] == 0.) ? 1 : nVphi;
624   }                                               490   }
625                                                << 491   
626   if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 492   if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) {
627     if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 493     if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi;
628     ifSide2 = true;                               494     ifSide2 = true;
629   }                                               495   }
630                                                   496 
631   //   C O U N T   F A C E S                      497   //   C O U N T   F A C E S
632                                                   498 
633   // external lateral faces                    << 499   k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi;       // external faces
634   //                                           << 
635   G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 
636                                                   500 
637   // internal lateral faces                    << 501   if (absNp2 > 1) {                                     // internal faces
638   //                                           << 
639   if (absNp2 > 1) {                            << 
640     for(i=i2beg; i<i2end; i++) {                  502     for(i=i2beg; i<i2end; i++) {
641       if (r[i] > 0. || r[i+1] > 0.) Nfaces +=  << 503       if (r[i] > 0. || r[i+1] > 0.)       k += nSphi;
642     }                                             504     }
643                                                   505 
644     if (ifClosed) {                               506     if (ifClosed) {
645       if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 507       if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi;
646     }                                             508     }
647   }                                               509   }
648                                                   510 
649   // bottom and top faces                      << 511   if (!ifClosed) {                                      // side faces
650   //                                           << 512     if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi;
651   if (!ifClosed) {                             << 513     if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi;
652     if (ifSide1 && (r[i1beg] > 0. || r[i2beg]  << 
653     if (ifSide2 && (r[i1end] > 0. || r[i2end]  << 
654   }                                               514   }
655                                                   515 
656   // phi_wedge faces                           << 516   if (!ifWholeCircle) {                                 // phi_side faces
657   //                                           << 517     k += ifClosed ? 2*absNp1 : 2*(absNp1-1);
658   if (!ifWholeCircle) {                        << 
659     Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 
660   }                                               518   }
661                                                   519 
662   //   A L L O C A T E   M E M O R Y              520   //   A L L O C A T E   M E M O R Y
663                                                   521 
664   AllocateMemory(Nverts, Nfaces);              << 522   AllocateMemory(j, k);
665   if (pV == nullptr || pF == nullptr) return;  << 
666                                                   523 
667   //   G E N E R A T E   V E R T I C E S       << 524   //   G E N E R A T E   V E R T E C E S
668                                                   525 
669   G4int *kk; // array of start indices along p << 526   G4int *kk;
670   kk = new G4int[absNp1+absNp2];                  527   kk = new G4int[absNp1+absNp2];
671                                                   528 
672   // external polyline                         << 529   k = 1;
673   //                                           << 
674   k = 1; // free position in array of vertices << 
675   for(i=i1beg; i<=i1end; i++) {                   530   for(i=i1beg; i<=i1end; i++) {
676     kk[i] = k;                                    531     kk[i] = k;
677     if (r[i] == 0.)                               532     if (r[i] == 0.)
678     { pV[k++] = G4Point3D(0, 0, z[i]); } else     533     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
679   }                                               534   }
680                                                   535 
681   // first point of internal polyline          << 
682   //                                           << 
683   i = i2beg;                                      536   i = i2beg;
684   if (ifSide1) {                                  537   if (ifSide1) {
685     kk[i] = k;                                    538     kk[i] = k;
686     if (r[i] == 0.)                               539     if (r[i] == 0.)
687     { pV[k++] = G4Point3D(0, 0, z[i]); } else     540     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
688   }else{                                          541   }else{
689     kk[i] = kk[i1beg];                            542     kk[i] = kk[i1beg];
690   }                                               543   }
691                                                   544 
692   // intermediate points of internal polyline  << 
693   //                                           << 
694   for(i=i2beg+1; i<i2end; i++) {                  545   for(i=i2beg+1; i<i2end; i++) {
695     kk[i] = k;                                    546     kk[i] = k;
696     if (r[i] == 0.)                               547     if (r[i] == 0.)
697     { pV[k++] = G4Point3D(0, 0, z[i]); } else     548     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
698   }                                               549   }
699                                                   550 
700   // last point of internal polyline           << 
701   //                                           << 
702   if (absNp2 > 1) {                               551   if (absNp2 > 1) {
703     i = i2end;                                    552     i = i2end;
704     if (ifSide2) {                                553     if (ifSide2) {
705       kk[i] = k;                                  554       kk[i] = k;
706       if (r[i] == 0.) pV[k] = G4Point3D(0, 0,     555       if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]);
707     }else{                                        556     }else{
708       kk[i] = kk[i1end];                          557       kk[i] = kk[i1end];
709     }                                             558     }
710   }                                               559   }
711                                                   560 
712   // set vertices                              << 
713   //                                           << 
714   G4double cosPhi, sinPhi;                        561   G4double cosPhi, sinPhi;
715                                                   562 
716   for(j=0; j<nVphi; j++) {                        563   for(j=0; j<nVphi; j++) {
717     cosPhi = std::cos(phi+j*delPhi/nSphi);        564     cosPhi = std::cos(phi+j*delPhi/nSphi);
718     sinPhi = std::sin(phi+j*delPhi/nSphi);        565     sinPhi = std::sin(phi+j*delPhi/nSphi);
719     for(i=i1beg; i<=i2end; i++) {                 566     for(i=i1beg; i<=i2end; i++) {
720       if (r[i] != 0.)                             567       if (r[i] != 0.)
721         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[    568         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]);
722     }                                             569     }
723   }                                               570   }
724                                                   571 
725   //   G E N E R A T E   F A C E S             << 572   //   G E N E R A T E   E X T E R N A L   F A C E S
726                                                   573 
727   //  external faces                           << 
728   //                                           << 
729   G4int v1,v2;                                    574   G4int v1,v2;
730                                                   575 
731   k = 1; // free position in array of faces pF << 576   k = 1;
732   v2 = ifClosed ? nodeVis : 1;                    577   v2 = ifClosed ? nodeVis : 1;
733   for(i=i1beg; i<i1end; i++) {                    578   for(i=i1beg; i<i1end; i++) {
734     v1 = v2;                                      579     v1 = v2;
735     if (!ifClosed && i == i1end-1) {              580     if (!ifClosed && i == i1end-1) {
736       v2 = 1;                                     581       v2 = 1;
737     }else{                                        582     }else{
738       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]    583       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis;
739     }                                             584     }
740     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v    585     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2,
741                edgeVis, ifWholeCircle, nSphi,     586                edgeVis, ifWholeCircle, nSphi, k);
742   }                                               587   }
743   if (ifClosed) {                                 588   if (ifClosed) {
744     RotateEdge(kk[i1end], kk[i1beg], r[i1end],    589     RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis,
745                edgeVis, ifWholeCircle, nSphi,     590                edgeVis, ifWholeCircle, nSphi, k);
746   }                                               591   }
747                                                   592 
748   // internal faces                            << 593   //   G E N E R A T E   I N T E R N A L   F A C E S
749   //                                           << 594 
750   if (absNp2 > 1) {                               595   if (absNp2 > 1) {
751     v2 = ifClosed ? nodeVis : 1;                  596     v2 = ifClosed ? nodeVis : 1;
752     for(i=i2beg; i<i2end; i++) {                  597     for(i=i2beg; i<i2end; i++) {
753       v1 = v2;                                    598       v1 = v2;
754       if (!ifClosed && i==i2end-1) {              599       if (!ifClosed && i==i2end-1) {
755         v2 = 1;                                   600         v2 = 1;
756       }else{                                      601       }else{
757         v2 = (r[i] == r[i+1] && r[i+1] == r[i+    602         v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 :  nodeVis;
758       }                                           603       }
759       RotateEdge(kk[i+1], kk[i], r[i+1], r[i],    604       RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1,
760                  edgeVis, ifWholeCircle, nSphi    605                  edgeVis, ifWholeCircle, nSphi, k);
761     }                                             606     }
762     if (ifClosed) {                               607     if (ifClosed) {
763       RotateEdge(kk[i2beg], kk[i2end], r[i2beg    608       RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis,
764                  edgeVis, ifWholeCircle, nSphi    609                  edgeVis, ifWholeCircle, nSphi, k);
765     }                                             610     }
766   }                                               611   }
767                                                   612 
768   // bottom and top faces                      << 613   //   G E N E R A T E   S I D E   F A C E S
769   //                                           << 614 
770   if (!ifClosed) {                                615   if (!ifClosed) {
771     if (ifSide1) {                                616     if (ifSide1) {
772       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg    617       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1,
773                  -1, ifWholeCircle, nSphi, k);    618                  -1, ifWholeCircle, nSphi, k);
774     }                                             619     }
775     if (ifSide2) {                                620     if (ifSide2) {
776       RotateEdge(kk[i1end], kk[i2end], r[i1end    621       RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1,
777                  -1, ifWholeCircle, nSphi, k);    622                  -1, ifWholeCircle, nSphi, k);
778     }                                             623     }
779   }                                               624   }
780                                                   625 
781   // phi_wedge faces in case of incomplete cir << 626   //   G E N E R A T E   S I D E   F A C E S  for the case of incomplete circle
782   //                                           << 627 
783   if (!ifWholeCircle) {                           628   if (!ifWholeCircle) {
784                                                   629 
785     G4int  ii[4], vv[4];                          630     G4int  ii[4], vv[4];
786                                                   631 
787     if (ifClosed) {                               632     if (ifClosed) {
788       for (i=i1beg; i<=i1end; i++) {              633       for (i=i1beg; i<=i1end; i++) {
789         ii[0] = i;                                634         ii[0] = i;
790         ii[3] = (i == i1end) ? i1beg : i+1;       635         ii[3] = (i == i1end) ? i1beg : i+1;
791         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    636         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
792         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    637         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
793         vv[0] = -1;                               638         vv[0] = -1;
794         vv[1] = 1;                                639         vv[1] = 1;
795         vv[2] = -1;                               640         vv[2] = -1;
796         vv[3] = 1;                                641         vv[3] = 1;
797         SetSideFacets(ii, vv, kk, r, delPhi, n << 642         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
798       }                                           643       }
799     }else{                                        644     }else{
800       for (i=i1beg; i<i1end; i++) {               645       for (i=i1beg; i<i1end; i++) {
801         ii[0] = i;                                646         ii[0] = i;
802         ii[3] = i+1;                              647         ii[3] = i+1;
803         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    648         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
804         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    649         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
805         vv[0] = (i == i1beg)   ? 1 : -1;          650         vv[0] = (i == i1beg)   ? 1 : -1;
806         vv[1] = 1;                                651         vv[1] = 1;
807         vv[2] = (i == i1end-1) ? 1 : -1;          652         vv[2] = (i == i1end-1) ? 1 : -1;
808         vv[3] = 1;                                653         vv[3] = 1;
809         SetSideFacets(ii, vv, kk, r, delPhi, n << 654         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
810       }                                           655       }
811     }                                          << 656     }      
812   }                                               657   }
813                                                   658 
814   delete [] kk; // free memory                 << 659   delete [] kk;
815                                                   660 
816   // final check                               << 
817   //                                           << 
818   if (k-1 != nface) {                             661   if (k-1 != nface) {
819     std::cerr                                     662     std::cerr
820       << "HepPolyhedron::RotateAroundZ: number << 663       << "Polyhedron::RotateAroundZ: number of generated faces ("
821       << k-1 << ") is not equal to the number     664       << k-1 << ") is not equal to the number of allocated faces ("
822       << nface << ")"                             665       << nface << ")"
823       << std::endl;                               666       << std::endl;
824   }                                               667   }
825 }                                                 668 }
826                                                   669 
827 void                                           << 
828 HepPolyhedron::RotateContourAroundZ(G4int nste << 
829                                     G4double p << 
830                                     G4double d << 
831                                     const std: << 
832                                     G4int node << 
833                                     G4int edge << 
834 /********************************************* << 
835  *                                             << 
836  * Name: HepPolyhedron::RotateContourAroundZ   << 
837  * Author: E.Tcherniaev (E.Chernyaev)          << 
838  *                                             << 
839  * Function: Create HepPolyhedron for a solid  << 
840  *           a closed polyline (rz-contour) ar << 
841  *                                             << 
842  * Input: nstep - number of discrete steps, if << 
843  *        phi   - starting phi angle           << 
844  *        dphi  - delta phi                    << 
845  *        rz    - rz-contour                   << 
846  *        nodeVis - how to Draw edges joing co << 
847  *                  node during rotation       << 
848  *        edgeVis - how to Draw edges          << 
849  *                                             << 
850  ********************************************* << 
851 {                                              << 
852   //   S E T   R O T A T I O N   P A R A M E T << 
853                                                << 
854   G4bool ifWholeCircle = std::abs(dphi - twopi << 
855   G4double delPhi = (ifWholeCircle) ? twopi :  << 
856   G4int nSphi = nstep;                         << 
857   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 
858   if (nSphi == 0) nSphi = 1;                   << 
859   G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 
860                                                << 
861   //   C A L C U L A T E   A R E A             << 
862                                                << 
863   G4int Nrz = (G4int)rz.size();                << 
864   G4double area = 0;                           << 
865   for (G4int i = 0; i < Nrz; ++i)              << 
866   {                                            << 
867     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
868     area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 
869   }                                            << 
870                                                << 
871   //   P R E P A R E   P O L Y L I N E         << 
872                                                << 
873   auto r = new G4double[Nrz];                  << 
874   auto z = new G4double[Nrz];                  << 
875   for (G4int i = 0; i < Nrz; ++i)              << 
876   {                                            << 
877     r[i] = rz[i].x();                          << 
878     z[i] = rz[i].y();                          << 
879     if (std::abs(r[i]) < spatialTolerance) r[i << 
880   }                                            << 
881                                                << 
882   //   C O U N T   V E R T I C E S   A N D   F << 
883                                                << 
884   G4int Nverts = 0;                            << 
885   for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 
886                                                << 
887   G4int Nedges = Nrz;                          << 
888   for (G4int i = 0; i < Nrz; ++i)              << 
889   {                                            << 
890     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
891     Nedges -= static_cast<int>(r[k] == 0 && r[ << 
892   }                                            << 
893                                                << 
894   G4int Nfaces = Nedges*nSphi;               / << 
895   if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 
896                                                << 
897   //   A L L O C A T E   M E M O R Y           << 
898                                                << 
899   AllocateMemory(Nverts, Nfaces);              << 
900   if (pV == nullptr || pF == nullptr)          << 
901   {                                            << 
902     delete [] r;                               << 
903     delete [] z;                               << 
904     return;                                    << 
905   }                                            << 
906                                                << 
907   //   S E T   V E R T I C E S                 << 
908                                                << 
909   auto kk = new G4int[Nrz]; // start indices a << 
910   G4int kfree = 1; // current free position in << 
911                                                << 
912   // set start indices, set vertices for nodes << 
913   for(G4int i = 0; i < Nrz; ++i)               << 
914   {                                            << 
915     kk[i] = kfree;                             << 
916     if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 
917     if (r[i] != 0.) kfree += nVphi;            << 
918   }                                            << 
919                                                << 
920   // set vertices by rotating r                << 
921   for(G4int j = 0; j < nVphi; ++j)             << 
922   {                                            << 
923     G4double cosPhi = std::cos(phi + j*delPhi/ << 
924     G4double sinPhi = std::sin(phi + j*delPhi/ << 
925     for(G4int i = 0; i < Nrz; ++i)             << 
926     {                                          << 
927       if (r[i] != 0.)                          << 
928         pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 
929     }                                          << 
930   }                                            << 
931                                                << 
932   //   S E T   F A C E S                       << 
933                                                << 
934   kfree = 1; // current free position in array << 
935   for(G4int i = 0; i < Nrz; ++i)               << 
936   {                                            << 
937     G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 
938     G4int i2 = i;                              << 
939     if (area < 0.) std::swap(i1, i2);          << 
940     RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 
941                edgeVis, ifWholeCircle, nSphi,  << 
942   }                                            << 
943                                                << 
944   //    S E T   P H I _ W E D G E   F A C E S  << 
945                                                << 
946   if (!ifWholeCircle)                          << 
947   {                                            << 
948     std::vector<G4int> triangles;              << 
949     TriangulatePolygon(rz, triangles);         << 
950                                                << 
951     G4int ii[4], vv[4];                        << 
952     G4int ntria = G4int(triangles.size()/3);   << 
953     for (G4int i = 0; i < ntria; ++i)          << 
954     {                                          << 
955       G4int i1 = triangles[0 + i*3];           << 
956       G4int i2 = triangles[1 + i*3];           << 
957       G4int i3 = triangles[2 + i*3];           << 
958       if (area < 0.) std::swap(i1, i3);        << 
959       G4int v1 = (std::abs(i2-i1) == 1 || std: << 
960       G4int v2 = (std::abs(i3-i2) == 1 || std: << 
961       G4int v3 = (std::abs(i1-i3) == 1 || std: << 
962       ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 
963       vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 
964       SetSideFacets(ii, vv, kk, r, delPhi, nSp << 
965     }                                          << 
966   }                                            << 
967                                                << 
968   // free memory                               << 
969   delete [] r;                                 << 
970   delete [] z;                                 << 
971   delete [] kk;                                << 
972                                                << 
973   // final check                               << 
974   if (kfree - 1 != nface)                      << 
975   {                                            << 
976     std::cerr                                  << 
977       << "HepPolyhedron::RotateContourAroundZ: << 
978       << kfree-1 << ") is not equal to the num << 
979       << nface << ")"                          << 
980       << std::endl;                            << 
981   }                                            << 
982 }                                              << 
983                                                << 
984 G4bool                                         << 
985 HepPolyhedron::TriangulatePolygon(const std::v << 
986                                   std::vector< << 
987 /********************************************* << 
988  *                                             << 
989  * Name: HepPolyhedron::TriangulatePolygon     << 
990  * Author: E.Tcherniaev (E.Chernyaev)          << 
991  *                                             << 
992  * Function: Simple implementation of "ear cli << 
993  *           triangulation of a simple contour << 
994  *           the result in a std::vector as tr << 
995  *                                             << 
996  *           If triangulation is sucsessfull t << 
997  *           returns true, otherwise false     << 
998  *                                             << 
999  * Remark:   It's a copy of G4GeomTools::Trian << 
1000  *                                            << 
1001  ******************************************** << 
1002 {                                             << 
1003   result.resize(0);                           << 
1004   G4int n = (G4int)polygon.size();            << 
1005   if (n < 3) return false;                    << 
1006                                               << 
1007   // calculate area                           << 
1008   //                                          << 
1009   G4double area = 0.;                         << 
1010   for(G4int i = 0; i < n; ++i)                << 
1011   {                                           << 
1012     G4int k = (i == 0) ? n - 1 : i - 1;       << 
1013     area += polygon[k].x()*polygon[i].y() - p << 
1014   }                                           << 
1015                                               << 
1016   // allocate and initialize list of Vertices << 
1017   // we want a counter-clockwise polygon in V << 
1018   //                                          << 
1019   auto  V = new G4int[n];                     << 
1020   if (area > 0.)                              << 
1021     for (G4int i = 0; i < n; ++i) V[i] = i;   << 
1022   else                                        << 
1023     for (G4int i = 0; i < n; ++i) V[i] = (n - << 
1024                                               << 
1025   //  Triangulation: remove nv-2 Vertices, cr << 
1026   //                                          << 
1027   G4int nv = n;                               << 
1028   G4int count = 2*nv; // error detection coun << 
1029   for(G4int b = nv - 1; nv > 2; )             << 
1030   {                                           << 
1031     // ERROR: if we loop, it is probably a no << 
1032     if ((count--) <= 0)                       << 
1033     {                                         << 
1034       delete [] V;                            << 
1035       if (area < 0.) std::reverse(result.begi << 
1036       return false;                           << 
1037     }                                         << 
1038                                               << 
1039     // three consecutive vertices in current  << 
1040     G4int a = (b   < nv) ? b   : 0; // previo << 
1041           b = (a+1 < nv) ? a+1 : 0; // curren << 
1042     G4int c = (b+1 < nv) ? b+1 : 0; // next   << 
1043                                               << 
1044     if (CheckSnip(polygon, a,b,c, nv,V))      << 
1045     {                                         << 
1046       // output Triangle                      << 
1047       result.push_back(V[a]);                 << 
1048       result.push_back(V[b]);                 << 
1049       result.push_back(V[c]);                 << 
1050                                               << 
1051       // remove vertex b from remaining polyg << 
1052       nv--;                                   << 
1053       for(G4int i = b; i < nv; ++i) V[i] = V[ << 
1054                                               << 
1055       count = 2*nv; // resest error detection << 
1056     }                                         << 
1057   }                                           << 
1058   delete [] V;                                << 
1059   if (area < 0.) std::reverse(result.begin(), << 
1060   return true;                                << 
1061 }                                             << 
1062                                               << 
1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 
1064                                 G4int a, G4in << 
1065                                 G4int n, cons << 
1066 /******************************************** << 
1067  *                                            << 
1068  * Name: HepPolyhedron::CheckSnip             << 
1069  * Author: E.Tcherniaev (E.Chernyaev)         << 
1070  *                                            << 
1071  * Function: Check for a valid snip,          << 
1072  *           it is a helper functionfor Trian << 
1073  *                                            << 
1074  ******************************************** << 
1075 {                                             << 
1076   static const G4double kCarTolerance = 1.e-9 << 
1077                                               << 
1078   // check orientation of Triangle            << 
1079   G4double Ax = contour[V[a]].x(), Ay = conto << 
1080   G4double Bx = contour[V[b]].x(), By = conto << 
1081   G4double Cx = contour[V[c]].x(), Cy = conto << 
1082   if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 
1083                                               << 
1084   // check that there is no point inside Tria << 
1085   G4double xmin = std::min(std::min(Ax,Bx),Cx << 
1086   G4double xmax = std::max(std::max(Ax,Bx),Cx << 
1087   G4double ymin = std::min(std::min(Ay,By),Cy << 
1088   G4double ymax = std::max(std::max(Ay,By),Cy << 
1089                                               << 
1090   for (G4int i=0; i<n; ++i)                   << 
1091   {                                           << 
1092     if((i == a) || (i == b) || (i == c)) cont << 
1093     G4double Px = contour[V[i]].x();          << 
1094     if (Px < xmin || Px > xmax) continue;     << 
1095     G4double Py = contour[V[i]].y();          << 
1096     if (Py < ymin || Py > ymax) continue;     << 
1097     // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 
1098     if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 
1099     {                                         << 
1100       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 
1101       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 
1102       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 
1103     }                                         << 
