Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/graphics_reps/src/HepPolyhedron.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /graphics_reps/src/HepPolyhedron.cc (Version 11.3.0) and /graphics_reps/src/HepPolyhedron.cc (Version 10.0.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: HepPolyhedron.cc 69802 2013-05-15 14:52:57Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // 
                                                   >>  30 //
 26 // G4 Polyhedron library                           31 // G4 Polyhedron library
 27 //                                                 32 //
 28 // History:                                        33 // History:
 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@ce     34 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version
 30 //                                                 35 //
 31 // 30.09.96 E.Chernyaev                            36 // 30.09.96 E.Chernyaev
 32 // - added GetNextVertexIndex, GetVertex by Ya     37 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada
 33 // - added GetNextUnitNormal, GetNextEdgeIndic <<  38 // - added GetNextUnitNormal, GetNextEdgeIndeces, GetNextEdge
 34 //                                                 39 //
 35 // 15.12.96 E.Chernyaev                            40 // 15.12.96 E.Chernyaev
 36 // - added GetNumberOfRotationSteps, RotateEdg     41 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences
 37 // - rewritten G4PolyhedronCons;                   42 // - rewritten G4PolyhedronCons;
 38 // - added G4PolyhedronPara, ...Trap, ...Pgon,     43 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus
 39 //                                                 44 //
 40 // 01.06.97 E.Chernyaev                            45 // 01.06.97 E.Chernyaev
 41 // - modified RotateAroundZ, added SetSideFace     46 // - modified RotateAroundZ, added SetSideFacets
 42 //                                                 47 //
 43 // 19.03.00 E.Chernyaev                            48 // 19.03.00 E.Chernyaev
 44 // - implemented boolean operations (add, subt     49 // - implemented boolean operations (add, subtract, intersect) on polyhedra;
 45 //                                                 50 //
 46 // 25.05.01 E.Chernyaev                            51 // 25.05.01 E.Chernyaev
 47 // - added GetSurfaceArea() and GetVolume()    <<  52 // - added GetSurfaceArea() and GetVolume();
 48 //                                                 53 //
 49 // 05.11.02 E.Chernyaev                            54 // 05.11.02 E.Chernyaev
 50 // - added createTwistedTrap() and createPolyh <<  55 // - added createTwistedTrap() and createPolyhedron();
 51 //                                                 56 //
 52 // 20.06.05 G.Cosmo                                57 // 20.06.05 G.Cosmo
 53 // - added HepPolyhedronEllipsoid              <<  58 // - added HepPolyhedronEllipsoid;
 54 //                                             << 
 55 // 18.07.07 T.Nikitina                         << 
 56 // - added HepPolyhedronParaboloid             << 
 57 //                                             << 
 58 // 22.02.20 E.Chernyaev                        << 
 59 // - added HepPolyhedronTet, HepPolyhedronHybe << 
 60 //                                             << 
 61 // 12.05.21 E.Chernyaev                        << 
 62 // - added TriangulatePolygon(), RotateContour << 
 63 // - added HepPolyhedronPgon, HepPolyhedronPco << 
 64 //                                             << 
 65 // 26.03.22 E.Chernyaev                        << 
 66 // - added SetVertex(), SetFacet()             << 
 67 // - added HepPolyhedronTetMesh                << 
 68 //                                             << 
 69 // 04.04.22 E.Chernyaev                        << 
 70 // - added JoinCoplanarFacets()                << 
 71 //                                                 59 //
 72 // 07.04.22 E.Chernyaev                        <<  60 // 18.07.07 T.Nikitin
 73 // - added HepPolyhedronBoxMesh                <<  61 // - added HepParaboloid;
 74                                                <<  62   
 75 #include "HepPolyhedron.h"                         63 #include "HepPolyhedron.h"
 76 #include "G4PhysicalConstants.hh"                  64 #include "G4PhysicalConstants.hh"
 77 #include "G4Vector3D.hh"                           65 #include "G4Vector3D.hh"
 78                                                    66 
 79 #include <cstdlib>  // Required on some compil     67 #include <cstdlib>  // Required on some compilers for std::abs(int) ...
 80 #include <cmath>                                   68 #include <cmath>
 81 #include <algorithm>                           << 
 82                                                    69 
 83 using CLHEP::perMillion;                           70 using CLHEP::perMillion;
 84 using CLHEP::deg;                                  71 using CLHEP::deg;
 85 using CLHEP::pi;                                   72 using CLHEP::pi;
 86 using CLHEP::twopi;                                73 using CLHEP::twopi;
 87 using CLHEP::nm;                                   74 using CLHEP::nm;
 88 const G4double spatialTolerance = 0.01*nm;         75 const G4double spatialTolerance = 0.01*nm;
 89                                                    76 
 90 /*********************************************     77 /***********************************************************************
 91  *                                                 78  *                                                                     *
 92  * Name: HepPolyhedron operator <<                 79  * Name: HepPolyhedron operator <<                   Date:    09.05.96 *
 93  * Author: E.Chernyaev (IHEP/Protvino)             80  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
 94  *                                                 81  *                                                                     *
 95  * Function: Print contents of G4 polyhedron       82  * Function: Print contents of G4 polyhedron                           *
 96  *                                                 83  *                                                                     *
 97  *********************************************     84  ***********************************************************************/
 98 std::ostream & operator<<(std::ostream & ostr,     85 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) {
 99   for (const auto& edge : facet.edge) {        <<  86   for (G4int k=0; k<4; k++) {
100     ostr << " " << edge.v << "/" << edge.f;    <<  87     ostr << " " << facet.edge[k].v << "/" << facet.edge[k].f;
101   }                                                88   }
102   return ostr;                                     89   return ostr;
103 }                                                  90 }
104                                                    91 
105 std::ostream & operator<<(std::ostream & ostr,     92 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) {
106   ostr << std::endl;                               93   ostr << std::endl;
107   ostr << "Nvertices=" << ph.nvert << ", Nface <<  94   ostr << "Nverteces=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl;
108   G4int i;                                         95   G4int i;
109   for (i=1; i<=ph.nvert; i++) {                    96   for (i=1; i<=ph.nvert; i++) {
110      ostr << "xyz(" << i << ")="                   97      ostr << "xyz(" << i << ")="
111           << ph.pV[i].x() << ' ' << ph.pV[i].y     98           << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z()
112           << std::endl;                            99           << std::endl;
113   }                                               100   }
114   for (i=1; i<=ph.nface; i++) {                   101   for (i=1; i<=ph.nface; i++) {
115     ostr << "face(" << i << ")=" << ph.pF[i] <    102     ostr << "face(" << i << ")=" << ph.pF[i] << std::endl;
116   }                                               103   }
117   return ostr;                                    104   return ostr;
118 }                                                 105 }
119                                                   106 
120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4in << 
121 /********************************************* << 
122  *                                             << 
123  * Name: HepPolyhedron constructor with        << 
124  *       allocation of memory                  << 
125  * Author: E.Tcherniaev (E.Chernyaev)          << 
126  *                                             << 
127  ********************************************* << 
128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
129 {                                              << 
130   AllocateMemory(Nvert, Nface);                << 
131 }                                              << 
132                                                << 
133 HepPolyhedron::HepPolyhedron(const HepPolyhedr    107 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from)
134 /*********************************************    108 /***********************************************************************
135  *                                                109  *                                                                     *
136  * Name: HepPolyhedron copy constructor           110  * Name: HepPolyhedron copy constructor             Date:    23.07.96  *
137  * Author: E.Chernyaev (IHEP/Protvino)            111  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
138  *                                                112  *                                                                     *
139  *********************************************    113  ***********************************************************************/
140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 114 : nvert(0), nface(0), pV(0), pF(0)
141 {                                                 115 {
142   AllocateMemory(from.nvert, from.nface);         116   AllocateMemory(from.nvert, from.nface);
143   for (G4int i=1; i<=nvert; i++) pV[i] = from.    117   for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
144   for (G4int k=1; k<=nface; k++) pF[k] = from.    118   for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
145 }                                                 119 }
146                                                   120 
147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& f << 
148 /********************************************* << 
149  *                                             << 
150  * Name: HepPolyhedron move constructor        << 
151  * Author: E.Tcherniaev (E.Chernyaev)          << 
152  *                                             << 
153  ********************************************* << 
154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) << 
155 {                                              << 
156   nvert = from.nvert;                          << 
157   nface = from.nface;                          << 
158   pV = from.pV;                                << 
159   pF = from.pF;                                << 
160                                                << 
161   // Release the data from the source object   << 
162   from.nvert = 0;                              << 
163   from.nface = 0;                              << 
164   from.pV = nullptr;                           << 
165   from.pF = nullptr;                           << 
166 }                                              << 
167                                                << 
168 HepPolyhedron & HepPolyhedron::operator=(const    121 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from)
169 /*********************************************    122 /***********************************************************************
170  *                                                123  *                                                                     *
171  * Name: HepPolyhedron operator =                 124  * Name: HepPolyhedron operator =                   Date:    23.07.96  *
172  * Author: E.Chernyaev (IHEP/Protvino)            125  * Author: E.Chernyaev (IHEP/Protvino)              Revised:           *
173  *                                                126  *                                                                     *
174  * Function: Copy contents of one polyhedron t    127  * Function: Copy contents of one polyhedron to another                *
175  *                                                128  *                                                                     *
176  *********************************************    129  ***********************************************************************/
177 {                                                 130 {
178   if (this != &from) {                            131   if (this != &from) {
179     AllocateMemory(from.nvert, from.nface);       132     AllocateMemory(from.nvert, from.nface);
180     for (G4int i=1; i<=nvert; i++) pV[i] = fro    133     for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i];
181     for (G4int k=1; k<=nface; k++) pF[k] = fro    134     for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k];
182   }                                               135   }
183   return *this;                                   136   return *this;
184 }                                                 137 }
185                                                   138 
186 HepPolyhedron & HepPolyhedron::operator=(HepPo << 
187 /********************************************* << 
188  *                                             << 
189  * Name: HepPolyhedron move operator =         << 
190  * Author: E.Tcherniaev (E.Chernyaev)          << 
191  *                                             << 
192  * Function: Move contents of one polyhedron t << 
193  *                                             << 
194  ********************************************* << 
195 {                                              << 
196   if (this != &from) {                         << 
197     delete [] pV;                              << 
198     delete [] pF;                              << 
199     nvert = from.nvert;                        << 
200     nface = from.nface;                        << 
201     pV = from.pV;                              << 
202     pF = from.pF;                              << 
203                                                << 
204     // Release the data from the source object << 
205     from.nvert = 0;                            << 
206     from.nface = 0;                            << 
207     from.pV = nullptr;                         << 
208     from.pF = nullptr;                         << 
209   }                                            << 
210   return *this;                                << 
211 }                                              << 
212                                                << 
213 G4int                                             139 G4int
214 HepPolyhedron::FindNeighbour(G4int iFace, G4in    140 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const
215 /*********************************************    141 /***********************************************************************
216  *                                                142  *                                                                     *
217  * Name: HepPolyhedron::FindNeighbour             143  * Name: HepPolyhedron::FindNeighbour                Date:    22.11.99 *
218  * Author: E.Chernyaev                            144  * Author: E.Chernyaev                               Revised:          *
219  *                                                145  *                                                                     *
220  * Function: Find neighbouring face               146  * Function: Find neighbouring face                                    *
221  *                                                147  *                                                                     *
222  *********************************************    148  ***********************************************************************/
223 {                                                 149 {
224   G4int i;                                        150   G4int i;
225   for (i=0; i<4; i++) {                           151   for (i=0; i<4; i++) {
226     if (iNode == std::abs(pF[iFace].edge[i].v)    152     if (iNode == std::abs(pF[iFace].edge[i].v)) break;
227   }                                               153   }
228   if (i == 4) {                                   154   if (i == 4) {
229     std::cerr                                     155     std::cerr
230       << "HepPolyhedron::FindNeighbour: face "    156       << "HepPolyhedron::FindNeighbour: face " << iFace
231       << " has no node " << iNode                 157       << " has no node " << iNode
232       << std::endl;                            << 158       << std::endl; 
233     return 0;                                     159     return 0;
234   }                                               160   }
235   if (iOrder < 0) {                               161   if (iOrder < 0) {
236     if ( --i < 0) i = 3;                          162     if ( --i < 0) i = 3;
237     if (pF[iFace].edge[i].v == 0) i = 2;          163     if (pF[iFace].edge[i].v == 0) i = 2;
238   }                                               164   }
239   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iF    165   return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f;
240 }                                                 166 }
241                                                   167 
242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int    168 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const
243 /*********************************************    169 /***********************************************************************
244  *                                                170  *                                                                     *
245  * Name: HepPolyhedron::FindNodeNormal            171  * Name: HepPolyhedron::FindNodeNormal               Date:    22.11.99 *
246  * Author: E.Chernyaev                            172  * Author: E.Chernyaev                               Revised:          *
247  *                                                173  *                                                                     *
248  * Function: Find normal at given node            174  * Function: Find normal at given node                                 *
249  *                                                175  *                                                                     *
250  *********************************************    176  ***********************************************************************/
251 {                                                 177 {
252   G4Normal3D normal = GetUnitNormal(iFace);    << 178   G4Normal3D   normal = GetUnitNormal(iFace);
253   G4int      k = iFace, iOrder = 1;            << 179   G4int          k = iFace, iOrder = 1, n = 1;
254                                                   180 
255   for(;;) {                                       181   for(;;) {
256     k = FindNeighbour(k, iNode, iOrder);          182     k = FindNeighbour(k, iNode, iOrder);
257     if (k == iFace) break;                     << 183     if (k == iFace) break; 
258     if (k > 0) {                                  184     if (k > 0) {
                                                   >> 185       n++;
259       normal += GetUnitNormal(k);                 186       normal += GetUnitNormal(k);
260     }else{                                        187     }else{
261       if (iOrder < 0) break;                      188       if (iOrder < 0) break;
262       k = iFace;                                  189       k = iFace;
263       iOrder = -iOrder;                           190       iOrder = -iOrder;
264     }                                             191     }
265   }                                               192   }
266   return normal.unit();                           193   return normal.unit();
267 }                                                 194 }
268                                                   195 
269 G4int HepPolyhedron::GetNumberOfRotationSteps(    196 G4int HepPolyhedron::GetNumberOfRotationSteps()
270 /*********************************************    197 /***********************************************************************
271  *                                                198  *                                                                     *
272  * Name: HepPolyhedron::GetNumberOfRotationSte    199  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
273  * Author: J.Allison (Manchester University)      200  * Author: J.Allison (Manchester University)         Revised:          *
274  *                                                201  *                                                                     *
275  * Function: Get number of steps for whole cir    202  * Function: Get number of steps for whole circle                      *
276  *                                                203  *                                                                     *
277  *********************************************    204  ***********************************************************************/
278 {                                                 205 {
279   return fNumberOfRotationSteps;                  206   return fNumberOfRotationSteps;
280 }                                                 207 }
281                                                   208 
282 void HepPolyhedron::SetVertex(G4int index, con << 
283 /********************************************* << 
284  *                                             << 
285  * Name: HepPolyhedron::SetVertex              << 
286  * Author: E.Tcherniaev (E.Chernyaev)          << 
287  *                                             << 
288  * Function: Set vertex                        << 
289  *                                             << 
290  ********************************************* << 
291 {                                              << 
292   if (index < 1 || index > nvert)              << 
293   {                                            << 
294     std::cerr                                  << 
295       << "HepPolyhedron::SetVertex: vertex ind << 
296       << " is out of range\n"                  << 
297       << "   N. of vertices = " << nvert << "\ << 
298       << "   N. of facets = " << nface << std: << 
299     return;                                    << 
300   }                                            << 
301   pV[index] = v;                               << 
302 }                                              << 
303                                                << 
304 void                                           << 
305 HepPolyhedron::SetFacet(G4int index, G4int iv1 << 
306 /********************************************* << 
307  *                                             << 
308  * Name: HepPolyhedron::SetFacet               << 
309  * Author: E.Tcherniaev (E.Chernyaev)          << 
310  *                                             << 
311  * Function: Set facet                         << 
312  *                                             << 
313  ********************************************* << 
314 {                                              << 
315   if (index < 1 || index > nface)              << 
316   {                                            << 
317     std::cerr                                  << 
318       << "HepPolyhedron::SetFacet: facet index << 
319       << " is out of range\n"                  << 
320       << "   N. of vertices = " << nvert << "\ << 
321       << "   N. of facets = " << nface << std: << 
322     return;                                    << 
323   }                                            << 
324   if (iv1 < 1 || iv1 > nvert ||                << 
325       iv2 < 1 || iv2 > nvert ||                << 
326       iv3 < 1 || iv3 > nvert ||                << 
327       iv4 < 0 || iv4 > nvert)                  << 
328   {                                            << 
329     std::cerr                                  << 
330       << "HepPolyhedron::SetFacet: incorrectly << 
331       << " (" << iv1 << ", " << iv2 << ", " << << 
332       << "   N. of vertices = " << nvert << "\ << 
333       << "   N. of facets = " << nface << std: << 
334     return;                                    << 
335   }                                            << 
336   pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0,  << 
337 }                                              << 
338                                                << 
339 void HepPolyhedron::SetNumberOfRotationSteps(G    209 void HepPolyhedron::SetNumberOfRotationSteps(G4int n)
340 /*********************************************    210 /***********************************************************************
341  *                                                211  *                                                                     *
342  * Name: HepPolyhedron::SetNumberOfRotationSte    212  * Name: HepPolyhedron::SetNumberOfRotationSteps     Date:    24.06.97 *
343  * Author: J.Allison (Manchester University)      213  * Author: J.Allison (Manchester University)         Revised:          *
344  *                                                214  *                                                                     *
345  * Function: Set number of steps for whole cir    215  * Function: Set number of steps for whole circle                      *
346  *                                                216  *                                                                     *
347  *********************************************    217  ***********************************************************************/
348 {                                                 218 {
349   const G4int nMin = 3;                           219   const G4int nMin = 3;
350   if (n < nMin) {                                 220   if (n < nMin) {
351     std::cerr                                  << 221     std::cerr 
352       << "HepPolyhedron::SetNumberOfRotationSt    222       << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n"
353       << "number of steps per circle < " << nM    223       << "number of steps per circle < " << nMin << "; forced to " << nMin
354       << std::endl;                               224       << std::endl;
355     fNumberOfRotationSteps = nMin;                225     fNumberOfRotationSteps = nMin;
356   }else{                                          226   }else{
357     fNumberOfRotationSteps = n;                   227     fNumberOfRotationSteps = n;
358   }                                            << 228   }    
359 }                                                 229 }
360                                                   230 
361 void HepPolyhedron::ResetNumberOfRotationSteps    231 void HepPolyhedron::ResetNumberOfRotationSteps()
362 /*********************************************    232 /***********************************************************************
363  *                                                233  *                                                                     *
364  * Name: HepPolyhedron::GetNumberOfRotationSte    234  * Name: HepPolyhedron::GetNumberOfRotationSteps     Date:    24.06.97 *
365  * Author: J.Allison (Manchester University)      235  * Author: J.Allison (Manchester University)         Revised:          *
366  *                                                236  *                                                                     *
367  * Function: Reset number of steps for whole c    237  * Function: Reset number of steps for whole circle to default value   *
368  *                                                238  *                                                                     *
369  *********************************************    239  ***********************************************************************/
370 {                                                 240 {
371   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_S    241   fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
372 }                                                 242 }
373                                                   243 
374 void HepPolyhedron::AllocateMemory(G4int Nvert    244 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface)
375 /*********************************************    245 /***********************************************************************
376  *                                                246  *                                                                     *
377  * Name: HepPolyhedron::AllocateMemory            247  * Name: HepPolyhedron::AllocateMemory               Date:    19.06.96 *
378  * Author: E.Chernyaev (IHEP/Protvino)            248  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 05.11.02 *
379  *                                                249  *                                                                     *
380  * Function: Allocate memory for GEANT4 polyhe    250  * Function: Allocate memory for GEANT4 polyhedron                     *
381  *                                                251  *                                                                     *
382  * Input: Nvert - number of nodes                 252  * Input: Nvert - number of nodes                                      *
383  *        Nface - number of faces                 253  *        Nface - number of faces                                      *
384  *                                                254  *                                                                     *
385  *********************************************    255  ***********************************************************************/
386 {                                                 256 {
387   if (nvert == Nvert && nface == Nface) return    257   if (nvert == Nvert && nface == Nface) return;
388   delete [] pV;                                << 258   if (pV != 0) delete [] pV;
389   delete [] pF;                                << 259   if (pF != 0) delete [] pF;
390   if (Nvert > 0 && Nface > 0) {                   260   if (Nvert > 0 && Nface > 0) {
391     nvert = Nvert;                                261     nvert = Nvert;
392     nface = Nface;                                262     nface = Nface;
393     pV    = new G4Point3D[nvert+1];               263     pV    = new G4Point3D[nvert+1];