1104     else                                      << 
1105     {                                         << 
1106       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 
1107       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 
1108       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 
1109     }                                         << 
1110     return false;                             << 
1111   }                                           << 
1112   return true;                                << 
1113 }                                             << 
1114                                               << 
1115 void HepPolyhedron::SetReferences()              670 void HepPolyhedron::SetReferences()
1116 /********************************************    671 /***********************************************************************
1117  *                                               672  *                                                                     *
1118  * Name: HepPolyhedron::SetReferences            673  * Name: HepPolyhedron::SetReferences                Date:    04.12.96 *
1119  * Author: E.Chernyaev (IHEP/Protvino)           674  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1120  *                                               675  *                                                                     *
1121  * Function: For each edge set reference to n    676  * Function: For each edge set reference to neighbouring facet         *
1122  *                                               677  *                                                                     *
1123  ********************************************    678  ***********************************************************************/
1124 {                                                679 {
1125   if (nface <= 0) return;                        680   if (nface <= 0) return;
1126                                                  681 
1127   struct edgeListMember {                        682   struct edgeListMember {
1128     edgeListMember *next;                        683     edgeListMember *next;
1129     G4int v2;                                    684     G4int v2;
1130     G4int iface;                                 685     G4int iface;
1131     G4int iedge;                                 686     G4int iedge;
1132   } *edgeList, *freeList, **headList;            687   } *edgeList, *freeList, **headList;
1133                                                  688 
1134                                               << 689   
1135   //   A L L O C A T E   A N D   I N I T I A     690   //   A L L O C A T E   A N D   I N I T I A T E   L I S T S
1136                                                  691 
1137   edgeList = new edgeListMember[2*nface];        692   edgeList = new edgeListMember[2*nface];
1138   headList = new edgeListMember*[nvert];         693   headList = new edgeListMember*[nvert];
1139                                               << 694   
1140   G4int i;                                       695   G4int i;
1141   for (i=0; i<nvert; i++) {                      696   for (i=0; i<nvert; i++) {
1142     headList[i] = nullptr;                    << 697     headList[i] = 0;
1143   }                                              698   }
1144   freeList = edgeList;                           699   freeList = edgeList;
1145   for (i=0; i<2*nface-1; i++) {                  700   for (i=0; i<2*nface-1; i++) {
1146     edgeList[i].next = &edgeList[i+1];           701     edgeList[i].next = &edgeList[i+1];
1147   }                                              702   }
1148   edgeList[2*nface-1].next = nullptr;         << 703   edgeList[2*nface-1].next = 0;
1149                                                  704 
1150   //   L O O P   A L O N G   E D G E S           705   //   L O O P   A L O N G   E D G E S
1151                                                  706 
1152   G4int iface, iedge, nedge, i1, i2, k1, k2;     707   G4int iface, iedge, nedge, i1, i2, k1, k2;
1153   edgeListMember *prev, *cur;                    708   edgeListMember *prev, *cur;
1154                                               << 709   
1155   for(iface=1; iface<=nface; iface++) {          710   for(iface=1; iface<=nface; iface++) {
1156     nedge = (pF[iface].edge[3].v == 0) ? 3 :     711     nedge = (pF[iface].edge[3].v == 0) ? 3 : 4;
1157     for (iedge=0; iedge<nedge; iedge++) {        712     for (iedge=0; iedge<nedge; iedge++) {
1158       i1 = iedge;                                713       i1 = iedge;
1159       i2 = (iedge < nedge-1) ? iedge+1 : 0;      714       i2 = (iedge < nedge-1) ? iedge+1 : 0;
1160       i1 = std::abs(pF[iface].edge[i1].v);       715       i1 = std::abs(pF[iface].edge[i1].v);
1161       i2 = std::abs(pF[iface].edge[i2].v);       716       i2 = std::abs(pF[iface].edge[i2].v);
1162       k1 = (i1 < i2) ? i1 : i2;          // k    717       k1 = (i1 < i2) ? i1 : i2;          // k1 = ::min(i1,i2);
1163       k2 = (i1 > i2) ? i1 : i2;          // k    718       k2 = (i1 > i2) ? i1 : i2;          // k2 = ::max(i1,i2);
1164                                               << 719       
1165       // check head of the List corresponding    720       // check head of the List corresponding to k1
1166       cur = headList[k1];                        721       cur = headList[k1];
1167       if (cur == nullptr) {                   << 722       if (cur == 0) {
1168         headList[k1] = freeList;                 723         headList[k1] = freeList;
1169         if (freeList == nullptr) {            << 724         if (!freeList) {
1170           std::cerr                              725           std::cerr
1171           << "Polyhedron::SetReferences: bad     726           << "Polyhedron::SetReferences: bad link "
1172           << std::endl;                          727           << std::endl;
1173           break;                                 728           break;
1174         }                                        729         }
1175         freeList = freeList->next;               730         freeList = freeList->next;
1176         cur = headList[k1];                      731         cur = headList[k1];
1177         cur->next = nullptr;                  << 732         cur->next = 0;
1178         cur->v2 = k2;                            733         cur->v2 = k2;
1179         cur->iface = iface;                      734         cur->iface = iface;
1180         cur->iedge = iedge;                      735         cur->iedge = iedge;
1181         continue;                                736         continue;
1182       }                                          737       }
1183                                                  738 
1184       if (cur->v2 == k2) {                       739       if (cur->v2 == k2) {
1185         headList[k1] = cur->next;                740         headList[k1] = cur->next;
1186         cur->next = freeList;                    741         cur->next = freeList;
1187         freeList = cur;                       << 742         freeList = cur;      
1188         pF[iface].edge[iedge].f = cur->iface;    743         pF[iface].edge[iedge].f = cur->iface;
1189         pF[cur->iface].edge[cur->iedge].f = i    744         pF[cur->iface].edge[cur->iedge].f = iface;
1190         i1 = (pF[iface].edge[iedge].v < 0) ?     745         i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1191         i2 = (pF[cur->iface].edge[cur->iedge]    746         i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1192         if (i1 != i2) {                          747         if (i1 != i2) {
1193           std::cerr                              748           std::cerr
1194             << "Polyhedron::SetReferences: di    749             << "Polyhedron::SetReferences: different edge visibility "
1195             << iface << "/" << iedge << "/"      750             << iface << "/" << iedge << "/"
1196             << pF[iface].edge[iedge].v << " a    751             << pF[iface].edge[iedge].v << " and "
1197             << cur->iface << "/" << cur->iedg    752             << cur->iface << "/" << cur->iedge << "/"
1198             << pF[cur->iface].edge[cur->iedge    753             << pF[cur->iface].edge[cur->iedge].v
1199             << std::endl;                        754             << std::endl;
1200         }                                        755         }
1201         continue;                                756         continue;
1202       }                                          757       }
1203                                                  758 
1204       // check List itself                       759       // check List itself
1205       for (;;) {                                 760       for (;;) {
1206         prev = cur;                              761         prev = cur;
1207         cur = prev->next;                        762         cur = prev->next;
1208         if (cur == nullptr) {                 << 763         if (cur == 0) {
1209           prev->next = freeList;                 764           prev->next = freeList;
1210           if (freeList == nullptr) {          << 765           if (!freeList) {
1211             std::cerr                            766             std::cerr
1212             << "Polyhedron::SetReferences: ba    767             << "Polyhedron::SetReferences: bad link "
1213             << std::endl;                        768             << std::endl;
1214             break;                               769             break;
1215           }                                      770           }
1216           freeList = freeList->next;             771           freeList = freeList->next;
1217           cur = prev->next;                      772           cur = prev->next;
1218           cur->next = nullptr;                << 773           cur->next = 0;
1219           cur->v2 = k2;                          774           cur->v2 = k2;
1220           cur->iface = iface;                    775           cur->iface = iface;
1221           cur->iedge = iedge;                    776           cur->iedge = iedge;
1222           break;                                 777           break;
1223         }                                        778         }
1224                                                  779 
1225         if (cur->v2 == k2) {                     780         if (cur->v2 == k2) {
1226           prev->next = cur->next;                781           prev->next = cur->next;
1227           cur->next = freeList;                  782           cur->next = freeList;
1228           freeList = cur;                     << 783           freeList = cur;      
1229           pF[iface].edge[iedge].f = cur->ifac    784           pF[iface].edge[iedge].f = cur->iface;
1230           pF[cur->iface].edge[cur->iedge].f =    785           pF[cur->iface].edge[cur->iedge].f = iface;
1231           i1 = (pF[iface].edge[iedge].v < 0)     786           i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1232           i2 = (pF[cur->iface].edge[cur->iedg    787           i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1233             if (i1 != i2) {                      788             if (i1 != i2) {
1234               std::cerr                          789               std::cerr
1235                 << "Polyhedron::SetReferences    790                 << "Polyhedron::SetReferences: different edge visibility "
1236                 << iface << "/" << iedge << "    791                 << iface << "/" << iedge << "/"
1237                 << pF[iface].edge[iedge].v <<    792                 << pF[iface].edge[iedge].v << " and "
1238                 << cur->iface << "/" << cur->    793                 << cur->iface << "/" << cur->iedge << "/"
1239                 << pF[cur->iface].edge[cur->i    794                 << pF[cur->iface].edge[cur->iedge].v
1240                 << std::endl;                    795                 << std::endl;
1241             }                                    796             }
1242           break;                                 797           break;
1243         }                                        798         }
1244       }                                          799       }
1245     }                                            800     }
1246   }                                              801   }
1247                                                  802 
1248   //  C H E C K   T H A T   A L L   L I S T S    803   //  C H E C K   T H A T   A L L   L I S T S   A R E   E M P T Y
1249                                                  804 
1250   for (i=0; i<nvert; i++) {                      805   for (i=0; i<nvert; i++) {
1251     if (headList[i] != nullptr) {             << 806     if (headList[i] != 0) {
1252       std::cerr                                  807       std::cerr
1253         << "Polyhedron::SetReferences: List "    808         << "Polyhedron::SetReferences: List " << i << " is not empty"
1254         << std::endl;                            809         << std::endl;
1255     }                                            810     }
1256   }                                              811   }
1257                                                  812 
1258   //   F R E E   M E M O R Y                     813   //   F R E E   M E M O R Y
1259                                                  814 
1260   delete [] edgeList;                            815   delete [] edgeList;
1261   delete [] headList;                            816   delete [] headList;
1262 }                                                817 }
1263                                                  818 
1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 
1265 /******************************************** << 
1266  *                                            << 
1267  * Name: HepPolyhedron::JoinCoplanarFacets    << 
1268  * Author: E.Tcherniaev (E.Chernyaev)         << 
1269  *                                            << 
1270  * Function: Join couples of triangular facet << 
1271  *           where it is possible             << 
1272  *                                            << 
1273  ******************************************** << 
1274 {                                             << 
1275   G4int njoin = 0;                            << 
1276   for (G4int icur = 1; icur <= nface; ++icur) << 
1277   {                                           << 
1278     // skip if already joined or quadrangle   << 
1279     if (pF[icur].edge[0].v == 0) continue;    << 
1280     if (pF[icur].edge[3].v != 0) continue;    << 
1281     // skip if all references point to alread << 
1282     if (pF[icur].edge[0].f < icur &&          << 
1283         pF[icur].edge[1].f < icur &&          << 
1284         pF[icur].edge[2].f < icur) continue;  << 
1285     // compute plane equation                 << 
1286     G4Normal3D norm = GetUnitNormal(icur);    << 
1287     G4double dd = norm.dot(pV[pF[icur].edge[0 << 
1288     G4int vcur0 = std::abs(pF[icur].edge[0].v << 
1289     G4int vcur1 = std::abs(pF[icur].edge[1].v << 
1290     G4int vcur2 = std::abs(pF[icur].edge[2].v << 
1291     // select neighbouring facet              << 
1292     G4int kcheck = 0, icheck = 0, vcheck = 0; << 
1293     G4double dist = DBL_MAX;                  << 
1294     for (G4int k = 0; k < 3; ++k)             << 
1295     {                                         << 
1296       G4int itmp = pF[icur].edge[k].f;        << 
1297       // skip if already checked, joined or q << 
1298       if (itmp < icur) continue;              << 
1299       if (pF[itmp].edge[0].v == 0 ||          << 
1300           pF[itmp].edge[3].v != 0) continue;  << 
1301       // get candidate vertex                 << 
1302       G4int vtmp = 0;                         << 
1303       for (G4int j = 0; j < 3; ++j)           << 
1304       {                                       << 
1305         vtmp = std::abs(pF[itmp].edge[j].v);  << 
1306   if (vtmp != vcur0 && vtmp != vcur1 && vtmp  << 
1307       }                                       << 
1308       // check distance to the plane          << 
1309       G4double dtmp = std::abs(norm.dot(pV[vt << 
1310       if (dtmp > tolerance || dtmp >= dist) c << 
1311       dist = dtmp;                            << 
1312       kcheck = k;                             << 
1313       icheck = itmp;                          << 
1314       vcheck = vtmp;                          << 
1315     }                                         << 
1316     if (icheck == 0) continue; // no facet se << 
1317     // join facets                            << 
1318     njoin++;                                  << 
1319     pF[icheck].edge[0].v = 0; // mark facet a << 
1320     if (kcheck == 0)                          << 
1321     {                                         << 
1322       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1323       pF[icur].edge[2].v = pF[icur].edge[1].v << 
1324       pF[icur].edge[1].v = vcheck;            << 
1325     }                                         << 
1326     else if (kcheck == 1)                     << 
1327     {                                         << 
1328       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1329       pF[icur].edge[2].v = vcheck;            << 
1330     }                                         << 
1331     else                                      << 
1332     {                                         << 
1333       pF[icur].edge[3].v = vcheck;            << 
1334     }                                         << 
1335   }                                           << 
1336   if (njoin == 0) return; // no joined facets << 
1337                                               << 
1338   // restructure facets                       << 
1339   G4int nnew = 0;                             << 
1340   for (G4int icur = 1; icur <= nface; ++icur) << 
1341   {                                           << 
1342     if (pF[icur].edge[0].v == 0) continue;    << 
1343     nnew++;                                   << 
1344     pF[nnew].edge[0].v = pF[icur].edge[0].v;  << 
1345     pF[nnew].edge[1].v = pF[icur].edge[1].v;  << 
1346     pF[nnew].edge[2].v = pF[icur].edge[2].v;  << 
1347     pF[nnew].edge[3].v = pF[icur].edge[3].v;  << 
1348   }                                           << 
1349   nface = nnew;                               << 
1350   SetReferences();                            << 
1351 }                                             << 
1352                                               << 
1353 void HepPolyhedron::InvertFacets()               819 void HepPolyhedron::InvertFacets()
1354 /********************************************    820 /***********************************************************************
1355  *                                               821  *                                                                     *
1356  * Name: HepPolyhedron::InvertFacets             822  * Name: HepPolyhedron::InvertFacets                Date:    01.12.99  *
1357  * Author: E.Chernyaev                           823  * Author: E.Chernyaev                              Revised:           *
1358  *                                               824  *                                                                     *
1359  * Function: Invert the order of the nodes in    825  * Function: Invert the order of the nodes in the facets               *
1360  *                                               826  *                                                                     *
1361  ********************************************    827  ***********************************************************************/
1362 {                                                828 {
1363   if (nface <= 0) return;                        829   if (nface <= 0) return;
1364   G4int i, k, nnode, v[4],f[4];                  830   G4int i, k, nnode, v[4],f[4];
1365   for (i=1; i<=nface; i++) {                     831   for (i=1; i<=nface; i++) {
1366     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;     832     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;
1367     for (k=0; k<nnode; k++) {                    833     for (k=0; k<nnode; k++) {
1368       v[k] = (k+1 == nnode) ? pF[i].edge[0].v    834       v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v;
1369       if (v[k] * pF[i].edge[k].v < 0) v[k] =     835       if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k];
1370       f[k] = pF[i].edge[k].f;                    836       f[k] = pF[i].edge[k].f;
1371     }                                            837     }
1372     for (k=0; k<nnode; k++) {                    838     for (k=0; k<nnode; k++) {
1373       pF[i].edge[nnode-1-k].v = v[k];            839       pF[i].edge[nnode-1-k].v = v[k];
1374       pF[i].edge[nnode-1-k].f = f[k];            840       pF[i].edge[nnode-1-k].f = f[k];
1375     }                                            841     }
1376   }                                              842   }
1377 }                                                843 }
1378                                                  844 
1379 HepPolyhedron & HepPolyhedron::Transform(cons    845 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t)
1380 /********************************************    846 /***********************************************************************
1381  *                                               847  *                                                                     *
1382  * Name: HepPolyhedron::Transform                848  * Name: HepPolyhedron::Transform                    Date:    01.12.99  *
1383  * Author: E.Chernyaev                           849  * Author: E.Chernyaev                              Revised:           *
1384  *                                               850  *                                                                     *
1385  * Function: Make transformation of the polyh    851  * Function: Make transformation of the polyhedron                     *
1386  *                                               852  *                                                                     *
1387  ********************************************    853  ***********************************************************************/
1388 {                                                854 {
1389   if (nvert > 0) {                               855   if (nvert > 0) {
1390     for (G4int i=1; i<=nvert; i++) { pV[i] =     856     for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; }
1391                                                  857 
1392     //  C H E C K   D E T E R M I N A N T   A    858     //  C H E C K   D E T E R M I N A N T   A N D
1393     //  I N V E R T   F A C E T S   I F   I T    859     //  I N V E R T   F A C E T S   I F   I T   I S   N E G A T I V E
1394                                                  860 
1395     G4Vector3D d = t * G4Vector3D(0,0,0);        861     G4Vector3D d = t * G4Vector3D(0,0,0);
1396     G4Vector3D x = t * G4Vector3D(1,0,0) - d;    862     G4Vector3D x = t * G4Vector3D(1,0,0) - d;
1397     G4Vector3D y = t * G4Vector3D(0,1,0) - d;    863     G4Vector3D y = t * G4Vector3D(0,1,0) - d;
1398     G4Vector3D z = t * G4Vector3D(0,0,1) - d;    864     G4Vector3D z = t * G4Vector3D(0,0,1) - d;
1399     if ((x.cross(y))*z < 0) InvertFacets();      865     if ((x.cross(y))*z < 0) InvertFacets();
1400   }                                              866   }
1401   return *this;                                  867   return *this;
1402 }                                                868 }
1403                                                  869 
1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in    870 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const
1405 /********************************************    871 /***********************************************************************
1406  *                                               872  *                                                                     *
1407  * Name: HepPolyhedron::GetNextVertexIndex       873  * Name: HepPolyhedron::GetNextVertexIndex          Date:    03.09.96  *
1408  * Author: Yasuhide Sawada                       874  * Author: Yasuhide Sawada                          Revised:           *
1409  *                                               875  *                                                                     *
1410  * Function:                                     876  * Function:                                                           *
1411  *                                               877  *                                                                     *
1412  ********************************************    878  ***********************************************************************/
1413 {                                                879 {
1414   static G4ThreadLocal G4int iFace = 1;          880   static G4ThreadLocal G4int iFace = 1;
1415   static G4ThreadLocal G4int iQVertex = 0;       881   static G4ThreadLocal G4int iQVertex = 0;
1416   G4int vIndex = pF[iFace].edge[iQVertex].v;     882   G4int vIndex = pF[iFace].edge[iQVertex].v;
1417                                                  883 
1418   edgeFlag = (vIndex > 0) ? 1 : 0;               884   edgeFlag = (vIndex > 0) ? 1 : 0;
1419   index = std::abs(vIndex);                      885   index = std::abs(vIndex);
1420                                                  886 
1421   if (iQVertex >= 3 || pF[iFace].edge[iQVerte    887   if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1422     iQVertex = 0;                                888     iQVertex = 0;
1423     if (++iFace > nface) iFace = 1;              889     if (++iFace > nface) iFace = 1;
1424     return false;  // Last Edge                  890     return false;  // Last Edge
                                                   >> 891   }else{
                                                   >> 892     ++iQVertex;
                                                   >> 893     return true;  // not Last Edge
1425   }                                              894   }
1426                                               << 
1427   ++iQVertex;                                 << 
1428   return true;  // not Last Edge              << 
1429 }                                                895 }
1430                                                  896 
1431 G4Point3D HepPolyhedron::GetVertex(G4int inde    897 G4Point3D HepPolyhedron::GetVertex(G4int index) const
1432 /********************************************    898 /***********************************************************************
1433  *                                               899  *                                                                     *
1434  * Name: HepPolyhedron::GetVertex                900  * Name: HepPolyhedron::GetVertex                   Date:    03.09.96  *
1435  * Author: Yasuhide Sawada                       901  * Author: Yasuhide Sawada                          Revised: 17.11.99  *
1436  *                                               902  *                                                                     *
1437  * Function: Get vertex of the index.            903  * Function: Get vertex of the index.                                  *
1438  *                                               904  *                                                                     *
1439  ********************************************    905  ***********************************************************************/
1440 {                                                906 {
1441   if (index <= 0 || index > nvert) {             907   if (index <= 0 || index > nvert) {
1442     std::cerr                                    908     std::cerr
1443       << "HepPolyhedron::GetVertex: irrelevan    909       << "HepPolyhedron::GetVertex: irrelevant index " << index
1444       << std::endl;                              910       << std::endl;
1445     return G4Point3D();                          911     return G4Point3D();
1446   }                                              912   }
1447   return pV[index];                              913   return pV[index];
1448 }                                                914 }
1449                                                  915 
1450 G4bool                                           916 G4bool
1451 HepPolyhedron::GetNextVertex(G4Point3D &verte    917 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const
1452 /********************************************    918 /***********************************************************************
1453  *                                               919  *                                                                     *
1454  * Name: HepPolyhedron::GetNextVertex            920  * Name: HepPolyhedron::GetNextVertex               Date:    22.07.96  *
1455  * Author: John Allison                          921  * Author: John Allison                             Revised:           *
1456  *                                               922  *                                                                     *
1457  * Function: Get vertices of the quadrilatera    923  * Function: Get vertices of the quadrilaterals in order for each      *
1458  *           face in face order.  Returns fal    924  *           face in face order.  Returns false when finished each     *
1459  *           face.                               925  *           face.                                                     *
1460  *                                               926  *                                                                     *
1461  ********************************************    927  ***********************************************************************/
1462 {                                                928 {
1463   G4int index;                                   929   G4int index;
1464   G4bool rep = GetNextVertexIndex(index, edge    930   G4bool rep = GetNextVertexIndex(index, edgeFlag);
1465   vertex = pV[index];                            931   vertex = pV[index];
1466   return rep;                                    932   return rep;
1467 }                                                933 }
1468                                                  934 
1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D    935 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag,
1470                                   G4Normal3D     936                                   G4Normal3D &normal) const
1471 /********************************************    937 /***********************************************************************
1472  *                                               938  *                                                                     *
1473  * Name: HepPolyhedron::GetNextVertex            939  * Name: HepPolyhedron::GetNextVertex               Date:    26.11.99  *
1474  * Author: E.Chernyaev                           940  * Author: E.Chernyaev                              Revised:           *
1475  *                                               941  *                                                                     *
1476  * Function: Get vertices with normals of the    942  * Function: Get vertices with normals of the quadrilaterals in order  *
1477  *           for each face in face order.        943  *           for each face in face order.                              *
1478  *           Returns false when finished each    944  *           Returns false when finished each face.                    *