394     pF    = new G4Facet[nface+1];                 264     pF    = new G4Facet[nface+1];
395   }else{                                          265   }else{
396     nvert = 0; nface = 0; pV = nullptr; pF = n << 266     nvert = 0; nface = 0; pV = 0; pF = 0;
397   }                                               267   }
398 }                                                 268 }
399                                                   269 
400 void HepPolyhedron::CreatePrism()                 270 void HepPolyhedron::CreatePrism()
401 /*********************************************    271 /***********************************************************************
402  *                                                272  *                                                                     *
403  * Name: HepPolyhedron::CreatePrism               273  * Name: HepPolyhedron::CreatePrism                  Date:    15.07.96 *
404  * Author: E.Chernyaev (IHEP/Protvino)            274  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
405  *                                                275  *                                                                     *
406  * Function: Set facets for a prism               276  * Function: Set facets for a prism                                    *
407  *                                                277  *                                                                     *
408  *********************************************    278  ***********************************************************************/
409 {                                                 279 {
410   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRON    280   enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP};
411                                                   281 
412   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,      282   pF[1] = G4Facet(1,LEFT,  4,BACK,  3,RIGHT,  2,FRONT);
413   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM,     283   pF[2] = G4Facet(5,TOP,   8,BACK,  4,BOTTOM, 1,FRONT);
414   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM,     284   pF[3] = G4Facet(8,TOP,   7,RIGHT, 3,BOTTOM, 4,LEFT);
415   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM,     285   pF[4] = G4Facet(7,TOP,   6,FRONT, 2,BOTTOM, 3,BACK);
416   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM,     286   pF[5] = G4Facet(6,TOP,   5,LEFT,  1,BOTTOM, 2,RIGHT);
417   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,       287   pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK,   8,LEFT);
418 }                                                 288 }
419                                                   289 
420 void HepPolyhedron::RotateEdge(G4int k1, G4int    290 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2,
421                               G4int v1, G4int     291                               G4int v1, G4int v2, G4int vEdge,
422                               G4bool ifWholeCi    292                               G4bool ifWholeCircle, G4int nds, G4int &kface)
423 /*********************************************    293 /***********************************************************************
424  *                                                294  *                                                                     *
425  * Name: HepPolyhedron::RotateEdge                295  * Name: HepPolyhedron::RotateEdge                   Date:    05.12.96 *
426  * Author: E.Chernyaev (IHEP/Protvino)            296  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
427  *                                                297  *                                                                     *
428  * Function: Create set of facets by rotation     298  * Function: Create set of facets by rotation of an edge around Z-axis *
429  *                                                299  *                                                                     *
430  * Input: k1, k2 - end vertices of the edge       300  * Input: k1, k2 - end vertices of the edge                            *
431  *        r1, r2 - radiuses of the end vertice    301  *        r1, r2 - radiuses of the end vertices                        *
432  *        v1, v2 - visibility of edges produce    302  *        v1, v2 - visibility of edges produced by rotation of the end *
433  *                 vertices                       303  *                 vertices                                            *
434  *        vEdge  - visibility of the edge         304  *        vEdge  - visibility of the edge                              *
435  *        ifWholeCircle - is true in case of w    305  *        ifWholeCircle - is true in case of whole circle rotation     *
436  *        nds    - number of discrete steps       306  *        nds    - number of discrete steps                            *
437  *        r[]    - r-coordinates                  307  *        r[]    - r-coordinates                                       *
438  *        kface  - current free cell in the pF    308  *        kface  - current free cell in the pF array                   *
439  *                                                309  *                                                                     *
440  *********************************************    310  ***********************************************************************/
441 {                                                 311 {
442   if (r1 == 0. && r2 == 0.) return;            << 312   if (r1 == 0. && r2 == 0) return;
443                                                   313 
444   G4int i;                                        314   G4int i;
445   G4int i1  = k1;                                 315   G4int i1  = k1;
446   G4int i2  = k2;                                 316   G4int i2  = k2;
447   G4int ii1 = ifWholeCircle ? i1 : i1+nds;        317   G4int ii1 = ifWholeCircle ? i1 : i1+nds;
448   G4int ii2 = ifWholeCircle ? i2 : i2+nds;        318   G4int ii2 = ifWholeCircle ? i2 : i2+nds;
449   G4int vv  = ifWholeCircle ? vEdge : 1;          319   G4int vv  = ifWholeCircle ? vEdge : 1;
450                                                   320 
451   if (nds == 1) {                                 321   if (nds == 1) {
452     if (r1 == 0.) {                               322     if (r1 == 0.) {
453       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    323       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0);
454     }else if (r2 == 0.) {                         324     }else if (r2 == 0.) {
455       pF[kface++]   = G4Facet(i1,0,    i2,0,      325       pF[kface++]   = G4Facet(i1,0,    i2,0,    v1*(i1+1),0);
456     }else{                                        326     }else{
457       pF[kface++]   = G4Facet(i1,0,    v2*i2,0    327       pF[kface++]   = G4Facet(i1,0,    v2*i2,0, (i2+1),0, v1*(i1+1),0);
458     }                                             328     }
459   }else{                                          329   }else{
460     if (r1 == 0.) {                               330     if (r1 == 0.) {
461       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    331       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0);
462       for (i2++,i=1; i<nds-1; i2++,i++) {         332       for (i2++,i=1; i<nds-1; i2++,i++) {
463         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    333         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0);
464       }                                           334       }
465       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    335       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0);
466     }else if (r2 == 0.) {                         336     }else if (r2 == 0.) {
467       pF[kface++]   = G4Facet(vv*i1,0,    vEdg    337       pF[kface++]   = G4Facet(vv*i1,0,    vEdge*i2,0, v1*(i1+1),0);
468       for (i1++,i=1; i<nds-1; i1++,i++) {         338       for (i1++,i=1; i<nds-1; i1++,i++) {
469         pF[kface++] = G4Facet(vEdge*i1,0, vEdg    339         pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0);
470       }                                           340       }
471       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i    341       pF[kface++]   = G4Facet(vEdge*i1,0, vv*i2,0,    v1*ii1,0);
472     }else{                                        342     }else{
473       pF[kface++]   = G4Facet(vv*i1,0,    v2*i    343       pF[kface++]   = G4Facet(vv*i1,0,    v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
474       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i    344       for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) {
475         pF[kface++] = G4Facet(vEdge*i1,0, v2*i    345         pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0);
476       }                                        << 346       }  
477       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i    347       pF[kface++]   = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0,      v1*ii1,0);
478     }                                             348     }
479   }                                               349   }
480 }                                                 350 }
481                                                   351 
482 void HepPolyhedron::SetSideFacets(G4int ii[4],    352 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4],
483                                  G4int *kk, G4    353                                  G4int *kk, G4double *r,
484                                  G4double dphi    354                                  G4double dphi, G4int nds, G4int &kface)
485 /*********************************************    355 /***********************************************************************
486  *                                                356  *                                                                     *
487  * Name: HepPolyhedron::SetSideFacets             357  * Name: HepPolyhedron::SetSideFacets                Date:    20.05.97 *
488  * Author: E.Chernyaev (IHEP/Protvino)            358  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
489  *                                                359  *                                                                     *
490  * Function: Set side facets for the case of i    360  * Function: Set side facets for the case of incomplete rotation       *
491  *                                                361  *                                                                     *
492  * Input: ii[4] - indices of original vertices << 362  * Input: ii[4] - indeces of original verteces                         *
493  *        vv[4] - visibility of edges             363  *        vv[4] - visibility of edges                                  *
494  *        kk[]  - indices of nodes             << 364  *        kk[]  - indeces of nodes                                     *
495  *        r[]   - radiuses                        365  *        r[]   - radiuses                                             *
496  *        dphi  - delta phi                       366  *        dphi  - delta phi                                            *
497  *        nds    - number of discrete steps       367  *        nds    - number of discrete steps                            *
498  *        kface  - current free cell in the pF    368  *        kface  - current free cell in the pF array                   *
499  *                                                369  *                                                                     *
500  *********************************************    370  ***********************************************************************/
501 {                                                 371 {
502   G4int k1, k2, k3, k4;                           372   G4int k1, k2, k3, k4;
503                                                << 373   
504   if (std::abs(dphi-pi) < perMillion) { // hal << 374   if (std::abs((G4double)(dphi-pi)) < perMillion) {          // half a circle
505     for (G4int i=0; i<4; i++) {                   375     for (G4int i=0; i<4; i++) {
506       k1 = ii[i];                                 376       k1 = ii[i];
507       k2 = ii[(i+1)%4];                        << 377       k2 = (i == 3) ? ii[0] : ii[i+1];
508       if (r[k1] == 0. && r[k2] == 0.) vv[i] =  << 378       if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1;      
509     }                                             379     }
510   }                                               380   }
511                                                   381 
512   if (ii[1] == ii[2]) {                           382   if (ii[1] == ii[2]) {
513     k1 = kk[ii[0]];                               383     k1 = kk[ii[0]];
514     k2 = kk[ii[2]];                               384     k2 = kk[ii[2]];
515     k3 = kk[ii[3]];                               385     k3 = kk[ii[3]];
516     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2    386     pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
517     if (r[ii[0]] != 0.) k1 += nds;                387     if (r[ii[0]] != 0.) k1 += nds;
518     if (r[ii[2]] != 0.) k2 += nds;                388     if (r[ii[2]] != 0.) k2 += nds;
519     if (r[ii[3]] != 0.) k3 += nds;                389     if (r[ii[3]] != 0.) k3 += nds;
520     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2    390     pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
521   }else if (kk[ii[0]] == kk[ii[1]]) {             391   }else if (kk[ii[0]] == kk[ii[1]]) {
522     k1 = kk[ii[0]];                               392     k1 = kk[ii[0]];
523     k2 = kk[ii[2]];                               393     k2 = kk[ii[2]];
524     k3 = kk[ii[3]];                               394     k3 = kk[ii[3]];
525     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2    395     pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0);
526     if (r[ii[0]] != 0.) k1 += nds;                396     if (r[ii[0]] != 0.) k1 += nds;
527     if (r[ii[2]] != 0.) k2 += nds;                397     if (r[ii[2]] != 0.) k2 += nds;
528     if (r[ii[3]] != 0.) k3 += nds;                398     if (r[ii[3]] != 0.) k3 += nds;
529     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2    399     pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0);
530   }else if (kk[ii[2]] == kk[ii[3]]) {             400   }else if (kk[ii[2]] == kk[ii[3]]) {
531     k1 = kk[ii[0]];                               401     k1 = kk[ii[0]];
532     k2 = kk[ii[1]];                               402     k2 = kk[ii[1]];
533     k3 = kk[ii[2]];                               403     k3 = kk[ii[2]];
534     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    404     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0);
535     if (r[ii[0]] != 0.) k1 += nds;                405     if (r[ii[0]] != 0.) k1 += nds;
536     if (r[ii[1]] != 0.) k2 += nds;                406     if (r[ii[1]] != 0.) k2 += nds;
537     if (r[ii[2]] != 0.) k3 += nds;                407     if (r[ii[2]] != 0.) k3 += nds;
538     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2    408     pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
539   }else{                                          409   }else{
540     k1 = kk[ii[0]];                               410     k1 = kk[ii[0]];
541     k2 = kk[ii[1]];                               411     k2 = kk[ii[1]];
542     k3 = kk[ii[2]];                               412     k3 = kk[ii[2]];
543     k4 = kk[ii[3]];                               413     k4 = kk[ii[3]];
544     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2    414     pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0);
545     if (r[ii[0]] != 0.) k1 += nds;                415     if (r[ii[0]] != 0.) k1 += nds;
546     if (r[ii[1]] != 0.) k2 += nds;                416     if (r[ii[1]] != 0.) k2 += nds;
547     if (r[ii[2]] != 0.) k3 += nds;                417     if (r[ii[2]] != 0.) k3 += nds;
548     if (r[ii[3]] != 0.) k4 += nds;                418     if (r[ii[3]] != 0.) k4 += nds;
549     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3    419     pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0);
550   }                                               420   }
551 }                                                 421 }
552                                                   422 
553 void HepPolyhedron::RotateAroundZ(G4int nstep,    423 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi,
554                                  G4int np1, G4    424                                  G4int np1, G4int np2,
555                                  const G4doubl    425                                  const G4double *z, G4double *r,
556                                  G4int nodeVis    426                                  G4int nodeVis, G4int edgeVis)
557 /*********************************************    427 /***********************************************************************
558  *                                                428  *                                                                     *
559  * Name: HepPolyhedron::RotateAroundZ             429  * Name: HepPolyhedron::RotateAroundZ                Date:    27.11.96 *
560  * Author: E.Chernyaev (IHEP/Protvino)            430  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
561  *                                                431  *                                                                     *
562  * Function: Create HepPolyhedron for a solid     432  * Function: Create HepPolyhedron for a solid produced by rotation of  *
563  *           two polylines around Z-axis          433  *           two polylines around Z-axis                               *
564  *                                                434  *                                                                     *
565  * Input: nstep - number of discrete steps, if    435  * Input: nstep - number of discrete steps, if 0 then default          *
566  *        phi   - starting phi angle              436  *        phi   - starting phi angle                                   *
567  *        dphi  - delta phi                       437  *        dphi  - delta phi                                            *
568  *        np1   - number of points in external    438  *        np1   - number of points in external polyline                *
569  *                (must be negative in case of    439  *                (must be negative in case of closed polyline)        *
570  *        np2   - number of points in internal    440  *        np2   - number of points in internal polyline (may be 1)     *
571  *        z[]   - z-coordinates (+z >>> -z for    441  *        z[]   - z-coordinates (+z >>> -z for both polylines)         *
572  *        r[]   - r-coordinates                   442  *        r[]   - r-coordinates                                        *
573  *        nodeVis - how to Draw edges joing co    443  *        nodeVis - how to Draw edges joing consecutive positions of   *
574  *                  node during rotation          444  *                  node during rotation                               *
575  *        edgeVis - how to Draw edges             445  *        edgeVis - how to Draw edges                                  *
576  *                                                446  *                                                                     *
577  *********************************************    447  ***********************************************************************/
578 {                                                 448 {
579   static const G4double wholeCircle   = twopi;    449   static const G4double wholeCircle   = twopi;
580                                                << 450     
581   //   S E T   R O T A T I O N   P A R A M E T    451   //   S E T   R O T A T I O N   P A R A M E T E R S
582                                                   452 
583   G4bool ifWholeCircle = std::abs(dphi-wholeCi << 453   G4bool ifWholeCircle = (std::abs(dphi-wholeCircle) < perMillion) ? true : false;
584   G4double delPhi = ifWholeCircle ? wholeCircl << 454   G4double   delPhi  = ifWholeCircle ? wholeCircle : dphi;  
585   G4int nSphi = nstep;                         << 455   G4int        nSphi    = (nstep > 0) ?
586   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 456     nstep : G4int(delPhi*GetNumberOfRotationSteps()/wholeCircle+.5);
587   if (nSphi == 0) nSphi = 1;                      457   if (nSphi == 0) nSphi = 1;
588   G4int nVphi = ifWholeCircle ? nSphi : nSphi  << 458   G4int        nVphi    = ifWholeCircle ? nSphi : nSphi+1;
589   G4bool ifClosed = np1 <= 0; // true if exter << 459   G4bool ifClosed = np1 > 0 ? false : true;
590                                                << 460   
591   //   C O U N T   V E R T I C E S             << 461   //   C O U N T   V E R T E C E S
592                                                   462 
593   G4int absNp1 = std::abs(np1);                   463   G4int absNp1 = std::abs(np1);
594   G4int absNp2 = std::abs(np2);                   464   G4int absNp2 = std::abs(np2);
595   G4int i1beg = 0;                                465   G4int i1beg = 0;
596   G4int i1end = absNp1-1;                         466   G4int i1end = absNp1-1;
597   G4int i2beg = absNp1;                           467   G4int i2beg = absNp1;
598   G4int i2end = absNp1+absNp2-1;               << 468   G4int i2end = absNp1+absNp2-1; 
599   G4int i, j, k;                                  469   G4int i, j, k;
600                                                   470 
601   for(i=i1beg; i<=i2end; i++) {                   471   for(i=i1beg; i<=i2end; i++) {
602     if (std::abs(r[i]) < spatialTolerance) r[i    472     if (std::abs(r[i]) < spatialTolerance) r[i] = 0.;
603   }                                               473   }
604                                                   474 
605   // external polyline - check position of nod << 475   j = 0;                                                // external nodes
606   //                                           << 
607   G4int Nverts = 0;                            << 
608   for (i=i1beg; i<=i1end; i++) {                  476   for (i=i1beg; i<=i1end; i++) {
609     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 477     j += (r[i] == 0.) ? 1 : nVphi;
610   }                                               478   }
611                                                   479 
612   // internal polyline                         << 480   G4bool ifSide1 = false;                           // internal nodes
613   //                                           << 481   G4bool ifSide2 = false;
614   G4bool ifSide1 = false; // whether to create << 
615   G4bool ifSide2 = false; // whether to create << 
616                                                   482 
617   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1 << 483   if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) {
618     Nverts += (r[i2beg] == 0.) ? 1 : nVphi;    << 484     j += (r[i2beg] == 0.) ? 1 : nVphi;
619     ifSide1 = true;                               485     ifSide1 = true;
620   }                                               486   }
621                                                   487 
622   for(i=i2beg+1; i<i2end; i++) { // intermedia << 488   for(i=i2beg+1; i<i2end; i++) {
623     Nverts += (r[i] == 0.) ? 1 : nVphi;        << 489     j += (r[i] == 0.) ? 1 : nVphi;
624   }                                               490   }
625                                                << 491   
626   if (r[i2end] != r[i1end] || z[i2end] != z[i1 << 492   if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) {
627     if (absNp2 > 1) Nverts += (r[i2end] == 0.) << 493     if (absNp2 > 1) j += (r[i2end] == 0.) ? 1 : nVphi;
628     ifSide2 = true;                               494     ifSide2 = true;
629   }                                               495   }
630                                                   496 
631   //   C O U N T   F A C E S                      497   //   C O U N T   F A C E S
632                                                   498 
633   // external lateral faces                    << 499   k = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi;       // external faces
634   //                                           << 
635   G4int Nfaces = ifClosed ? absNp1*nSphi : (ab << 
636                                                   500 
637   // internal lateral faces                    << 501   if (absNp2 > 1) {                                     // internal faces
638   //                                           << 
639   if (absNp2 > 1) {                            << 
640     for(i=i2beg; i<i2end; i++) {                  502     for(i=i2beg; i<i2end; i++) {
641       if (r[i] > 0. || r[i+1] > 0.) Nfaces +=  << 503       if (r[i] > 0. || r[i+1] > 0.)       k += nSphi;
642     }                                             504     }
643                                                   505 
644     if (ifClosed) {                               506     if (ifClosed) {
645       if (r[i2end] > 0. || r[i2beg] > 0.) Nfac << 507       if (r[i2end] > 0. || r[i2beg] > 0.) k += nSphi;
646     }                                             508     }
647   }                                               509   }
648                                                   510 
649   // bottom and top faces                      << 511   if (!ifClosed) {                                      // side faces
650   //                                           << 512     if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) k += nSphi;
651   if (!ifClosed) {                             << 513     if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) k += nSphi;
652     if (ifSide1 && (r[i1beg] > 0. || r[i2beg]  << 
653     if (ifSide2 && (r[i1end] > 0. || r[i2end]  << 
654   }                                               514   }
655                                                   515 
656   // phi_wedge faces                           << 516   if (!ifWholeCircle) {                                 // phi_side faces
657   //                                           << 517     k += ifClosed ? 2*absNp1 : 2*(absNp1-1);
658   if (!ifWholeCircle) {                        << 
659     Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1- << 
660   }                                               518   }
661                                                   519 
662   //   A L L O C A T E   M E M O R Y              520   //   A L L O C A T E   M E M O R Y
663                                                   521 
664   AllocateMemory(Nverts, Nfaces);              << 522   AllocateMemory(j, k);
665   if (pV == nullptr || pF == nullptr) return;  << 
666                                                   523 
667   //   G E N E R A T E   V E R T I C E S       << 524   //   G E N E R A T E   V E R T E C E S
668                                                   525 
669   G4int *kk; // array of start indices along p << 526   G4int *kk;
670   kk = new G4int[absNp1+absNp2];                  527   kk = new G4int[absNp1+absNp2];
671                                                   528 
672   // external polyline                         << 529   k = 1;
673   //                                           << 
674   k = 1; // free position in array of vertices << 
675   for(i=i1beg; i<=i1end; i++) {                   530   for(i=i1beg; i<=i1end; i++) {
676     kk[i] = k;                                    531     kk[i] = k;
677     if (r[i] == 0.)                               532     if (r[i] == 0.)
678     { pV[k++] = G4Point3D(0, 0, z[i]); } else     533     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
679   }                                               534   }
680                                                   535 
681   // first point of internal polyline          << 
682   //                                           << 
683   i = i2beg;                                      536   i = i2beg;
684   if (ifSide1) {                                  537   if (ifSide1) {
685     kk[i] = k;                                    538     kk[i] = k;
686     if (r[i] == 0.)                               539     if (r[i] == 0.)
687     { pV[k++] = G4Point3D(0, 0, z[i]); } else     540     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
688   }else{                                          541   }else{
689     kk[i] = kk[i1beg];                            542     kk[i] = kk[i1beg];
690   }                                               543   }
691                                                   544 
692   // intermediate points of internal polyline  << 
693   //                                           << 
694   for(i=i2beg+1; i<i2end; i++) {                  545   for(i=i2beg+1; i<i2end; i++) {
695     kk[i] = k;                                    546     kk[i] = k;
696     if (r[i] == 0.)                               547     if (r[i] == 0.)
697     { pV[k++] = G4Point3D(0, 0, z[i]); } else     548     { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; }
698   }                                               549   }
699                                                   550 
700   // last point of internal polyline           << 
701   //                                           << 
702   if (absNp2 > 1) {                               551   if (absNp2 > 1) {
703     i = i2end;                                    552     i = i2end;
704     if (ifSide2) {                                553     if (ifSide2) {
705       kk[i] = k;                                  554       kk[i] = k;
706       if (r[i] == 0.) pV[k] = G4Point3D(0, 0,     555       if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]);
707     }else{                                        556     }else{
708       kk[i] = kk[i1end];                          557       kk[i] = kk[i1end];
709     }                                             558     }
710   }                                               559   }
711                                                   560 
712   // set vertices                              << 
713   //                                           << 
714   G4double cosPhi, sinPhi;                        561   G4double cosPhi, sinPhi;
715                                                   562 
716   for(j=0; j<nVphi; j++) {                        563   for(j=0; j<nVphi; j++) {
717     cosPhi = std::cos(phi+j*delPhi/nSphi);        564     cosPhi = std::cos(phi+j*delPhi/nSphi);
718     sinPhi = std::sin(phi+j*delPhi/nSphi);        565     sinPhi = std::sin(phi+j*delPhi/nSphi);
719     for(i=i1beg; i<=i2end; i++) {                 566     for(i=i1beg; i<=i2end; i++) {
720       if (r[i] != 0.)                             567       if (r[i] != 0.)