1479  *                                               945  *                                                                     *
1480  ********************************************    946  ***********************************************************************/
1481 {                                                947 {
1482   static G4ThreadLocal G4int iFace = 1;          948   static G4ThreadLocal G4int iFace = 1;
1483   static G4ThreadLocal G4int iNode = 0;          949   static G4ThreadLocal G4int iNode = 0;
1484                                                  950 
1485   if (nface == 0) return false;  // empty pol    951   if (nface == 0) return false;  // empty polyhedron
1486                                                  952 
1487   G4int k = pF[iFace].edge[iNode].v;             953   G4int k = pF[iFace].edge[iNode].v;
1488   if (k > 0) { edgeFlag = 1; } else { edgeFla    954   if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; }
1489   vertex = pV[k];                                955   vertex = pV[k];
1490   normal = FindNodeNormal(iFace,k);              956   normal = FindNodeNormal(iFace,k);
1491   if (iNode >= 3 || pF[iFace].edge[iNode+1].v    957   if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) {
1492     iNode = 0;                                   958     iNode = 0;
1493     if (++iFace > nface) iFace = 1;              959     if (++iFace > nface) iFace = 1;
1494     return false;                // last node    960     return false;                // last node
                                                   >> 961   }else{
                                                   >> 962     ++iNode;
                                                   >> 963     return true;                 // not last node
1495   }                                              964   }
1496   ++iNode;                                    << 
1497   return true;                 // not last no << 
1498 }                                                965 }
1499                                                  966 
1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 967 G4bool HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag,
1501                                        G4int     968                                        G4int &iface1, G4int &iface2) const
1502 /********************************************    969 /***********************************************************************
1503  *                                               970  *                                                                     *
1504  * Name: HepPolyhedron::GetNextEdgeIndices    << 971  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    30.09.96  *
1505  * Author: E.Chernyaev                           972  * Author: E.Chernyaev                              Revised: 17.11.99  *
1506  *                                               973  *                                                                     *
1507  * Function: Get indices of the next edge tog << 974  * Function: Get indeces of the next edge together with indeces of     *
1508  *           of the faces which share the edg    975  *           of the faces which share the edge.                        *
1509  *           Returns false when the last edge    976  *           Returns false when the last edge.                         *
1510  *                                               977  *                                                                     *
1511  ********************************************    978  ***********************************************************************/
1512 {                                                979 {
1513   static G4ThreadLocal G4int iFace    = 1;       980   static G4ThreadLocal G4int iFace    = 1;
1514   static G4ThreadLocal G4int iQVertex = 0;       981   static G4ThreadLocal G4int iQVertex = 0;
1515   static G4ThreadLocal G4int iOrder   = 1;       982   static G4ThreadLocal G4int iOrder   = 1;
1516   G4int  k1, k2, kflag, kface1, kface2;          983   G4int  k1, k2, kflag, kface1, kface2;
1517                                                  984 
1518   if (iFace == 1 && iQVertex == 0) {             985   if (iFace == 1 && iQVertex == 0) {
1519     k2 = pF[nface].edge[0].v;                    986     k2 = pF[nface].edge[0].v;
1520     k1 = pF[nface].edge[3].v;                    987     k1 = pF[nface].edge[3].v;
1521     if (k1 == 0) k1 = pF[nface].edge[2].v;       988     if (k1 == 0) k1 = pF[nface].edge[2].v;
1522     if (std::abs(k1) > std::abs(k2)) iOrder =    989     if (std::abs(k1) > std::abs(k2)) iOrder = -1;
1523   }                                              990   }
1524                                                  991 
1525   do {                                           992   do {
1526     k1     = pF[iFace].edge[iQVertex].v;         993     k1     = pF[iFace].edge[iQVertex].v;
1527     kflag  = k1;                                 994     kflag  = k1;
1528     k1     = std::abs(k1);                       995     k1     = std::abs(k1);
1529     kface1 = iFace;                           << 996     kface1 = iFace; 
1530     kface2 = pF[iFace].edge[iQVertex].f;         997     kface2 = pF[iFace].edge[iQVertex].f;
1531     if (iQVertex >= 3 || pF[iFace].edge[iQVer    998     if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1532       iQVertex = 0;                              999       iQVertex = 0;
1533       k2 = std::abs(pF[iFace].edge[iQVertex].    1000       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1534       iFace++;                                   1001       iFace++;
1535     }else{                                       1002     }else{
1536       iQVertex++;                                1003       iQVertex++;
1537       k2 = std::abs(pF[iFace].edge[iQVertex].    1004       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1538     }                                            1005     }
1539   } while (iOrder*k1 > iOrder*k2);               1006   } while (iOrder*k1 > iOrder*k2);
1540                                                  1007 
1541   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ?     1008   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0;
1542   iface1 = kface1; iface2 = kface2;           << 1009   iface1 = kface1; iface2 = kface2; 
1543                                                  1010 
1544   if (iFace > nface) {                           1011   if (iFace > nface) {
1545     iFace  = 1; iOrder = 1;                      1012     iFace  = 1; iOrder = 1;
1546     return false;                                1013     return false;
                                                   >> 1014   }else{
                                                   >> 1015     return true;
1547   }                                              1016   }
1548                                               << 
1549   return true;                                << 
1550 }                                                1017 }
1551                                                  1018 
1552 G4bool                                           1019 G4bool
1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1,  << 1020 HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag) const
1554 /********************************************    1021 /***********************************************************************
1555  *                                               1022  *                                                                     *
1556  * Name: HepPolyhedron::GetNextEdgeIndices    << 1023  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    17.11.99  *
1557  * Author: E.Chernyaev                           1024  * Author: E.Chernyaev                              Revised:           *
1558  *                                               1025  *                                                                     *
1559  * Function: Get indices of the next edge.    << 1026  * Function: Get indeces of the next edge.                             *
1560  *           Returns false when the last edge    1027  *           Returns false when the last edge.                         *
1561  *                                               1028  *                                                                     *
1562  ********************************************    1029  ***********************************************************************/
1563 {                                                1030 {
1564   G4int kface1, kface2;                          1031   G4int kface1, kface2;
1565   return GetNextEdgeIndices(i1, i2, edgeFlag, << 1032   return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2);
1566 }                                                1033 }
1567                                                  1034 
1568 G4bool                                           1035 G4bool
1569 HepPolyhedron::GetNextEdge(G4Point3D &p1,        1036 HepPolyhedron::GetNextEdge(G4Point3D &p1,
1570                            G4Point3D &p2,        1037                            G4Point3D &p2,
1571                            G4int &edgeFlag) c    1038                            G4int &edgeFlag) const
1572 /********************************************    1039 /***********************************************************************
1573  *                                               1040  *                                                                     *
1574  * Name: HepPolyhedron::GetNextEdge              1041  * Name: HepPolyhedron::GetNextEdge                 Date:    30.09.96  *
1575  * Author: E.Chernyaev                           1042  * Author: E.Chernyaev                              Revised:           *
1576  *                                               1043  *                                                                     *
1577  * Function: Get next edge.                      1044  * Function: Get next edge.                                            *
1578  *           Returns false when the last edge    1045  *           Returns false when the last edge.                         *
1579  *                                               1046  *                                                                     *
1580  ********************************************    1047  ***********************************************************************/
1581 {                                                1048 {
1582   G4int i1,i2;                                   1049   G4int i1,i2;
1583   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1050   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag);
1584   p1 = pV[i1];                                   1051   p1 = pV[i1];
1585   p2 = pV[i2];                                   1052   p2 = pV[i2];
1586   return rep;                                    1053   return rep;
1587 }                                                1054 }
1588                                                  1055 
1589 G4bool                                           1056 G4bool
1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P    1057 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2,
1591                           G4int &edgeFlag, G4    1058                           G4int &edgeFlag, G4int &iface1, G4int &iface2) const
1592 /********************************************    1059 /***********************************************************************
1593  *                                               1060  *                                                                     *
1594  * Name: HepPolyhedron::GetNextEdge              1061  * Name: HepPolyhedron::GetNextEdge                 Date:    17.11.99  *
1595  * Author: E.Chernyaev                           1062  * Author: E.Chernyaev                              Revised:           *
1596  *                                               1063  *                                                                     *
1597  * Function: Get next edge with indices of th << 1064  * Function: Get next edge with indeces of the faces which share       *
1598  *           the edge.                           1065  *           the edge.                                                 *
1599  *           Returns false when the last edge    1066  *           Returns false when the last edge.                         *
1600  *                                               1067  *                                                                     *
1601  ********************************************    1068  ***********************************************************************/
1602 {                                                1069 {
1603   G4int i1,i2;                                   1070   G4int i1,i2;
1604   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1071   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2);
1605   p1 = pV[i1];                                   1072   p1 = pV[i1];
1606   p2 = pV[i2];                                   1073   p2 = pV[i2];
1607   return rep;                                    1074   return rep;
1608 }                                                1075 }
1609                                                  1076 
1610 void HepPolyhedron::GetFacet(G4int iFace, G4i    1077 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes,
1611                             G4int *edgeFlags,    1078                             G4int *edgeFlags, G4int *iFaces) const
1612 /********************************************    1079 /***********************************************************************
1613  *                                               1080  *                                                                     *
1614  * Name: HepPolyhedron::GetFacet                 1081  * Name: HepPolyhedron::GetFacet                    Date:    15.12.99  *
1615  * Author: E.Chernyaev                           1082  * Author: E.Chernyaev                              Revised:           *
1616  *                                               1083  *                                                                     *
1617  * Function: Get face by index                   1084  * Function: Get face by index                                         *
1618  *                                               1085  *                                                                     *
1619  ********************************************    1086  ***********************************************************************/
1620 {                                                1087 {
1621   if (iFace < 1 || iFace > nface) {              1088   if (iFace < 1 || iFace > nface) {
1622     std::cerr                                 << 1089     std::cerr 
1623       << "HepPolyhedron::GetFacet: irrelevant    1090       << "HepPolyhedron::GetFacet: irrelevant index " << iFace
1624       << std::endl;                              1091       << std::endl;
1625     n = 0;                                       1092     n = 0;
1626   }else{                                         1093   }else{
1627     G4int i, k;                                  1094     G4int i, k;
1628     for (i=0; i<4; i++) {                     << 1095     for (i=0; i<4; i++) { 
1629       k = pF[iFace].edge[i].v;                   1096       k = pF[iFace].edge[i].v;
1630       if (k == 0) break;                         1097       if (k == 0) break;
1631       if (iFaces != nullptr) iFaces[i] = pF[i << 1098       if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f;
1632       if (k > 0) {                            << 1099       if (k > 0) { 
1633         iNodes[i] = k;                           1100         iNodes[i] = k;
1634         if (edgeFlags != nullptr) edgeFlags[i << 1101         if (edgeFlags != 0) edgeFlags[i] = 1;
1635       }else{                                     1102       }else{
1636         iNodes[i] = -k;                          1103         iNodes[i] = -k;
1637         if (edgeFlags != nullptr) edgeFlags[i << 1104         if (edgeFlags != 0) edgeFlags[i] = -1;
1638       }                                          1105       }
1639     }                                            1106     }
1640     n = i;                                       1107     n = i;
1641   }                                              1108   }
1642 }                                                1109 }
1643                                                  1110 
1644 void HepPolyhedron::GetFacet(G4int index, G4i    1111 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes,
1645                              G4int *edgeFlags    1112                              G4int *edgeFlags, G4Normal3D *normals) const
1646 /********************************************    1113 /***********************************************************************
1647  *                                               1114  *                                                                     *
1648  * Name: HepPolyhedron::GetFacet                 1115  * Name: HepPolyhedron::GetFacet                    Date:    17.11.99  *
1649  * Author: E.Chernyaev                           1116  * Author: E.Chernyaev                              Revised:           *
1650  *                                               1117  *                                                                     *
1651  * Function: Get face by index                   1118  * Function: Get face by index                                         *
1652  *                                               1119  *                                                                     *
1653  ********************************************    1120  ***********************************************************************/
1654 {                                                1121 {
1655   G4int iNodes[4];                               1122   G4int iNodes[4];
1656   GetFacet(index, n, iNodes, edgeFlags);         1123   GetFacet(index, n, iNodes, edgeFlags);
1657   if (n != 0) {                                  1124   if (n != 0) {
1658     for (G4int i=0; i<n; i++) {                  1125     for (G4int i=0; i<n; i++) {
1659       nodes[i] = pV[iNodes[i]];                  1126       nodes[i] = pV[iNodes[i]];
1660       if (normals != nullptr) normals[i] = Fi << 1127       if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]);
1661     }                                            1128     }
1662   }                                              1129   }
1663 }                                                1130 }
1664                                                  1131 
1665 G4bool                                           1132 G4bool
1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point    1133 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes,
1667                            G4int *edgeFlags,     1134                            G4int *edgeFlags, G4Normal3D *normals) const
1668 /********************************************    1135 /***********************************************************************
1669  *                                               1136  *                                                                     *
1670  * Name: HepPolyhedron::GetNextFacet             1137  * Name: HepPolyhedron::GetNextFacet                Date:    19.11.99  *
1671  * Author: E.Chernyaev                           1138  * Author: E.Chernyaev                              Revised:           *
1672  *                                               1139  *                                                                     *
1673  * Function: Get next face with normals of un    1140  * Function: Get next face with normals of unit length at the nodes.   *
1674  *           Returns false when finished all     1141  *           Returns false when finished all faces.                    *
1675  *                                               1142  *                                                                     *
1676  ********************************************    1143  ***********************************************************************/
1677 {                                                1144 {
1678   static G4ThreadLocal G4int iFace = 1;          1145   static G4ThreadLocal G4int iFace = 1;
1679                                                  1146 
1680   if (edgeFlags == nullptr) {                 << 1147   if (edgeFlags == 0) {
1681     GetFacet(iFace, n, nodes);                   1148     GetFacet(iFace, n, nodes);
1682   }else if (normals == nullptr) {             << 1149   }else if (normals == 0) {
1683     GetFacet(iFace, n, nodes, edgeFlags);        1150     GetFacet(iFace, n, nodes, edgeFlags);
1684   }else{                                         1151   }else{
1685     GetFacet(iFace, n, nodes, edgeFlags, norm    1152     GetFacet(iFace, n, nodes, edgeFlags, normals);
1686   }                                              1153   }
1687                                                  1154 
1688   if (++iFace > nface) {                         1155   if (++iFace > nface) {
1689     iFace  = 1;                                  1156     iFace  = 1;
1690     return false;                                1157     return false;
                                                   >> 1158   }else{
                                                   >> 1159     return true;
1691   }                                              1160   }
1692                                               << 
1693   return true;                                << 
1694 }                                                1161 }
1695                                                  1162 
1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa    1163 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const
1697 /********************************************    1164 /***********************************************************************
1698  *                                               1165  *                                                                     *
1699  * Name: HepPolyhedron::GetNormal                1166  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1700  * Author: E.Chernyaev                           1167  * Author: E.Chernyaev                               Revised:          *
1701  *                                               1168  *                                                                     *
1702  * Function: Get normal of the face given by     1169  * Function: Get normal of the face given by index                     *
1703  *                                               1170  *                                                                     *
1704  ********************************************    1171  ***********************************************************************/
1705 {                                                1172 {
1706   if (iFace < 1 || iFace > nface) {              1173   if (iFace < 1 || iFace > nface) {
1707     std::cerr                                 << 1174     std::cerr 
1708       << "HepPolyhedron::GetNormal: irrelevan << 1175       << "HepPolyhedron::GetNormal: irrelevant index " << iFace 
1709       << std::endl;                              1176       << std::endl;
1710     return G4Normal3D();                         1177     return G4Normal3D();
1711   }                                              1178   }
1712                                                  1179 
1713   G4int i0  = std::abs(pF[iFace].edge[0].v);     1180   G4int i0  = std::abs(pF[iFace].edge[0].v);
1714   G4int i1  = std::abs(pF[iFace].edge[1].v);     1181   G4int i1  = std::abs(pF[iFace].edge[1].v);
1715   G4int i2  = std::abs(pF[iFace].edge[2].v);     1182   G4int i2  = std::abs(pF[iFace].edge[2].v);
1716   G4int i3  = std::abs(pF[iFace].edge[3].v);     1183   G4int i3  = std::abs(pF[iFace].edge[3].v);
1717   if (i3 == 0) i3 = i0;                          1184   if (i3 == 0) i3 = i0;
1718   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[    1185   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]);
1719 }                                                1186 }
1720                                                  1187 
1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int    1188 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const
1722 /********************************************    1189 /***********************************************************************
1723  *                                               1190  *                                                                     *
1724  * Name: HepPolyhedron::GetNormal                1191  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1725  * Author: E.Chernyaev                           1192  * Author: E.Chernyaev                               Revised:          *
1726  *                                               1193  *                                                                     *
1727  * Function: Get unit normal of the face give    1194  * Function: Get unit normal of the face given by index                *
1728  *                                               1195  *                                                                     *
1729  ********************************************    1196  ***********************************************************************/
1730 {                                                1197 {
1731   if (iFace < 1 || iFace > nface) {              1198   if (iFace < 1 || iFace > nface) {
1732     std::cerr                                 << 1199     std::cerr 
1733       << "HepPolyhedron::GetUnitNormal: irrel    1200       << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace
1734       << std::endl;                              1201       << std::endl;
1735     return G4Normal3D();                         1202     return G4Normal3D();
1736   }                                              1203   }
1737                                                  1204 
1738   G4int i0  = std::abs(pF[iFace].edge[0].v);     1205   G4int i0  = std::abs(pF[iFace].edge[0].v);
1739   G4int i1  = std::abs(pF[iFace].edge[1].v);     1206   G4int i1  = std::abs(pF[iFace].edge[1].v);
1740   G4int i2  = std::abs(pF[iFace].edge[2].v);     1207   G4int i2  = std::abs(pF[iFace].edge[2].v);
1741   G4int i3  = std::abs(pF[iFace].edge[3].v);     1208   G4int i3  = std::abs(pF[iFace].edge[3].v);
1742   if (i3 == 0) i3 = i0;                          1209   if (i3 == 0) i3 = i0;
1743   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1210   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit();
1744 }                                                1211 }
1745                                                  1212 
1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3    1213 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const
1747 /********************************************    1214 /***********************************************************************
1748  *                                               1215  *                                                                     *
1749  * Name: HepPolyhedron::GetNextNormal            1216  * Name: HepPolyhedron::GetNextNormal               Date:    22.07.96  *
1750  * Author: John Allison                          1217  * Author: John Allison                             Revised: 19.11.99  *
1751  *                                               1218  *                                                                     *
1752  * Function: Get normals of each face in face    1219  * Function: Get normals of each face in face order.  Returns false    *
1753  *           when finished all faces.            1220  *           when finished all faces.                                  *
1754  *                                               1221  *                                                                     *
1755  ********************************************    1222  ***********************************************************************/
1756 {                                                1223 {
1757   static G4ThreadLocal G4int iFace = 1;          1224   static G4ThreadLocal G4int iFace = 1;
1758   normal = GetNormal(iFace);                     1225   normal = GetNormal(iFace);
1759   if (++iFace > nface) {                         1226   if (++iFace > nface) {
1760     iFace = 1;                                   1227     iFace = 1;
1761     return false;                                1228     return false;
                                                   >> 1229   }else{
                                                   >> 1230     return true;
1762   }                                              1231   }
1763   return true;                                << 
1764 }                                                1232 }
1765                                                  1233 
1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor    1234 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const
1767 /********************************************    1235 /***********************************************************************
1768  *                                               1236  *                                                                     *
1769  * Name: HepPolyhedron::GetNextUnitNormal        1237  * Name: HepPolyhedron::GetNextUnitNormal           Date:    16.09.96  *
1770  * Author: E.Chernyaev                           1238  * Author: E.Chernyaev                              Revised:           *
1771  *                                               1239  *                                                                     *
1772  * Function: Get normals of unit length of ea    1240  * Function: Get normals of unit length of each face in face order.    *
1773  *           Returns false when finished all     1241  *           Returns false when finished all faces.                    *
1774  *                                               1242  *                                                                     *
1775  ********************************************    1243  ***********************************************************************/
1776 {                                                1244 {
1777   G4bool rep = GetNextNormal(normal);            1245   G4bool rep = GetNextNormal(normal);
1778   normal = normal.unit();                        1246   normal = normal.unit();
1779   return rep;                                    1247   return rep;
1780 }                                                1248 }
1781                                                  1249 
1782 G4double HepPolyhedron::GetSurfaceArea() cons    1250 G4double HepPolyhedron::GetSurfaceArea() const
1783 /********************************************    1251 /***********************************************************************
1784  *                                               1252  *                                                                     *
1785  * Name: HepPolyhedron::GetSurfaceArea           1253  * Name: HepPolyhedron::GetSurfaceArea              Date:    25.05.01  *
1786  * Author: E.Chernyaev                           1254  * Author: E.Chernyaev                              Revised:           *
1787  *                                               1255  *                                                                     *
1788  * Function: Returns area of the surface of t    1256  * Function: Returns area of the surface of the polyhedron.            *
1789  *                                               1257  *                                                                     *
1790  ********************************************    1258  ***********************************************************************/
1791 {                                                1259 {
1792   G4double srf = 0.;                             1260   G4double srf = 0.;
1793   for (G4int iFace=1; iFace<=nface; iFace++)     1261   for (G4int iFace=1; iFace<=nface; iFace++) {
1794     G4int i0 = std::abs(pF[iFace].edge[0].v);    1262     G4int i0 = std::abs(pF[iFace].edge[0].v);
1795     G4int i1 = std::abs(pF[iFace].edge[1].v);    1263     G4int i1 = std::abs(pF[iFace].edge[1].v);
1796     G4int i2 = std::abs(pF[iFace].edge[2].v);    1264     G4int i2 = std::abs(pF[iFace].edge[2].v);
1797     G4int i3 = std::abs(pF[iFace].edge[3].v);    1265     G4int i3 = std::abs(pF[iFace].edge[3].v);
1798     if (i3 == 0) i3 = i0;                        1266     if (i3 == 0) i3 = i0;
1799     srf += ((pV[i2] - pV[i0]).cross(pV[i3] -     1267     srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag();
1800   }                                              1268   }
1801   return srf/2.;                                 1269   return srf/2.;
1802 }                                                1270 }
1803                                                  1271 
1804 G4double HepPolyhedron::GetVolume() const        1272 G4double HepPolyhedron::GetVolume() const
1805 /********************************************    1273 /***********************************************************************
1806  *                                               1274  *                                                                     *
1807  * Name: HepPolyhedron::GetVolume                1275  * Name: HepPolyhedron::GetVolume                   Date:    25.05.01  *
1808  * Author: E.Chernyaev                           1276  * Author: E.Chernyaev                              Revised:           *
1809  *                                               1277  *                                                                     *
1810  * Function: Returns volume of the polyhedron    1278  * Function: Returns volume of the polyhedron.                         *
1811  *                                               1279  *                                                                     *
1812  ********************************************    1280  ***********************************************************************/
1813 {                                                1281 {
1814   G4double v = 0.;                               1282   G4double v = 0.;
1815   for (G4int iFace=1; iFace<=nface; iFace++)     1283   for (G4int iFace=1; iFace<=nface; iFace++) {
1816     G4int i0 = std::abs(pF[iFace].edge[0].v);    1284     G4int i0 = std::abs(pF[iFace].edge[0].v);
1817     G4int i1 = std::abs(pF[iFace].edge[1].v);    1285     G4int i1 = std::abs(pF[iFace].edge[1].v);
1818     G4int i2 = std::abs(pF[iFace].edge[2].v);    1286     G4int i2 = std::abs(pF[iFace].edge[2].v);
1819     G4int i3 = std::abs(pF[iFace].edge[3].v);    1287     G4int i3 = std::abs(pF[iFace].edge[3].v);
1820     G4Point3D pt;                                1288     G4Point3D pt;
1821     if (i3 == 0) {                               1289     if (i3 == 0) {
1822       i3 = i0;                                   1290       i3 = i0;
1823       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);     1291       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);
1824     }else{                                       1292     }else{
1825       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.    1293       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25;
1826     }                                            1294     }
1827     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1295     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt);
1828   }                                              1296   }
1829   return v/6.;                                   1297   return v/6.;
1830 }                                                1298 }
1831                                                  1299 
1832 G4int                                            1300 G4int
1833 HepPolyhedron::createTwistedTrap(G4double Dz,    1301 HepPolyhedron::createTwistedTrap(G4double Dz,
1834                                  const G4doub    1302                                  const G4double xy1[][2],
1835                                  const G4doub    1303                                  const G4double xy2[][2])
1836 /********************************************    1304 /***********************************************************************
1837  *                                               1305  *                                                                     *
1838  * Name: createTwistedTrap                       1306  * Name: createTwistedTrap                           Date:    05.11.02 *
1839  * Author: E.Chernyaev (IHEP/Protvino)           1307  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1840  *                                               1308  *                                                                     *
1841  * Function: Creates polyhedron for twisted t    1309  * Function: Creates polyhedron for twisted trapezoid                  *
1842  *                                               1310  *                                                                     *
1843  * Input: Dz       - half-length along Z         1311  * Input: Dz       - half-length along Z             8----7            *
1844  *        xy1[2,4] - quadrilateral at Z=-Dz      1312  *        xy1[2,4] - quadrilateral at Z=-Dz       5----6  !            *
1845  *        xy2[2,4] - quadrilateral at Z=+Dz      1313  *        xy2[2,4] - quadrilateral at Z=+Dz       !  4-!--3            *
1846  *                                               1314  *                                                1----2               *
1847  *                                               1315  *                                                                     *
1848  ********************************************    1316  ***********************************************************************/
1849 {                                                1317 {
1850   AllocateMemory(12,18);                         1318   AllocateMemory(12,18);
1851                                                  1319 
1852   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz)    1320   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz);
1853   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz)    1321   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz);
1854   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz)    1322   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz);
1855   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz)    1323   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz);
1856                                                  1324 
1857   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz)    1325   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz);
1858   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz)    1326   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz);
1859   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz)    1327   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz);
1860   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz)    1328   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz);
1861                                                  1329 
1862   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;         1330   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;
1863   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;         1331   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;
1864   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;         1332   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;
1865   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;         1333   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;
1866                                                  1334 
1867   enum {DUMMY, BOTTOM,                           1335   enum {DUMMY, BOTTOM,
1868         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,    1336         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,  LEFT_BACK,
1869         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,    1337         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,  BACK_RIGHT,
1870         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP    1338         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP, RIGHT_FRONT,
1871         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP    1339         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP, FRONT_LEFT,
1872         TOP};                                    1340         TOP};
1873                                                  1341 
1874   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM    1342   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM);
1875                                                  1343 
1876   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,    1344   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,  -12,LEFT_BACK,    0,0);
1877   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,      1345   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,    -12,LEFT_BOTTOM,  0,0);
1878   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,     1346   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,   -12,LEFT_FRONT,   0,0);
1879   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM    1347   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM, -12,LEFT_TOP,     0,0);
1880                                                  1348 
1881   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,     1349   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,   -11,BACK_RIGHT,   0,0);
1882   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,      1350   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,    -11,BACK_BOTTOM,  0,0);
1883   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,    1351   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,  -11,BACK_LEFT,    0,0);
1884   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM    1352   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP,     0,0);
1885                                                  1353 
1886   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,    1354   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,  -10,RIGHT_FRONT,  0,0);
1887   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,     1355   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,   -10,RIGHT_BOTTOM, 0,0);
1888   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT    1356   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT, -10,RIGHT_BACK,   0,0);
1889   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO    1357   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP,    0,0);
1890                                                  1358 
1891   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT    1359   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT,  -9,FRONT_LEFT,   0,0);
1892   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,     1360   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,    -9,FRONT_BOTTOM, 0,0);
1893   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,    1361   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,   -9,FRONT_RIGHT,  0,0);
1894   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO    1362   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP,    0,0);
1895                                               << 1363  
1896   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,    1364   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP);
1897                                                  1365 
1898   return 0;                                      1366   return 0;
1899 }                                                1367 }
1900                                                  1368 
1901 G4int                                            1369 G4int
1902 HepPolyhedron::createPolyhedron(G4int Nnodes,    1370 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces,
1903                                 const G4doubl    1371                                 const G4double xyz[][3],
1904                                 const G4int      1372                                 const G4int  faces[][4])
1905 /********************************************    1373 /***********************************************************************
1906  *                                               1374  *                                                                     *
1907  * Name: createPolyhedron                        1375  * Name: createPolyhedron                            Date:    05.11.02 *
1908  * Author: E.Chernyaev (IHEP/Protvino)           1376  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1909  *                                               1377  *                                                                     *
1910  * Function: Creates user defined polyhedron     1378  * Function: Creates user defined polyhedron                           *
1911  *                                               1379  *                                                                     *
1912  * Input: Nnodes  - number of nodes              1380  * Input: Nnodes  - number of nodes                                    *
1913  *        Nfaces  - number of faces              1381  *        Nfaces  - number of faces                                    *
1914  *        nodes[][3] - node coordinates          1382  *        nodes[][3] - node coordinates                                *
1915  *        faces[][4] - faces                     1383  *        faces[][4] - faces                                           *
1916  *                                               1384  *                                                                     *
1917  ********************************************    1385  ***********************************************************************/
1918 {                                                1386 {
1919   AllocateMemory(Nnodes, Nfaces);                1387   AllocateMemory(Nnodes, Nfaces);
1920   if (nvert == 0) return 1;                      1388   if (nvert == 0) return 1;
1921                                                  1389 
1922   for (G4int i=0; i<Nnodes; i++) {               1390   for (G4int i=0; i<Nnodes; i++) {
1923     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1],    1391     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]);
1924   }                                              1392   }
1925   for (G4int k=0; k<Nfaces; k++) {               1393   for (G4int k=0; k<Nfaces; k++) {
1926     pF[k+1] = G4Facet(faces[k][0],0,faces[k][    1394     pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0);
1927   }                                              1395   }
1928   SetReferences();                               1396   SetReferences();
1929   return 0;                                      1397   return 0;
1930 }                                                1398 }
1931                                                  1399 
1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 
1933   /****************************************** << 
1934    *                                          << 
1935    * Name: vertexUnweightedMean               << 
1936    * Author: S. Boogert (Manchester)          << 
1937    *                                          << 
1938    * Function: Calculate the unweighted mean  << 
1939    * in the polyhedron. Not to be confused wi << 
1940    * centre of mass                           << 
1941    ****************************************** << 
1942                                               << 
1943   auto centre = G4Point3D();                  << 
1944   for(int i=1;i<=nvert;i++) {                 << 
1945     centre += pV[i];                          << 
1946   }                                           << 
1947   centre = centre/nvert;                      << 
1948   return centre;                              << 
1949 }                                             << 
1950                                               << 
1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double    1400 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2,
1952                                      G4double    1401                                      G4double Dy1, G4double Dy2,
1953                                      G4double    1402                                      G4double Dz)
1954 /********************************************    1403 /***********************************************************************
1955  *                                               1404  *                                                                     *
1956  * Name: HepPolyhedronTrd2                       1405  * Name: HepPolyhedronTrd2                           Date:    22.07.96 *
1957  * Author: E.Chernyaev (IHEP/Protvino)           1406  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1958  *                                               1407  *                                                                     *
1959  * Function: Create GEANT4 TRD2-trapezoid        1408  * Function: Create GEANT4 TRD2-trapezoid                              *
1960  *                                               1409  *                                                                     *
1961  * Input: Dx1 - half-length along X at -Dz       1410  * Input: Dx1 - half-length along X at -Dz           8----7            *
1962  *        Dx2 - half-length along X ay +Dz       1411  *        Dx2 - half-length along X ay +Dz        5----6  !            *
1963  *        Dy1 - half-length along Y ay -Dz       1412  *        Dy1 - half-length along Y ay -Dz        !  4-!--3            *
1964  *        Dy2 - half-length along Y ay +Dz       1413  *        Dy2 - half-length along Y ay +Dz        1----2               *
1965  *        Dz  - half-length along Z              1414  *        Dz  - half-length along Z                                    *
1966  *                                               1415  *                                                                     *
1967  ********************************************    1416  ***********************************************************************/
1968 {                                                1417 {
1969   AllocateMemory(8,6);                           1418   AllocateMemory(8,6);
1970                                                  1419 
1971   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);              1420   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);
1972   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);              1421   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);
1973   pV[3] = G4Point3D( Dx1, Dy1,-Dz);              1422   pV[3] = G4Point3D( Dx1, Dy1,-Dz);
1974   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);              1423   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);
1975   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);              1424   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);
1976   pV[6] = G4Point3D( Dx2,-Dy2, Dz);              1425   pV[6] = G4Point3D( Dx2,-Dy2, Dz);
1977   pV[7] = G4Point3D( Dx2, Dy2, Dz);              1426   pV[7] = G4Point3D( Dx2, Dy2, Dz);
1978   pV[8] = G4Point3D(-Dx2, Dy2, Dz);              1427   pV[8] = G4Point3D(-Dx2, Dy2, Dz);
1979                                                  1428 
1980   CreatePrism();                                 1429   CreatePrism();
1981 }                                                1430 }
1982                                                  1431 
1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1432 HepPolyhedronTrd2::~HepPolyhedronTrd2() {}
1984                                                  1433 
1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double    1434 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2,
1986                                      G4double    1435                                      G4double Dy, G4double Dz)
1987   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {    1436   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {}
1988                                                  1437 
1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1438 HepPolyhedronTrd1::~HepPolyhedronTrd1() {}
1990                                                  1439 
1991 HepPolyhedronBox::HepPolyhedronBox(G4double D    1440 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz)
1992   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}     1441   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}
1993                                                  1442 
1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1443 HepPolyhedronBox::~HepPolyhedronBox() {}
1995                                                  1444 
1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double    1445 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz,
1997                                      G4double    1446                                      G4double Theta,
1998                                      G4double    1447                                      G4double Phi,
1999                                      G4double    1448                                      G4double Dy1,
2000                                      G4double    1449                                      G4double Dx1,
2001                                      G4double    1450                                      G4double Dx2,
2002                                      G4double    1451                                      G4double Alp1,
2003                                      G4double    1452                                      G4double Dy2,
2004                                      G4double    1453                                      G4double Dx3,
2005                                      G4double    1454                                      G4double Dx4,
2006                                      G4double    1455                                      G4double Alp2)
2007 /********************************************    1456 /***********************************************************************
2008  *                                               1457  *                                                                     *
2009  * Name: HepPolyhedronTrap                       1458  * Name: HepPolyhedronTrap                           Date:    20.11.96 *
2010  * Author: E.Chernyaev                           1459  * Author: E.Chernyaev                               Revised:          *
2011  *                                               1460  *                                                                     *
2012  * Function: Create GEANT4 TRAP-trapezoid        1461  * Function: Create GEANT4 TRAP-trapezoid                              *
2013  *                                               1462  *                                                                     *
2014  * Input: DZ   - half-length in Z                1463  * Input: DZ   - half-length in Z                                      *
2015  *        Theta,Phi - polar angles of the lin    1464  *        Theta,Phi - polar angles of the line joining centres of the  *
2016  *                    faces at Z=-Dz and Z=+D    1465  *                    faces at Z=-Dz and Z=+Dz                         *
2017  *        Dy1  - half-length in Y of the face    1466  *        Dy1  - half-length in Y of the face at Z=-Dz                 *
2018  *        Dx1  - half-length in X of low edge    1467  *        Dx1  - half-length in X of low edge of the face at Z=-Dz     *
2019  *        Dx2  - half-length in X of top edge    1468  *        Dx2  - half-length in X of top edge of the face at Z=-Dz     *
2020  *        Alp1 - angle between Y-axis and the    1469  *        Alp1 - angle between Y-axis and the median joining top and   *
2021  *               low edges of the face at Z=-    1470  *               low edges of the face at Z=-Dz                        *
2022  *        Dy2  - half-length in Y of the face    1471  *        Dy2  - half-length in Y of the face at Z=+Dz                 *
2023  *        Dx3  - half-length in X of low edge    1472  *        Dx3  - half-length in X of low edge of the face at Z=+Dz     *
2024  *        Dx4  - half-length in X of top edge    1473  *        Dx4  - half-length in X of top edge of the face at Z=+Dz     *
2025  *        Alp2 - angle between Y-axis and the    1474  *        Alp2 - angle between Y-axis and the median joining top and   *
2026  *               low edges of the face at Z=+    1475  *               low edges of the face at Z=+Dz                        *
2027  *                                               1476  *                                                                     *
2028  ********************************************    1477  ***********************************************************************/
2029 {                                                1478 {
2030   G4double DzTthetaCphi = Dz*std::tan(Theta)*    1479   G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi);
2031   G4double DzTthetaSphi = Dz*std::tan(Theta)*    1480   G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi);
2032   G4double Dy1Talp1 = Dy1*std::tan(Alp1);        1481   G4double Dy1Talp1 = Dy1*std::tan(Alp1);
2033   G4double Dy2Talp2 = Dy2*std::tan(Alp2);        1482   G4double Dy2Talp2 = Dy2*std::tan(Alp2);
2034                                               << 1483   
2035   AllocateMemory(8,6);                           1484   AllocateMemory(8,6);
2036                                                  1485 
2037   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx    1486   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz);
2038   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx    1487   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz);
2039   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx    1488   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz);
2040   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx    1489   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz);
2041   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx    1490   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz);
2042   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx    1491   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz);
2043   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx    1492   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz);
2044   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx    1493   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz);
2045                                                  1494 
2046   CreatePrism();                                 1495   CreatePrism();
2047 }                                                1496 }
2048                                                  1497 
2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1498 HepPolyhedronTrap::~HepPolyhedronTrap() {}
2050                                                  1499 
2051 HepPolyhedronPara::HepPolyhedronPara(G4double    1500 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz,
2052                                      G4double    1501                                      G4double Alpha, G4double Theta,
2053                                      G4double    1502                                      G4double Phi)
2054   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx,    1503   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {}
2055                                                  1504 
2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1505 HepPolyhedronPara::~HepPolyhedronPara() {}
2057                                                  1506 
2058 HepPolyhedronParaboloid::HepPolyhedronParabol    1507 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1,
2059                                                  1508                                                  G4double r2,
2060                                                  1509                                                  G4double dz,
2061                                                  1510                                                  G4double sPhi,
2062                                               << 1511                                                  G4double dPhi) 
2063 /********************************************    1512 /***********************************************************************
2064  *                                               1513  *                                                                     *
2065  * Name: HepPolyhedronParaboloid                 1514  * Name: HepPolyhedronParaboloid                     Date:    28.06.07 *
2066  * Author: L.Lindroos, T.Nikitina (CERN), Jul    1515  * Author: L.Lindroos, T.Nikitina (CERN), July 2007  Revised: 28.06.07 *
2067  *                                               1516  *                                                                     *
2068  * Function: Constructor for paraboloid          1517  * Function: Constructor for paraboloid                                *
2069  *                                               1518  *                                                                     *
2070  * Input: r1    - inside and outside radiuses    1519  * Input: r1    - inside and outside radiuses at -Dz                   *
2071  *        r2    - inside and outside radiuses    1520  *        r2    - inside and outside radiuses at +Dz                   *
2072  *        dz    - half length in Z               1521  *        dz    - half length in Z                                     *
2073  *        sPhi  - starting angle of the segme    1522  *        sPhi  - starting angle of the segment                        *
2074  *        dPhi  - segment range                  1523  *        dPhi  - segment range                                        *
2075  *                                               1524  *                                                                     *
2076  ********************************************    1525  ***********************************************************************/
2077 {                                                1526 {
2078   static const G4double wholeCircle=twopi;       1527   static const G4double wholeCircle=twopi;
2079                                                  1528 
2080   //   C H E C K   I N P U T   P A R A M E T     1529   //   C H E C K   I N P U T   P A R A M E T E R S
2081                                                  1530 
2082   G4int k = 0;                                   1531   G4int k = 0;
2083   if (r1 < 0. || r2 <= 0.)        k = 1;         1532   if (r1 < 0. || r2 <= 0.)        k = 1;
2084                                                  1533 
2085   if (dz <= 0.) k += 2;                          1534   if (dz <= 0.) k += 2;
2086                                                  1535 
2087   G4double phi1, phi2, dphi;                     1536   G4double phi1, phi2, dphi;
2088                                                  1537 
2089   if(dPhi < 0.)                                  1538   if(dPhi < 0.)