721         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[    568         pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]);
722     }                                             569     }
723   }                                               570   }
724                                                   571 
725   //   G E N E R A T E   F A C E S             << 572   //   G E N E R A T E   E X T E R N A L   F A C E S
726                                                   573 
727   //  external faces                           << 
728   //                                           << 
729   G4int v1,v2;                                    574   G4int v1,v2;
730                                                   575 
731   k = 1; // free position in array of faces pF << 576   k = 1;
732   v2 = ifClosed ? nodeVis : 1;                    577   v2 = ifClosed ? nodeVis : 1;
733   for(i=i1beg; i<i1end; i++) {                    578   for(i=i1beg; i<i1end; i++) {
734     v1 = v2;                                      579     v1 = v2;
735     if (!ifClosed && i == i1end-1) {              580     if (!ifClosed && i == i1end-1) {
736       v2 = 1;                                     581       v2 = 1;
737     }else{                                        582     }else{
738       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]    583       v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis;
739     }                                             584     }
740     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v    585     RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2,
741                edgeVis, ifWholeCircle, nSphi,     586                edgeVis, ifWholeCircle, nSphi, k);
742   }                                               587   }
743   if (ifClosed) {                                 588   if (ifClosed) {
744     RotateEdge(kk[i1end], kk[i1beg], r[i1end],    589     RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis,
745                edgeVis, ifWholeCircle, nSphi,     590                edgeVis, ifWholeCircle, nSphi, k);
746   }                                               591   }
747                                                   592 
748   // internal faces                            << 593   //   G E N E R A T E   I N T E R N A L   F A C E S
749   //                                           << 594 
750   if (absNp2 > 1) {                               595   if (absNp2 > 1) {
751     v2 = ifClosed ? nodeVis : 1;                  596     v2 = ifClosed ? nodeVis : 1;
752     for(i=i2beg; i<i2end; i++) {                  597     for(i=i2beg; i<i2end; i++) {
753       v1 = v2;                                    598       v1 = v2;
754       if (!ifClosed && i==i2end-1) {              599       if (!ifClosed && i==i2end-1) {
755         v2 = 1;                                   600         v2 = 1;
756       }else{                                      601       }else{
757         v2 = (r[i] == r[i+1] && r[i+1] == r[i+    602         v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 :  nodeVis;
758       }                                           603       }
759       RotateEdge(kk[i+1], kk[i], r[i+1], r[i],    604       RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1,
760                  edgeVis, ifWholeCircle, nSphi    605                  edgeVis, ifWholeCircle, nSphi, k);
761     }                                             606     }
762     if (ifClosed) {                               607     if (ifClosed) {
763       RotateEdge(kk[i2beg], kk[i2end], r[i2beg    608       RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis,
764                  edgeVis, ifWholeCircle, nSphi    609                  edgeVis, ifWholeCircle, nSphi, k);
765     }                                             610     }
766   }                                               611   }
767                                                   612 
768   // bottom and top faces                      << 613   //   G E N E R A T E   S I D E   F A C E S
769   //                                           << 614 
770   if (!ifClosed) {                                615   if (!ifClosed) {
771     if (ifSide1) {                                616     if (ifSide1) {
772       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg    617       RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1,
773                  -1, ifWholeCircle, nSphi, k);    618                  -1, ifWholeCircle, nSphi, k);
774     }                                             619     }
775     if (ifSide2) {                                620     if (ifSide2) {
776       RotateEdge(kk[i1end], kk[i2end], r[i1end    621       RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1,
777                  -1, ifWholeCircle, nSphi, k);    622                  -1, ifWholeCircle, nSphi, k);
778     }                                             623     }
779   }                                               624   }
780                                                   625 
781   // phi_wedge faces in case of incomplete cir << 626   //   G E N E R A T E   S I D E   F A C E S  for the case of incomplete circle
782   //                                           << 627 
783   if (!ifWholeCircle) {                           628   if (!ifWholeCircle) {
784                                                   629 
785     G4int  ii[4], vv[4];                          630     G4int  ii[4], vv[4];
786                                                   631 
787     if (ifClosed) {                               632     if (ifClosed) {
788       for (i=i1beg; i<=i1end; i++) {              633       for (i=i1beg; i<=i1end; i++) {
789         ii[0] = i;                                634         ii[0] = i;
790         ii[3] = (i == i1end) ? i1beg : i+1;       635         ii[3] = (i == i1end) ? i1beg : i+1;
791         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    636         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
792         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    637         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
793         vv[0] = -1;                               638         vv[0] = -1;
794         vv[1] = 1;                                639         vv[1] = 1;
795         vv[2] = -1;                               640         vv[2] = -1;
796         vv[3] = 1;                                641         vv[3] = 1;
797         SetSideFacets(ii, vv, kk, r, delPhi, n << 642         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
798       }                                           643       }
799     }else{                                        644     }else{
800       for (i=i1beg; i<i1end; i++) {               645       for (i=i1beg; i<i1end; i++) {
801         ii[0] = i;                                646         ii[0] = i;
802         ii[3] = i+1;                              647         ii[3] = i+1;
803         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+    648         ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1;
804         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+    649         ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1;
805         vv[0] = (i == i1beg)   ? 1 : -1;          650         vv[0] = (i == i1beg)   ? 1 : -1;
806         vv[1] = 1;                                651         vv[1] = 1;
807         vv[2] = (i == i1end-1) ? 1 : -1;          652         vv[2] = (i == i1end-1) ? 1 : -1;
808         vv[3] = 1;                                653         vv[3] = 1;
809         SetSideFacets(ii, vv, kk, r, delPhi, n << 654         SetSideFacets(ii, vv, kk, r, dphi, nSphi, k);
810       }                                           655       }
811     }                                          << 656     }      
812   }                                               657   }
813                                                   658 
814   delete [] kk; // free memory                 << 659   delete [] kk;
815                                                   660 
816   // final check                               << 
817   //                                           << 
818   if (k-1 != nface) {                             661   if (k-1 != nface) {
819     std::cerr                                     662     std::cerr
820       << "HepPolyhedron::RotateAroundZ: number << 663       << "Polyhedron::RotateAroundZ: number of generated faces ("
821       << k-1 << ") is not equal to the number     664       << k-1 << ") is not equal to the number of allocated faces ("
822       << nface << ")"                             665       << nface << ")"
823       << std::endl;                               666       << std::endl;
824   }                                               667   }
825 }                                                 668 }
826                                                   669 
827 void                                           << 
828 HepPolyhedron::RotateContourAroundZ(G4int nste << 
829                                     G4double p << 
830                                     G4double d << 
831                                     const std: << 
832                                     G4int node << 
833                                     G4int edge << 
834 /********************************************* << 
835  *                                             << 
836  * Name: HepPolyhedron::RotateContourAroundZ   << 
837  * Author: E.Tcherniaev (E.Chernyaev)          << 
838  *                                             << 
839  * Function: Create HepPolyhedron for a solid  << 
840  *           a closed polyline (rz-contour) ar << 
841  *                                             << 
842  * Input: nstep - number of discrete steps, if << 
843  *        phi   - starting phi angle           << 
844  *        dphi  - delta phi                    << 
845  *        rz    - rz-contour                   << 
846  *        nodeVis - how to Draw edges joing co << 
847  *                  node during rotation       << 
848  *        edgeVis - how to Draw edges          << 
849  *                                             << 
850  ********************************************* << 
851 {                                              << 
852   //   S E T   R O T A T I O N   P A R A M E T << 
853                                                << 
854   G4bool ifWholeCircle = std::abs(dphi - twopi << 
855   G4double delPhi = (ifWholeCircle) ? twopi :  << 
856   G4int nSphi = nstep;                         << 
857   if (nSphi <= 0) nSphi = GetNumberOfRotationS << 
858   if (nSphi == 0) nSphi = 1;                   << 
859   G4int nVphi = (ifWholeCircle) ? nSphi : nSph << 
860                                                << 
861   //   C A L C U L A T E   A R E A             << 
862                                                << 
863   G4int Nrz = (G4int)rz.size();                << 
864   G4double area = 0;                           << 
865   for (G4int i = 0; i < Nrz; ++i)              << 
866   {                                            << 
867     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
868     area += rz[k].x()*rz[i].y() - rz[i].x()*rz << 
869   }                                            << 
870                                                << 
871   //   P R E P A R E   P O L Y L I N E         << 
872                                                << 
873   auto r = new G4double[Nrz];                  << 
874   auto z = new G4double[Nrz];                  << 
875   for (G4int i = 0; i < Nrz; ++i)              << 
876   {                                            << 
877     r[i] = rz[i].x();                          << 
878     z[i] = rz[i].y();                          << 
879     if (std::abs(r[i]) < spatialTolerance) r[i << 
880   }                                            << 
881                                                << 
882   //   C O U N T   V E R T I C E S   A N D   F << 
883                                                << 
884   G4int Nverts = 0;                            << 
885   for(G4int i = 0; i < Nrz; ++i) Nverts += (r[ << 
886                                                << 
887   G4int Nedges = Nrz;                          << 
888   for (G4int i = 0; i < Nrz; ++i)              << 
889   {                                            << 
890     G4int k = (i == 0) ? Nrz - 1 : i - 1;      << 
891     Nedges -= static_cast<int>(r[k] == 0 && r[ << 
892   }                                            << 
893                                                << 
894   G4int Nfaces = Nedges*nSphi;               / << 
895   if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); / << 
896                                                << 
897   //   A L L O C A T E   M E M O R Y           << 
898                                                << 
899   AllocateMemory(Nverts, Nfaces);              << 
900   if (pV == nullptr || pF == nullptr)          << 
901   {                                            << 
902     delete [] r;                               << 
903     delete [] z;                               << 
904     return;                                    << 
905   }                                            << 
906                                                << 
907   //   S E T   V E R T I C E S                 << 
908                                                << 
909   auto kk = new G4int[Nrz]; // start indices a << 
910   G4int kfree = 1; // current free position in << 
911                                                << 
912   // set start indices, set vertices for nodes << 
913   for(G4int i = 0; i < Nrz; ++i)               << 
914   {                                            << 
915     kk[i] = kfree;                             << 
916     if (r[i] == 0.) pV[kfree++] = G4Point3D(0, << 
917     if (r[i] != 0.) kfree += nVphi;            << 
918   }                                            << 
919                                                << 
920   // set vertices by rotating r                << 
921   for(G4int j = 0; j < nVphi; ++j)             << 
922   {                                            << 
923     G4double cosPhi = std::cos(phi + j*delPhi/ << 
924     G4double sinPhi = std::sin(phi + j*delPhi/ << 
925     for(G4int i = 0; i < Nrz; ++i)             << 
926     {                                          << 
927       if (r[i] != 0.)                          << 
928         pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, << 
929     }                                          << 
930   }                                            << 
931                                                << 
932   //   S E T   F A C E S                       << 
933                                                << 
934   kfree = 1; // current free position in array << 
935   for(G4int i = 0; i < Nrz; ++i)               << 
936   {                                            << 
937     G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // i << 
938     G4int i2 = i;                              << 
939     if (area < 0.) std::swap(i1, i2);          << 
940     RotateEdge(kk[i1], kk[i2], r[i1], r[i2], n << 
941                edgeVis, ifWholeCircle, nSphi,  << 
942   }                                            << 
943                                                << 
944   //    S E T   P H I _ W E D G E   F A C E S  << 
945                                                << 
946   if (!ifWholeCircle)                          << 
947   {                                            << 
948     std::vector<G4int> triangles;              << 
949     TriangulatePolygon(rz, triangles);         << 
950                                                << 
951     G4int ii[4], vv[4];                        << 
952     G4int ntria = G4int(triangles.size()/3);   << 
953     for (G4int i = 0; i < ntria; ++i)          << 
954     {                                          << 
955       G4int i1 = triangles[0 + i*3];           << 
956       G4int i2 = triangles[1 + i*3];           << 
957       G4int i3 = triangles[2 + i*3];           << 
958       if (area < 0.) std::swap(i1, i3);        << 
959       G4int v1 = (std::abs(i2-i1) == 1 || std: << 
960       G4int v2 = (std::abs(i3-i2) == 1 || std: << 
961       G4int v3 = (std::abs(i1-i3) == 1 || std: << 
962       ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3 << 
963       vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3 << 
964       SetSideFacets(ii, vv, kk, r, delPhi, nSp << 
965     }                                          << 
966   }                                            << 
967                                                << 
968   // free memory                               << 
969   delete [] r;                                 << 
970   delete [] z;                                 << 
971   delete [] kk;                                << 
972                                                << 
973   // final check                               << 
974   if (kfree - 1 != nface)                      << 
975   {                                            << 
976     std::cerr                                  << 
977       << "HepPolyhedron::RotateContourAroundZ: << 
978       << kfree-1 << ") is not equal to the num << 
979       << nface << ")"                          << 
980       << std::endl;                            << 
981   }                                            << 
982 }                                              << 
983                                                << 
984 G4bool                                         << 
985 HepPolyhedron::TriangulatePolygon(const std::v << 
986                                   std::vector< << 
987 /********************************************* << 
988  *                                             << 
989  * Name: HepPolyhedron::TriangulatePolygon     << 
990  * Author: E.Tcherniaev (E.Chernyaev)          << 
991  *                                             << 
992  * Function: Simple implementation of "ear cli << 
993  *           triangulation of a simple contour << 
994  *           the result in a std::vector as tr << 
995  *                                             << 
996  *           If triangulation is sucsessfull t << 
997  *           returns true, otherwise false     << 
998  *                                             << 
999  * Remark:   It's a copy of G4GeomTools::Trian << 
1000  *                                            << 
1001  ******************************************** << 
1002 {                                             << 
1003   result.resize(0);                           << 
1004   G4int n = (G4int)polygon.size();            << 
1005   if (n < 3) return false;                    << 
1006                                               << 
1007   // calculate area                           << 
1008   //                                          << 
1009   G4double area = 0.;                         << 
1010   for(G4int i = 0; i < n; ++i)                << 
1011   {                                           << 
1012     G4int k = (i == 0) ? n - 1 : i - 1;       << 
1013     area += polygon[k].x()*polygon[i].y() - p << 
1014   }                                           << 
1015                                               << 
1016   // allocate and initialize list of Vertices << 
1017   // we want a counter-clockwise polygon in V << 
1018   //                                          << 
1019   auto  V = new G4int[n];                     << 
1020   if (area > 0.)                              << 
1021     for (G4int i = 0; i < n; ++i) V[i] = i;   << 
1022   else                                        << 
1023     for (G4int i = 0; i < n; ++i) V[i] = (n - << 
1024                                               << 
1025   //  Triangulation: remove nv-2 Vertices, cr << 
1026   //                                          << 
1027   G4int nv = n;                               << 
1028   G4int count = 2*nv; // error detection coun << 
1029   for(G4int b = nv - 1; nv > 2; )             << 
1030   {                                           << 
1031     // ERROR: if we loop, it is probably a no << 
1032     if ((count--) <= 0)                       << 
1033     {                                         << 
1034       delete [] V;                            << 
1035       if (area < 0.) std::reverse(result.begi << 
1036       return false;                           << 
1037     }                                         << 
1038                                               << 
1039     // three consecutive vertices in current  << 
1040     G4int a = (b   < nv) ? b   : 0; // previo << 
1041           b = (a+1 < nv) ? a+1 : 0; // curren << 
1042     G4int c = (b+1 < nv) ? b+1 : 0; // next   << 
1043                                               << 
1044     if (CheckSnip(polygon, a,b,c, nv,V))      << 
1045     {                                         << 
1046       // output Triangle                      << 
1047       result.push_back(V[a]);                 << 
1048       result.push_back(V[b]);                 << 
1049       result.push_back(V[c]);                 << 
1050                                               << 
1051       // remove vertex b from remaining polyg << 
1052       nv--;                                   << 
1053       for(G4int i = b; i < nv; ++i) V[i] = V[ << 
1054                                               << 
1055       count = 2*nv; // resest error detection << 
1056     }                                         << 
1057   }                                           << 
1058   delete [] V;                                << 
1059   if (area < 0.) std::reverse(result.begin(), << 
1060   return true;                                << 
1061 }                                             << 
1062                                               << 
1063 G4bool HepPolyhedron::CheckSnip(const std::ve << 
1064                                 G4int a, G4in << 
1065                                 G4int n, cons << 
1066 /******************************************** << 
1067  *                                            << 
1068  * Name: HepPolyhedron::CheckSnip             << 
1069  * Author: E.Tcherniaev (E.Chernyaev)         << 
1070  *                                            << 
1071  * Function: Check for a valid snip,          << 
1072  *           it is a helper functionfor Trian << 
1073  *                                            << 
1074  ******************************************** << 
1075 {                                             << 
1076   static const G4double kCarTolerance = 1.e-9 << 
1077                                               << 
1078   // check orientation of Triangle            << 
1079   G4double Ax = contour[V[a]].x(), Ay = conto << 
1080   G4double Bx = contour[V[b]].x(), By = conto << 
1081   G4double Cx = contour[V[c]].x(), Cy = conto << 
1082   if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCa << 
1083                                               << 
1084   // check that there is no point inside Tria << 
1085   G4double xmin = std::min(std::min(Ax,Bx),Cx << 
1086   G4double xmax = std::max(std::max(Ax,Bx),Cx << 
1087   G4double ymin = std::min(std::min(Ay,By),Cy << 
1088   G4double ymax = std::max(std::max(Ay,By),Cy << 
1089                                               << 
1090   for (G4int i=0; i<n; ++i)                   << 
1091   {                                           << 
1092     if((i == a) || (i == b) || (i == c)) cont << 
1093     G4double Px = contour[V[i]].x();          << 
1094     if (Px < xmin || Px > xmax) continue;     << 
1095     G4double Py = contour[V[i]].y();          << 
1096     if (Py < ymin || Py > ymax) continue;     << 
1097     // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy, << 
1098     if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0 << 
1099     {                                         << 
1100       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < << 
1101       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < << 
1102       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < << 
1103     }                                         << 
1104     else                                      << 
1105     {                                         << 
1106       if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > << 
1107       if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > << 
1108       if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > << 
1109     }                                         << 
1110     return false;                             << 
1111   }                                           << 
1112   return true;                                << 
1113 }                                             << 
1114                                               << 
1115 void HepPolyhedron::SetReferences()              670 void HepPolyhedron::SetReferences()
1116 /********************************************    671 /***********************************************************************
1117  *                                               672  *                                                                     *
1118  * Name: HepPolyhedron::SetReferences            673  * Name: HepPolyhedron::SetReferences                Date:    04.12.96 *
1119  * Author: E.Chernyaev (IHEP/Protvino)           674  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1120  *                                               675  *                                                                     *
1121  * Function: For each edge set reference to n    676  * Function: For each edge set reference to neighbouring facet         *
1122  *                                               677  *                                                                     *
1123  ********************************************    678  ***********************************************************************/
1124 {                                                679 {
1125   if (nface <= 0) return;                        680   if (nface <= 0) return;
1126                                                  681 
1127   struct edgeListMember {                        682   struct edgeListMember {
1128     edgeListMember *next;                        683     edgeListMember *next;
1129     G4int v2;                                    684     G4int v2;
1130     G4int iface;                                 685     G4int iface;
1131     G4int iedge;                                 686     G4int iedge;
1132   } *edgeList, *freeList, **headList;            687   } *edgeList, *freeList, **headList;
1133                                                  688 
1134                                               << 689   
1135   //   A L L O C A T E   A N D   I N I T I A     690   //   A L L O C A T E   A N D   I N I T I A T E   L I S T S
1136                                                  691 
1137   edgeList = new edgeListMember[2*nface];        692   edgeList = new edgeListMember[2*nface];
1138   headList = new edgeListMember*[nvert];         693   headList = new edgeListMember*[nvert];
1139                                               << 694   
1140   G4int i;                                       695   G4int i;
1141   for (i=0; i<nvert; i++) {                      696   for (i=0; i<nvert; i++) {
1142     headList[i] = nullptr;                    << 697     headList[i] = 0;
1143   }                                              698   }
1144   freeList = edgeList;                           699   freeList = edgeList;
1145   for (i=0; i<2*nface-1; i++) {                  700   for (i=0; i<2*nface-1; i++) {
1146     edgeList[i].next = &edgeList[i+1];           701     edgeList[i].next = &edgeList[i+1];
1147   }                                              702   }
1148   edgeList[2*nface-1].next = nullptr;         << 703   edgeList[2*nface-1].next = 0;
1149                                                  704 
1150   //   L O O P   A L O N G   E D G E S           705   //   L O O P   A L O N G   E D G E S
1151                                                  706 
1152   G4int iface, iedge, nedge, i1, i2, k1, k2;     707   G4int iface, iedge, nedge, i1, i2, k1, k2;
1153   edgeListMember *prev, *cur;                    708   edgeListMember *prev, *cur;
1154                                               << 709   
1155   for(iface=1; iface<=nface; iface++) {          710   for(iface=1; iface<=nface; iface++) {
1156     nedge = (pF[iface].edge[3].v == 0) ? 3 :     711     nedge = (pF[iface].edge[3].v == 0) ? 3 : 4;
1157     for (iedge=0; iedge<nedge; iedge++) {        712     for (iedge=0; iedge<nedge; iedge++) {
1158       i1 = iedge;                                713       i1 = iedge;
1159       i2 = (iedge < nedge-1) ? iedge+1 : 0;      714       i2 = (iedge < nedge-1) ? iedge+1 : 0;
1160       i1 = std::abs(pF[iface].edge[i1].v);       715       i1 = std::abs(pF[iface].edge[i1].v);
1161       i2 = std::abs(pF[iface].edge[i2].v);       716       i2 = std::abs(pF[iface].edge[i2].v);
1162       k1 = (i1 < i2) ? i1 : i2;          // k    717       k1 = (i1 < i2) ? i1 : i2;          // k1 = ::min(i1,i2);
1163       k2 = (i1 > i2) ? i1 : i2;          // k    718       k2 = (i1 > i2) ? i1 : i2;          // k2 = ::max(i1,i2);
1164                                               << 719       
1165       // check head of the List corresponding    720       // check head of the List corresponding to k1
1166       cur = headList[k1];                        721       cur = headList[k1];
1167       if (cur == nullptr) {                   << 722       if (cur == 0) {
1168         headList[k1] = freeList;                 723         headList[k1] = freeList;
1169         if (freeList == nullptr) {            << 
1170           std::cerr                           << 
1171           << "Polyhedron::SetReferences: bad  << 
1172           << std::endl;                       << 
1173           break;                              << 
1174         }                                     << 
1175         freeList = freeList->next;               724         freeList = freeList->next;
1176         cur = headList[k1];                      725         cur = headList[k1];
1177         cur->next = nullptr;                  << 726         cur->next = 0;
1178         cur->v2 = k2;                            727         cur->v2 = k2;
1179         cur->iface = iface;                      728         cur->iface = iface;
1180         cur->iedge = iedge;                      729         cur->iedge = iedge;
1181         continue;                                730         continue;
1182       }                                          731       }
1183                                                  732 
1184       if (cur->v2 == k2) {                       733       if (cur->v2 == k2) {
1185         headList[k1] = cur->next;                734         headList[k1] = cur->next;
1186         cur->next = freeList;                    735         cur->next = freeList;
1187         freeList = cur;                       << 736         freeList = cur;      
1188         pF[iface].edge[iedge].f = cur->iface;    737         pF[iface].edge[iedge].f = cur->iface;
1189         pF[cur->iface].edge[cur->iedge].f = i    738         pF[cur->iface].edge[cur->iedge].f = iface;
1190         i1 = (pF[iface].edge[iedge].v < 0) ?     739         i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1191         i2 = (pF[cur->iface].edge[cur->iedge]    740         i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1192         if (i1 != i2) {                          741         if (i1 != i2) {
1193           std::cerr                              742           std::cerr
1194             << "Polyhedron::SetReferences: di    743             << "Polyhedron::SetReferences: different edge visibility "
1195             << iface << "/" << iedge << "/"      744             << iface << "/" << iedge << "/"
1196             << pF[iface].edge[iedge].v << " a    745             << pF[iface].edge[iedge].v << " and "
1197             << cur->iface << "/" << cur->iedg    746             << cur->iface << "/" << cur->iedge << "/"
1198             << pF[cur->iface].edge[cur->iedge    747             << pF[cur->iface].edge[cur->iedge].v
1199             << std::endl;                        748             << std::endl;
1200         }                                        749         }
1201         continue;                                750         continue;
1202       }                                          751       }
1203                                                  752 
1204       // check List itself                       753       // check List itself
1205       for (;;) {                                 754       for (;;) {
1206         prev = cur;                              755         prev = cur;
1207         cur = prev->next;                        756         cur = prev->next;
1208         if (cur == nullptr) {                 << 757         if (cur == 0) {
1209           prev->next = freeList;                 758           prev->next = freeList;
1210           if (freeList == nullptr) {          << 
1211             std::cerr                         << 
1212             << "Polyhedron::SetReferences: ba << 
1213             << std::endl;                     << 
1214             break;                            << 
1215           }                                   << 
1216           freeList = freeList->next;             759           freeList = freeList->next;
1217           cur = prev->next;                      760           cur = prev->next;
1218           cur->next = nullptr;                << 761           cur->next = 0;
1219           cur->v2 = k2;                          762           cur->v2 = k2;
1220           cur->iface = iface;                    763           cur->iface = iface;
1221           cur->iedge = iedge;                    764           cur->iedge = iedge;
1222           break;                                 765           break;
1223         }                                        766         }
1224                                                  767 
1225         if (cur->v2 == k2) {                     768         if (cur->v2 == k2) {
1226           prev->next = cur->next;                769           prev->next = cur->next;
1227           cur->next = freeList;                  770           cur->next = freeList;
1228           freeList = cur;                     << 771           freeList = cur;      
1229           pF[iface].edge[iedge].f = cur->ifac    772           pF[iface].edge[iedge].f = cur->iface;
1230           pF[cur->iface].edge[cur->iedge].f =    773           pF[cur->iface].edge[cur->iedge].f = iface;
1231           i1 = (pF[iface].edge[iedge].v < 0)     774           i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1;
1232           i2 = (pF[cur->iface].edge[cur->iedg    775           i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1;
1233             if (i1 != i2) {                      776             if (i1 != i2) {
1234               std::cerr                          777               std::cerr
1235                 << "Polyhedron::SetReferences    778                 << "Polyhedron::SetReferences: different edge visibility "
1236                 << iface << "/" << iedge << "    779                 << iface << "/" << iedge << "/"
1237                 << pF[iface].edge[iedge].v <<    780                 << pF[iface].edge[iedge].v << " and "
1238                 << cur->iface << "/" << cur->    781                 << cur->iface << "/" << cur->iedge << "/"
1239                 << pF[cur->iface].edge[cur->i    782                 << pF[cur->iface].edge[cur->iedge].v
1240                 << std::endl;                    783                 << std::endl;
1241             }                                    784             }
1242           break;                                 785           break;
1243         }                                        786         }
1244       }                                          787       }
1245     }                                            788     }
1246   }                                              789   }
1247                                                  790 
1248   //  C H E C K   T H A T   A L L   L I S T S    791   //  C H E C K   T H A T   A L L   L I S T S   A R E   E M P T Y
1249                                                  792 
1250   for (i=0; i<nvert; i++) {                      793   for (i=0; i<nvert; i++) {
1251     if (headList[i] != nullptr) {             << 794     if (headList[i] != 0) {
1252       std::cerr                                  795       std::cerr
1253         << "Polyhedron::SetReferences: List "    796         << "Polyhedron::SetReferences: List " << i << " is not empty"
1254         << std::endl;                            797         << std::endl;
1255     }                                            798     }
1256   }                                              799   }
1257                                                  800 
1258   //   F R E E   M E M O R Y                     801   //   F R E E   M E M O R Y
1259                                                  802 
1260   delete [] edgeList;                            803   delete [] edgeList;
1261   delete [] headList;                            804   delete [] headList;
1262 }                                                805 }
1263                                                  806 
1264 void HepPolyhedron::JoinCoplanarFacets(G4doub << 
1265 /******************************************** << 
1266  *                                            << 
1267  * Name: HepPolyhedron::JoinCoplanarFacets    << 
1268  * Author: E.Tcherniaev (E.Chernyaev)         << 
1269  *                                            << 
1270  * Function: Join couples of triangular facet << 
1271  *           where it is possible             << 
1272  *                                            << 
1273  ******************************************** << 
1274 {                                             << 
1275   G4int njoin = 0;                            << 
1276   for (G4int icur = 1; icur <= nface; ++icur) << 
1277   {                                           << 
1278     // skip if already joined or quadrangle   << 
1279     if (pF[icur].edge[0].v == 0) continue;    << 
1280     if (pF[icur].edge[3].v != 0) continue;    << 
1281     // skip if all references point to alread << 
1282     if (pF[icur].edge[0].f < icur &&          << 
1283         pF[icur].edge[1].f < icur &&          << 
1284         pF[icur].edge[2].f < icur) continue;  << 
1285     // compute plane equation                 << 
1286     G4Normal3D norm = GetUnitNormal(icur);    << 
1287     G4double dd = norm.dot(pV[pF[icur].edge[0 << 
1288     G4int vcur0 = std::abs(pF[icur].edge[0].v << 
1289     G4int vcur1 = std::abs(pF[icur].edge[1].v << 
1290     G4int vcur2 = std::abs(pF[icur].edge[2].v << 
1291     // select neighbouring facet              << 
1292     G4int kcheck = 0, icheck = 0, vcheck = 0; << 
1293     G4double dist = DBL_MAX;                  << 
1294     for (G4int k = 0; k < 3; ++k)             << 
1295     {                                         << 
1296       G4int itmp = pF[icur].edge[k].f;        << 
1297       // skip if already checked, joined or q << 
1298       if (itmp < icur) continue;              << 
1299       if (pF[itmp].edge[0].v == 0 ||          << 
1300           pF[itmp].edge[3].v != 0) continue;  << 
1301       // get candidate vertex                 << 
1302       G4int vtmp = 0;                         << 
1303       for (G4int j = 0; j < 3; ++j)           << 
1304       {                                       << 
1305         vtmp = std::abs(pF[itmp].edge[j].v);  << 
1306   if (vtmp != vcur0 && vtmp != vcur1 && vtmp  << 
1307       }                                       << 
1308       // check distance to the plane          << 
1309       G4double dtmp = std::abs(norm.dot(pV[vt << 
1310       if (dtmp > tolerance || dtmp >= dist) c << 
1311       dist = dtmp;                            << 
1312       kcheck = k;                             << 
1313       icheck = itmp;                          << 
1314       vcheck = vtmp;                          << 
1315     }                                         << 
1316     if (icheck == 0) continue; // no facet se << 
1317     // join facets                            << 
1318     njoin++;                                  << 
1319     pF[icheck].edge[0].v = 0; // mark facet a << 
1320     if (kcheck == 0)                          << 
1321     {                                         << 
1322       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1323       pF[icur].edge[2].v = pF[icur].edge[1].v << 
1324       pF[icur].edge[1].v = vcheck;            << 
1325     }                                         << 
1326     else if (kcheck == 1)                     << 
1327     {                                         << 
1328       pF[icur].edge[3].v = pF[icur].edge[2].v << 
1329       pF[icur].edge[2].v = vcheck;            << 
1330     }                                         << 
1331     else                                      << 
1332     {                                         << 
1333       pF[icur].edge[3].v = vcheck;            << 
1334     }                                         << 
1335   }                                           << 
1336   if (njoin == 0) return; // no joined facets << 
1337                                               << 
1338   // restructure facets                       << 
1339   G4int nnew = 0;                             << 
1340   for (G4int icur = 1; icur <= nface; ++icur) << 
1341   {                                           << 
1342     if (pF[icur].edge[0].v == 0) continue;    << 
1343     nnew++;                                   << 
1344     pF[nnew].edge[0].v = pF[icur].edge[0].v;  << 
1345     pF[nnew].edge[1].v = pF[icur].edge[1].v;  << 
1346     pF[nnew].edge[2].v = pF[icur].edge[2].v;  << 
1347     pF[nnew].edge[3].v = pF[icur].edge[3].v;  << 
1348   }                                           << 
1349   nface = nnew;                               << 
1350   SetReferences();                            << 
1351 }                                             << 
1352                                               << 
1353 void HepPolyhedron::InvertFacets()               807 void HepPolyhedron::InvertFacets()
1354 /********************************************    808 /***********************************************************************
1355  *                                               809  *                                                                     *
1356  * Name: HepPolyhedron::InvertFacets             810  * Name: HepPolyhedron::InvertFacets                Date:    01.12.99  *
1357  * Author: E.Chernyaev                           811  * Author: E.Chernyaev                              Revised:           *
1358  *                                               812  *                                                                     *
1359  * Function: Invert the order of the nodes in    813  * Function: Invert the order of the nodes in the facets               *
1360  *                                               814  *                                                                     *
1361  ********************************************    815  ***********************************************************************/
1362 {                                                816 {
1363   if (nface <= 0) return;                        817   if (nface <= 0) return;
1364   G4int i, k, nnode, v[4],f[4];                  818   G4int i, k, nnode, v[4],f[4];
1365   for (i=1; i<=nface; i++) {                     819   for (i=1; i<=nface; i++) {
1366     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;     820     nnode =  (pF[i].edge[3].v == 0) ? 3 : 4;
1367     for (k=0; k<nnode; k++) {                    821     for (k=0; k<nnode; k++) {
1368       v[k] = (k+1 == nnode) ? pF[i].edge[0].v    822       v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v;
1369       if (v[k] * pF[i].edge[k].v < 0) v[k] =     823       if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k];
1370       f[k] = pF[i].edge[k].f;                    824       f[k] = pF[i].edge[k].f;
1371     }                                            825     }
1372     for (k=0; k<nnode; k++) {                    826     for (k=0; k<nnode; k++) {
1373       pF[i].edge[nnode-1-k].v = v[k];            827       pF[i].edge[nnode-1-k].v = v[k];
1374       pF[i].edge[nnode-1-k].f = f[k];            828       pF[i].edge[nnode-1-k].f = f[k];
1375     }                                            829     }
1376   }                                              830   }
1377 }                                                831 }
1378                                                  832 
1379 HepPolyhedron & HepPolyhedron::Transform(cons    833 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t)
1380 /********************************************    834 /***********************************************************************
1381  *                                               835  *                                                                     *
1382  * Name: HepPolyhedron::Transform                836  * Name: HepPolyhedron::Transform                    Date:    01.12.99  *
1383  * Author: E.Chernyaev                           837  * Author: E.Chernyaev                              Revised:           *
1384  *                                               838  *                                                                     *
1385  * Function: Make transformation of the polyh    839  * Function: Make transformation of the polyhedron                     *
1386  *                                               840  *                                                                     *
1387  ********************************************    841  ***********************************************************************/
1388 {                                                842 {
1389   if (nvert > 0) {                               843   if (nvert > 0) {
1390     for (G4int i=1; i<=nvert; i++) { pV[i] =     844     for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; }
1391                                                  845 
1392     //  C H E C K   D E T E R M I N A N T   A    846     //  C H E C K   D E T E R M I N A N T   A N D
1393     //  I N V E R T   F A C E T S   I F   I T    847     //  I N V E R T   F A C E T S   I F   I T   I S   N E G A T I V E
1394                                                  848 
1395     G4Vector3D d = t * G4Vector3D(0,0,0);        849     G4Vector3D d = t * G4Vector3D(0,0,0);
1396     G4Vector3D x = t * G4Vector3D(1,0,0) - d;    850     G4Vector3D x = t * G4Vector3D(1,0,0) - d;
1397     G4Vector3D y = t * G4Vector3D(0,1,0) - d;    851     G4Vector3D y = t * G4Vector3D(0,1,0) - d;
1398     G4Vector3D z = t * G4Vector3D(0,0,1) - d;    852     G4Vector3D z = t * G4Vector3D(0,0,1) - d;
1399     if ((x.cross(y))*z < 0) InvertFacets();      853     if ((x.cross(y))*z < 0) InvertFacets();
1400   }                                              854   }
1401   return *this;                                  855   return *this;
1402 }                                                856 }
1403                                                  857 
1404 G4bool HepPolyhedron::GetNextVertexIndex(G4in    858 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const
1405 /********************************************    859 /***********************************************************************
1406  *                                               860  *                                                                     *
1407  * Name: HepPolyhedron::GetNextVertexIndex       861  * Name: HepPolyhedron::GetNextVertexIndex          Date:    03.09.96  *
1408  * Author: Yasuhide Sawada                       862  * Author: Yasuhide Sawada                          Revised:           *
1409  *                                               863  *                                                                     *
1410  * Function:                                     864  * Function:                                                           *
1411  *                                               865  *                                                                     *
1412  ********************************************    866  ***********************************************************************/
1413 {                                                867 {
1414   static G4ThreadLocal G4int iFace = 1;          868   static G4ThreadLocal G4int iFace = 1;
1415   static G4ThreadLocal G4int iQVertex = 0;       869   static G4ThreadLocal G4int iQVertex = 0;
1416   G4int vIndex = pF[iFace].edge[iQVertex].v;     870   G4int vIndex = pF[iFace].edge[iQVertex].v;
1417                                                  871 
1418   edgeFlag = (vIndex > 0) ? 1 : 0;               872   edgeFlag = (vIndex > 0) ? 1 : 0;
1419   index = std::abs(vIndex);                      873   index = std::abs(vIndex);
1420                                                  874 
1421   if (iQVertex >= 3 || pF[iFace].edge[iQVerte    875   if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1422     iQVertex = 0;                                876     iQVertex = 0;
1423     if (++iFace > nface) iFace = 1;              877     if (++iFace > nface) iFace = 1;
1424     return false;  // Last Edge                  878     return false;  // Last Edge
                                                   >> 879   }else{
                                                   >> 880     ++iQVertex;
                                                   >> 881     return true;  // not Last Edge
1425   }                                              882   }
1426                                               << 
1427   ++iQVertex;                                 << 
1428   return true;  // not Last Edge              << 
1429 }                                                883 }
1430                                                  884 
1431 G4Point3D HepPolyhedron::GetVertex(G4int inde    885 G4Point3D HepPolyhedron::GetVertex(G4int index) const
1432 /********************************************    886 /***********************************************************************
1433  *                                               887  *                                                                     *
1434  * Name: HepPolyhedron::GetVertex                888  * Name: HepPolyhedron::GetVertex                   Date:    03.09.96  *
1435  * Author: Yasuhide Sawada                       889  * Author: Yasuhide Sawada                          Revised: 17.11.99  *
1436  *                                               890  *                                                                     *
1437  * Function: Get vertex of the index.            891  * Function: Get vertex of the index.                                  *
1438  *                                               892  *                                                                     *
1439  ********************************************    893  ***********************************************************************/
1440 {                                                894 {
1441   if (index <= 0 || index > nvert) {             895   if (index <= 0 || index > nvert) {
1442     std::cerr                                    896     std::cerr
1443       << "HepPolyhedron::GetVertex: irrelevan    897       << "HepPolyhedron::GetVertex: irrelevant index " << index
1444       << std::endl;                              898       << std::endl;
1445     return G4Point3D();                          899     return G4Point3D();
1446   }                                              900   }
1447   return pV[index];                              901   return pV[index];
1448 }                                                902 }
1449                                                  903 
1450 G4bool                                           904 G4bool
1451 HepPolyhedron::GetNextVertex(G4Point3D &verte    905 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const
1452 /********************************************    906 /***********************************************************************
1453  *                                               907  *                                                                     *
1454  * Name: HepPolyhedron::GetNextVertex            908  * Name: HepPolyhedron::GetNextVertex               Date:    22.07.96  *
1455  * Author: John Allison                          909  * Author: John Allison                             Revised:           *
1456  *                                               910  *                                                                     *
1457  * Function: Get vertices of the quadrilatera    911  * Function: Get vertices of the quadrilaterals in order for each      *
1458  *           face in face order.  Returns fal    912  *           face in face order.  Returns false when finished each     *
1459  *           face.                               913  *           face.                                                     *
1460  *                                               914  *                                                                     *
1461  ********************************************    915  ***********************************************************************/
1462 {                                                916 {
1463   G4int index;                                   917   G4int index;
1464   G4bool rep = GetNextVertexIndex(index, edge    918   G4bool rep = GetNextVertexIndex(index, edgeFlag);
1465   vertex = pV[index];                            919   vertex = pV[index];
1466   return rep;                                    920   return rep;
1467 }                                                921 }
1468                                                  922 
1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D    923 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag,
1470                                   G4Normal3D     924                                   G4Normal3D &normal) const
1471 /********************************************    925 /***********************************************************************
1472  *                                               926  *                                                                     *
1473  * Name: HepPolyhedron::GetNextVertex            927  * Name: HepPolyhedron::GetNextVertex               Date:    26.11.99  *
1474  * Author: E.Chernyaev                           928  * Author: E.Chernyaev                              Revised:           *
1475  *                                               929  *                                                                     *
1476  * Function: Get vertices with normals of the    930  * Function: Get vertices with normals of the quadrilaterals in order  *
1477  *           for each face in face order.        931  *           for each face in face order.                              *
1478  *           Returns false when finished each    932  *           Returns false when finished each face.                    *
1479  *                                               933  *                                                                     *
1480  ********************************************    934  ***********************************************************************/
1481 {                                                935 {
1482   static G4ThreadLocal G4int iFace = 1;          936   static G4ThreadLocal G4int iFace = 1;
1483   static G4ThreadLocal G4int iNode = 0;          937   static G4ThreadLocal G4int iNode = 0;
1484                                                  938 
1485   if (nface == 0) return false;  // empty pol    939   if (nface == 0) return false;  // empty polyhedron
1486                                                  940 
1487   G4int k = pF[iFace].edge[iNode].v;             941   G4int k = pF[iFace].edge[iNode].v;
1488   if (k > 0) { edgeFlag = 1; } else { edgeFla    942   if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; }
1489   vertex = pV[k];                                943   vertex = pV[k];
1490   normal = FindNodeNormal(iFace,k);              944   normal = FindNodeNormal(iFace,k);
1491   if (iNode >= 3 || pF[iFace].edge[iNode+1].v    945   if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) {
1492     iNode = 0;                                   946     iNode = 0;
1493     if (++iFace > nface) iFace = 1;              947     if (++iFace > nface) iFace = 1;
1494     return false;                // last node    948     return false;                // last node
                                                   >> 949   }else{
                                                   >> 950     ++iNode;
                                                   >> 951     return true;                 // not last node
1495   }                                              952   }
1496   ++iNode;                                    << 
1497   return true;                 // not last no << 
1498 }                                                953 }
1499                                                  954 
1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4in << 955 G4bool HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag,
1501                                        G4int     956                                        G4int &iface1, G4int &iface2) const
1502 /********************************************    957 /***********************************************************************
1503  *                                               958  *                                                                     *
1504  * Name: HepPolyhedron::GetNextEdgeIndices    << 959  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    30.09.96  *
1505  * Author: E.Chernyaev                           960  * Author: E.Chernyaev                              Revised: 17.11.99  *
1506  *                                               961  *                                                                     *
1507  * Function: Get indices of the next edge tog << 962  * Function: Get indeces of the next edge together with indeces of     *
1508  *           of the faces which share the edg    963  *           of the faces which share the edge.                        *
1509  *           Returns false when the last edge    964  *           Returns false when the last edge.                         *
1510  *                                               965  *                                                                     *
1511  ********************************************    966  ***********************************************************************/
1512 {                                                967 {
1513   static G4ThreadLocal G4int iFace    = 1;       968   static G4ThreadLocal G4int iFace    = 1;
1514   static G4ThreadLocal G4int iQVertex = 0;       969   static G4ThreadLocal G4int iQVertex = 0;
1515   static G4ThreadLocal G4int iOrder   = 1;       970   static G4ThreadLocal G4int iOrder   = 1;
1516   G4int  k1, k2, kflag, kface1, kface2;          971   G4int  k1, k2, kflag, kface1, kface2;
1517                                                  972 
1518   if (iFace == 1 && iQVertex == 0) {             973   if (iFace == 1 && iQVertex == 0) {
1519     k2 = pF[nface].edge[0].v;                    974     k2 = pF[nface].edge[0].v;
1520     k1 = pF[nface].edge[3].v;                    975     k1 = pF[nface].edge[3].v;
1521     if (k1 == 0) k1 = pF[nface].edge[2].v;       976     if (k1 == 0) k1 = pF[nface].edge[2].v;
1522     if (std::abs(k1) > std::abs(k2)) iOrder =    977     if (std::abs(k1) > std::abs(k2)) iOrder = -1;
1523   }                                              978   }
1524                                                  979 
1525   do {                                           980   do {
1526     k1     = pF[iFace].edge[iQVertex].v;         981     k1     = pF[iFace].edge[iQVertex].v;
1527     kflag  = k1;                                 982     kflag  = k1;
1528     k1     = std::abs(k1);                       983     k1     = std::abs(k1);
1529     kface1 = iFace;                           << 984     kface1 = iFace; 
1530     kface2 = pF[iFace].edge[iQVertex].f;         985     kface2 = pF[iFace].edge[iQVertex].f;
1531     if (iQVertex >= 3 || pF[iFace].edge[iQVer    986     if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) {
1532       iQVertex = 0;                              987       iQVertex = 0;
1533       k2 = std::abs(pF[iFace].edge[iQVertex].    988       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1534       iFace++;                                   989       iFace++;
1535     }else{                                       990     }else{
1536       iQVertex++;                                991       iQVertex++;
1537       k2 = std::abs(pF[iFace].edge[iQVertex].    992       k2 = std::abs(pF[iFace].edge[iQVertex].v);
1538     }                                            993     }
1539   } while (iOrder*k1 > iOrder*k2);               994   } while (iOrder*k1 > iOrder*k2);
1540                                                  995 
1541   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ?     996   i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0;
1542   iface1 = kface1; iface2 = kface2;           << 997   iface1 = kface1; iface2 = kface2; 
1543                                                  998 
1544   if (iFace > nface) {                           999   if (iFace > nface) {
1545     iFace  = 1; iOrder = 1;                      1000     iFace  = 1; iOrder = 1;
1546     return false;                                1001     return false;
                                                   >> 1002   }else{
                                                   >> 1003     return true;
1547   }                                              1004   }
1548                                               << 
1549   return true;                                << 
1550 }                                                1005 }
1551                                                  1006 
1552 G4bool                                           1007 G4bool
1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1,  << 1008 HepPolyhedron::GetNextEdgeIndeces(G4int &i1, G4int &i2, G4int &edgeFlag) const
1554 /********************************************    1009 /***********************************************************************
1555  *                                               1010  *                                                                     *
1556  * Name: HepPolyhedron::GetNextEdgeIndices    << 1011  * Name: HepPolyhedron::GetNextEdgeIndeces          Date:    17.11.99  *
1557  * Author: E.Chernyaev                           1012  * Author: E.Chernyaev                              Revised:           *
1558  *                                               1013  *                                                                     *
1559  * Function: Get indices of the next edge.    << 1014  * Function: Get indeces of the next edge.                             *
1560  *           Returns false when the last edge    1015  *           Returns false when the last edge.                         *
1561  *                                               1016  *                                                                     *
1562  ********************************************    1017  ***********************************************************************/
1563 {                                                1018 {
1564   G4int kface1, kface2;                          1019   G4int kface1, kface2;
1565   return GetNextEdgeIndices(i1, i2, edgeFlag, << 1020   return GetNextEdgeIndeces(i1, i2, edgeFlag, kface1, kface2);
1566 }                                                1021 }
1567                                                  1022 
1568 G4bool                                           1023 G4bool
1569 HepPolyhedron::GetNextEdge(G4Point3D &p1,        1024 HepPolyhedron::GetNextEdge(G4Point3D &p1,
1570                            G4Point3D &p2,        1025                            G4Point3D &p2,
1571                            G4int &edgeFlag) c    1026                            G4int &edgeFlag) const
1572 /********************************************    1027 /***********************************************************************
1573  *                                               1028  *                                                                     *
1574  * Name: HepPolyhedron::GetNextEdge              1029  * Name: HepPolyhedron::GetNextEdge                 Date:    30.09.96  *
1575  * Author: E.Chernyaev                           1030  * Author: E.Chernyaev                              Revised:           *
1576  *                                               1031  *                                                                     *
1577  * Function: Get next edge.                      1032  * Function: Get next edge.                                            *
1578  *           Returns false when the last edge    1033  *           Returns false when the last edge.                         *
1579  *                                               1034  *                                                                     *
1580  ********************************************    1035  ***********************************************************************/
1581 {                                                1036 {
1582   G4int i1,i2;                                   1037   G4int i1,i2;
1583   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1038   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag);
1584   p1 = pV[i1];                                   1039   p1 = pV[i1];
1585   p2 = pV[i2];                                   1040   p2 = pV[i2];
1586   return rep;                                    1041   return rep;
1587 }                                                1042 }
1588                                                  1043 
1589 G4bool                                           1044 G4bool
1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4P    1045 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2,
1591                           G4int &edgeFlag, G4    1046                           G4int &edgeFlag, G4int &iface1, G4int &iface2) const
1592 /********************************************    1047 /***********************************************************************
1593  *                                               1048  *                                                                     *
1594  * Name: HepPolyhedron::GetNextEdge              1049  * Name: HepPolyhedron::GetNextEdge                 Date:    17.11.99  *
1595  * Author: E.Chernyaev                           1050  * Author: E.Chernyaev                              Revised:           *
1596  *                                               1051  *                                                                     *
1597  * Function: Get next edge with indices of th << 1052  * Function: Get next edge with indeces of the faces which share       *
1598  *           the edge.                           1053  *           the edge.                                                 *
1599  *           Returns false when the last edge    1054  *           Returns false when the last edge.                         *
1600  *                                               1055  *                                                                     *
1601  ********************************************    1056  ***********************************************************************/
1602 {                                                1057 {
1603   G4int i1,i2;                                   1058   G4int i1,i2;
1604   G4bool rep = GetNextEdgeIndices(i1,i2,edgeF << 1059   G4bool rep = GetNextEdgeIndeces(i1,i2,edgeFlag,iface1,iface2);
1605   p1 = pV[i1];                                   1060   p1 = pV[i1];
1606   p2 = pV[i2];                                   1061   p2 = pV[i2];
1607   return rep;                                    1062   return rep;
1608 }                                                1063 }
1609                                                  1064 
1610 void HepPolyhedron::GetFacet(G4int iFace, G4i    1065 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes,
1611                             G4int *edgeFlags,    1066                             G4int *edgeFlags, G4int *iFaces) const
1612 /********************************************    1067 /***********************************************************************
1613  *                                               1068  *                                                                     *
1614  * Name: HepPolyhedron::GetFacet                 1069  * Name: HepPolyhedron::GetFacet                    Date:    15.12.99  *
1615  * Author: E.Chernyaev                           1070  * Author: E.Chernyaev                              Revised:           *
1616  *                                               1071  *                                                                     *
1617  * Function: Get face by index                   1072  * Function: Get face by index                                         *
1618  *                                               1073  *                                                                     *
1619  ********************************************    1074  ***********************************************************************/
1620 {                                                1075 {
1621   if (iFace < 1 || iFace > nface) {              1076   if (iFace < 1 || iFace > nface) {
1622     std::cerr                                 << 1077     std::cerr 
1623       << "HepPolyhedron::GetFacet: irrelevant    1078       << "HepPolyhedron::GetFacet: irrelevant index " << iFace
1624       << std::endl;                              1079       << std::endl;
1625     n = 0;                                       1080     n = 0;
1626   }else{                                         1081   }else{
1627     G4int i, k;                                  1082     G4int i, k;
1628     for (i=0; i<4; i++) {                     << 1083     for (i=0; i<4; i++) { 
1629       k = pF[iFace].edge[i].v;                   1084       k = pF[iFace].edge[i].v;
1630       if (k == 0) break;                         1085       if (k == 0) break;
1631       if (iFaces != nullptr) iFaces[i] = pF[i << 1086       if (iFaces != 0) iFaces[i] = pF[iFace].edge[i].f;
1632       if (k > 0) {                            << 1087       if (k > 0) { 
1633         iNodes[i] = k;                           1088         iNodes[i] = k;
1634         if (edgeFlags != nullptr) edgeFlags[i << 1089         if (edgeFlags != 0) edgeFlags[i] = 1;
1635       }else{                                     1090       }else{
1636         iNodes[i] = -k;                          1091         iNodes[i] = -k;
1637         if (edgeFlags != nullptr) edgeFlags[i << 1092         if (edgeFlags != 0) edgeFlags[i] = -1;
1638       }                                          1093       }
1639     }                                            1094     }
1640     n = i;                                       1095     n = i;
1641   }                                              1096   }
1642 }                                                1097 }
1643                                                  1098 
1644 void HepPolyhedron::GetFacet(G4int index, G4i    1099 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes,
1645                              G4int *edgeFlags    1100                              G4int *edgeFlags, G4Normal3D *normals) const
1646 /********************************************    1101 /***********************************************************************
1647  *                                               1102  *                                                                     *
1648  * Name: HepPolyhedron::GetFacet                 1103  * Name: HepPolyhedron::GetFacet                    Date:    17.11.99  *
1649  * Author: E.Chernyaev                           1104  * Author: E.Chernyaev                              Revised:           *
1650  *                                               1105  *                                                                     *
1651  * Function: Get face by index                   1106  * Function: Get face by index                                         *
1652  *                                               1107  *                                                                     *
1653  ********************************************    1108  ***********************************************************************/
1654 {                                                1109 {
1655   G4int iNodes[4];                               1110   G4int iNodes[4];
1656   GetFacet(index, n, iNodes, edgeFlags);         1111   GetFacet(index, n, iNodes, edgeFlags);
1657   if (n != 0) {                                  1112   if (n != 0) {
1658     for (G4int i=0; i<n; i++) {                  1113     for (G4int i=0; i<n; i++) {
1659       nodes[i] = pV[iNodes[i]];                  1114       nodes[i] = pV[iNodes[i]];
1660       if (normals != nullptr) normals[i] = Fi << 1115       if (normals != 0) normals[i] = FindNodeNormal(index,iNodes[i]);
1661     }                                            1116     }
1662   }                                              1117   }
1663 }                                                1118 }
1664                                                  1119 
1665 G4bool                                           1120 G4bool
1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point    1121 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes,
1667                            G4int *edgeFlags,     1122                            G4int *edgeFlags, G4Normal3D *normals) const
1668 /********************************************    1123 /***********************************************************************
1669  *                                               1124  *                                                                     *
1670  * Name: HepPolyhedron::GetNextFacet             1125  * Name: HepPolyhedron::GetNextFacet                Date:    19.11.99  *
1671  * Author: E.Chernyaev                           1126  * Author: E.Chernyaev                              Revised:           *
1672  *                                               1127  *                                                                     *
1673  * Function: Get next face with normals of un    1128  * Function: Get next face with normals of unit length at the nodes.   *
1674  *           Returns false when finished all     1129  *           Returns false when finished all faces.                    *
1675  *                                               1130  *                                                                     *
1676  ********************************************    1131  ***********************************************************************/
1677 {                                                1132 {
1678   static G4ThreadLocal G4int iFace = 1;          1133   static G4ThreadLocal G4int iFace = 1;
1679                                                  1134 
1680   if (edgeFlags == nullptr) {                 << 1135   if (edgeFlags == 0) {
1681     GetFacet(iFace, n, nodes);                   1136     GetFacet(iFace, n, nodes);
1682   }else if (normals == nullptr) {             << 1137   }else if (normals == 0) {
1683     GetFacet(iFace, n, nodes, edgeFlags);        1138     GetFacet(iFace, n, nodes, edgeFlags);
1684   }else{                                         1139   }else{
1685     GetFacet(iFace, n, nodes, edgeFlags, norm    1140     GetFacet(iFace, n, nodes, edgeFlags, normals);
1686   }                                              1141   }
1687                                                  1142 
1688   if (++iFace > nface) {                         1143   if (++iFace > nface) {
1689     iFace  = 1;                                  1144     iFace  = 1;
1690     return false;                                1145     return false;
                                                   >> 1146   }else{
                                                   >> 1147     return true;
1691   }                                              1148   }
1692                                               << 
1693   return true;                                << 
1694 }                                                1149 }
1695                                                  1150 
1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFa    1151 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const
1697 /********************************************    1152 /***********************************************************************
1698  *                                               1153  *                                                                     *
1699  * Name: HepPolyhedron::GetNormal                1154  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1700  * Author: E.Chernyaev                           1155  * Author: E.Chernyaev                               Revised:          *
1701  *                                               1156  *                                                                     *
1702  * Function: Get normal of the face given by     1157  * Function: Get normal of the face given by index                     *
1703  *                                               1158  *                                                                     *
1704  ********************************************    1159  ***********************************************************************/
1705 {                                                1160 {
1706   if (iFace < 1 || iFace > nface) {              1161   if (iFace < 1 || iFace > nface) {
1707     std::cerr                                 << 1162     std::cerr 
1708       << "HepPolyhedron::GetNormal: irrelevan << 1163       << "HepPolyhedron::GetNormal: irrelevant index " << iFace 
1709       << std::endl;                              1164       << std::endl;
1710     return G4Normal3D();                         1165     return G4Normal3D();
1711   }                                              1166   }
1712                                                  1167 
1713   G4int i0  = std::abs(pF[iFace].edge[0].v);     1168   G4int i0  = std::abs(pF[iFace].edge[0].v);