2090   {                                              1539   {
2091     phi2 = sPhi; phi1 = phi2 + dPhi;             1540     phi2 = sPhi; phi1 = phi2 + dPhi;
2092   }                                              1541   }
2093   else if(dPhi == 0.)                         << 1542   else if(dPhi == 0.) 
2094   {                                              1543   {
2095     phi1 = sPhi; phi2 = phi1 + wholeCircle;      1544     phi1 = sPhi; phi2 = phi1 + wholeCircle;
2096   }                                              1545   }
2097   else                                           1546   else
2098   {                                              1547   {
2099     phi1 = sPhi; phi2 = phi1 + dPhi;             1548     phi1 = sPhi; phi2 = phi1 + dPhi;
2100   }                                              1549   }
2101   dphi  = phi2 - phi1;                           1550   dphi  = phi2 - phi1;
2102                                                  1551 
2103   if (std::abs(dphi-wholeCircle) < perMillion    1552   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2104   if (dphi > wholeCircle) k += 4;             << 1553   if (dphi > wholeCircle) k += 4; 
2105                                                  1554 
2106   if (k != 0) {                                  1555   if (k != 0) {
2107     std::cerr << "HepPolyhedronParaboloid: er    1556     std::cerr << "HepPolyhedronParaboloid: error in input parameters";
2108     if ((k & 1) != 0) std::cerr << " (radiuse    1557     if ((k & 1) != 0) std::cerr << " (radiuses)";
2109     if ((k & 2) != 0) std::cerr << " (half-le    1558     if ((k & 2) != 0) std::cerr << " (half-length)";
2110     if ((k & 4) != 0) std::cerr << " (angles)    1559     if ((k & 4) != 0) std::cerr << " (angles)";
2111     std::cerr << std::endl;                      1560     std::cerr << std::endl;
2112     std::cerr << " r1=" << r1;                   1561     std::cerr << " r1=" << r1;
2113     std::cerr << " r2=" << r2;                   1562     std::cerr << " r2=" << r2;
2114     std::cerr << " dz=" << dz << " sPhi=" <<     1563     std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi
2115               << std::endl;                      1564               << std::endl;
2116     return;                                      1565     return;
2117   }                                              1566   }
2118                                               << 1567   
2119   //   P R E P A R E   T W O   P O L Y L I N     1568   //   P R E P A R E   T W O   P O L Y L I N E S
2120                                                  1569 
2121   G4int n = GetNumberOfRotationSteps();          1570   G4int n = GetNumberOfRotationSteps();
2122   G4double dl = (r2 - r1) / n;                   1571   G4double dl = (r2 - r1) / n;
2123   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;        1572   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;
2124   G4double k2 = (r2*r2 + r1*r1) / 2;             1573   G4double k2 = (r2*r2 + r1*r1) / 2;
2125                                                  1574 
2126   auto zz = new G4double[n + 2], rr = new G4d << 1575   G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2];
2127                                                  1576 
2128   zz[0] = dz;                                    1577   zz[0] = dz;
2129   rr[0] = r2;                                    1578   rr[0] = r2;
2130                                                  1579 
2131   for(G4int i = 1; i < n - 1; i++)               1580   for(G4int i = 1; i < n - 1; i++)
2132   {                                              1581   {
2133     rr[i] = rr[i-1] - dl;                        1582     rr[i] = rr[i-1] - dl;
2134     zz[i] = (rr[i]*rr[i] - k2) / k1;             1583     zz[i] = (rr[i]*rr[i] - k2) / k1;
2135     if(rr[i] < 0)                                1584     if(rr[i] < 0)
2136     {                                            1585     {
2137       rr[i] = 0;                                 1586       rr[i] = 0;
2138       zz[i] = 0;                                 1587       zz[i] = 0;
2139     }                                            1588     }
2140   }                                              1589   }
2141                                                  1590 
2142   zz[n-1] = -dz;                                 1591   zz[n-1] = -dz;
2143   rr[n-1] = r1;                                  1592   rr[n-1] = r1;
2144                                                  1593 
2145   zz[n] = dz;                                    1594   zz[n] = dz;
2146   rr[n] = 0;                                     1595   rr[n] = 0;
2147                                                  1596 
2148   zz[n+1] = -dz;                                 1597   zz[n+1] = -dz;
2149   rr[n+1] = 0;                                   1598   rr[n+1] = 0;
2150                                                  1599 
2151   //   R O T A T E    P O L Y L I N E S          1600   //   R O T A T E    P O L Y L I N E S
2152                                                  1601 
2153   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr,  << 1602   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 
2154   SetReferences();                               1603   SetReferences();
2155                                                  1604 
2156   delete [] zz;                                  1605   delete [] zz;
2157   delete [] rr;                                  1606   delete [] rr;
2158 }                                                1607 }
2159                                                  1608 
2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1609 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {}
2161                                                  1610 
2162 HepPolyhedronHype::HepPolyhedronHype(G4double    1611 HepPolyhedronHype::HepPolyhedronHype(G4double r1,
2163                                      G4double    1612                                      G4double r2,
2164                                      G4double    1613                                      G4double sqrtan1,
2165                                      G4double    1614                                      G4double sqrtan2,
2166                                      G4double << 1615                                      G4double halfZ) 
2167 /********************************************    1616 /***********************************************************************
2168  *                                               1617  *                                                                     *
2169  * Name: HepPolyhedronHype                       1618  * Name: HepPolyhedronHype                           Date:    14.04.08 *
2170  * Author: Tatiana Nikitina (CERN)               1619  * Author: Tatiana Nikitina (CERN)                   Revised: 14.04.08 *
2171  *         Evgueni Tcherniaev                 << 
2172  *                                               1620  *                                                                     *
2173  * Function: Constructor for Hype                1621  * Function: Constructor for Hype                                      *
2174  *                                               1622  *                                                                     *
2175  * Input: r1       - inside radius at z=0        1623  * Input: r1       - inside radius at z=0                              *
2176  *        r2       - outside radiuses at z=0     1624  *        r2       - outside radiuses at z=0                           *
2177  *        sqrtan1  - sqr of tan of Inner Ster    1625  *        sqrtan1  - sqr of tan of Inner Stereo Angle                  *
2178  *        sqrtan2  - sqr of tan of Outer Ster    1626  *        sqrtan2  - sqr of tan of Outer Stereo Angle                  *
2179  *        halfZ    - half length in Z            1627  *        halfZ    - half length in Z                                  *
2180  *                                               1628  *                                                                     *
2181  ********************************************    1629  ***********************************************************************/
2182 {                                                1630 {
2183   static const G4double wholeCircle = twopi;  << 1631   static const G4double wholeCircle=twopi;
2184                                                  1632 
2185   //   C H E C K   I N P U T   P A R A M E T     1633   //   C H E C K   I N P U T   P A R A M E T E R S
2186                                                  1634 
2187   G4int k = 0;                                   1635   G4int k = 0;
2188   if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1;  << 1636   if (r2 < 0. || r1 < 0. )        k = 1;
2189   if (halfZ <= 0.) k += 2;                    << 1637   if (r1 > r2 )                   k = 1;
2190   if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4;    << 1638   if (r1 == r2)                   k = 1;
2191                                                  1639 
                                                   >> 1640   if (halfZ <= 0.) k += 2;
                                                   >> 1641  
                                                   >> 1642   if (sqrtan1<0.||sqrtan2<0.) k += 4;  
                                                   >> 1643  
2192   if (k != 0)                                    1644   if (k != 0)
2193   {                                              1645   {
2194     std::cerr << "HepPolyhedronHype: error in    1646     std::cerr << "HepPolyhedronHype: error in input parameters";
2195     if ((k & 1) != 0) std::cerr << " (radiuse    1647     if ((k & 1) != 0) std::cerr << " (radiuses)";
2196     if ((k & 2) != 0) std::cerr << " (half-le    1648     if ((k & 2) != 0) std::cerr << " (half-length)";
2197     if ((k & 4) != 0) std::cerr << " (angles)    1649     if ((k & 4) != 0) std::cerr << " (angles)";
2198     std::cerr << std::endl;                      1650     std::cerr << std::endl;
2199     std::cerr << " r1=" << r1 << " r2=" << r2    1651     std::cerr << " r1=" << r1 << " r2=" << r2;
2200     std::cerr << " halfZ=" << halfZ << " sqrT    1652     std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1
2201               << " sqrTan2=" << sqrtan2          1653               << " sqrTan2=" << sqrtan2
2202               << std::endl;                      1654               << std::endl;
2203     return;                                      1655     return;
2204   }                                              1656   }
2205                                               << 1657   
2206   //   P R E P A R E   T W O   P O L Y L I N     1658   //   P R E P A R E   T W O   P O L Y L I N E S
2207                                                  1659 
2208   G4int ns = std::max(3, GetNumberOfRotationS << 1660   G4int n = GetNumberOfRotationSteps();
2209   G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1;   << 1661   G4double dz = 2.*halfZ / n;
2210   G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1;   << 1662   G4double k1 = r1*r1;
2211   auto  zz = new G4double[nz1 + nz2];         << 1663   G4double k2 = r2*r2;
2212   auto  rr = new G4double[nz1 + nz2];         << 1664 
2213                                               << 1665   G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1];
2214   // external polyline                        << 1666 
2215   G4double dz2 = 2.*halfZ/(nz2 - 1);          << 1667   zz[0] = halfZ;
2216   for(G4int i = 0; i < nz2; ++i)              << 1668   rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2);
                                                   >> 1669 
                                                   >> 1670   for(G4int i = 1; i < n-1; i++)
2217   {                                              1671   {
2218     zz[i] = halfZ - dz2*i;                    << 1672     zz[i] = zz[i-1] - dz;
2219     rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1673     rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2);
2220   }                                              1674   }
2221                                                  1675 
2222   // internal polyline                        << 1676   zz[n-1] = -halfZ;
2223   G4double dz1 = 2.*halfZ/(nz1 - 1);          << 1677   rr[n-1] = rr[0];
2224   for(G4int i = 0; i < nz1; ++i)              << 1678 
                                                   >> 1679   zz[n] = halfZ;
                                                   >> 1680   rr[n] =  std::sqrt(sqrtan1*halfZ*halfZ+k1);
                                                   >> 1681 
                                                   >> 1682   for(G4int i = n+1; i < n+n; i++)
2225   {                                              1683   {
2226     G4int j = nz2 + i;                        << 1684     zz[i] = zz[i-1] - dz;
2227     zz[j] = halfZ - dz1*i;                    << 1685     rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1);
2228     rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 
2229   }                                              1686   }
                                                   >> 1687   zz[n+n] = -halfZ;
                                                   >> 1688   rr[n+n] = rr[n];
2230                                                  1689 
2231   //   R O T A T E    P O L Y L I N E S          1690   //   R O T A T E    P O L Y L I N E S
2232                                                  1691 
2233   RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1692   RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 
2234   SetReferences();                               1693   SetReferences();
2235                                                  1694 
2236   delete [] zz;                                  1695   delete [] zz;
2237   delete [] rr;                                  1696   delete [] rr;
2238 }                                                1697 }
2239                                                  1698 
2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1699 HepPolyhedronHype::~HepPolyhedronHype() {}
2241                                                  1700 
2242 HepPolyhedronCons::HepPolyhedronCons(G4double    1701 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1,
2243                                      G4double    1702                                      G4double Rmx1,
2244                                      G4double    1703                                      G4double Rmn2,
2245                                      G4double << 1704                                      G4double Rmx2, 
2246                                      G4double    1705                                      G4double Dz,
2247                                      G4double    1706                                      G4double Phi1,
2248                                      G4double << 1707                                      G4double Dphi) 
2249 /********************************************    1708 /***********************************************************************
2250  *                                               1709  *                                                                     *
2251  * Name: HepPolyhedronCons::HepPolyhedronCons    1710  * Name: HepPolyhedronCons::HepPolyhedronCons        Date:    15.12.96 *
2252  * Author: E.Chernyaev (IHEP/Protvino)           1711  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 15.12.96 *
2253  *                                               1712  *                                                                     *
2254  * Function: Constructor for CONS, TUBS, CONE    1713  * Function: Constructor for CONS, TUBS, CONE, TUBE                    *
2255  *                                               1714  *                                                                     *
2256  * Input: Rmn1, Rmx1 - inside and outside rad    1715  * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz              *
2257  *        Rmn2, Rmx2 - inside and outside rad    1716  *        Rmn2, Rmx2 - inside and outside radiuses at +Dz              *
2258  *        Dz         - half length in Z          1717  *        Dz         - half length in Z                                *
2259  *        Phi1       - starting angle of the     1718  *        Phi1       - starting angle of the segment                   *
2260  *        Dphi       - segment range             1719  *        Dphi       - segment range                                   *
2261  *                                               1720  *                                                                     *
2262  ********************************************    1721  ***********************************************************************/
2263 {                                                1722 {
2264   static const G4double wholeCircle=twopi;       1723   static const G4double wholeCircle=twopi;
2265                                                  1724 
2266   //   C H E C K   I N P U T   P A R A M E T     1725   //   C H E C K   I N P U T   P A R A M E T E R S
2267                                                  1726 
2268   G4int k = 0;                                   1727   G4int k = 0;
2269   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. ||     1728   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.)        k = 1;
2270   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                1729   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                              k = 1;
2271   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)              1730   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)                            k = 1;
2272                                                  1731 
2273   if (Dz <= 0.) k += 2;                          1732   if (Dz <= 0.) k += 2;
2274                                               << 1733  
2275   G4double phi1, phi2, dphi;                     1734   G4double phi1, phi2, dphi;
2276   if (Dphi < 0.) {                               1735   if (Dphi < 0.) {
2277     phi2 = Phi1; phi1 = phi2 - Dphi;             1736     phi2 = Phi1; phi1 = phi2 - Dphi;
2278   }else if (Dphi == 0.) {                        1737   }else if (Dphi == 0.) {
2279     phi1 = Phi1; phi2 = phi1 + wholeCircle;      1738     phi1 = Phi1; phi2 = phi1 + wholeCircle;
2280   }else{                                         1739   }else{
2281     phi1 = Phi1; phi2 = phi1 + Dphi;             1740     phi1 = Phi1; phi2 = phi1 + Dphi;
2282   }                                              1741   }
2283   dphi  = phi2 - phi1;                           1742   dphi  = phi2 - phi1;
2284   if (std::abs(dphi-wholeCircle) < perMillion    1743   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2285   if (dphi > wholeCircle) k += 4;             << 1744   if (dphi > wholeCircle) k += 4; 
2286                                                  1745 
2287   if (k != 0) {                                  1746   if (k != 0) {
2288     std::cerr << "HepPolyhedronCone(s)/Tube(s    1747     std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters";
2289     if ((k & 1) != 0) std::cerr << " (radiuse    1748     if ((k & 1) != 0) std::cerr << " (radiuses)";
2290     if ((k & 2) != 0) std::cerr << " (half-le    1749     if ((k & 2) != 0) std::cerr << " (half-length)";
2291     if ((k & 4) != 0) std::cerr << " (angles)    1750     if ((k & 4) != 0) std::cerr << " (angles)";
2292     std::cerr << std::endl;                      1751     std::cerr << std::endl;
2293     std::cerr << " Rmn1=" << Rmn1 << " Rmx1="    1752     std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1;
2294     std::cerr << " Rmn2=" << Rmn2 << " Rmx2="    1753     std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2;
2295     std::cerr << " Dz=" << Dz << " Phi1=" <<     1754     std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi
2296               << std::endl;                      1755               << std::endl;
2297     return;                                      1756     return;
2298   }                                              1757   }
2299                                               << 1758   
2300   //   P R E P A R E   T W O   P O L Y L I N     1759   //   P R E P A R E   T W O   P O L Y L I N E S
2301                                                  1760 
2302   G4double zz[4], rr[4];                         1761   G4double zz[4], rr[4];
2303   zz[0] =  Dz;                                << 1762   zz[0] =  Dz; 
2304   zz[1] = -Dz;                                << 1763   zz[1] = -Dz; 
2305   zz[2] =  Dz;                                << 1764   zz[2] =  Dz; 
2306   zz[3] = -Dz;                                << 1765   zz[3] = -Dz; 
2307   rr[0] =  Rmx2;                                 1766   rr[0] =  Rmx2;
2308   rr[1] =  Rmx1;                                 1767   rr[1] =  Rmx1;
2309   rr[2] =  Rmn2;                                 1768   rr[2] =  Rmn2;
2310   rr[3] =  Rmn1;                                 1769   rr[3] =  Rmn1;
2311                                                  1770 
2312   //   R O T A T E    P O L Y L I N E S          1771   //   R O T A T E    P O L Y L I N E S
2313                                                  1772 
2314   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr,  << 1773   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 
2315   SetReferences();                               1774   SetReferences();
2316 }                                                1775 }
2317                                                  1776 
2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1777 HepPolyhedronCons::~HepPolyhedronCons() {}
2319                                                  1778 
2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1779 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 
2321                                      G4double    1780                                      G4double Rmn2, G4double Rmx2,
2322                                      G4double    1781                                      G4double Dz) :
2323   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D    1782   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {}
2324                                                  1783 
2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1784 HepPolyhedronCone::~HepPolyhedronCone() {}
2326                                                  1785 
2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double    1786 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax,
2328                                      G4double << 1787                                      G4double Dz, 
2329                                      G4double    1788                                      G4double Phi1, G4double Dphi)
2330   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rma    1789   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {}
2331                                                  1790 
2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1791 HepPolyhedronTubs::~HepPolyhedronTubs() {}
2333                                                  1792 
2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl    1793 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax,
2335                                       G4doubl    1794                                       G4double Dz)
2336   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax,    1795   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {}
2337                                                  1796 
2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1797 HepPolyhedronTube::~HepPolyhedronTube () {}
2339                                                  1798 
2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double    1799 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi,
2341                                      G4double    1800                                      G4double dphi,
2342                                      G4int np << 1801                                      G4int    npdv,
2343                                      G4int nz << 1802                                      G4int    nz,
2344                                      const G4    1803                                      const G4double *z,
2345                                      const G4    1804                                      const G4double *rmin,
2346                                      const G4    1805                                      const G4double *rmax)
2347 /********************************************    1806 /***********************************************************************
2348  *                                               1807  *                                                                     *
2349  * Name: HepPolyhedronPgon                       1808  * Name: HepPolyhedronPgon                           Date:    09.12.96 *
2350  * Author: E.Chernyaev                           1809  * Author: E.Chernyaev                               Revised:          *
2351  *                                               1810  *                                                                     *
2352  * Function: Constructor of polyhedron for PG    1811  * Function: Constructor of polyhedron for PGON, PCON                  *
2353  *                                               1812  *                                                                     *
2354  * Input: phi  - initial phi                     1813  * Input: phi  - initial phi                                           *
2355  *        dphi - delta phi                       1814  *        dphi - delta phi                                             *
2356  *        npdv - number of steps along phi       1815  *        npdv - number of steps along phi                             *
2357  *        nz   - number of z-planes (at least    1816  *        nz   - number of z-planes (at least two)                     *
2358  *        z[]  - z coordinates of the slices     1817  *        z[]  - z coordinates of the slices                           *
2359  *        rmin[] - smaller r at the slices       1818  *        rmin[] - smaller r at the slices                             *