1714   G4int i1  = std::abs(pF[iFace].edge[1].v);     1169   G4int i1  = std::abs(pF[iFace].edge[1].v);
1715   G4int i2  = std::abs(pF[iFace].edge[2].v);     1170   G4int i2  = std::abs(pF[iFace].edge[2].v);
1716   G4int i3  = std::abs(pF[iFace].edge[3].v);     1171   G4int i3  = std::abs(pF[iFace].edge[3].v);
1717   if (i3 == 0) i3 = i0;                          1172   if (i3 == 0) i3 = i0;
1718   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[    1173   return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]);
1719 }                                                1174 }
1720                                                  1175 
1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int    1176 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const
1722 /********************************************    1177 /***********************************************************************
1723  *                                               1178  *                                                                     *
1724  * Name: HepPolyhedron::GetNormal                1179  * Name: HepPolyhedron::GetNormal                    Date:    19.11.99 *
1725  * Author: E.Chernyaev                           1180  * Author: E.Chernyaev                               Revised:          *
1726  *                                               1181  *                                                                     *
1727  * Function: Get unit normal of the face give    1182  * Function: Get unit normal of the face given by index                *
1728  *                                               1183  *                                                                     *
1729  ********************************************    1184  ***********************************************************************/
1730 {                                                1185 {
1731   if (iFace < 1 || iFace > nface) {              1186   if (iFace < 1 || iFace > nface) {
1732     std::cerr                                 << 1187     std::cerr 
1733       << "HepPolyhedron::GetUnitNormal: irrel    1188       << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace
1734       << std::endl;                              1189       << std::endl;
1735     return G4Normal3D();                         1190     return G4Normal3D();
1736   }                                              1191   }
1737                                                  1192 
1738   G4int i0  = std::abs(pF[iFace].edge[0].v);     1193   G4int i0  = std::abs(pF[iFace].edge[0].v);
1739   G4int i1  = std::abs(pF[iFace].edge[1].v);     1194   G4int i1  = std::abs(pF[iFace].edge[1].v);
1740   G4int i2  = std::abs(pF[iFace].edge[2].v);     1195   G4int i2  = std::abs(pF[iFace].edge[2].v);
1741   G4int i3  = std::abs(pF[iFace].edge[3].v);     1196   G4int i3  = std::abs(pF[iFace].edge[3].v);
1742   if (i3 == 0) i3 = i0;                          1197   if (i3 == 0) i3 = i0;
1743   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1198   return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit();
1744 }                                                1199 }
1745                                                  1200 
1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3    1201 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const
1747 /********************************************    1202 /***********************************************************************
1748  *                                               1203  *                                                                     *
1749  * Name: HepPolyhedron::GetNextNormal            1204  * Name: HepPolyhedron::GetNextNormal               Date:    22.07.96  *
1750  * Author: John Allison                          1205  * Author: John Allison                             Revised: 19.11.99  *
1751  *                                               1206  *                                                                     *
1752  * Function: Get normals of each face in face    1207  * Function: Get normals of each face in face order.  Returns false    *
1753  *           when finished all faces.            1208  *           when finished all faces.                                  *
1754  *                                               1209  *                                                                     *
1755  ********************************************    1210  ***********************************************************************/
1756 {                                                1211 {
1757   static G4ThreadLocal G4int iFace = 1;          1212   static G4ThreadLocal G4int iFace = 1;
1758   normal = GetNormal(iFace);                     1213   normal = GetNormal(iFace);
1759   if (++iFace > nface) {                         1214   if (++iFace > nface) {
1760     iFace = 1;                                   1215     iFace = 1;
1761     return false;                                1216     return false;
                                                   >> 1217   }else{
                                                   >> 1218     return true;
1762   }                                              1219   }
1763   return true;                                << 
1764 }                                                1220 }
1765                                                  1221 
1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Nor    1222 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const
1767 /********************************************    1223 /***********************************************************************
1768  *                                               1224  *                                                                     *
1769  * Name: HepPolyhedron::GetNextUnitNormal        1225  * Name: HepPolyhedron::GetNextUnitNormal           Date:    16.09.96  *
1770  * Author: E.Chernyaev                           1226  * Author: E.Chernyaev                              Revised:           *
1771  *                                               1227  *                                                                     *
1772  * Function: Get normals of unit length of ea    1228  * Function: Get normals of unit length of each face in face order.    *
1773  *           Returns false when finished all     1229  *           Returns false when finished all faces.                    *
1774  *                                               1230  *                                                                     *
1775  ********************************************    1231  ***********************************************************************/
1776 {                                                1232 {
1777   G4bool rep = GetNextNormal(normal);            1233   G4bool rep = GetNextNormal(normal);
1778   normal = normal.unit();                        1234   normal = normal.unit();
1779   return rep;                                    1235   return rep;
1780 }                                                1236 }
1781                                                  1237 
1782 G4double HepPolyhedron::GetSurfaceArea() cons    1238 G4double HepPolyhedron::GetSurfaceArea() const
1783 /********************************************    1239 /***********************************************************************
1784  *                                               1240  *                                                                     *
1785  * Name: HepPolyhedron::GetSurfaceArea           1241  * Name: HepPolyhedron::GetSurfaceArea              Date:    25.05.01  *
1786  * Author: E.Chernyaev                           1242  * Author: E.Chernyaev                              Revised:           *
1787  *                                               1243  *                                                                     *
1788  * Function: Returns area of the surface of t    1244  * Function: Returns area of the surface of the polyhedron.            *
1789  *                                               1245  *                                                                     *
1790  ********************************************    1246  ***********************************************************************/
1791 {                                                1247 {
1792   G4double srf = 0.;                             1248   G4double srf = 0.;
1793   for (G4int iFace=1; iFace<=nface; iFace++)     1249   for (G4int iFace=1; iFace<=nface; iFace++) {
1794     G4int i0 = std::abs(pF[iFace].edge[0].v);    1250     G4int i0 = std::abs(pF[iFace].edge[0].v);
1795     G4int i1 = std::abs(pF[iFace].edge[1].v);    1251     G4int i1 = std::abs(pF[iFace].edge[1].v);
1796     G4int i2 = std::abs(pF[iFace].edge[2].v);    1252     G4int i2 = std::abs(pF[iFace].edge[2].v);
1797     G4int i3 = std::abs(pF[iFace].edge[3].v);    1253     G4int i3 = std::abs(pF[iFace].edge[3].v);
1798     if (i3 == 0) i3 = i0;                        1254     if (i3 == 0) i3 = i0;
1799     srf += ((pV[i2] - pV[i0]).cross(pV[i3] -     1255     srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag();
1800   }                                              1256   }
1801   return srf/2.;                                 1257   return srf/2.;
1802 }                                                1258 }
1803                                                  1259 
1804 G4double HepPolyhedron::GetVolume() const        1260 G4double HepPolyhedron::GetVolume() const
1805 /********************************************    1261 /***********************************************************************
1806  *                                               1262  *                                                                     *
1807  * Name: HepPolyhedron::GetVolume                1263  * Name: HepPolyhedron::GetVolume                   Date:    25.05.01  *
1808  * Author: E.Chernyaev                           1264  * Author: E.Chernyaev                              Revised:           *
1809  *                                               1265  *                                                                     *
1810  * Function: Returns volume of the polyhedron    1266  * Function: Returns volume of the polyhedron.                         *
1811  *                                               1267  *                                                                     *
1812  ********************************************    1268  ***********************************************************************/
1813 {                                                1269 {
1814   G4double v = 0.;                               1270   G4double v = 0.;
1815   for (G4int iFace=1; iFace<=nface; iFace++)     1271   for (G4int iFace=1; iFace<=nface; iFace++) {
1816     G4int i0 = std::abs(pF[iFace].edge[0].v);    1272     G4int i0 = std::abs(pF[iFace].edge[0].v);
1817     G4int i1 = std::abs(pF[iFace].edge[1].v);    1273     G4int i1 = std::abs(pF[iFace].edge[1].v);
1818     G4int i2 = std::abs(pF[iFace].edge[2].v);    1274     G4int i2 = std::abs(pF[iFace].edge[2].v);
1819     G4int i3 = std::abs(pF[iFace].edge[3].v);    1275     G4int i3 = std::abs(pF[iFace].edge[3].v);
1820     G4Point3D pt;                                1276     G4Point3D pt;
1821     if (i3 == 0) {                               1277     if (i3 == 0) {
1822       i3 = i0;                                   1278       i3 = i0;
1823       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);     1279       pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.);
1824     }else{                                       1280     }else{
1825       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.    1281       pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25;
1826     }                                            1282     }
1827     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV    1283     v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt);
1828   }                                              1284   }
1829   return v/6.;                                   1285   return v/6.;
1830 }                                                1286 }
1831                                                  1287 
1832 G4int                                            1288 G4int
1833 HepPolyhedron::createTwistedTrap(G4double Dz,    1289 HepPolyhedron::createTwistedTrap(G4double Dz,
1834                                  const G4doub    1290                                  const G4double xy1[][2],
1835                                  const G4doub    1291                                  const G4double xy2[][2])
1836 /********************************************    1292 /***********************************************************************
1837  *                                               1293  *                                                                     *
1838  * Name: createTwistedTrap                       1294  * Name: createTwistedTrap                           Date:    05.11.02 *
1839  * Author: E.Chernyaev (IHEP/Protvino)           1295  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1840  *                                               1296  *                                                                     *
1841  * Function: Creates polyhedron for twisted t    1297  * Function: Creates polyhedron for twisted trapezoid                  *
1842  *                                               1298  *                                                                     *
1843  * Input: Dz       - half-length along Z         1299  * Input: Dz       - half-length along Z             8----7            *
1844  *        xy1[2,4] - quadrilateral at Z=-Dz      1300  *        xy1[2,4] - quadrilateral at Z=-Dz       5----6  !            *
1845  *        xy2[2,4] - quadrilateral at Z=+Dz      1301  *        xy2[2,4] - quadrilateral at Z=+Dz       !  4-!--3            *
1846  *                                               1302  *                                                1----2               *
1847  *                                               1303  *                                                                     *
1848  ********************************************    1304  ***********************************************************************/
1849 {                                                1305 {
1850   AllocateMemory(12,18);                         1306   AllocateMemory(12,18);
1851                                                  1307 
1852   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz)    1308   pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz);
1853   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz)    1309   pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz);
1854   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz)    1310   pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz);
1855   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz)    1311   pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz);
1856                                                  1312 
1857   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz)    1313   pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz);
1858   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz)    1314   pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz);
1859   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz)    1315   pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz);
1860   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz)    1316   pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz);
1861                                                  1317 
1862   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;         1318   pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.;
1863   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;         1319   pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.;
1864   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;         1320   pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.;
1865   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;         1321   pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.;
1866                                                  1322 
1867   enum {DUMMY, BOTTOM,                           1323   enum {DUMMY, BOTTOM,
1868         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,    1324         LEFT_BOTTOM,  LEFT_FRONT,   LEFT_TOP,  LEFT_BACK,
1869         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,    1325         BACK_BOTTOM,  BACK_LEFT,    BACK_TOP,  BACK_RIGHT,
1870         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP    1326         RIGHT_BOTTOM, RIGHT_BACK,   RIGHT_TOP, RIGHT_FRONT,
1871         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP    1327         FRONT_BOTTOM, FRONT_RIGHT,  FRONT_TOP, FRONT_LEFT,
1872         TOP};                                    1328         TOP};
1873                                                  1329 
1874   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM    1330   pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM);
1875                                                  1331 
1876   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,    1332   pF[ 2]=G4Facet(4,BOTTOM,     -1,LEFT_FRONT,  -12,LEFT_BACK,    0,0);
1877   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,      1333   pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP,    -12,LEFT_BOTTOM,  0,0);
1878   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,     1334   pF[ 4]=G4Facet(5,TOP,        -8,LEFT_BACK,   -12,LEFT_FRONT,   0,0);
1879   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM    1335   pF[ 5]=G4Facet(8,BACK_LEFT,  -4,LEFT_BOTTOM, -12,LEFT_TOP,     0,0);
1880                                                  1336 
1881   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,     1337   pF[ 6]=G4Facet(3,BOTTOM,     -4,BACK_LEFT,   -11,BACK_RIGHT,   0,0);
1882   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,      1338   pF[ 7]=G4Facet(4,LEFT_BACK,  -8,BACK_TOP,    -11,BACK_BOTTOM,  0,0);
1883   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,    1339   pF[ 8]=G4Facet(8,TOP,        -7,BACK_RIGHT,  -11,BACK_LEFT,    0,0);
1884   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM    1340   pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP,     0,0);
1885                                                  1341 
1886   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,    1342   pF[10]=G4Facet(2,BOTTOM,     -3,RIGHT_BACK,  -10,RIGHT_FRONT,  0,0);
1887   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,     1343   pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP,   -10,RIGHT_BOTTOM, 0,0);
1888   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT    1344   pF[12]=G4Facet(7,TOP,        -6,RIGHT_FRONT, -10,RIGHT_BACK,   0,0);
1889   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTO    1345   pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP,    0,0);
1890                                                  1346 
1891   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT    1347   pF[14]=G4Facet(1,BOTTOM,     -2,FRONT_RIGHT,  -9,FRONT_LEFT,   0,0);
1892   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,     1348   pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP,    -9,FRONT_BOTTOM, 0,0);
1893   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,    1349   pF[16]=G4Facet(6,TOP,        -5,FRONT_LEFT,   -9,FRONT_RIGHT,  0,0);
1894   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTO    1350   pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP,    0,0);
1895                                               << 1351  
1896   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,    1352   pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP);
1897                                                  1353 
1898   return 0;                                      1354   return 0;
1899 }                                                1355 }
1900                                                  1356 
1901 G4int                                            1357 G4int
1902 HepPolyhedron::createPolyhedron(G4int Nnodes,    1358 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces,
1903                                 const G4doubl    1359                                 const G4double xyz[][3],
1904                                 const G4int      1360                                 const G4int  faces[][4])
1905 /********************************************    1361 /***********************************************************************
1906  *                                               1362  *                                                                     *
1907  * Name: createPolyhedron                        1363  * Name: createPolyhedron                            Date:    05.11.02 *
1908  * Author: E.Chernyaev (IHEP/Protvino)           1364  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1909  *                                               1365  *                                                                     *
1910  * Function: Creates user defined polyhedron     1366  * Function: Creates user defined polyhedron                           *
1911  *                                               1367  *                                                                     *
1912  * Input: Nnodes  - number of nodes              1368  * Input: Nnodes  - number of nodes                                    *
1913  *        Nfaces  - number of faces              1369  *        Nfaces  - number of faces                                    *
1914  *        nodes[][3] - node coordinates          1370  *        nodes[][3] - node coordinates                                *
1915  *        faces[][4] - faces                     1371  *        faces[][4] - faces                                           *
1916  *                                               1372  *                                                                     *
1917  ********************************************    1373  ***********************************************************************/
1918 {                                                1374 {
1919   AllocateMemory(Nnodes, Nfaces);                1375   AllocateMemory(Nnodes, Nfaces);
1920   if (nvert == 0) return 1;                      1376   if (nvert == 0) return 1;
1921                                                  1377 
1922   for (G4int i=0; i<Nnodes; i++) {               1378   for (G4int i=0; i<Nnodes; i++) {
1923     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1],    1379     pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]);
1924   }                                              1380   }
1925   for (G4int k=0; k<Nfaces; k++) {               1381   for (G4int k=0; k<Nfaces; k++) {
1926     pF[k+1] = G4Facet(faces[k][0],0,faces[k][    1382     pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0);
1927   }                                              1383   }
1928   SetReferences();                               1384   SetReferences();
1929   return 0;                                      1385   return 0;
1930 }                                                1386 }
1931                                                  1387 
1932 G4Point3D HepPolyhedron::vertexUnweightedMean << 
1933   /****************************************** << 
1934    *                                          << 
1935    * Name: vertexUnweightedMean               << 
1936    * Author: S. Boogert (Manchester)          << 
1937    *                                          << 
1938    * Function: Calculate the unweighted mean  << 
1939    * in the polyhedron. Not to be confused wi << 
1940    * centre of mass                           << 
1941    ****************************************** << 
1942                                               << 
1943   auto centre = G4Point3D();                  << 
1944   for(int i=1;i<=nvert;i++) {                 << 
1945     centre += pV[i];                          << 
1946   }                                           << 
1947   centre = centre/nvert;                      << 
1948   return centre;                              << 
1949 }                                             << 
1950                                               << 
1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double    1388 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2,
1952                                      G4double    1389                                      G4double Dy1, G4double Dy2,
1953                                      G4double    1390                                      G4double Dz)
1954 /********************************************    1391 /***********************************************************************
1955  *                                               1392  *                                                                     *
1956  * Name: HepPolyhedronTrd2                       1393  * Name: HepPolyhedronTrd2                           Date:    22.07.96 *
1957  * Author: E.Chernyaev (IHEP/Protvino)           1394  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
1958  *                                               1395  *                                                                     *
1959  * Function: Create GEANT4 TRD2-trapezoid        1396  * Function: Create GEANT4 TRD2-trapezoid                              *
1960  *                                               1397  *                                                                     *
1961  * Input: Dx1 - half-length along X at -Dz       1398  * Input: Dx1 - half-length along X at -Dz           8----7            *
1962  *        Dx2 - half-length along X ay +Dz       1399  *        Dx2 - half-length along X ay +Dz        5----6  !            *
1963  *        Dy1 - half-length along Y ay -Dz       1400  *        Dy1 - half-length along Y ay -Dz        !  4-!--3            *
1964  *        Dy2 - half-length along Y ay +Dz       1401  *        Dy2 - half-length along Y ay +Dz        1----2               *
1965  *        Dz  - half-length along Z              1402  *        Dz  - half-length along Z                                    *
1966  *                                               1403  *                                                                     *
1967  ********************************************    1404  ***********************************************************************/
1968 {                                                1405 {
1969   AllocateMemory(8,6);                           1406   AllocateMemory(8,6);
1970                                                  1407 
1971   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);              1408   pV[1] = G4Point3D(-Dx1,-Dy1,-Dz);
1972   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);              1409   pV[2] = G4Point3D( Dx1,-Dy1,-Dz);
1973   pV[3] = G4Point3D( Dx1, Dy1,-Dz);              1410   pV[3] = G4Point3D( Dx1, Dy1,-Dz);
1974   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);              1411   pV[4] = G4Point3D(-Dx1, Dy1,-Dz);
1975   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);              1412   pV[5] = G4Point3D(-Dx2,-Dy2, Dz);
1976   pV[6] = G4Point3D( Dx2,-Dy2, Dz);              1413   pV[6] = G4Point3D( Dx2,-Dy2, Dz);
1977   pV[7] = G4Point3D( Dx2, Dy2, Dz);              1414   pV[7] = G4Point3D( Dx2, Dy2, Dz);
1978   pV[8] = G4Point3D(-Dx2, Dy2, Dz);              1415   pV[8] = G4Point3D(-Dx2, Dy2, Dz);
1979                                                  1416 
1980   CreatePrism();                                 1417   CreatePrism();
1981 }                                                1418 }
1982                                                  1419 
1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = def << 1420 HepPolyhedronTrd2::~HepPolyhedronTrd2() {}
1984                                                  1421 
1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double    1422 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2,
1986                                      G4double    1423                                      G4double Dy, G4double Dz)
1987   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {    1424   : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {}
1988                                                  1425 
1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = def << 1426 HepPolyhedronTrd1::~HepPolyhedronTrd1() {}
1990                                                  1427 
1991 HepPolyhedronBox::HepPolyhedronBox(G4double D    1428 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz)
1992   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}     1429   : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {}
1993                                                  1430 
1994 HepPolyhedronBox::~HepPolyhedronBox() = defau << 1431 HepPolyhedronBox::~HepPolyhedronBox() {}
1995                                                  1432 
1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double    1433 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz,
1997                                      G4double    1434                                      G4double Theta,
1998                                      G4double    1435                                      G4double Phi,
1999                                      G4double    1436                                      G4double Dy1,
2000                                      G4double    1437                                      G4double Dx1,
2001                                      G4double    1438                                      G4double Dx2,
2002                                      G4double    1439                                      G4double Alp1,
2003                                      G4double    1440                                      G4double Dy2,
2004                                      G4double    1441                                      G4double Dx3,
2005                                      G4double    1442                                      G4double Dx4,
2006                                      G4double    1443                                      G4double Alp2)
2007 /********************************************    1444 /***********************************************************************
2008  *                                               1445  *                                                                     *
2009  * Name: HepPolyhedronTrap                       1446  * Name: HepPolyhedronTrap                           Date:    20.11.96 *
2010  * Author: E.Chernyaev                           1447  * Author: E.Chernyaev                               Revised:          *
2011  *                                               1448  *                                                                     *
2012  * Function: Create GEANT4 TRAP-trapezoid        1449  * Function: Create GEANT4 TRAP-trapezoid                              *
2013  *                                               1450  *                                                                     *
2014  * Input: DZ   - half-length in Z                1451  * Input: DZ   - half-length in Z                                      *
2015  *        Theta,Phi - polar angles of the lin    1452  *        Theta,Phi - polar angles of the line joining centres of the  *
2016  *                    faces at Z=-Dz and Z=+D    1453  *                    faces at Z=-Dz and Z=+Dz                         *
2017  *        Dy1  - half-length in Y of the face    1454  *        Dy1  - half-length in Y of the face at Z=-Dz                 *
2018  *        Dx1  - half-length in X of low edge    1455  *        Dx1  - half-length in X of low edge of the face at Z=-Dz     *
2019  *        Dx2  - half-length in X of top edge    1456  *        Dx2  - half-length in X of top edge of the face at Z=-Dz     *
2020  *        Alp1 - angle between Y-axis and the    1457  *        Alp1 - angle between Y-axis and the median joining top and   *
2021  *               low edges of the face at Z=-    1458  *               low edges of the face at Z=-Dz                        *
2022  *        Dy2  - half-length in Y of the face    1459  *        Dy2  - half-length in Y of the face at Z=+Dz                 *
2023  *        Dx3  - half-length in X of low edge    1460  *        Dx3  - half-length in X of low edge of the face at Z=+Dz     *
2024  *        Dx4  - half-length in X of top edge    1461  *        Dx4  - half-length in X of top edge of the face at Z=+Dz     *
2025  *        Alp2 - angle between Y-axis and the    1462  *        Alp2 - angle between Y-axis and the median joining top and   *
2026  *               low edges of the face at Z=+    1463  *               low edges of the face at Z=+Dz                        *
2027  *                                               1464  *                                                                     *
2028  ********************************************    1465  ***********************************************************************/
2029 {                                                1466 {
2030   G4double DzTthetaCphi = Dz*std::tan(Theta)*    1467   G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi);
2031   G4double DzTthetaSphi = Dz*std::tan(Theta)*    1468   G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi);
2032   G4double Dy1Talp1 = Dy1*std::tan(Alp1);        1469   G4double Dy1Talp1 = Dy1*std::tan(Alp1);
2033   G4double Dy2Talp2 = Dy2*std::tan(Alp2);        1470   G4double Dy2Talp2 = Dy2*std::tan(Alp2);
2034                                               << 1471   
2035   AllocateMemory(8,6);                           1472   AllocateMemory(8,6);
2036                                                  1473 
2037   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx    1474   pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz);
2038   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx    1475   pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz);
2039   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx    1476   pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz);
2040   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx    1477   pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz);
2041   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx    1478   pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz);
2042   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx    1479   pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz);
2043   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx    1480   pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz);
2044   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx    1481   pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz);
2045                                                  1482 
2046   CreatePrism();                                 1483   CreatePrism();
2047 }                                                1484 }
2048                                                  1485 
2049 HepPolyhedronTrap::~HepPolyhedronTrap() = def << 1486 HepPolyhedronTrap::~HepPolyhedronTrap() {}
2050                                                  1487 
2051 HepPolyhedronPara::HepPolyhedronPara(G4double    1488 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz,
2052                                      G4double    1489                                      G4double Alpha, G4double Theta,
2053                                      G4double    1490                                      G4double Phi)
2054   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx,    1491   : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {}
2055                                                  1492 
2056 HepPolyhedronPara::~HepPolyhedronPara() = def << 1493 HepPolyhedronPara::~HepPolyhedronPara() {}
2057                                                  1494 
2058 HepPolyhedronParaboloid::HepPolyhedronParabol    1495 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1,
2059                                                  1496                                                  G4double r2,
2060                                                  1497                                                  G4double dz,
2061                                                  1498                                                  G4double sPhi,
2062                                               << 1499                                                  G4double dPhi) 
2063 /********************************************    1500 /***********************************************************************
2064  *                                               1501  *                                                                     *
2065  * Name: HepPolyhedronParaboloid                 1502  * Name: HepPolyhedronParaboloid                     Date:    28.06.07 *
2066  * Author: L.Lindroos, T.Nikitina (CERN), Jul    1503  * Author: L.Lindroos, T.Nikitina (CERN), July 2007  Revised: 28.06.07 *
2067  *                                               1504  *                                                                     *
2068  * Function: Constructor for paraboloid          1505  * Function: Constructor for paraboloid                                *
2069  *                                               1506  *                                                                     *
2070  * Input: r1    - inside and outside radiuses    1507  * Input: r1    - inside and outside radiuses at -Dz                   *
2071  *        r2    - inside and outside radiuses    1508  *        r2    - inside and outside radiuses at +Dz                   *
2072  *        dz    - half length in Z               1509  *        dz    - half length in Z                                     *
2073  *        sPhi  - starting angle of the segme    1510  *        sPhi  - starting angle of the segment                        *
2074  *        dPhi  - segment range                  1511  *        dPhi  - segment range                                        *
2075  *                                               1512  *                                                                     *
2076  ********************************************    1513  ***********************************************************************/
2077 {                                                1514 {
2078   static const G4double wholeCircle=twopi;       1515   static const G4double wholeCircle=twopi;
2079                                                  1516 
2080   //   C H E C K   I N P U T   P A R A M E T     1517   //   C H E C K   I N P U T   P A R A M E T E R S
2081                                                  1518 
2082   G4int k = 0;                                   1519   G4int k = 0;
2083   if (r1 < 0. || r2 <= 0.)        k = 1;         1520   if (r1 < 0. || r2 <= 0.)        k = 1;
2084                                                  1521 
2085   if (dz <= 0.) k += 2;                          1522   if (dz <= 0.) k += 2;
2086                                                  1523 
2087   G4double phi1, phi2, dphi;                     1524   G4double phi1, phi2, dphi;
2088                                                  1525 
2089   if(dPhi < 0.)                                  1526   if(dPhi < 0.)