2360  *        rmax[] - bigger  r at the slices       1819  *        rmax[] - bigger  r at the slices                             *
2361  *                                               1820  *                                                                     *
2362  ********************************************    1821  ***********************************************************************/
2363 {                                                1822 {
2364   //   C H E C K   I N P U T   P A R A M E T     1823   //   C H E C K   I N P U T   P A R A M E T E R S
2365                                                  1824 
2366   if (dphi <= 0. || dphi > twopi) {              1825   if (dphi <= 0. || dphi > twopi) {
2367     std::cerr                                    1826     std::cerr
2368       << "HepPolyhedronPgon/Pcon: wrong delta    1827       << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi
2369       << std::endl;                              1828       << std::endl;
2370     return;                                      1829     return;
2371   }                                           << 1830   }    
2372                                               << 1831     
2373   if (nz < 2) {                                  1832   if (nz < 2) {
2374     std::cerr                                    1833     std::cerr
2375       << "HepPolyhedronPgon/Pcon: number of z    1834       << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz
2376       << std::endl;                              1835       << std::endl;
2377     return;                                      1836     return;
2378   }                                              1837   }
2379                                                  1838 
2380   if (npdv < 0) {                                1839   if (npdv < 0) {
2381     std::cerr                                    1840     std::cerr
2382       << "HepPolyhedronPgon/Pcon: error in nu    1841       << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv
2383       << std::endl;                              1842       << std::endl;
2384     return;                                      1843     return;
2385   }                                              1844   }
2386                                                  1845 
2387   G4int i;                                       1846   G4int i;
2388   for (i=0; i<nz; i++) {                         1847   for (i=0; i<nz; i++) {
2389     if (rmin[i] < 0. || rmax[i] < 0. || rmin[    1848     if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) {
2390       std::cerr                                  1849       std::cerr
2391         << "HepPolyhedronPgon: error in radiu    1850         << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]="
2392         << rmin[i] << " rmax[" << i << "]=" <    1851         << rmin[i] << " rmax[" << i << "]=" << rmax[i]
2393         << std::endl;                            1852         << std::endl;
2394       return;                                    1853       return;
2395     }                                            1854     }
2396   }                                              1855   }
2397                                                  1856 
2398   //   P R E P A R E   T W O   P O L Y L I N     1857   //   P R E P A R E   T W O   P O L Y L I N E S
2399                                                  1858 
2400   G4double *zz, *rr;                             1859   G4double *zz, *rr;
2401   zz = new G4double[2*nz];                       1860   zz = new G4double[2*nz];
2402   rr = new G4double[2*nz];                       1861   rr = new G4double[2*nz];
2403                                                  1862 
2404   if (z[0] > z[nz-1]) {                          1863   if (z[0] > z[nz-1]) {
2405     for (i=0; i<nz; i++) {                       1864     for (i=0; i<nz; i++) {
2406       zz[i]    = z[i];                           1865       zz[i]    = z[i];
2407       rr[i]    = rmax[i];                        1866       rr[i]    = rmax[i];
2408       zz[i+nz] = z[i];                           1867       zz[i+nz] = z[i];
2409       rr[i+nz] = rmin[i];                        1868       rr[i+nz] = rmin[i];
2410     }                                            1869     }
2411   }else{                                         1870   }else{
2412     for (i=0; i<nz; i++) {                       1871     for (i=0; i<nz; i++) {
2413       zz[i]    = z[nz-i-1];                      1872       zz[i]    = z[nz-i-1];
2414       rr[i]    = rmax[nz-i-1];                   1873       rr[i]    = rmax[nz-i-1];
2415       zz[i+nz] = z[nz-i-1];                      1874       zz[i+nz] = z[nz-i-1];
2416       rr[i+nz] = rmin[nz-i-1];                   1875       rr[i+nz] = rmin[nz-i-1];
2417     }                                            1876     }
2418   }                                              1877   }
2419                                                  1878 
2420   //   R O T A T E    P O L Y L I N E S          1879   //   R O T A T E    P O L Y L I N E S
2421                                                  1880 
2422   G4int nodeVis = 1;                          << 1881   RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 
2423   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2424   RotateAroundZ(npdv, phi, dphi, nz, nz, zz,  << 
2425   SetReferences();                               1882   SetReferences();
2426                                               << 1883   
2427   delete [] zz;                                  1884   delete [] zz;
2428   delete [] rr;                                  1885   delete [] rr;
2429 }                                                1886 }
2430                                                  1887 
2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1888 HepPolyhedronPgon::~HepPolyhedronPgon() {}
2432                                      G4double << 
2433                                      G4int np << 
2434                                      const st << 
2435 /******************************************** << 
2436  *                                            << 
2437  * Name: HepPolyhedronPgon                    << 
2438  * Author: E.Tcherniaev (E.Chernyaev)         << 
2439  *                                            << 
2440  * Function: Constructor of polyhedron for PG << 
2441  *                                            << 
2442  * Input: phi  - initial phi                  << 
2443  *        dphi - delta phi                    << 
2444  *        npdv - number of steps along phi    << 
2445  *        rz   - rz-contour                   << 
2446  *                                            << 
2447  ******************************************** << 
2448 {                                             << 
2449   //   C H E C K   I N P U T   P A R A M E T  << 
2450                                               << 
2451   if (dphi <= 0. || dphi > twopi) {           << 
2452     std::cerr                                 << 
2453       << "HepPolyhedronPgon/Pcon: wrong delta << 
2454       << std::endl;                           << 
2455     return;                                   << 
2456   }                                           << 
2457                                               << 
2458   if (npdv < 0) {                             << 
2459     std::cerr                                 << 
2460       << "HepPolyhedronPgon/Pcon: error in nu << 
2461       << std::endl;                           << 
2462     return;                                   << 
2463   }                                           << 
2464                                               << 
2465   G4int nrz = (G4int)rz.size();               << 
2466   if (nrz < 3) {                              << 
2467     std::cerr                                 << 
2468       << "HepPolyhedronPgon/Pcon: invalid num << 
2469       << std::endl;                           << 
2470     return;                                   << 
2471   }                                           << 
2472                                               << 
2473   //   R O T A T E    P O L Y L I N E         << 
2474                                               << 
2475   G4int nodeVis = 1;                          << 
2476   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2477   RotateContourAroundZ(npdv, phi, dphi, rz, n << 
2478   SetReferences();                            << 
2479 }                                             << 
2480                                               << 
2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 
2482                                                  1889 
2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double    1890 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz,
2484                                      const G4    1891                                      const G4double *z,
2485                                      const G4    1892                                      const G4double *rmin,
2486                                      const G4    1893                                      const G4double *rmax)
2487   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm    1894   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {}
2488                                                  1895 
2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1896 HepPolyhedronPcon::~HepPolyhedronPcon() {}
2490                                      const st << 
2491   : HepPolyhedronPgon(phi, dphi, 0, rz) {}    << 
2492                                               << 
2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 
2494                                                  1897 
2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do    1898 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax,
2496                                          G4do    1899                                          G4double phi, G4double dphi,
2497                                          G4do    1900                                          G4double the, G4double dthe)
2498 /********************************************    1901 /***********************************************************************
2499  *                                               1902  *                                                                     *
2500  * Name: HepPolyhedronSphere                     1903  * Name: HepPolyhedronSphere                         Date:    11.12.96 *
2501  * Author: E.Chernyaev (IHEP/Protvino)           1904  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2502  *                                               1905  *                                                                     *
2503  * Function: Constructor of polyhedron for SP    1906  * Function: Constructor of polyhedron for SPHERE                      *
2504  *                                               1907  *                                                                     *
2505  * Input: rmin - internal radius                 1908  * Input: rmin - internal radius                                       *
2506  *        rmax - external radius                 1909  *        rmax - external radius                                       *
2507  *        phi  - initial phi                     1910  *        phi  - initial phi                                           *
2508  *        dphi - delta phi                       1911  *        dphi - delta phi                                             *
2509  *        the  - initial theta                   1912  *        the  - initial theta                                         *
2510  *        dthe - delta theta                     1913  *        dthe - delta theta                                           *
2511  *                                               1914  *                                                                     *
2512  ********************************************    1915  ***********************************************************************/
2513 {                                                1916 {
2514   //   C H E C K   I N P U T   P A R A M E T     1917   //   C H E C K   I N P U T   P A R A M E T E R S
2515                                                  1918 
2516   if (dphi <= 0. || dphi > twopi) {              1919   if (dphi <= 0. || dphi > twopi) {
2517     std::cerr                                    1920     std::cerr
2518       << "HepPolyhedronSphere: wrong delta ph    1921       << "HepPolyhedronSphere: wrong delta phi = " << dphi
2519       << std::endl;                              1922       << std::endl;
2520     return;                                      1923     return;
2521   }                                           << 1924   }    
2522                                                  1925 
2523   if (the < 0. || the > pi) {                    1926   if (the < 0. || the > pi) {
2524     std::cerr                                    1927     std::cerr
2525       << "HepPolyhedronSphere: wrong theta =     1928       << "HepPolyhedronSphere: wrong theta = " << the
2526       << std::endl;                              1929       << std::endl;
2527     return;                                      1930     return;
2528   }                                           << 1931   }    
2529                                               << 1932   
2530   if (dthe <= 0. || dthe > pi) {                 1933   if (dthe <= 0. || dthe > pi) {
2531     std::cerr                                    1934     std::cerr
2532       << "HepPolyhedronSphere: wrong delta th    1935       << "HepPolyhedronSphere: wrong delta theta = " << dthe
2533       << std::endl;                              1936       << std::endl;
2534     return;                                      1937     return;
2535   }                                           << 1938   }    
2536                                                  1939 
2537   if (the+dthe > pi) {                           1940   if (the+dthe > pi) {
2538     std::cerr                                    1941     std::cerr
2539       << "HepPolyhedronSphere: wrong theta +     1942       << "HepPolyhedronSphere: wrong theta + delta theta = "
2540       << the << " " << dthe                      1943       << the << " " << dthe
2541       << std::endl;                              1944       << std::endl;
2542     return;                                      1945     return;
2543   }                                           << 1946   }    
2544                                               << 1947   
2545   if (rmin < 0. || rmin >= rmax) {               1948   if (rmin < 0. || rmin >= rmax) {
2546     std::cerr                                    1949     std::cerr
2547       << "HepPolyhedronSphere: error in radiu    1950       << "HepPolyhedronSphere: error in radiuses"
2548       << " rmin=" << rmin << " rmax=" << rmax    1951       << " rmin=" << rmin << " rmax=" << rmax
2549       << std::endl;                              1952       << std::endl;
2550     return;                                      1953     return;
2551   }                                              1954   }
2552                                                  1955 
2553   //   P R E P A R E   T W O   P O L Y L I N     1956   //   P R E P A R E   T W O   P O L Y L I N E S
2554                                                  1957 
2555   G4int nds = (GetNumberOfRotationSteps() + 1    1958   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2556   G4int np1 = G4int(dthe*nds/pi+.5) + 1;         1959   G4int np1 = G4int(dthe*nds/pi+.5) + 1;
2557   if (np1 <= 1) np1 = 2;                         1960   if (np1 <= 1) np1 = 2;
2558   G4int np2 = rmin < spatialTolerance ? 1 : n    1961   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2559                                                  1962 
2560   G4double *zz, *rr;                             1963   G4double *zz, *rr;
2561   zz = new G4double[np1+np2];                    1964   zz = new G4double[np1+np2];
2562   rr = new G4double[np1+np2];                    1965   rr = new G4double[np1+np2];
2563                                                  1966 
2564   G4double a = dthe/(np1-1);                     1967   G4double a = dthe/(np1-1);
2565   G4double cosa, sina;                           1968   G4double cosa, sina;
2566   for (G4int i=0; i<np1; i++) {                  1969   for (G4int i=0; i<np1; i++) {
2567     cosa  = std::cos(the+i*a);                   1970     cosa  = std::cos(the+i*a);
2568     sina  = std::sin(the+i*a);                   1971     sina  = std::sin(the+i*a);
2569     zz[i] = rmax*cosa;                           1972     zz[i] = rmax*cosa;
2570     rr[i] = rmax*sina;                           1973     rr[i] = rmax*sina;
2571     if (np2 > 1) {                               1974     if (np2 > 1) {
2572       zz[i+np1] = rmin*cosa;                     1975       zz[i+np1] = rmin*cosa;
2573       rr[i+np1] = rmin*sina;                     1976       rr[i+np1] = rmin*sina;
2574     }                                            1977     }
2575   }                                              1978   }
2576   if (np2 == 1) {                                1979   if (np2 == 1) {
2577     zz[np1] = 0.;                                1980     zz[np1] = 0.;
2578     rr[np1] = 0.;                                1981     rr[np1] = 0.;
2579   }                                              1982   }
2580                                                  1983 
2581   //   R O T A T E    P O L Y L I N E S          1984   //   R O T A T E    P O L Y L I N E S
2582                                                  1985 
2583   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1986   RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 
2584   SetReferences();                               1987   SetReferences();
2585                                               << 1988   
2586   delete [] zz;                                  1989   delete [] zz;
2587   delete [] rr;                                  1990   delete [] rr;
2588 }                                                1991 }
2589                                                  1992 
2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1993 HepPolyhedronSphere::~HepPolyhedronSphere() {}
2591                                                  1994 
2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub    1995 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin,
2593                                        G4doub    1996                                        G4double rmax,
2594                                        G4doub    1997                                        G4double rtor,
2595                                        G4doub    1998                                        G4double phi,
2596                                        G4doub    1999                                        G4double dphi)
2597 /********************************************    2000 /***********************************************************************
2598  *                                               2001  *                                                                     *
2599  * Name: HepPolyhedronTorus                      2002  * Name: HepPolyhedronTorus                          Date:    11.12.96 *
2600  * Author: E.Chernyaev (IHEP/Protvino)           2003  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2601  *                                               2004  *                                                                     *
2602  * Function: Constructor of polyhedron for TO    2005  * Function: Constructor of polyhedron for TORUS                       *
2603  *                                               2006  *                                                                     *
2604  * Input: rmin - internal radius                 2007  * Input: rmin - internal radius                                       *
2605  *        rmax - external radius                 2008  *        rmax - external radius                                       *
2606  *        rtor - radius of torus                 2009  *        rtor - radius of torus                                       *
2607  *        phi  - initial phi                     2010  *        phi  - initial phi                                           *
2608  *        dphi - delta phi                       2011  *        dphi - delta phi                                             *
2609  *                                               2012  *                                                                     *
2610  ********************************************    2013  ***********************************************************************/
2611 {                                                2014 {
2612   //   C H E C K   I N P U T   P A R A M E T     2015   //   C H E C K   I N P U T   P A R A M E T E R S
2613                                                  2016 
2614   if (dphi <= 0. || dphi > twopi) {              2017   if (dphi <= 0. || dphi > twopi) {
2615     std::cerr                                    2018     std::cerr
2616       << "HepPolyhedronTorus: wrong delta phi    2019       << "HepPolyhedronTorus: wrong delta phi = " << dphi
2617       << std::endl;                              2020       << std::endl;
2618     return;                                      2021     return;
2619   }                                              2022   }
2620                                                  2023 
2621   if (rmin < 0. || rmin >= rmax || rmax >= rt    2024   if (rmin < 0. || rmin >= rmax || rmax >= rtor) {
2622     std::cerr                                    2025     std::cerr
2623       << "HepPolyhedronTorus: error in radius    2026       << "HepPolyhedronTorus: error in radiuses"
2624       << " rmin=" << rmin << " rmax=" << rmax    2027       << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor
2625       << std::endl;                              2028       << std::endl;
2626     return;                                      2029     return;
2627   }                                              2030   }
2628                                                  2031 
2629   //   P R E P A R E   T W O   P O L Y L I N     2032   //   P R E P A R E   T W O   P O L Y L I N E S
2630                                                  2033 
2631   G4int np1 = GetNumberOfRotationSteps();        2034   G4int np1 = GetNumberOfRotationSteps();
2632   G4int np2 = rmin < spatialTolerance ? 1 : n    2035   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2633                                                  2036 
2634   G4double *zz, *rr;                             2037   G4double *zz, *rr;
2635   zz = new G4double[np1+np2];                    2038   zz = new G4double[np1+np2];
2636   rr = new G4double[np1+np2];                    2039   rr = new G4double[np1+np2];
2637                                                  2040 
2638   G4double a = twopi/np1;                        2041   G4double a = twopi/np1;
2639   G4double cosa, sina;                           2042   G4double cosa, sina;
2640   for (G4int i=0; i<np1; i++) {                  2043   for (G4int i=0; i<np1; i++) {
2641     cosa  = std::cos(i*a);                       2044     cosa  = std::cos(i*a);
2642     sina  = std::sin(i*a);                       2045     sina  = std::sin(i*a);
2643     zz[i] = rmax*cosa;                           2046     zz[i] = rmax*cosa;
2644     rr[i] = rtor+rmax*sina;                      2047     rr[i] = rtor+rmax*sina;
2645     if (np2 > 1) {                               2048     if (np2 > 1) {
2646       zz[i+np1] = rmin*cosa;                     2049       zz[i+np1] = rmin*cosa;
2647       rr[i+np1] = rtor+rmin*sina;                2050       rr[i+np1] = rtor+rmin*sina;
2648     }                                            2051     }
2649   }                                              2052   }
2650   if (np2 == 1) {                                2053   if (np2 == 1) {
2651     zz[np1] = 0.;                                2054     zz[np1] = 0.;
2652     rr[np1] = rtor;                              2055     rr[np1] = rtor;
2653     np2 = -1;                                    2056     np2 = -1;
2654   }                                              2057   }
2655                                                  2058 
2656   //   R O T A T E    P O L Y L I N E S          2059   //   R O T A T E    P O L Y L I N E S
2657                                                  2060 
2658   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2061   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 
2659   SetReferences();                               2062   SetReferences();
2660                                               << 2063   
2661   delete [] zz;                                  2064   delete [] zz;
2662   delete [] rr;                                  2065   delete [] rr;
2663 }                                                2066 }
2664                                                  2067 
2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2068 HepPolyhedronTorus::~HepPolyhedronTorus() {}
2666                                               << 
2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 
2668                                    const G4do << 
2669                                    const G4do << 
2670                                    const G4do << 
2671 /******************************************** << 
2672  *                                            << 
2673  * Name: HepPolyhedronTet                     << 
2674  * Author: E.Tcherniaev (E.Chernyaev)         << 
2675  *                                            << 
2676  * Function: Constructor of polyhedron for TE << 
2677  *                                            << 
2678  * Input: p0,p1,p2,p3 - vertices              << 
2679  *                                            << 
2680  ******************************************** << 
2681 {                                             << 
2682   AllocateMemory(4,4);                        << 
2683                                               << 
2684   pV[1].set(p0[0], p0[1], p0[2]);             << 
2685   pV[2].set(p1[0], p1[1], p1[2]);             << 
2686   pV[3].set(p2[0], p2[1], p2[2]);             << 
2687   pV[4].set(p3[0], p3[1], p3[2]);             << 