2090   {                                              1527   {
2091     phi2 = sPhi; phi1 = phi2 + dPhi;             1528     phi2 = sPhi; phi1 = phi2 + dPhi;
2092   }                                              1529   }
2093   else if(dPhi == 0.)                         << 1530   else if(dPhi == 0.) 
2094   {                                              1531   {
2095     phi1 = sPhi; phi2 = phi1 + wholeCircle;      1532     phi1 = sPhi; phi2 = phi1 + wholeCircle;
2096   }                                              1533   }
2097   else                                           1534   else
2098   {                                              1535   {
2099     phi1 = sPhi; phi2 = phi1 + dPhi;             1536     phi1 = sPhi; phi2 = phi1 + dPhi;
2100   }                                              1537   }
2101   dphi  = phi2 - phi1;                           1538   dphi  = phi2 - phi1;
2102                                                  1539 
2103   if (std::abs(dphi-wholeCircle) < perMillion    1540   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2104   if (dphi > wholeCircle) k += 4;             << 1541   if (dphi > wholeCircle) k += 4; 
2105                                                  1542 
2106   if (k != 0) {                                  1543   if (k != 0) {
2107     std::cerr << "HepPolyhedronParaboloid: er    1544     std::cerr << "HepPolyhedronParaboloid: error in input parameters";
2108     if ((k & 1) != 0) std::cerr << " (radiuse    1545     if ((k & 1) != 0) std::cerr << " (radiuses)";
2109     if ((k & 2) != 0) std::cerr << " (half-le    1546     if ((k & 2) != 0) std::cerr << " (half-length)";
2110     if ((k & 4) != 0) std::cerr << " (angles)    1547     if ((k & 4) != 0) std::cerr << " (angles)";
2111     std::cerr << std::endl;                      1548     std::cerr << std::endl;
2112     std::cerr << " r1=" << r1;                   1549     std::cerr << " r1=" << r1;
2113     std::cerr << " r2=" << r2;                   1550     std::cerr << " r2=" << r2;
2114     std::cerr << " dz=" << dz << " sPhi=" <<     1551     std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi
2115               << std::endl;                      1552               << std::endl;
2116     return;                                      1553     return;
2117   }                                              1554   }
2118                                               << 1555   
2119   //   P R E P A R E   T W O   P O L Y L I N     1556   //   P R E P A R E   T W O   P O L Y L I N E S
2120                                                  1557 
2121   G4int n = GetNumberOfRotationSteps();          1558   G4int n = GetNumberOfRotationSteps();
2122   G4double dl = (r2 - r1) / n;                   1559   G4double dl = (r2 - r1) / n;
2123   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;        1560   G4double k1 = (r2*r2 - r1*r1) / 2 / dz;
2124   G4double k2 = (r2*r2 + r1*r1) / 2;             1561   G4double k2 = (r2*r2 + r1*r1) / 2;
2125                                                  1562 
2126   auto zz = new G4double[n + 2], rr = new G4d << 1563   G4double *zz = new G4double[n + 2], *rr = new G4double[n + 2];
2127                                                  1564 
2128   zz[0] = dz;                                    1565   zz[0] = dz;
2129   rr[0] = r2;                                    1566   rr[0] = r2;
2130                                                  1567 
2131   for(G4int i = 1; i < n - 1; i++)               1568   for(G4int i = 1; i < n - 1; i++)
2132   {                                              1569   {
2133     rr[i] = rr[i-1] - dl;                        1570     rr[i] = rr[i-1] - dl;
2134     zz[i] = (rr[i]*rr[i] - k2) / k1;             1571     zz[i] = (rr[i]*rr[i] - k2) / k1;
2135     if(rr[i] < 0)                                1572     if(rr[i] < 0)
2136     {                                            1573     {
2137       rr[i] = 0;                                 1574       rr[i] = 0;
2138       zz[i] = 0;                                 1575       zz[i] = 0;
2139     }                                            1576     }
2140   }                                              1577   }
2141                                                  1578 
2142   zz[n-1] = -dz;                                 1579   zz[n-1] = -dz;
2143   rr[n-1] = r1;                                  1580   rr[n-1] = r1;
2144                                                  1581 
2145   zz[n] = dz;                                    1582   zz[n] = dz;
2146   rr[n] = 0;                                     1583   rr[n] = 0;
2147                                                  1584 
2148   zz[n+1] = -dz;                                 1585   zz[n+1] = -dz;
2149   rr[n+1] = 0;                                   1586   rr[n+1] = 0;
2150                                                  1587 
2151   //   R O T A T E    P O L Y L I N E S          1588   //   R O T A T E    P O L Y L I N E S
2152                                                  1589 
2153   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr,  << 1590   RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 
2154   SetReferences();                               1591   SetReferences();
2155                                                  1592 
2156   delete [] zz;                                  1593   delete [] zz;
2157   delete [] rr;                                  1594   delete [] rr;
2158 }                                                1595 }
2159                                                  1596 
2160 HepPolyhedronParaboloid::~HepPolyhedronParabo << 1597 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() {}
2161                                                  1598 
2162 HepPolyhedronHype::HepPolyhedronHype(G4double    1599 HepPolyhedronHype::HepPolyhedronHype(G4double r1,
2163                                      G4double    1600                                      G4double r2,
2164                                      G4double    1601                                      G4double sqrtan1,
2165                                      G4double    1602                                      G4double sqrtan2,
2166                                      G4double << 1603                                      G4double halfZ) 
2167 /********************************************    1604 /***********************************************************************
2168  *                                               1605  *                                                                     *
2169  * Name: HepPolyhedronHype                       1606  * Name: HepPolyhedronHype                           Date:    14.04.08 *
2170  * Author: Tatiana Nikitina (CERN)               1607  * Author: Tatiana Nikitina (CERN)                   Revised: 14.04.08 *
2171  *         Evgueni Tcherniaev                 << 
2172  *                                               1608  *                                                                     *
2173  * Function: Constructor for Hype                1609  * Function: Constructor for Hype                                      *
2174  *                                               1610  *                                                                     *
2175  * Input: r1       - inside radius at z=0        1611  * Input: r1       - inside radius at z=0                              *
2176  *        r2       - outside radiuses at z=0     1612  *        r2       - outside radiuses at z=0                           *
2177  *        sqrtan1  - sqr of tan of Inner Ster    1613  *        sqrtan1  - sqr of tan of Inner Stereo Angle                  *
2178  *        sqrtan2  - sqr of tan of Outer Ster    1614  *        sqrtan2  - sqr of tan of Outer Stereo Angle                  *
2179  *        halfZ    - half length in Z            1615  *        halfZ    - half length in Z                                  *
2180  *                                               1616  *                                                                     *
2181  ********************************************    1617  ***********************************************************************/
2182 {                                                1618 {
2183   static const G4double wholeCircle = twopi;  << 1619   static const G4double wholeCircle=twopi;
2184                                                  1620 
2185   //   C H E C K   I N P U T   P A R A M E T     1621   //   C H E C K   I N P U T   P A R A M E T E R S
2186                                                  1622 
2187   G4int k = 0;                                   1623   G4int k = 0;
2188   if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1;  << 1624   if (r2 < 0. || r1 < 0. )        k = 1;
2189   if (halfZ <= 0.) k += 2;                    << 1625   if (r1 > r2 )                   k = 1;
2190   if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4;    << 1626   if (r1 == r2)                   k = 1;
2191                                                  1627 
                                                   >> 1628   if (halfZ <= 0.) k += 2;
                                                   >> 1629  
                                                   >> 1630   if (sqrtan1<0.||sqrtan2<0.) k += 4;  
                                                   >> 1631  
2192   if (k != 0)                                    1632   if (k != 0)
2193   {                                              1633   {
2194     std::cerr << "HepPolyhedronHype: error in    1634     std::cerr << "HepPolyhedronHype: error in input parameters";
2195     if ((k & 1) != 0) std::cerr << " (radiuse    1635     if ((k & 1) != 0) std::cerr << " (radiuses)";
2196     if ((k & 2) != 0) std::cerr << " (half-le    1636     if ((k & 2) != 0) std::cerr << " (half-length)";
2197     if ((k & 4) != 0) std::cerr << " (angles)    1637     if ((k & 4) != 0) std::cerr << " (angles)";
2198     std::cerr << std::endl;                      1638     std::cerr << std::endl;
2199     std::cerr << " r1=" << r1 << " r2=" << r2    1639     std::cerr << " r1=" << r1 << " r2=" << r2;
2200     std::cerr << " halfZ=" << halfZ << " sqrT    1640     std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1
2201               << " sqrTan2=" << sqrtan2          1641               << " sqrTan2=" << sqrtan2
2202               << std::endl;                      1642               << std::endl;
2203     return;                                      1643     return;
2204   }                                              1644   }
2205                                               << 1645   
2206   //   P R E P A R E   T W O   P O L Y L I N     1646   //   P R E P A R E   T W O   P O L Y L I N E S
2207                                                  1647 
2208   G4int ns = std::max(3, GetNumberOfRotationS << 1648   G4int n = GetNumberOfRotationSteps();
2209   G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1;   << 1649   G4double dz = 2.*halfZ / n;
2210   G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1;   << 1650   G4double k1 = r1*r1;
2211   auto  zz = new G4double[nz1 + nz2];         << 1651   G4double k2 = r2*r2;
2212   auto  rr = new G4double[nz1 + nz2];         << 1652 
2213                                               << 1653   G4double *zz = new G4double[n+n+1], *rr = new G4double[n+n+1];
2214   // external polyline                        << 1654 
2215   G4double dz2 = 2.*halfZ/(nz2 - 1);          << 1655   zz[0] = halfZ;
2216   for(G4int i = 0; i < nz2; ++i)              << 1656   rr[0] = std::sqrt(sqrtan2*halfZ*halfZ+k2);
                                                   >> 1657 
                                                   >> 1658   for(G4int i = 1; i < n-1; i++)
2217   {                                              1659   {
2218     zz[i] = halfZ - dz2*i;                    << 1660     zz[i] = zz[i-1] - dz;
2219     rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r << 1661     rr[i] =std::sqrt(sqrtan2*zz[i]*zz[i]+k2);
2220   }                                              1662   }
2221                                                  1663 
2222   // internal polyline                        << 1664   zz[n-1] = -halfZ;
2223   G4double dz1 = 2.*halfZ/(nz1 - 1);          << 1665   rr[n-1] = rr[0];
2224   for(G4int i = 0; i < nz1; ++i)              << 1666 
                                                   >> 1667   zz[n] = halfZ;
                                                   >> 1668   rr[n] =  std::sqrt(sqrtan1*halfZ*halfZ+k1);
                                                   >> 1669 
                                                   >> 1670   for(G4int i = n+1; i < n+n; i++)
2225   {                                              1671   {
2226     G4int j = nz2 + i;                        << 1672     zz[i] = zz[i-1] - dz;
2227     zz[j] = halfZ - dz1*i;                    << 1673     rr[i] =std::sqrt(sqrtan1*zz[i]*zz[i]+k1);
2228     rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r << 
2229   }                                              1674   }
                                                   >> 1675   zz[n+n] = -halfZ;
                                                   >> 1676   rr[n+n] = rr[n];
2230                                                  1677 
2231   //   R O T A T E    P O L Y L I N E S          1678   //   R O T A T E    P O L Y L I N E S
2232                                                  1679 
2233   RotateAroundZ(0, 0., wholeCircle, nz2, nz1, << 1680   RotateAroundZ(0, 0., wholeCircle, n, n, zz, rr, -1, -1); 
2234   SetReferences();                               1681   SetReferences();
2235                                                  1682 
2236   delete [] zz;                                  1683   delete [] zz;
2237   delete [] rr;                                  1684   delete [] rr;
2238 }                                                1685 }
2239                                                  1686 
2240 HepPolyhedronHype::~HepPolyhedronHype() = def << 1687 HepPolyhedronHype::~HepPolyhedronHype() {}
2241                                                  1688 
2242 HepPolyhedronCons::HepPolyhedronCons(G4double    1689 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1,
2243                                      G4double    1690                                      G4double Rmx1,
2244                                      G4double    1691                                      G4double Rmn2,
2245                                      G4double << 1692                                      G4double Rmx2, 
2246                                      G4double    1693                                      G4double Dz,
2247                                      G4double    1694                                      G4double Phi1,
2248                                      G4double << 1695                                      G4double Dphi) 
2249 /********************************************    1696 /***********************************************************************
2250  *                                               1697  *                                                                     *
2251  * Name: HepPolyhedronCons::HepPolyhedronCons    1698  * Name: HepPolyhedronCons::HepPolyhedronCons        Date:    15.12.96 *
2252  * Author: E.Chernyaev (IHEP/Protvino)           1699  * Author: E.Chernyaev (IHEP/Protvino)               Revised: 15.12.96 *
2253  *                                               1700  *                                                                     *
2254  * Function: Constructor for CONS, TUBS, CONE    1701  * Function: Constructor for CONS, TUBS, CONE, TUBE                    *
2255  *                                               1702  *                                                                     *
2256  * Input: Rmn1, Rmx1 - inside and outside rad    1703  * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz              *
2257  *        Rmn2, Rmx2 - inside and outside rad    1704  *        Rmn2, Rmx2 - inside and outside radiuses at +Dz              *
2258  *        Dz         - half length in Z          1705  *        Dz         - half length in Z                                *
2259  *        Phi1       - starting angle of the     1706  *        Phi1       - starting angle of the segment                   *
2260  *        Dphi       - segment range             1707  *        Dphi       - segment range                                   *
2261  *                                               1708  *                                                                     *
2262  ********************************************    1709  ***********************************************************************/
2263 {                                                1710 {
2264   static const G4double wholeCircle=twopi;       1711   static const G4double wholeCircle=twopi;
2265                                                  1712 
2266   //   C H E C K   I N P U T   P A R A M E T     1713   //   C H E C K   I N P U T   P A R A M E T E R S
2267                                                  1714 
2268   G4int k = 0;                                   1715   G4int k = 0;
2269   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. ||     1716   if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.)        k = 1;
2270   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                1717   if (Rmn1 > Rmx1 || Rmn2 > Rmx2)                              k = 1;
2271   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)              1718   if (Rmn1 == Rmx1 && Rmn2 == Rmx2)                            k = 1;
2272                                                  1719 
2273   if (Dz <= 0.) k += 2;                          1720   if (Dz <= 0.) k += 2;
2274                                               << 1721  
2275   G4double phi1, phi2, dphi;                     1722   G4double phi1, phi2, dphi;
2276   if (Dphi < 0.) {                               1723   if (Dphi < 0.) {
2277     phi2 = Phi1; phi1 = phi2 - Dphi;             1724     phi2 = Phi1; phi1 = phi2 - Dphi;
2278   }else if (Dphi == 0.) {                        1725   }else if (Dphi == 0.) {
2279     phi1 = Phi1; phi2 = phi1 + wholeCircle;      1726     phi1 = Phi1; phi2 = phi1 + wholeCircle;
2280   }else{                                         1727   }else{
2281     phi1 = Phi1; phi2 = phi1 + Dphi;             1728     phi1 = Phi1; phi2 = phi1 + Dphi;
2282   }                                              1729   }
2283   dphi  = phi2 - phi1;                           1730   dphi  = phi2 - phi1;
2284   if (std::abs(dphi-wholeCircle) < perMillion    1731   if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle;
2285   if (dphi > wholeCircle) k += 4;             << 1732   if (dphi > wholeCircle) k += 4; 
2286                                                  1733 
2287   if (k != 0) {                                  1734   if (k != 0) {
2288     std::cerr << "HepPolyhedronCone(s)/Tube(s    1735     std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters";
2289     if ((k & 1) != 0) std::cerr << " (radiuse    1736     if ((k & 1) != 0) std::cerr << " (radiuses)";
2290     if ((k & 2) != 0) std::cerr << " (half-le    1737     if ((k & 2) != 0) std::cerr << " (half-length)";
2291     if ((k & 4) != 0) std::cerr << " (angles)    1738     if ((k & 4) != 0) std::cerr << " (angles)";
2292     std::cerr << std::endl;                      1739     std::cerr << std::endl;
2293     std::cerr << " Rmn1=" << Rmn1 << " Rmx1="    1740     std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1;
2294     std::cerr << " Rmn2=" << Rmn2 << " Rmx2="    1741     std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2;
2295     std::cerr << " Dz=" << Dz << " Phi1=" <<     1742     std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi
2296               << std::endl;                      1743               << std::endl;
2297     return;                                      1744     return;
2298   }                                              1745   }
2299                                               << 1746   
2300   //   P R E P A R E   T W O   P O L Y L I N     1747   //   P R E P A R E   T W O   P O L Y L I N E S
2301                                                  1748 
2302   G4double zz[4], rr[4];                         1749   G4double zz[4], rr[4];
2303   zz[0] =  Dz;                                << 1750   zz[0] =  Dz; 
2304   zz[1] = -Dz;                                << 1751   zz[1] = -Dz; 
2305   zz[2] =  Dz;                                << 1752   zz[2] =  Dz; 
2306   zz[3] = -Dz;                                << 1753   zz[3] = -Dz; 
2307   rr[0] =  Rmx2;                                 1754   rr[0] =  Rmx2;
2308   rr[1] =  Rmx1;                                 1755   rr[1] =  Rmx1;
2309   rr[2] =  Rmn2;                                 1756   rr[2] =  Rmn2;
2310   rr[3] =  Rmn1;                                 1757   rr[3] =  Rmn1;
2311                                                  1758 
2312   //   R O T A T E    P O L Y L I N E S          1759   //   R O T A T E    P O L Y L I N E S
2313                                                  1760 
2314   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr,  << 1761   RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 
2315   SetReferences();                               1762   SetReferences();
2316 }                                                1763 }
2317                                                  1764 
2318 HepPolyhedronCons::~HepPolyhedronCons() = def << 1765 HepPolyhedronCons::~HepPolyhedronCons() {}
2319                                                  1766 
2320 HepPolyhedronCone::HepPolyhedronCone(G4double << 1767 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 
2321                                      G4double    1768                                      G4double Rmn2, G4double Rmx2,
2322                                      G4double    1769                                      G4double Dz) :
2323   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, D    1770   HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {}
2324                                                  1771 
2325 HepPolyhedronCone::~HepPolyhedronCone() = def << 1772 HepPolyhedronCone::~HepPolyhedronCone() {}
2326                                                  1773 
2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double    1774 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax,
2328                                      G4double << 1775                                      G4double Dz, 
2329                                      G4double    1776                                      G4double Phi1, G4double Dphi)
2330   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rma    1777   :   HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {}
2331                                                  1778 
2332 HepPolyhedronTubs::~HepPolyhedronTubs() = def << 1779 HepPolyhedronTubs::~HepPolyhedronTubs() {}
2333                                                  1780 
2334 HepPolyhedronTube::HepPolyhedronTube (G4doubl    1781 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax,
2335                                       G4doubl    1782                                       G4double Dz)
2336   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax,    1783   : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {}
2337                                                  1784 
2338 HepPolyhedronTube::~HepPolyhedronTube () = de << 1785 HepPolyhedronTube::~HepPolyhedronTube () {}
2339                                                  1786 
2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double    1787 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi,
2341                                      G4double    1788                                      G4double dphi,
2342                                      G4int np << 1789                                      G4int    npdv,
2343                                      G4int nz << 1790                                      G4int    nz,
2344                                      const G4    1791                                      const G4double *z,
2345                                      const G4    1792                                      const G4double *rmin,
2346                                      const G4    1793                                      const G4double *rmax)
2347 /********************************************    1794 /***********************************************************************
2348  *                                               1795  *                                                                     *
2349  * Name: HepPolyhedronPgon                       1796  * Name: HepPolyhedronPgon                           Date:    09.12.96 *
2350  * Author: E.Chernyaev                           1797  * Author: E.Chernyaev                               Revised:          *
2351  *                                               1798  *                                                                     *
2352  * Function: Constructor of polyhedron for PG    1799  * Function: Constructor of polyhedron for PGON, PCON                  *
2353  *                                               1800  *                                                                     *
2354  * Input: phi  - initial phi                     1801  * Input: phi  - initial phi                                           *
2355  *        dphi - delta phi                       1802  *        dphi - delta phi                                             *
2356  *        npdv - number of steps along phi       1803  *        npdv - number of steps along phi                             *
2357  *        nz   - number of z-planes (at least    1804  *        nz   - number of z-planes (at least two)                     *
2358  *        z[]  - z coordinates of the slices     1805  *        z[]  - z coordinates of the slices                           *
2359  *        rmin[] - smaller r at the slices       1806  *        rmin[] - smaller r at the slices                             *
2360  *        rmax[] - bigger  r at the slices       1807  *        rmax[] - bigger  r at the slices                             *
2361  *                                               1808  *                                                                     *
2362  ********************************************    1809  ***********************************************************************/
2363 {                                                1810 {
2364   //   C H E C K   I N P U T   P A R A M E T     1811   //   C H E C K   I N P U T   P A R A M E T E R S
2365                                                  1812 
2366   if (dphi <= 0. || dphi > twopi) {              1813   if (dphi <= 0. || dphi > twopi) {
2367     std::cerr                                    1814     std::cerr
2368       << "HepPolyhedronPgon/Pcon: wrong delta    1815       << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi
2369       << std::endl;                              1816       << std::endl;
2370     return;                                      1817     return;
2371   }                                           << 1818   }    
2372                                               << 1819     
2373   if (nz < 2) {                                  1820   if (nz < 2) {
2374     std::cerr                                    1821     std::cerr
2375       << "HepPolyhedronPgon/Pcon: number of z    1822       << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz
2376       << std::endl;                              1823       << std::endl;
2377     return;                                      1824     return;
2378   }                                              1825   }
2379                                                  1826 
2380   if (npdv < 0) {                                1827   if (npdv < 0) {
2381     std::cerr                                    1828     std::cerr
2382       << "HepPolyhedronPgon/Pcon: error in nu    1829       << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv
2383       << std::endl;                              1830       << std::endl;
2384     return;                                      1831     return;
2385   }                                              1832   }
2386                                                  1833 
2387   G4int i;                                       1834   G4int i;
2388   for (i=0; i<nz; i++) {                         1835   for (i=0; i<nz; i++) {
2389     if (rmin[i] < 0. || rmax[i] < 0. || rmin[    1836     if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) {
2390       std::cerr                                  1837       std::cerr
2391         << "HepPolyhedronPgon: error in radiu    1838         << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]="
2392         << rmin[i] << " rmax[" << i << "]=" <    1839         << rmin[i] << " rmax[" << i << "]=" << rmax[i]
2393         << std::endl;                            1840         << std::endl;
2394       return;                                    1841       return;
2395     }                                            1842     }
2396   }                                              1843   }
2397                                                  1844 
2398   //   P R E P A R E   T W O   P O L Y L I N     1845   //   P R E P A R E   T W O   P O L Y L I N E S
2399                                                  1846 
2400   G4double *zz, *rr;                             1847   G4double *zz, *rr;
2401   zz = new G4double[2*nz];                       1848   zz = new G4double[2*nz];
2402   rr = new G4double[2*nz];                       1849   rr = new G4double[2*nz];
2403                                                  1850 
2404   if (z[0] > z[nz-1]) {                          1851   if (z[0] > z[nz-1]) {
2405     for (i=0; i<nz; i++) {                       1852     for (i=0; i<nz; i++) {
2406       zz[i]    = z[i];                           1853       zz[i]    = z[i];
2407       rr[i]    = rmax[i];                        1854       rr[i]    = rmax[i];
2408       zz[i+nz] = z[i];                           1855       zz[i+nz] = z[i];
2409       rr[i+nz] = rmin[i];                        1856       rr[i+nz] = rmin[i];
2410     }                                            1857     }
2411   }else{                                         1858   }else{
2412     for (i=0; i<nz; i++) {                       1859     for (i=0; i<nz; i++) {
2413       zz[i]    = z[nz-i-1];                      1860       zz[i]    = z[nz-i-1];
2414       rr[i]    = rmax[nz-i-1];                   1861       rr[i]    = rmax[nz-i-1];
2415       zz[i+nz] = z[nz-i-1];                      1862       zz[i+nz] = z[nz-i-1];
2416       rr[i+nz] = rmin[nz-i-1];                   1863       rr[i+nz] = rmin[nz-i-1];
2417     }                                            1864     }
2418   }                                              1865   }
2419                                                  1866 