2688                                               << 
2689   G4Vector3D v1(pV[2] - pV[1]);               << 
2690   G4Vector3D v2(pV[3] - pV[1]);               << 
2691   G4Vector3D v3(pV[4] - pV[1]);               << 
2692                                               << 
2693   if (v1.cross(v2).dot(v3) < 0.)              << 
2694   {                                           << 
2695     pV[3].set(p3[0], p3[1], p3[2]);           << 
2696     pV[4].set(p2[0], p2[1], p2[2]);           << 
2697   }                                           << 
2698                                               << 
2699   pF[1] = G4Facet(1,2,  3,4,  2,3);           << 
2700   pF[2] = G4Facet(1,3,  4,4,  3,1);           << 
2701   pF[3] = G4Facet(1,1,  2,4,  4,2);           << 
2702   pF[4] = G4Facet(2,1,  3,2,  4,3);           << 
2703 }                                             << 
2704                                               << 
2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 
2706                                                  2069 
2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi    2070 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by,
2708                                                  2071                                                G4double cz, G4double zCut1,
2709                                                  2072                                                G4double zCut2)
2710 /********************************************    2073 /***********************************************************************
2711  *                                               2074  *                                                                     *
2712  * Name: HepPolyhedronEllipsoid                  2075  * Name: HepPolyhedronEllipsoid                      Date:    25.02.05 *
2713  * Author: G.Guerrieri                           2076  * Author: G.Guerrieri                               Revised:          *
2714  *         Evgueni Tcherniaev                 << 
2715  *                                               2077  *                                                                     *
2716  * Function: Constructor of polyhedron for EL    2078  * Function: Constructor of polyhedron for ELLIPSOID                   *
2717  *                                               2079  *                                                                     *
2718  * Input: ax - semiaxis x                        2080  * Input: ax - semiaxis x                                              *
2719  *        by - semiaxis y                        2081  *        by - semiaxis y                                              *
2720  *        cz - semiaxis z                        2082  *        cz - semiaxis z                                              *
2721  *        zCut1 - lower cut plane level (soli    2083  *        zCut1 - lower cut plane level (solid lies above this plane)  *
2722  *        zCut2 - upper cut plane level (soli    2084  *        zCut2 - upper cut plane level (solid lies below this plane)  *
2723  *                                               2085  *                                                                     *
2724  ********************************************    2086  ***********************************************************************/
2725 {                                                2087 {
2726   //   C H E C K   I N P U T   P A R A M E T     2088   //   C H E C K   I N P U T   P A R A M E T E R S
2727                                                  2089 
2728   if (zCut1 >= cz || zCut2 <= -cz || zCut1 >     2090   if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) {
2729     std::cerr << "HepPolyhedronEllipsoid: wro    2091     std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1
2730            << " zCut2 = " << zCut2               2092            << " zCut2 = " << zCut2
2731            << " for given cz = " << cz << std    2093            << " for given cz = " << cz << std::endl;
2732     return;                                      2094     return;
2733   }                                              2095   }
2734   if (cz <= 0.0) {                               2096   if (cz <= 0.0) {
2735     std::cerr << "HepPolyhedronEllipsoid: bad    2097     std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz
2736       << std::endl;                              2098       << std::endl;
2737     return;                                      2099     return;
2738   }                                              2100   }
2739                                                  2101 
                                                   >> 2102   G4double dthe;
                                                   >> 2103   G4double sthe;
                                                   >> 2104   G4int cutflag;
                                                   >> 2105   cutflag= 0;
                                                   >> 2106   if (zCut2 >= cz)
                                                   >> 2107     {
                                                   >> 2108       sthe= 0.0;
                                                   >> 2109     }
                                                   >> 2110   else
                                                   >> 2111     {
                                                   >> 2112       sthe= std::acos(zCut2/cz);
                                                   >> 2113       cutflag++;
                                                   >> 2114     }
                                                   >> 2115   if (zCut1 <= -cz)
                                                   >> 2116     {
                                                   >> 2117       dthe= pi - sthe;
                                                   >> 2118     }
                                                   >> 2119   else
                                                   >> 2120     {
                                                   >> 2121       dthe= std::acos(zCut1/cz)-sthe;
                                                   >> 2122       cutflag++;
                                                   >> 2123     }
                                                   >> 2124 
2740   //   P R E P A R E   T W O   P O L Y L I N     2125   //   P R E P A R E   T W O   P O L Y L I N E S
2741   //   generate sphere of radius cz first, th    2126   //   generate sphere of radius cz first, then rescale x and y later
2742                                                  2127 
2743   G4double sthe = std::acos(zCut2/cz);        << 2128   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2744   G4double dthe = std::acos(zCut1/cz) - sthe; << 2129   G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag;
2745   G4int nds = (GetNumberOfRotationSteps() + 1 << 
2746   G4int np1 = G4int(dthe*nds/pi + 0.5) + 1;   << 
2747   if (np1 <= 1) np1 = 2;                      << 
2748   G4int np2 = 2;                              << 
2749                                                  2130 
2750   G4double *zz, *rr;                             2131   G4double *zz, *rr;
2751   zz = new G4double[np1 + np2];               << 2132   zz = new G4double[np1+1];
2752   rr = new G4double[np1 + np2];               << 2133   rr = new G4double[np1+1];
2753   if ((zz == nullptr) || (rr == nullptr))     << 2134   if (!zz || !rr)
2754   {                                           << 2135     {
2755     G4Exception("HepPolyhedronEllipsoid::HepP << 2136       G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid",
2756                 "greps1002", FatalException,  << 2137                   "greps1002", FatalException, "Out of memory");
2757   }                                           << 2138     }
2758                                                  2139 
2759   G4double a = dthe/(np1 - 1);                << 2140   G4double a = dthe/(np1-cutflag-1);
2760   G4double cosa, sina;                           2141   G4double cosa, sina;
2761   for (G4int i = 0; i < np1; ++i)             << 2142   G4int j=0;
2762   {                                           << 2143   if (sthe > 0.0)
2763     cosa  = std::cos(sthe + i*a);             << 2144     {
2764     sina  = std::sin(sthe + i*a);             << 2145       zz[j]= zCut2;
2765     zz[i] = cz*cosa;                          << 2146       rr[j]= 0.;
2766     rr[i] = cz*sina;                          << 2147       j++;
2767   }                                           << 2148     }
2768   zz[np1 + 0] = zCut2;                        << 2149   for (G4int i=0; i<np1-cutflag; i++) {
2769   rr[np1 + 0] = 0.;                           << 2150     cosa  = std::cos(sthe+i*a);
2770   zz[np1 + 1] = zCut1;                        << 2151     sina  = std::sin(sthe+i*a);
2771   rr[np1 + 1] = 0.;                           << 2152     zz[j] = cz*cosa;
                                                   >> 2153     rr[j] = cz*sina;
                                                   >> 2154     j++;
                                                   >> 2155   }
                                                   >> 2156   if (j < np1)
                                                   >> 2157     {
                                                   >> 2158       zz[j]= zCut1;
                                                   >> 2159       rr[j]= 0.;
                                                   >> 2160       j++;
                                                   >> 2161     }
                                                   >> 2162   if (j > np1)
                                                   >> 2163     {
                                                   >> 2164       std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!"
                                                   >> 2165                 << std::endl;
                                                   >> 2166     }
                                                   >> 2167   if (j < np1)
                                                   >> 2168     {
                                                   >> 2169       std::cerr << "Warning: logic error in HepPolyhedronEllipsoid."
                                                   >> 2170                 << std::endl;
                                                   >> 2171       np1= j;
                                                   >> 2172     }
                                                   >> 2173   zz[j] = 0.;
                                                   >> 2174   rr[j] = 0.;
2772                                                  2175 
                                                   >> 2176   
2773   //   R O T A T E    P O L Y L I N E S          2177   //   R O T A T E    P O L Y L I N E S
2774                                                  2178 
2775   RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2179   RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 
2776   SetReferences();                               2180   SetReferences();
2777                                                  2181 
2778   delete [] zz;                                  2182   delete [] zz;
2779   delete [] rr;                                  2183   delete [] rr;
2780                                                  2184 
2781   // rescale x and y vertex coordinates          2185   // rescale x and y vertex coordinates
2782   G4double kx = ax/cz;                        << 
2783   G4double ky = by/cz;                        << 
2784   G4Point3D* p = pV;                          << 
2785   for (G4int i = 0; i < nvert; ++i, ++p)      << 
2786   {                                              2186   {
2787     p->setX(p->x()*kx);                       << 2187     G4Point3D * p= pV;
2788     p->setY(p->y()*ky);                       << 2188     for (G4int i=0; i<nvert; i++, p++) {
                                                   >> 2189       p->setX( p->x() * ax/cz );
                                                   >> 2190       p->setY( p->y() * by/cz );
                                                   >> 2191     }
2789   }                                              2192   }
2790 }                                                2193 }
2791                                                  2194 
2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2195 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {}
2793                                                  2196 
2794 HepPolyhedronEllipticalCone::HepPolyhedronEll    2197 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax,
2795                                                  2198                                                          G4double ay,
2796                                                  2199                                                          G4double h,
2797                                               << 2200                                                          G4double zTopCut) 
2798 /********************************************    2201 /***********************************************************************
2799  *                                               2202  *                                                                     *
2800  * Name: HepPolyhedronEllipticalCone             2203  * Name: HepPolyhedronEllipticalCone                 Date:    8.9.2005 *
2801  * Author: D.Anninos                             2204  * Author: D.Anninos                                 Revised: 9.9.2005 *
2802  *                                               2205  *                                                                     *
2803  * Function: Constructor for EllipticalCone      2206  * Function: Constructor for EllipticalCone                            *
2804  *                                               2207  *                                                                     *
2805  * Input: ax, ay     - X & Y semi axes at z =    2208  * Input: ax, ay     - X & Y semi axes at z = 0                        *
2806  *        h          - height of full cone       2209  *        h          - height of full cone                             *
2807  *        zTopCut    - Top Cut in Z Axis         2210  *        zTopCut    - Top Cut in Z Axis                               *
2808  *                                               2211  *                                                                     *
2809  ********************************************    2212  ***********************************************************************/
2810 {                                                2213 {
2811   //   C H E C K   I N P U T   P A R A M E T     2214   //   C H E C K   I N P U T   P A R A M E T E R S
2812                                                  2215 
2813   G4int k = 0;                                   2216   G4int k = 0;
2814   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.)     2217   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; }
2815                                                  2218 
2816   if (k != 0) {                                  2219   if (k != 0) {
2817     std::cerr << "HepPolyhedronCone: error in    2220     std::cerr << "HepPolyhedronCone: error in input parameters";
2818     std::cerr << std::endl;                      2221     std::cerr << std::endl;
2819     return;                                      2222     return;
2820   }                                              2223   }
2821                                               << 2224   
2822   //   P R E P A R E   T W O   P O L Y L I N     2225   //   P R E P A R E   T W O   P O L Y L I N E S
2823                                                  2226 
2824   zTopCut = (h >= zTopCut ? zTopCut : h);        2227   zTopCut = (h >= zTopCut ? zTopCut : h);
2825                                                  2228 
2826   G4double *zz, *rr;                             2229   G4double *zz, *rr;
2827   zz = new G4double[4];                          2230   zz = new G4double[4];
2828   rr = new G4double[4];                          2231   rr = new G4double[4];
2829   zz[0] =   zTopCut;                          << 2232   zz[0] =   zTopCut; 
2830   zz[1] =  -zTopCut;                          << 2233   zz[1] =  -zTopCut; 
2831   zz[2] =   zTopCut;                          << 2234   zz[2] =   zTopCut; 
2832   zz[3] =  -zTopCut;                          << 2235   zz[3] =  -zTopCut; 
2833   rr[0] =  (h-zTopCut);                          2236   rr[0] =  (h-zTopCut);
2834   rr[1] =  (h+zTopCut);                          2237   rr[1] =  (h+zTopCut);
2835   rr[2] =  0.;                                   2238   rr[2] =  0.;
2836   rr[3] =  0.;                                   2239   rr[3] =  0.;
2837                                                  2240 
2838   //   R O T A T E    P O L Y L I N E S          2241   //   R O T A T E    P O L Y L I N E S
2839                                                  2242 
2840   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2243   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 
2841   SetReferences();                               2244   SetReferences();
2842                                                  2245 
2843   delete [] zz;                                  2246   delete [] zz;
2844   delete [] rr;                                  2247   delete [] rr;
2845                                                  2248 
2846   // rescale x and y vertex coordinates          2249   // rescale x and y vertex coordinates
2847  {                                               2250  {
2848    G4Point3D * p= pV;                            2251    G4Point3D * p= pV;
2849    for (G4int i=0; i<nvert; i++, p++) {          2252    for (G4int i=0; i<nvert; i++, p++) {
2850      p->setX( p->x() * ax );                     2253      p->setX( p->x() * ax );
2851      p->setY( p->y() * ay );                     2254      p->setY( p->y() * ay );
2852    }                                             2255    }
2853  }                                               2256  }
2854 }                                                2257 }
2855                                                  2258 
2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2259 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {}
2857                                               << 
2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 
2859                                               << 
2860                                               << 
2861 /******************************************** << 
2862  *                                            << 
2863  * Name: HepPolyhedronHyperbolicMirror        << 
2864  * Author: E.Tcherniaev (E.Chernyaev)         << 
2865  *                                            << 
2866  * Function: Create polyhedron for Hyperbolic << 
2867  *                                            << 
2868  * Input: a - half-separation                 << 
2869  *        h - height                          << 
2870  *        r - radius                          << 
2871  *                                            << 
2872  ******************************************** << 
2873 {                                             << 
2874   G4double H = std::abs(h);                   << 
2875   G4double R = std::abs(r);                   << 
2876   G4double A = std::abs(a);                   << 
2877   G4double B = A*R/std::sqrt(2*A*H + H*H);    << 
2878                                               << 
2879   //   P R E P A R E   T W O   P O L Y L I N  << 
2880                                               << 
2881   G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 
2882   G4int np2 = 2;                              << 
2883   G4double maxAng = (A == 0.) ? 0. : std::aco << 
2884   G4double delAng = maxAng/(np1 - 1);         << 
2885                                               << 
2886   auto zz = new G4double[np1 + np2];          << 
2887   auto rr = new G4double[np1 + np2];          << 
2888                                               << 
2889   // 1st polyline                             << 
2890   zz[0] = H;                                  << 
2891   rr[0] = R;                                  << 
2892   for (G4int iz = 1; iz < np1 - 1; ++iz)      << 
2893   {                                           << 
2894     G4double ang = maxAng - iz*delAng;        << 
2895     zz[iz] = A*std::cosh(ang) - A;            << 
2896     rr[iz] = B*std::sinh(ang);                << 
2897   }                                           << 
2898   zz[np1 - 1] = 0.;                           << 
2899   rr[np1 - 1] = 0.;                           << 
2900                                               << 
2901   // 2nd polyline                             << 
2902   zz[np1] = H;                                << 
2903   rr[np1] = 0.;                               << 
2904   zz[np1 + 1] = 0.;                           << 
2905   rr[np1 + 1] = 0.;                           << 
2906                                               << 
2907   //   R O T A T E    P O L Y L I N E S       << 
2908                                               << 
2909   G4double phi  = 0.;                         << 
2910   G4double dphi = CLHEP::twopi;               << 
2911   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 
2912   SetReferences();                            << 
2913                                               << 
2914   delete [] zz;                               << 
2915   delete [] rr;                               << 
2916 }                                             << 
2917                                               << 
2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 
2919                                                  2260 
2920 HepPolyhedronTetMesh::                        << 2261 G4ThreadLocal G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 
2922 /******************************************** << 
2923  *                                            << 
2924  * Name: HepPolyhedronTetMesh                 << 
2925  * Author: E.Tcherniaev (E.Chernyaev)         << 
2926  *                                            << 
2927  * Function: Create polyhedron for tetrahedro << 
2928  *                                            << 
2929  * Input: tetrahedra - array of tetrahedron v << 
2930  *                     per tetrahedron        << 
2931  *                                            << 
2932  ******************************************** << 
2933 {                                             << 
2934   // Check size of input vector               << 
2935   G4int nnodes = (G4int)tetrahedra.size();    << 
2936   if (nnodes == 0)                            << 
2937   {                                           << 
2938     std::cerr                                 << 
2939       << "HepPolyhedronTetMesh: Empty tetrahe << 
2940     return;                                   << 
2941   }                                           << 
2942   G4int ntet = nnodes/4;                      << 
2943   if (nnodes != ntet*4)                       << 
2944   {                                           << 
2945     std::cerr << "HepPolyhedronTetMesh: Numbe << 
2946               << " in tetrahedron mesh is NOT << 
2947               << std::endl;                   << 
2948     return;                                   << 
2949   }                                           << 
2950                                               << 
2951   // Find coincident vertices using hash tabl << 
2952   // This could be done using std::unordered_ << 
2953   // below runs faster.                       << 
2954   std::vector<G4int> iheads(nnodes, -1);      << 
2955   std::vector<std::pair<G4int,G4int>> ipairs( << 
2956   for (G4int i = 0; i < nnodes; ++i)          << 
2957   {                                           << 
2958     // Generate hash key                      << 
2959     G4ThreeVector point = tetrahedra[i];      << 
2960     auto key = std::hash<G4double>()(point.x( << 
2961     key ^= std::hash<G4double>()(point.y());  << 
2962     key ^= std::hash<G4double>()(point.z());  << 
2963     key %= nnodes;                            << 
2964     // Check head of the list                 << 
2965     if (iheads[key] < 0)                      << 
2966     {                                         << 
2967       iheads[key] = i;                        << 
2968       ipairs[i].first = i;                    << 
2969       continue;                               << 
2970     }                                         << 
2971     // Loop along the list                    << 
2972     for (G4int icur = iheads[key], iprev = 0; << 
2973     {                                         << 
2974       G4int icheck = ipairs[icur].first;      << 
2975       if (tetrahedra[icheck] == point)        << 
2976       {                                       << 
2977         ipairs[i].first = icheck; // coincide << 
2978         break;                                << 
2979       }                                       << 
2980       iprev = icur;                           << 
2981       icur = ipairs[icur].second;             << 
2982       // Append vertex to the list            << 
2983       if (icur < 0)                           << 
2984       {                                       << 
2985         ipairs[i].first = i;                  << 
2986         ipairs[iprev].second = i;             << 
2987         break;                                << 
2988       }                                       << 
2989     }                                         << 
2990   }                                           << 
2991                                               << 
2992   // Create vector of original facets         << 
2993   struct facet                                << 
2994   {                                           << 
2995     G4int i1, i2, i3;                         << 
2996     facet() : i1(0), i2(0), i3(0) {};         << 
2997     facet(G4int k1, G4int k2, G4int k3) : i1( << 
2998   };                                          << 
2999   G4int nfacets = nnodes;                     << 
3000   std::vector<facet> ifacets(nfacets);        << 
3001   for (G4int i = 0; i < nfacets; i += 4)      << 
3002   {                                           << 