2420   //   R O T A T E    P O L Y L I N E S          1867   //   R O T A T E    P O L Y L I N E S
2421                                                  1868 
2422   G4int nodeVis = 1;                          << 1869   RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, -1, (npdv == 0) ? -1 : 1); 
2423   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2424   RotateAroundZ(npdv, phi, dphi, nz, nz, zz,  << 
2425   SetReferences();                               1870   SetReferences();
2426                                               << 1871   
2427   delete [] zz;                                  1872   delete [] zz;
2428   delete [] rr;                                  1873   delete [] rr;
2429 }                                                1874 }
2430                                                  1875 
2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double << 1876 HepPolyhedronPgon::~HepPolyhedronPgon() {}
2432                                      G4double << 
2433                                      G4int np << 
2434                                      const st << 
2435 /******************************************** << 
2436  *                                            << 
2437  * Name: HepPolyhedronPgon                    << 
2438  * Author: E.Tcherniaev (E.Chernyaev)         << 
2439  *                                            << 
2440  * Function: Constructor of polyhedron for PG << 
2441  *                                            << 
2442  * Input: phi  - initial phi                  << 
2443  *        dphi - delta phi                    << 
2444  *        npdv - number of steps along phi    << 
2445  *        rz   - rz-contour                   << 
2446  *                                            << 
2447  ******************************************** << 
2448 {                                             << 
2449   //   C H E C K   I N P U T   P A R A M E T  << 
2450                                               << 
2451   if (dphi <= 0. || dphi > twopi) {           << 
2452     std::cerr                                 << 
2453       << "HepPolyhedronPgon/Pcon: wrong delta << 
2454       << std::endl;                           << 
2455     return;                                   << 
2456   }                                           << 
2457                                               << 
2458   if (npdv < 0) {                             << 
2459     std::cerr                                 << 
2460       << "HepPolyhedronPgon/Pcon: error in nu << 
2461       << std::endl;                           << 
2462     return;                                   << 
2463   }                                           << 
2464                                               << 
2465   G4int nrz = (G4int)rz.size();               << 
2466   if (nrz < 3) {                              << 
2467     std::cerr                                 << 
2468       << "HepPolyhedronPgon/Pcon: invalid num << 
2469       << std::endl;                           << 
2470     return;                                   << 
2471   }                                           << 
2472                                               << 
2473   //   R O T A T E    P O L Y L I N E         << 
2474                                               << 
2475   G4int nodeVis = 1;                          << 
2476   G4int edgeVis = (npdv == 0) ? -1 : 1;       << 
2477   RotateContourAroundZ(npdv, phi, dphi, rz, n << 
2478   SetReferences();                            << 
2479 }                                             << 
2480                                               << 
2481 HepPolyhedronPgon::~HepPolyhedronPgon() = def << 
2482                                                  1877 
2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double    1878 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz,
2484                                      const G4    1879                                      const G4double *z,
2485                                      const G4    1880                                      const G4double *rmin,
2486                                      const G4    1881                                      const G4double *rmax)
2487   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rm    1882   : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {}
2488                                                  1883 
2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double << 1884 HepPolyhedronPcon::~HepPolyhedronPcon() {}
2490                                      const st << 
2491   : HepPolyhedronPgon(phi, dphi, 0, rz) {}    << 
2492                                               << 
2493 HepPolyhedronPcon::~HepPolyhedronPcon() = def << 
2494                                                  1885 
2495 HepPolyhedronSphere::HepPolyhedronSphere(G4do    1886 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax,
2496                                          G4do    1887                                          G4double phi, G4double dphi,
2497                                          G4do    1888                                          G4double the, G4double dthe)
2498 /********************************************    1889 /***********************************************************************
2499  *                                               1890  *                                                                     *
2500  * Name: HepPolyhedronSphere                     1891  * Name: HepPolyhedronSphere                         Date:    11.12.96 *
2501  * Author: E.Chernyaev (IHEP/Protvino)           1892  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2502  *                                               1893  *                                                                     *
2503  * Function: Constructor of polyhedron for SP    1894  * Function: Constructor of polyhedron for SPHERE                      *
2504  *                                               1895  *                                                                     *
2505  * Input: rmin - internal radius                 1896  * Input: rmin - internal radius                                       *
2506  *        rmax - external radius                 1897  *        rmax - external radius                                       *
2507  *        phi  - initial phi                     1898  *        phi  - initial phi                                           *
2508  *        dphi - delta phi                       1899  *        dphi - delta phi                                             *
2509  *        the  - initial theta                   1900  *        the  - initial theta                                         *
2510  *        dthe - delta theta                     1901  *        dthe - delta theta                                           *
2511  *                                               1902  *                                                                     *
2512  ********************************************    1903  ***********************************************************************/
2513 {                                                1904 {
2514   //   C H E C K   I N P U T   P A R A M E T     1905   //   C H E C K   I N P U T   P A R A M E T E R S
2515                                                  1906 
2516   if (dphi <= 0. || dphi > twopi) {              1907   if (dphi <= 0. || dphi > twopi) {
2517     std::cerr                                    1908     std::cerr
2518       << "HepPolyhedronSphere: wrong delta ph    1909       << "HepPolyhedronSphere: wrong delta phi = " << dphi
2519       << std::endl;                              1910       << std::endl;
2520     return;                                      1911     return;
2521   }                                           << 1912   }    
2522                                                  1913 
2523   if (the < 0. || the > pi) {                    1914   if (the < 0. || the > pi) {
2524     std::cerr                                    1915     std::cerr
2525       << "HepPolyhedronSphere: wrong theta =     1916       << "HepPolyhedronSphere: wrong theta = " << the
2526       << std::endl;                              1917       << std::endl;
2527     return;                                      1918     return;
2528   }                                           << 1919   }    
2529                                               << 1920   
2530   if (dthe <= 0. || dthe > pi) {                 1921   if (dthe <= 0. || dthe > pi) {
2531     std::cerr                                    1922     std::cerr
2532       << "HepPolyhedronSphere: wrong delta th    1923       << "HepPolyhedronSphere: wrong delta theta = " << dthe
2533       << std::endl;                              1924       << std::endl;
2534     return;                                      1925     return;
2535   }                                           << 1926   }    
2536                                                  1927 
2537   if (the+dthe > pi) {                           1928   if (the+dthe > pi) {
2538     std::cerr                                    1929     std::cerr
2539       << "HepPolyhedronSphere: wrong theta +     1930       << "HepPolyhedronSphere: wrong theta + delta theta = "
2540       << the << " " << dthe                      1931       << the << " " << dthe
2541       << std::endl;                              1932       << std::endl;
2542     return;                                      1933     return;
2543   }                                           << 1934   }    
2544                                               << 1935   
2545   if (rmin < 0. || rmin >= rmax) {               1936   if (rmin < 0. || rmin >= rmax) {
2546     std::cerr                                    1937     std::cerr
2547       << "HepPolyhedronSphere: error in radiu    1938       << "HepPolyhedronSphere: error in radiuses"
2548       << " rmin=" << rmin << " rmax=" << rmax    1939       << " rmin=" << rmin << " rmax=" << rmax
2549       << std::endl;                              1940       << std::endl;
2550     return;                                      1941     return;
2551   }                                              1942   }
2552                                                  1943 
2553   //   P R E P A R E   T W O   P O L Y L I N     1944   //   P R E P A R E   T W O   P O L Y L I N E S
2554                                                  1945 
2555   G4int nds = (GetNumberOfRotationSteps() + 1    1946   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2556   G4int np1 = G4int(dthe*nds/pi+.5) + 1;         1947   G4int np1 = G4int(dthe*nds/pi+.5) + 1;
2557   if (np1 <= 1) np1 = 2;                         1948   if (np1 <= 1) np1 = 2;
2558   G4int np2 = rmin < spatialTolerance ? 1 : n    1949   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2559                                                  1950 
2560   G4double *zz, *rr;                             1951   G4double *zz, *rr;
2561   zz = new G4double[np1+np2];                    1952   zz = new G4double[np1+np2];
2562   rr = new G4double[np1+np2];                    1953   rr = new G4double[np1+np2];
2563                                                  1954 
2564   G4double a = dthe/(np1-1);                     1955   G4double a = dthe/(np1-1);
2565   G4double cosa, sina;                           1956   G4double cosa, sina;
2566   for (G4int i=0; i<np1; i++) {                  1957   for (G4int i=0; i<np1; i++) {
2567     cosa  = std::cos(the+i*a);                   1958     cosa  = std::cos(the+i*a);
2568     sina  = std::sin(the+i*a);                   1959     sina  = std::sin(the+i*a);
2569     zz[i] = rmax*cosa;                           1960     zz[i] = rmax*cosa;
2570     rr[i] = rmax*sina;                           1961     rr[i] = rmax*sina;
2571     if (np2 > 1) {                               1962     if (np2 > 1) {
2572       zz[i+np1] = rmin*cosa;                     1963       zz[i+np1] = rmin*cosa;
2573       rr[i+np1] = rmin*sina;                     1964       rr[i+np1] = rmin*sina;
2574     }                                            1965     }
2575   }                                              1966   }
2576   if (np2 == 1) {                                1967   if (np2 == 1) {
2577     zz[np1] = 0.;                                1968     zz[np1] = 0.;
2578     rr[np1] = 0.;                                1969     rr[np1] = 0.;
2579   }                                              1970   }
2580                                                  1971 
2581   //   R O T A T E    P O L Y L I N E S          1972   //   R O T A T E    P O L Y L I N E S
2582                                                  1973 
2583   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 1974   RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 
2584   SetReferences();                               1975   SetReferences();
2585                                               << 1976   
2586   delete [] zz;                                  1977   delete [] zz;
2587   delete [] rr;                                  1978   delete [] rr;
2588 }                                                1979 }
2589                                                  1980 
2590 HepPolyhedronSphere::~HepPolyhedronSphere() = << 1981 HepPolyhedronSphere::~HepPolyhedronSphere() {}
2591                                                  1982 
2592 HepPolyhedronTorus::HepPolyhedronTorus(G4doub    1983 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin,
2593                                        G4doub    1984                                        G4double rmax,
2594                                        G4doub    1985                                        G4double rtor,
2595                                        G4doub    1986                                        G4double phi,
2596                                        G4doub    1987                                        G4double dphi)
2597 /********************************************    1988 /***********************************************************************
2598  *                                               1989  *                                                                     *
2599  * Name: HepPolyhedronTorus                      1990  * Name: HepPolyhedronTorus                          Date:    11.12.96 *
2600  * Author: E.Chernyaev (IHEP/Protvino)           1991  * Author: E.Chernyaev (IHEP/Protvino)               Revised:          *
2601  *                                               1992  *                                                                     *
2602  * Function: Constructor of polyhedron for TO    1993  * Function: Constructor of polyhedron for TORUS                       *
2603  *                                               1994  *                                                                     *
2604  * Input: rmin - internal radius                 1995  * Input: rmin - internal radius                                       *
2605  *        rmax - external radius                 1996  *        rmax - external radius                                       *
2606  *        rtor - radius of torus                 1997  *        rtor - radius of torus                                       *
2607  *        phi  - initial phi                     1998  *        phi  - initial phi                                           *
2608  *        dphi - delta phi                       1999  *        dphi - delta phi                                             *
2609  *                                               2000  *                                                                     *
2610  ********************************************    2001  ***********************************************************************/
2611 {                                                2002 {
2612   //   C H E C K   I N P U T   P A R A M E T     2003   //   C H E C K   I N P U T   P A R A M E T E R S
2613                                                  2004 
2614   if (dphi <= 0. || dphi > twopi) {              2005   if (dphi <= 0. || dphi > twopi) {
2615     std::cerr                                    2006     std::cerr
2616       << "HepPolyhedronTorus: wrong delta phi    2007       << "HepPolyhedronTorus: wrong delta phi = " << dphi
2617       << std::endl;                              2008       << std::endl;
2618     return;                                      2009     return;
2619   }                                              2010   }
2620                                                  2011 
2621   if (rmin < 0. || rmin >= rmax || rmax >= rt    2012   if (rmin < 0. || rmin >= rmax || rmax >= rtor) {
2622     std::cerr                                    2013     std::cerr
2623       << "HepPolyhedronTorus: error in radius    2014       << "HepPolyhedronTorus: error in radiuses"
2624       << " rmin=" << rmin << " rmax=" << rmax    2015       << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor
2625       << std::endl;                              2016       << std::endl;
2626     return;                                      2017     return;
2627   }                                              2018   }
2628                                                  2019 
2629   //   P R E P A R E   T W O   P O L Y L I N     2020   //   P R E P A R E   T W O   P O L Y L I N E S
2630                                                  2021 
2631   G4int np1 = GetNumberOfRotationSteps();        2022   G4int np1 = GetNumberOfRotationSteps();
2632   G4int np2 = rmin < spatialTolerance ? 1 : n    2023   G4int np2 = rmin < spatialTolerance ? 1 : np1;
2633                                                  2024 
2634   G4double *zz, *rr;                             2025   G4double *zz, *rr;
2635   zz = new G4double[np1+np2];                    2026   zz = new G4double[np1+np2];
2636   rr = new G4double[np1+np2];                    2027   rr = new G4double[np1+np2];
2637                                                  2028 
2638   G4double a = twopi/np1;                        2029   G4double a = twopi/np1;
2639   G4double cosa, sina;                           2030   G4double cosa, sina;
2640   for (G4int i=0; i<np1; i++) {                  2031   for (G4int i=0; i<np1; i++) {
2641     cosa  = std::cos(i*a);                       2032     cosa  = std::cos(i*a);
2642     sina  = std::sin(i*a);                       2033     sina  = std::sin(i*a);
2643     zz[i] = rmax*cosa;                           2034     zz[i] = rmax*cosa;
2644     rr[i] = rtor+rmax*sina;                      2035     rr[i] = rtor+rmax*sina;
2645     if (np2 > 1) {                               2036     if (np2 > 1) {
2646       zz[i+np1] = rmin*cosa;                     2037       zz[i+np1] = rmin*cosa;
2647       rr[i+np1] = rtor+rmin*sina;                2038       rr[i+np1] = rtor+rmin*sina;
2648     }                                            2039     }
2649   }                                              2040   }
2650   if (np2 == 1) {                                2041   if (np2 == 1) {
2651     zz[np1] = 0.;                                2042     zz[np1] = 0.;
2652     rr[np1] = rtor;                              2043     rr[np1] = rtor;
2653     np2 = -1;                                    2044     np2 = -1;
2654   }                                              2045   }
2655                                                  2046 
2656   //   R O T A T E    P O L Y L I N E S          2047   //   R O T A T E    P O L Y L I N E S
2657                                                  2048 
2658   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, << 2049   RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 
2659   SetReferences();                               2050   SetReferences();
2660                                               << 2051   
2661   delete [] zz;                                  2052   delete [] zz;
2662   delete [] rr;                                  2053   delete [] rr;
2663 }                                                2054 }
2664                                                  2055 
2665 HepPolyhedronTorus::~HepPolyhedronTorus() = d << 2056 HepPolyhedronTorus::~HepPolyhedronTorus() {}
2666                                               << 
2667 HepPolyhedronTet::HepPolyhedronTet(const G4do << 
2668                                    const G4do << 
2669                                    const G4do << 
2670                                    const G4do << 
2671 /******************************************** << 
2672  *                                            << 
2673  * Name: HepPolyhedronTet                     << 
2674  * Author: E.Tcherniaev (E.Chernyaev)         << 
2675  *                                            << 
2676  * Function: Constructor of polyhedron for TE << 
2677  *                                            << 
2678  * Input: p0,p1,p2,p3 - vertices              << 
2679  *                                            << 
2680  ******************************************** << 
2681 {                                             << 
2682   AllocateMemory(4,4);                        << 
2683                                               << 
2684   pV[1].set(p0[0], p0[1], p0[2]);             << 
2685   pV[2].set(p1[0], p1[1], p1[2]);             << 
2686   pV[3].set(p2[0], p2[1], p2[2]);             << 
2687   pV[4].set(p3[0], p3[1], p3[2]);             << 
2688                                               << 
2689   G4Vector3D v1(pV[2] - pV[1]);               << 
2690   G4Vector3D v2(pV[3] - pV[1]);               << 
2691   G4Vector3D v3(pV[4] - pV[1]);               << 
2692                                               << 
2693   if (v1.cross(v2).dot(v3) < 0.)              << 
2694   {                                           << 
2695     pV[3].set(p3[0], p3[1], p3[2]);           << 
2696     pV[4].set(p2[0], p2[1], p2[2]);           << 
2697   }                                           << 
2698                                               << 
2699   pF[1] = G4Facet(1,2,  3,4,  2,3);           << 
2700   pF[2] = G4Facet(1,3,  4,4,  3,1);           << 
2701   pF[3] = G4Facet(1,1,  2,4,  4,2);           << 
2702   pF[4] = G4Facet(2,1,  3,2,  4,3);           << 
2703 }                                             << 
2704                                               << 
2705 HepPolyhedronTet::~HepPolyhedronTet() = defau << 
2706                                                  2057 
2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoi    2058 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by,
2708                                                  2059                                                G4double cz, G4double zCut1,
2709                                                  2060                                                G4double zCut2)
2710 /********************************************    2061 /***********************************************************************
2711  *                                               2062  *                                                                     *
2712  * Name: HepPolyhedronEllipsoid                  2063  * Name: HepPolyhedronEllipsoid                      Date:    25.02.05 *
2713  * Author: G.Guerrieri                           2064  * Author: G.Guerrieri                               Revised:          *
2714  *         Evgueni Tcherniaev                 << 
2715  *                                               2065  *                                                                     *
2716  * Function: Constructor of polyhedron for EL    2066  * Function: Constructor of polyhedron for ELLIPSOID                   *
2717  *                                               2067  *                                                                     *
2718  * Input: ax - semiaxis x                        2068  * Input: ax - semiaxis x                                              *
2719  *        by - semiaxis y                        2069  *        by - semiaxis y                                              *
2720  *        cz - semiaxis z                        2070  *        cz - semiaxis z                                              *
2721  *        zCut1 - lower cut plane level (soli    2071  *        zCut1 - lower cut plane level (solid lies above this plane)  *
2722  *        zCut2 - upper cut plane level (soli    2072  *        zCut2 - upper cut plane level (solid lies below this plane)  *
2723  *                                               2073  *                                                                     *
2724  ********************************************    2074  ***********************************************************************/
2725 {                                                2075 {
2726   //   C H E C K   I N P U T   P A R A M E T     2076   //   C H E C K   I N P U T   P A R A M E T E R S
2727                                                  2077 
2728   if (zCut1 >= cz || zCut2 <= -cz || zCut1 >     2078   if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) {
2729     std::cerr << "HepPolyhedronEllipsoid: wro    2079     std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1
2730            << " zCut2 = " << zCut2               2080            << " zCut2 = " << zCut2
2731            << " for given cz = " << cz << std    2081            << " for given cz = " << cz << std::endl;
2732     return;                                      2082     return;
2733   }                                              2083   }
2734   if (cz <= 0.0) {                               2084   if (cz <= 0.0) {
2735     std::cerr << "HepPolyhedronEllipsoid: bad    2085     std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz
2736       << std::endl;                              2086       << std::endl;
2737     return;                                      2087     return;
2738   }                                              2088   }
2739                                                  2089 
                                                   >> 2090   G4double dthe;
                                                   >> 2091   G4double sthe;
                                                   >> 2092   G4int cutflag;
                                                   >> 2093   cutflag= 0;
                                                   >> 2094   if (zCut2 >= cz)
                                                   >> 2095     {
                                                   >> 2096       sthe= 0.0;
                                                   >> 2097     }
                                                   >> 2098   else
                                                   >> 2099     {
                                                   >> 2100       sthe= std::acos(zCut2/cz);
                                                   >> 2101       cutflag++;
                                                   >> 2102     }
                                                   >> 2103   if (zCut1 <= -cz)
                                                   >> 2104     {
                                                   >> 2105       dthe= pi - sthe;
                                                   >> 2106     }
                                                   >> 2107   else
                                                   >> 2108     {
                                                   >> 2109       dthe= std::acos(zCut1/cz)-sthe;
                                                   >> 2110       cutflag++;
                                                   >> 2111     }
                                                   >> 2112 
2740   //   P R E P A R E   T W O   P O L Y L I N     2113   //   P R E P A R E   T W O   P O L Y L I N E S
2741   //   generate sphere of radius cz first, th    2114   //   generate sphere of radius cz first, then rescale x and y later
2742                                                  2115 
2743   G4double sthe = std::acos(zCut2/cz);        << 2116   G4int nds = (GetNumberOfRotationSteps() + 1) / 2;
2744   G4double dthe = std::acos(zCut1/cz) - sthe; << 2117   G4int np1 = G4int(dthe*nds/pi) + 2 + cutflag;
2745   G4int nds = (GetNumberOfRotationSteps() + 1 << 
2746   G4int np1 = G4int(dthe*nds/pi + 0.5) + 1;   << 
2747   if (np1 <= 1) np1 = 2;                      << 
2748   G4int np2 = 2;                              << 
2749                                                  2118 
2750   G4double *zz, *rr;                             2119   G4double *zz, *rr;
2751   zz = new G4double[np1 + np2];               << 2120   zz = new G4double[np1+1];
2752   rr = new G4double[np1 + np2];               << 2121   rr = new G4double[np1+1];
2753   if ((zz == nullptr) || (rr == nullptr))     << 2122   if (!zz || !rr)
2754   {                                           << 2123     {
2755     G4Exception("HepPolyhedronEllipsoid::HepP << 2124       G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid",
2756                 "greps1002", FatalException,  << 2125       "greps1002", FatalException, "Out of memory");
2757   }                                           << 2126     }
2758                                                  2127 
2759   G4double a = dthe/(np1 - 1);                << 2128   G4double a = dthe/(np1-cutflag-1);
2760   G4double cosa, sina;                           2129   G4double cosa, sina;
2761   for (G4int i = 0; i < np1; ++i)             << 2130   G4int j=0;
2762   {                                           << 2131   if (sthe > 0.0)
2763     cosa  = std::cos(sthe + i*a);             << 2132     {
2764     sina  = std::sin(sthe + i*a);             << 2133       zz[j]= zCut2;
2765     zz[i] = cz*cosa;                          << 2134       rr[j]= 0.;
2766     rr[i] = cz*sina;                          << 2135       j++;
2767   }                                           << 2136     }
2768   zz[np1 + 0] = zCut2;                        << 2137   for (G4int i=0; i<np1-cutflag; i++) {
2769   rr[np1 + 0] = 0.;                           << 2138     cosa  = std::cos(sthe+i*a);
2770   zz[np1 + 1] = zCut1;                        << 2139     sina  = std::sin(sthe+i*a);
2771   rr[np1 + 1] = 0.;                           << 2140     zz[j] = cz*cosa;
                                                   >> 2141     rr[j] = cz*sina;
                                                   >> 2142     j++;
                                                   >> 2143   }
                                                   >> 2144   if (j < np1)
                                                   >> 2145     {
                                                   >> 2146       zz[j]= zCut1;
                                                   >> 2147       rr[j]= 0.;
                                                   >> 2148       j++;
                                                   >> 2149     }
                                                   >> 2150   if (j > np1)
                                                   >> 2151     {
                                                   >> 2152       std::cerr << "Logic error in HepPolyhedronEllipsoid, memory corrupted!"