3003     G4int i0 = ipairs[i + 0].first;           << 
3004     G4int i1 = ipairs[i + 1].first;           << 
3005     G4int i2 = ipairs[i + 2].first;           << 
3006     G4int i3 = ipairs[i + 3].first;           << 
3007     if (i0 > i1) std::swap(i0, i1);           << 
3008     if (i0 > i2) std::swap(i0, i2);           << 
3009     if (i0 > i3) std::swap(i0, i3);           << 
3010     if (i1 > i2) std::swap(i1, i2);           << 
3011     if (i1 > i3) std::swap(i1, i3);           << 
3012     G4ThreeVector e1 = tetrahedra[i1] - tetra << 
3013     G4ThreeVector e2 = tetrahedra[i2] - tetra << 
3014     G4ThreeVector e3 = tetrahedra[i3] - tetra << 
3015     G4double volume = (e1.cross(e2)).dot(e3); << 
3016     if (volume > 0.) std::swap(i2, i3);       << 
3017     ifacets[i + 0] = facet(i0, i1, i2);       << 
3018     ifacets[i + 1] = facet(i0, i2, i3);       << 
3019     ifacets[i + 2] = facet(i0, i3, i1);       << 
3020     ifacets[i + 3] = facet(i1, i3, i2);       << 
3021   }                                           << 
3022                                               << 
3023   // Find shared facets                       << 
3024   std::fill(iheads.begin(), iheads.end(), -1) << 
3025   std::fill(ipairs.begin(), ipairs.end(), std << 
3026   for (G4int i = 0; i < nfacets; ++i)         << 
3027   {                                           << 
3028     // Check head of the list                 << 
3029     G4int key = ifacets[i].i1;                << 
3030     if (iheads[key] < 0)                      << 
3031     {                                         << 
3032       iheads[key] = i;                        << 
3033       ipairs[i].first = i;                    << 
3034       continue;                               << 
3035     }                                         << 
3036     // Loop along the list                    << 
3037     G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 
3038     for (G4int icur = iheads[key], iprev = -1 << 
3039     {                                         << 
3040       G4int icheck = ipairs[icur].first;      << 
3041       if (ifacets[icheck].i2 == i3 && ifacets << 
3042       {                                       << 
3043         if (iprev < 0)                        << 
3044         {                                     << 
3045           iheads[key] = ipairs[icur].second;  << 
3046         }                                     << 
3047         else                                  << 
3048         {                                     << 
3049           ipairs[iprev].second = ipairs[icur] << 
3050         }                                     << 
3051         ipairs[icur].first = -1; // shared fa << 
3052         ipairs[icur].second = -1;             << 
3053         break;                                << 
3054       }                                       << 
3055       iprev = icur;                           << 
3056       icur = ipairs[icur].second;             << 
3057       // Append facet to the list             << 
3058       if (icur < 0)                           << 
3059       {                                       << 
3060         ipairs[i].first = i;                  << 
3061         ipairs[iprev].second = i;             << 
3062         break;                                << 
3063       }                                       << 
3064     }                                         << 
3065   }                                           << 
3066                                               << 
3067   // Count vertices and facets skipping share << 
3068   std::fill(iheads.begin(), iheads.end(), -1) << 
3069   G4int nver = 0, nfac = 0;                   << 
3070   for (G4int i = 0; i < nfacets; ++i)         << 
3071   {                                           << 
3072     if (ipairs[i].first < 0) continue;        << 
3073     G4int i1 = ifacets[i].i1;                 << 
3074     G4int i2 = ifacets[i].i2;                 << 
3075     G4int i3 = ifacets[i].i3;                 << 
3076     if (iheads[i1] < 0) iheads[i1] = nver++;  << 
3077     if (iheads[i2] < 0) iheads[i2] = nver++;  << 
3078     if (iheads[i3] < 0) iheads[i3] = nver++;  << 
3079     nfac++;                                   << 
3080   }                                           << 
3081                                               << 
3082   // Construct polyhedron                     << 
3083   AllocateMemory(nver, nfac);                 << 
3084   for (G4int i = 0; i < nnodes; ++i)          << 
3085   {                                           << 
3086     G4int k = iheads[i];                      << 
3087     if (k >= 0) SetVertex(k + 1, tetrahedra[i << 
3088   }                                           << 
3089   for (G4int i = 0, k = 0; i < nfacets; ++i)  << 
3090   {                                           << 
3091     if (ipairs[i].first < 0) continue;        << 
3092     G4int i1 = iheads[ifacets[i].i1] + 1;     << 
3093     G4int i2 = iheads[ifacets[i].i2] + 1;     << 
3094     G4int i3 = iheads[ifacets[i].i3] + 1;     << 
3095     SetFacet(++k, i1, i2, i3);                << 
3096   }                                           << 
3097   SetReferences();                            << 
3098 }                                             << 
3099                                               << 
3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 
3101                                               << 
3102 HepPolyhedronBoxMesh::                        << 
3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 
3104                      const std::vector<G4Thre << 
3105 /******************************************** << 
3106  *                                            << 
3107  * Name: HepPolyhedronBoxMesh                 << 
3108  * Author: E.Tcherniaev (E.Chernyaev)         << 
3109  *                                            << 
3110  * Function: Create polyhedron for box mesh   << 
3111  *                                            << 
3112  * Input: sizeX, sizeY, sizeZ - dimensions of << 
3113  *        positions - vector of cell centres  << 
3114  *                                            << 
3115  ******************************************** << 
3116 {                                             << 
3117   G4int nbox = (G4int)positions.size();       << 
3118   if (nbox == 0)                              << 
3119   {                                           << 
3120     std::cerr << "HepPolyhedronBoxMesh: Empty << 
3121     return;                                   << 
3122   }                                           << 
3123   // compute inverse dimensions               << 
3124   G4double invx = 1./sizeX, invy = 1./sizeY,  << 
3125   // find mesh bounding box                   << 
3126   G4ThreeVector pmin = positions[0], pmax = p << 
3127   for (const auto& p: positions)              << 
3128   {                                           << 
3129     if (pmin.x() > p.x()) pmin.setX(p.x());   << 
3130     if (pmin.y() > p.y()) pmin.setY(p.y());   << 
3131     if (pmin.z() > p.z()) pmin.setZ(p.z());   << 
3132     if (pmax.x() < p.x()) pmax.setX(p.x());   << 
3133     if (pmax.y() < p.y()) pmax.setY(p.y());   << 
3134     if (pmax.z() < p.z()) pmax.setZ(p.z());   << 
3135   }                                           << 
3136   // find number of voxels                    << 
3137   G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 
3138   G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 
3139   G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 
3140   // create structures for voxels and node in << 
3141   std::vector<char> voxels(nx*ny*nz, 0);      << 
3142   std::vector<G4int> indices((nx+1)*(ny+1)*(n << 
3143   // mark voxels listed in positions          << 
3144   G4int kx =  ny*nz, ky = nz;                 << 
3145   for (const auto& p: positions)              << 
3146   {                                           << 
3147     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3148     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3149     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3150     G4int i = ix*kx + iy*ky + iz;             << 
3151     voxels[i] = 1;                            << 
3152   }                                           << 
3153   // count number of vertices and facets      << 
3154   // set indices                              << 
3155   G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 
3156   G4int nver = 0, nfac = 0;                   << 
3157   for (const auto& p: positions)              << 
3158   {                                           << 
3159     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3160     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3161     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3162     //                                        << 
3163     //    011       111                       << 
3164     //      +---–---+                       << 
3165     //      | 001   |   101                   << 
3166     //      |   +---–---+                   << 
3167     //      |   |   |   |                     << 
3168     //      +---|---+   |                     << 
3169     //    010   |   110 |                     << 
3170     //          +-------+                     << 
3171     //        000       100                   << 
3172     //                                        << 
3173     G4int vcheck = 0;                         << 
3174     // check (ix - 1) side                    << 
3175     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3176     if (vcheck == 0)                          << 
3177     {                                         << 
3178       nfac++;                                 << 
3179       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3180       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3181       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3182       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3183       if (indices[i1] == 0) indices[i1] = ++n << 
3184       if (indices[i2] == 0) indices[i2] = ++n << 
3185       if (indices[i3] == 0) indices[i3] = ++n << 
3186       if (indices[i4] == 0) indices[i4] = ++n << 
3187     }                                         << 
3188     // check (ix + 1) side                    << 
3189     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3190     if (vcheck == 0)                          << 
3191     {                                         << 
3192       nfac++;                                 << 
3193       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3194       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3195       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3196       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3197       if (indices[i1] == 0) indices[i1] = ++n << 
3198       if (indices[i2] == 0) indices[i2] = ++n << 
3199       if (indices[i3] == 0) indices[i3] = ++n << 
3200       if (indices[i4] == 0) indices[i4] = ++n << 
3201     }                                         << 
3202     // check (iy - 1) side                    << 
3203     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3204     if (vcheck == 0)                          << 
3205     {                                         << 
3206       nfac++;                                 << 
3207       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3208       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3209       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3210       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3211       if (indices[i1] == 0) indices[i1] = ++n << 
3212       if (indices[i2] == 0) indices[i2] = ++n << 
3213       if (indices[i3] == 0) indices[i3] = ++n << 
3214       if (indices[i4] == 0) indices[i4] = ++n << 
3215     }                                         << 
3216     // check (iy + 1) side                    << 
3217     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3218     if (vcheck == 0)                          << 
3219     {                                         << 
3220       nfac++;                                 << 
3221       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3222       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3223       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3224       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3225       if (indices[i1] == 0) indices[i1] = ++n << 
3226       if (indices[i2] == 0) indices[i2] = ++n << 
3227       if (indices[i3] == 0) indices[i3] = ++n << 
3228       if (indices[i4] == 0) indices[i4] = ++n << 
3229     }                                         << 
3230     // check (iz - 1) side                    << 
3231     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3232     if (vcheck == 0)                          << 
3233     {                                         << 
3234       nfac++;                                 << 
3235       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3236       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3237       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3238       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3239       if (indices[i1] == 0) indices[i1] = ++n << 
3240       if (indices[i2] == 0) indices[i2] = ++n << 
3241       if (indices[i3] == 0) indices[i3] = ++n << 
3242       if (indices[i4] == 0) indices[i4] = ++n << 
3243     }                                         << 
3244     // check (iz + 1) side                    << 
3245     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3246     if (vcheck == 0)                          << 
3247     {                                         << 
3248       nfac++;                                 << 
3249       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3250       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3251       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3252       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3253       if (indices[i1] == 0) indices[i1] = ++n << 
3254       if (indices[i2] == 0) indices[i2] = ++n << 
3255       if (indices[i3] == 0) indices[i3] = ++n << 
3256       if (indices[i4] == 0) indices[i4] = ++n << 
3257     }                                         << 
3258   }                                           << 
3259   // Construct polyhedron                     << 
3260   AllocateMemory(nver, nfac);                 << 
3261   G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 
3262   for (G4int ix = 0; ix <= nx; ++ix)          << 
3263   {                                           << 
3264     for (G4int iy = 0; iy <= ny; ++iy)        << 
3265     {                                         << 
3266       for (G4int iz = 0; iz <= nz; ++iz)      << 
3267       {                                       << 
3268   G4int i = ix*kvx + iy*kvy + iz;             << 
3269   if (indices[i] == 0) continue;              << 
3270   SetVertex(indices[i], p0 + G4ThreeVector(ix << 
3271       }                                       << 
3272     }                                         << 
3273   }                                           << 
3274   nfac = 0;                                   << 
3275   for (const auto& p: positions)              << 
3276   {                                           << 
3277     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3278     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3279     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3280     G4int vcheck = 0;                         << 
3281     // check (ix - 1) side                    << 
3282     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3283     if (vcheck == 0)                          << 
3284     {                                         << 
3285       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3286       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3287       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3288       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3289       SetFacet(++nfac, indices[i1], indices[i << 
3290     }                                         << 
3291     // check (ix + 1) side                    << 
3292     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3293     if (vcheck == 0)                          << 
3294     {                                         << 
3295       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3296       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3297       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3298       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3299       SetFacet(++nfac, indices[i1], indices[i << 
3300                                               << 
3301     }                                         << 
3302     // check (iy - 1) side                    << 
3303     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3304     if (vcheck == 0)                          << 
3305     {                                         << 
3306       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3307       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3308       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3309       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3310       SetFacet(++nfac, indices[i1], indices[i << 
3311     }                                         << 
3312     // check (iy + 1) side                    << 
3313     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3314     if (vcheck == 0)                          << 
3315     {                                         << 
3316       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3317       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3318       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3319       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3320       SetFacet(++nfac, indices[i1], indices[i << 
3321     }                                         << 
3322     // check (iz - 1) side                    << 
3323     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3324     if (vcheck == 0)                          << 
3325     {                                         << 
3326       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3327       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3328       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3329       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3330       SetFacet(++nfac, indices[i1], indices[i << 
3331     }                                         << 
3332     // check (iz + 1) side                    << 
3333     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3334     if (vcheck == 0)                          << 
3335     {                                         << 
3336       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3337       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3338       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3339       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3340       SetFacet(++nfac, indices[i1], indices[i << 
3341     }                                         << 
3342   }                                           << 
3343   SetReferences();                            << 
3344 }                                             << 
3345                                               << 
3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 
3347                                               << 
3348 G4ThreadLocal                                 << 
3349 G4int HepPolyhedron::fNumberOfRotationSteps = << 
3350 /********************************************    2262 /***********************************************************************
3351  *                                               2263  *                                                                     *
3352  * Name: HepPolyhedron::fNumberOfRotationStep    2264  * Name: HepPolyhedron::fNumberOfRotationSteps       Date:    24.06.97 *
3353  * Author: J.Allison (Manchester University)     2265  * Author: J.Allison (Manchester University)         Revised:          *
3354  *                                               2266  *                                                                     *
3355  * Function: Number of steps for whole circle    2267  * Function: Number of steps for whole circle                          *
3356  *                                               2268  *                                                                     *
3357  ********************************************    2269  ***********************************************************************/
3358                                                  2270 
3359 #include "BooleanProcessor.src"                  2271 #include "BooleanProcessor.src"
3360                                                  2272 
3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2273 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 
3362 /********************************************    2274 /***********************************************************************
3363  *                                               2275  *                                                                     *
3364  * Name: HepPolyhedron::add                      2276  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3365  * Author: E.Chernyaev                           2277  * Author: E.Chernyaev                               Revised:          *
3366  *                                               2278  *                                                                     *
3367  * Function: Boolean "union" of two polyhedra    2279  * Function: Boolean "union" of two polyhedra                          *
3368  *                                               2280  *                                                                     *
3369  ********************************************    2281  ***********************************************************************/
3370 {                                                2282 {
3371   G4int ierr;                                    2283   G4int ierr;
3372   BooleanProcessor processor;                    2284   BooleanProcessor processor;
3373   return processor.execute(OP_UNION, *this, p    2285   return processor.execute(OP_UNION, *this, p,ierr);
3374 }                                                2286 }
3375                                                  2287 
3376 HepPolyhedron HepPolyhedron::intersect(const  << 2288 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 
3377 /********************************************    2289 /***********************************************************************
3378  *                                               2290  *                                                                     *
3379  * Name: HepPolyhedron::intersect                2291  * Name: HepPolyhedron::intersect                    Date:    19.03.00 *
3380  * Author: E.Chernyaev                           2292  * Author: E.Chernyaev                               Revised:          *
3381  *                                               2293  *                                                                     *
3382  * Function: Boolean "intersection" of two po    2294  * Function: Boolean "intersection" of two polyhedra                   *
3383  *                                               2295  *                                                                     *
3384  ********************************************    2296  ***********************************************************************/
3385 {                                                2297 {
3386   G4int ierr;                                    2298   G4int ierr;
3387   BooleanProcessor processor;                    2299   BooleanProcessor processor;
3388   return processor.execute(OP_INTERSECTION, *    2300   return processor.execute(OP_INTERSECTION, *this, p,ierr);
3389 }                                                2301 }
3390                                                  2302 
3391 HepPolyhedron HepPolyhedron::subtract(const H << 2303 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 
3392 /********************************************    2304 /***********************************************************************
3393  *                                               2305  *                                                                     *
3394  * Name: HepPolyhedron::add                      2306  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3395  * Author: E.Chernyaev                           2307  * Author: E.Chernyaev                               Revised:          *
3396  *                                               2308  *                                                                     *
3397  * Function: Boolean "subtraction" of "p" fro    2309  * Function: Boolean "subtraction" of "p" from "this"                  *
3398  *                                               2310  *                                                                     *
3399  ********************************************    2311  ***********************************************************************/
3400 {                                                2312 {
3401   G4int ierr;                                    2313   G4int ierr;
3402   BooleanProcessor processor;                    2314   BooleanProcessor processor;
3403   return processor.execute(OP_SUBTRACTION, *t    2315   return processor.execute(OP_SUBTRACTION, *this, p,ierr);
3404 }                                                2316 }
3405                                                  2317 
3406 //NOTE : include the code of HepPolyhedronPro    2318 //NOTE : include the code of HepPolyhedronProcessor here
3407 //       since there is no BooleanProcessor.h    2319 //       since there is no BooleanProcessor.h
3408                                                  2320 
3409 #undef INTERSECTION                              2321 #undef INTERSECTION
3410                                                  2322 
3411 #include "HepPolyhedronProcessor.src"            2323 #include "HepPolyhedronProcessor.src"
                                                   >> 2324 
3412                                                  2325