                                                   >> 2153                 << std::endl;
                                                   >> 2154     }
                                                   >> 2155   if (j < np1)
                                                   >> 2156     {
                                                   >> 2157       std::cerr << "Warning: logic error in HepPolyhedronEllipsoid."
                                                   >> 2158                 << std::endl;
                                                   >> 2159       np1= j;
                                                   >> 2160     }
                                                   >> 2161   zz[j] = 0.;
                                                   >> 2162   rr[j] = 0.;
2772                                                  2163 
                                                   >> 2164   
2773   //   R O T A T E    P O L Y L I N E S          2165   //   R O T A T E    P O L Y L I N E S
2774                                                  2166 
2775   RotateAroundZ(0, 0., twopi, np1, np2, zz, r << 2167   RotateAroundZ(0, 0.0, twopi, np1, 1, zz, rr, -1, 1); 
2776   SetReferences();                               2168   SetReferences();
2777                                                  2169 
2778   delete [] zz;                                  2170   delete [] zz;
2779   delete [] rr;                                  2171   delete [] rr;
2780                                                  2172 
2781   // rescale x and y vertex coordinates          2173   // rescale x and y vertex coordinates
2782   G4double kx = ax/cz;                        << 
2783   G4double ky = by/cz;                        << 
2784   G4Point3D* p = pV;                          << 
2785   for (G4int i = 0; i < nvert; ++i, ++p)      << 
2786   {                                              2174   {
2787     p->setX(p->x()*kx);                       << 2175     G4Point3D * p= pV;
2788     p->setY(p->y()*ky);                       << 2176     for (G4int i=0; i<nvert; i++, p++) {
                                                   >> 2177       p->setX( p->x() * ax/cz );
                                                   >> 2178       p->setY( p->y() * by/cz );
                                                   >> 2179     }
2789   }                                              2180   }
2790 }                                                2181 }
2791                                                  2182 
2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipso << 2183 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() {}
2793                                                  2184 
2794 HepPolyhedronEllipticalCone::HepPolyhedronEll    2185 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax,
2795                                                  2186                                                          G4double ay,
2796                                                  2187                                                          G4double h,
2797                                               << 2188                                                          G4double zTopCut) 
2798 /********************************************    2189 /***********************************************************************
2799  *                                               2190  *                                                                     *
2800  * Name: HepPolyhedronEllipticalCone             2191  * Name: HepPolyhedronEllipticalCone                 Date:    8.9.2005 *
2801  * Author: D.Anninos                             2192  * Author: D.Anninos                                 Revised: 9.9.2005 *
2802  *                                               2193  *                                                                     *
2803  * Function: Constructor for EllipticalCone      2194  * Function: Constructor for EllipticalCone                            *
2804  *                                               2195  *                                                                     *
2805  * Input: ax, ay     - X & Y semi axes at z =    2196  * Input: ax, ay     - X & Y semi axes at z = 0                        *
2806  *        h          - height of full cone       2197  *        h          - height of full cone                             *
2807  *        zTopCut    - Top Cut in Z Axis         2198  *        zTopCut    - Top Cut in Z Axis                               *
2808  *                                               2199  *                                                                     *
2809  ********************************************    2200  ***********************************************************************/
2810 {                                                2201 {
2811   //   C H E C K   I N P U T   P A R A M E T     2202   //   C H E C K   I N P U T   P A R A M E T E R S
2812                                                  2203 
2813   G4int k = 0;                                   2204   G4int k = 0;
2814   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.)     2205   if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; }
2815                                                  2206 
2816   if (k != 0) {                                  2207   if (k != 0) {
2817     std::cerr << "HepPolyhedronCone: error in    2208     std::cerr << "HepPolyhedronCone: error in input parameters";
2818     std::cerr << std::endl;                      2209     std::cerr << std::endl;
2819     return;                                      2210     return;
2820   }                                              2211   }
2821                                               << 2212   
2822   //   P R E P A R E   T W O   P O L Y L I N     2213   //   P R E P A R E   T W O   P O L Y L I N E S
2823                                                  2214 
2824   zTopCut = (h >= zTopCut ? zTopCut : h);        2215   zTopCut = (h >= zTopCut ? zTopCut : h);
2825                                                  2216 
2826   G4double *zz, *rr;                             2217   G4double *zz, *rr;
2827   zz = new G4double[4];                          2218   zz = new G4double[4];
2828   rr = new G4double[4];                          2219   rr = new G4double[4];
2829   zz[0] =   zTopCut;                          << 2220   zz[0] =   zTopCut; 
2830   zz[1] =  -zTopCut;                          << 2221   zz[1] =  -zTopCut; 
2831   zz[2] =   zTopCut;                          << 2222   zz[2] =   zTopCut; 
2832   zz[3] =  -zTopCut;                          << 2223   zz[3] =  -zTopCut; 
2833   rr[0] =  (h-zTopCut);                          2224   rr[0] =  (h-zTopCut);
2834   rr[1] =  (h+zTopCut);                          2225   rr[1] =  (h+zTopCut);
2835   rr[2] =  0.;                                   2226   rr[2] =  0.;
2836   rr[3] =  0.;                                   2227   rr[3] =  0.;
2837                                                  2228 
2838   //   R O T A T E    P O L Y L I N E S          2229   //   R O T A T E    P O L Y L I N E S
2839                                                  2230 
2840   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, - << 2231   RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 
2841   SetReferences();                               2232   SetReferences();
2842                                                  2233 
2843   delete [] zz;                                  2234   delete [] zz;
2844   delete [] rr;                                  2235   delete [] rr;
2845                                                  2236 
2846   // rescale x and y vertex coordinates          2237   // rescale x and y vertex coordinates
2847  {                                               2238  {
2848    G4Point3D * p= pV;                            2239    G4Point3D * p= pV;
2849    for (G4int i=0; i<nvert; i++, p++) {          2240    for (G4int i=0; i<nvert; i++, p++) {
2850      p->setX( p->x() * ax );                     2241      p->setX( p->x() * ax );
2851      p->setY( p->y() * ay );                     2242      p->setY( p->y() * ay );
2852    }                                             2243    }
2853  }                                               2244  }
2854 }                                                2245 }
2855                                                  2246 
2856 HepPolyhedronEllipticalCone::~HepPolyhedronEl << 2247 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() {}
2857                                               << 
2858 HepPolyhedronHyperbolicMirror::HepPolyhedronH << 
2859                                               << 
2860                                               << 
2861 /******************************************** << 
2862  *                                            << 
2863  * Name: HepPolyhedronHyperbolicMirror        << 
2864  * Author: E.Tcherniaev (E.Chernyaev)         << 
2865  *                                            << 
2866  * Function: Create polyhedron for Hyperbolic << 
2867  *                                            << 
2868  * Input: a - half-separation                 << 
2869  *        h - height                          << 
2870  *        r - radius                          << 
2871  *                                            << 
2872  ******************************************** << 
2873 {                                             << 
2874   G4double H = std::abs(h);                   << 
2875   G4double R = std::abs(r);                   << 
2876   G4double A = std::abs(a);                   << 
2877   G4double B = A*R/std::sqrt(2*A*H + H*H);    << 
2878                                               << 
2879   //   P R E P A R E   T W O   P O L Y L I N  << 
2880                                               << 
2881   G4int np1 = (A == 0.) ? 2 : std::max(3, Get << 
2882   G4int np2 = 2;                              << 
2883   G4double maxAng = (A == 0.) ? 0. : std::aco << 
2884   G4double delAng = maxAng/(np1 - 1);         << 
2885                                               << 
2886   auto zz = new G4double[np1 + np2];          << 
2887   auto rr = new G4double[np1 + np2];          << 
2888                                               << 
2889   // 1st polyline                             << 
2890   zz[0] = H;                                  << 
2891   rr[0] = R;                                  << 
2892   for (G4int iz = 1; iz < np1 - 1; ++iz)      << 
2893   {                                           << 
2894     G4double ang = maxAng - iz*delAng;        << 
2895     zz[iz] = A*std::cosh(ang) - A;            << 
2896     rr[iz] = B*std::sinh(ang);                << 
2897   }                                           << 
2898   zz[np1 - 1] = 0.;                           << 
2899   rr[np1 - 1] = 0.;                           << 
2900                                               << 
2901   // 2nd polyline                             << 
2902   zz[np1] = H;                                << 
2903   rr[np1] = 0.;                               << 
2904   zz[np1 + 1] = 0.;                           << 
2905   rr[np1 + 1] = 0.;                           << 
2906                                               << 
2907   //   R O T A T E    P O L Y L I N E S       << 
2908                                               << 
2909   G4double phi  = 0.;                         << 
2910   G4double dphi = CLHEP::twopi;               << 
2911   RotateAroundZ(0, phi, dphi, np1, np2, zz, r << 
2912   SetReferences();                            << 
2913                                               << 
2914   delete [] zz;                               << 
2915   delete [] rr;                               << 
2916 }                                             << 
2917                                               << 
2918 HepPolyhedronHyperbolicMirror::~HepPolyhedron << 
2919                                               << 
2920 HepPolyhedronTetMesh::                        << 
2921 HepPolyhedronTetMesh(const std::vector<G4Thre << 
2922 /******************************************** << 
2923  *                                            << 
2924  * Name: HepPolyhedronTetMesh                 << 
2925  * Author: E.Tcherniaev (E.Chernyaev)         << 
2926  *                                            << 
2927  * Function: Create polyhedron for tetrahedro << 
2928  *                                            << 
2929  * Input: tetrahedra - array of tetrahedron v << 
2930  *                     per tetrahedron        << 
2931  *                                            << 
2932  ******************************************** << 
2933 {                                             << 
2934   // Check size of input vector               << 
2935   G4int nnodes = (G4int)tetrahedra.size();    << 
2936   if (nnodes == 0)                            << 
2937   {                                           << 
2938     std::cerr                                 << 
2939       << "HepPolyhedronTetMesh: Empty tetrahe << 
2940     return;                                   << 
2941   }                                           << 
2942   G4int ntet = nnodes/4;                      << 
2943   if (nnodes != ntet*4)                       << 
2944   {                                           << 
2945     std::cerr << "HepPolyhedronTetMesh: Numbe << 
2946               << " in tetrahedron mesh is NOT << 
2947               << std::endl;                   << 
2948     return;                                   << 
2949   }                                           << 
2950                                               << 
2951   // Find coincident vertices using hash tabl << 
2952   // This could be done using std::unordered_ << 
2953   // below runs faster.                       << 
2954   std::vector<G4int> iheads(nnodes, -1);      << 
2955   std::vector<std::pair<G4int,G4int>> ipairs( << 
2956   for (G4int i = 0; i < nnodes; ++i)          << 
2957   {                                           << 
2958     // Generate hash key                      << 
2959     G4ThreeVector point = tetrahedra[i];      << 
2960     auto key = std::hash<G4double>()(point.x( << 
2961     key ^= std::hash<G4double>()(point.y());  << 
2962     key ^= std::hash<G4double>()(point.z());  << 
2963     key %= nnodes;                            << 
2964     // Check head of the list                 << 
2965     if (iheads[key] < 0)                      << 
2966     {                                         << 
2967       iheads[key] = i;                        << 
2968       ipairs[i].first = i;                    << 
2969       continue;                               << 
2970     }                                         << 
2971     // Loop along the list                    << 
2972     for (G4int icur = iheads[key], iprev = 0; << 
2973     {                                         << 
2974       G4int icheck = ipairs[icur].first;      << 
2975       if (tetrahedra[icheck] == point)        << 
2976       {                                       << 
2977         ipairs[i].first = icheck; // coincide << 
2978         break;                                << 
2979       }                                       << 
2980       iprev = icur;                           << 
2981       icur = ipairs[icur].second;             << 
2982       // Append vertex to the list            << 
2983       if (icur < 0)                           << 
2984       {                                       << 
2985         ipairs[i].first = i;                  << 
2986         ipairs[iprev].second = i;             << 
2987         break;                                << 
2988       }                                       << 
2989     }                                         << 
2990   }                                           << 
2991                                               << 
2992   // Create vector of original facets         << 
2993   struct facet                                << 
2994   {                                           << 
2995     G4int i1, i2, i3;                         << 
2996     facet() : i1(0), i2(0), i3(0) {};         << 
2997     facet(G4int k1, G4int k2, G4int k3) : i1( << 
2998   };                                          << 
2999   G4int nfacets = nnodes;                     << 
3000   std::vector<facet> ifacets(nfacets);        << 
3001   for (G4int i = 0; i < nfacets; i += 4)      << 
3002   {                                           << 
3003     G4int i0 = ipairs[i + 0].first;           << 
3004     G4int i1 = ipairs[i + 1].first;           << 
3005     G4int i2 = ipairs[i + 2].first;           << 
3006     G4int i3 = ipairs[i + 3].first;           << 
3007     if (i0 > i1) std::swap(i0, i1);           << 
3008     if (i0 > i2) std::swap(i0, i2);           << 
3009     if (i0 > i3) std::swap(i0, i3);           << 
3010     if (i1 > i2) std::swap(i1, i2);           << 
3011     if (i1 > i3) std::swap(i1, i3);           << 
3012     G4ThreeVector e1 = tetrahedra[i1] - tetra << 
3013     G4ThreeVector e2 = tetrahedra[i2] - tetra << 
3014     G4ThreeVector e3 = tetrahedra[i3] - tetra << 
3015     G4double volume = (e1.cross(e2)).dot(e3); << 
3016     if (volume > 0.) std::swap(i2, i3);       << 
3017     ifacets[i + 0] = facet(i0, i1, i2);       << 
3018     ifacets[i + 1] = facet(i0, i2, i3);       << 
3019     ifacets[i + 2] = facet(i0, i3, i1);       << 
3020     ifacets[i + 3] = facet(i1, i3, i2);       << 
3021   }                                           << 
3022                                               << 
3023   // Find shared facets                       << 
3024   std::fill(iheads.begin(), iheads.end(), -1) << 
3025   std::fill(ipairs.begin(), ipairs.end(), std << 
3026   for (G4int i = 0; i < nfacets; ++i)         << 
3027   {                                           << 
3028     // Check head of the list                 << 
3029     G4int key = ifacets[i].i1;                << 
3030     if (iheads[key] < 0)                      << 
3031     {                                         << 
3032       iheads[key] = i;                        << 
3033       ipairs[i].first = i;                    << 
3034       continue;                               << 
3035     }                                         << 
3036     // Loop along the list                    << 
3037     G4int i2 = ifacets[i].i2, i3 = ifacets[i] << 
3038     for (G4int icur = iheads[key], iprev = -1 << 
3039     {                                         << 
3040       G4int icheck = ipairs[icur].first;      << 
3041       if (ifacets[icheck].i2 == i3 && ifacets << 
3042       {                                       << 
3043         if (iprev < 0)                        << 
3044         {                                     << 
3045           iheads[key] = ipairs[icur].second;  << 
3046         }                                     << 
3047         else                                  << 
3048         {                                     << 
3049           ipairs[iprev].second = ipairs[icur] << 
3050         }                                     << 
3051         ipairs[icur].first = -1; // shared fa << 
3052         ipairs[icur].second = -1;             << 
3053         break;                                << 
3054       }                                       << 
3055       iprev = icur;                           << 
3056       icur = ipairs[icur].second;             << 
3057       // Append facet to the list             << 
3058       if (icur < 0)                           << 
3059       {                                       << 
3060         ipairs[i].first = i;                  << 
3061         ipairs[iprev].second = i;             << 
3062         break;                                << 
3063       }                                       << 
3064     }                                         << 
3065   }                                           << 
3066                                               << 
3067   // Count vertices and facets skipping share << 
3068   std::fill(iheads.begin(), iheads.end(), -1) << 
3069   G4int nver = 0, nfac = 0;                   << 
3070   for (G4int i = 0; i < nfacets; ++i)         << 
3071   {                                           << 
3072     if (ipairs[i].first < 0) continue;        << 
3073     G4int i1 = ifacets[i].i1;                 << 
3074     G4int i2 = ifacets[i].i2;                 << 
3075     G4int i3 = ifacets[i].i3;                 << 
3076     if (iheads[i1] < 0) iheads[i1] = nver++;  << 
3077     if (iheads[i2] < 0) iheads[i2] = nver++;  << 
3078     if (iheads[i3] < 0) iheads[i3] = nver++;  << 
3079     nfac++;                                   << 
3080   }                                           << 
3081                                               << 
3082   // Construct polyhedron                     << 
3083   AllocateMemory(nver, nfac);                 << 
3084   for (G4int i = 0; i < nnodes; ++i)          << 
3085   {                                           << 
3086     G4int k = iheads[i];                      << 
3087     if (k >= 0) SetVertex(k + 1, tetrahedra[i << 
3088   }                                           << 
3089   for (G4int i = 0, k = 0; i < nfacets; ++i)  << 
3090   {                                           << 
3091     if (ipairs[i].first < 0) continue;        << 
3092     G4int i1 = iheads[ifacets[i].i1] + 1;     << 
3093     G4int i2 = iheads[ifacets[i].i2] + 1;     << 
3094     G4int i3 = iheads[ifacets[i].i3] + 1;     << 
3095     SetFacet(++k, i1, i2, i3);                << 
3096   }                                           << 
3097   SetReferences();                            << 
3098 }                                             << 
3099                                               << 
3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() << 
3101                                               << 
3102 HepPolyhedronBoxMesh::                        << 
3103 HepPolyhedronBoxMesh(G4double sizeX, G4double << 
3104                      const std::vector<G4Thre << 
3105 /******************************************** << 
3106  *                                            << 
3107  * Name: HepPolyhedronBoxMesh                 << 
3108  * Author: E.Tcherniaev (E.Chernyaev)         << 
3109  *                                            << 
3110  * Function: Create polyhedron for box mesh   << 
3111  *                                            << 
3112  * Input: sizeX, sizeY, sizeZ - dimensions of << 
3113  *        positions - vector of cell centres  << 
3114  *                                            << 
3115  ******************************************** << 
3116 {                                             << 
3117   G4int nbox = (G4int)positions.size();       << 
3118   if (nbox == 0)                              << 
3119   {                                           << 
3120     std::cerr << "HepPolyhedronBoxMesh: Empty << 
3121     return;                                   << 
3122   }                                           << 
3123   // compute inverse dimensions               << 
3124   G4double invx = 1./sizeX, invy = 1./sizeY,  << 
3125   // find mesh bounding box                   << 
3126   G4ThreeVector pmin = positions[0], pmax = p << 
3127   for (const auto& p: positions)              << 
3128   {                                           << 
3129     if (pmin.x() > p.x()) pmin.setX(p.x());   << 
3130     if (pmin.y() > p.y()) pmin.setY(p.y());   << 
3131     if (pmin.z() > p.z()) pmin.setZ(p.z());   << 
3132     if (pmax.x() < p.x()) pmax.setX(p.x());   << 
3133     if (pmax.y() < p.y()) pmax.setY(p.y());   << 
3134     if (pmax.z() < p.z()) pmax.setZ(p.z());   << 
3135   }                                           << 
3136   // find number of voxels                    << 
3137   G4int nx = (pmax.x() - pmin.x())*invx + 1.5 << 
3138   G4int ny = (pmax.y() - pmin.y())*invy + 1.5 << 
3139   G4int nz = (pmax.z() - pmin.z())*invz + 1.5 << 
3140   // create structures for voxels and node in << 
3141   std::vector<char> voxels(nx*ny*nz, 0);      << 
3142   std::vector<G4int> indices((nx+1)*(ny+1)*(n << 
3143   // mark voxels listed in positions          << 
3144   G4int kx =  ny*nz, ky = nz;                 << 
3145   for (const auto& p: positions)              << 
3146   {                                           << 
3147     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3148     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3149     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3150     G4int i = ix*kx + iy*ky + iz;             << 
3151     voxels[i] = 1;                            << 
3152   }                                           << 
3153   // count number of vertices and facets      << 
3154   // set indices                              << 
3155   G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1 << 
3156   G4int nver = 0, nfac = 0;                   << 
3157   for (const auto& p: positions)              << 
3158   {                                           << 
3159     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3160     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3161     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3162     //                                        << 
3163     //    011       111                       << 
3164     //      +---–---+                       << 
3165     //      | 001   |   101                   << 
3166     //      |   +---–---+                   << 
3167     //      |   |   |   |                     << 
3168     //      +---|---+   |                     << 
3169     //    010   |   110 |                     << 
3170     //          +-------+                     << 
3171     //        000       100                   << 
3172     //                                        << 
3173     G4int vcheck = 0;                         << 
3174     // check (ix - 1) side                    << 
3175     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3176     if (vcheck == 0)                          << 
3177     {                                         << 
3178       nfac++;                                 << 
3179       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3180       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3181       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3182       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3183       if (indices[i1] == 0) indices[i1] = ++n << 
3184       if (indices[i2] == 0) indices[i2] = ++n << 
3185       if (indices[i3] == 0) indices[i3] = ++n << 
3186       if (indices[i4] == 0) indices[i4] = ++n << 
3187     }                                         << 
3188     // check (ix + 1) side                    << 
3189     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3190     if (vcheck == 0)                          << 
3191     {                                         << 
3192       nfac++;                                 << 
3193       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3194       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3195       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3196       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3197       if (indices[i1] == 0) indices[i1] = ++n << 
3198       if (indices[i2] == 0) indices[i2] = ++n << 
3199       if (indices[i3] == 0) indices[i3] = ++n << 
3200       if (indices[i4] == 0) indices[i4] = ++n << 
3201     }                                         << 
3202     // check (iy - 1) side                    << 
3203     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3204     if (vcheck == 0)                          << 
3205     {                                         << 
3206       nfac++;                                 << 
3207       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3208       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3209       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3210       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3211       if (indices[i1] == 0) indices[i1] = ++n << 
3212       if (indices[i2] == 0) indices[i2] = ++n << 
3213       if (indices[i3] == 0) indices[i3] = ++n << 
3214       if (indices[i4] == 0) indices[i4] = ++n << 
3215     }                                         << 
3216     // check (iy + 1) side                    << 
3217     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3218     if (vcheck == 0)                          << 
3219     {                                         << 
3220       nfac++;                                 << 
3221       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3222       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3223       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3224       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3225       if (indices[i1] == 0) indices[i1] = ++n << 
3226       if (indices[i2] == 0) indices[i2] = ++n << 
3227       if (indices[i3] == 0) indices[i3] = ++n << 
3228       if (indices[i4] == 0) indices[i4] = ++n << 
3229     }                                         << 
3230     // check (iz - 1) side                    << 
3231     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3232     if (vcheck == 0)                          << 
3233     {                                         << 
3234       nfac++;                                 << 
3235       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3236       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3237       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3238       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3239       if (indices[i1] == 0) indices[i1] = ++n << 
3240       if (indices[i2] == 0) indices[i2] = ++n << 
3241       if (indices[i3] == 0) indices[i3] = ++n << 
3242       if (indices[i4] == 0) indices[i4] = ++n << 
3243     }                                         << 
3244     // check (iz + 1) side                    << 
3245     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3246     if (vcheck == 0)                          << 
3247     {                                         << 
3248       nfac++;                                 << 
3249       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3250       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3251       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3252       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3253       if (indices[i1] == 0) indices[i1] = ++n << 
3254       if (indices[i2] == 0) indices[i2] = ++n << 
3255       if (indices[i3] == 0) indices[i3] = ++n << 
3256       if (indices[i4] == 0) indices[i4] = ++n << 
3257     }                                         << 
3258   }                                           << 
3259   // Construct polyhedron                     << 
3260   AllocateMemory(nver, nfac);                 << 
3261   G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin << 
3262   for (G4int ix = 0; ix <= nx; ++ix)          << 
3263   {                                           << 
3264     for (G4int iy = 0; iy <= ny; ++iy)        << 
3265     {                                         << 
3266       for (G4int iz = 0; iz <= nz; ++iz)      << 
3267       {                                       << 
3268   G4int i = ix*kvx + iy*kvy + iz;             << 
3269   if (indices[i] == 0) continue;              << 
3270   SetVertex(indices[i], p0 + G4ThreeVector(ix << 
3271       }                                       << 
3272     }                                         << 
3273   }                                           << 
3274   nfac = 0;                                   << 
3275   for (const auto& p: positions)              << 
3276   {                                           << 
3277     G4int ix = (p.x() - pmin.x())*invx + 0.5; << 
3278     G4int iy = (p.y() - pmin.y())*invy + 0.5; << 
3279     G4int iz = (p.z() - pmin.z())*invz + 0.5; << 
3280     G4int vcheck = 0;                         << 
3281     // check (ix - 1) side                    << 
3282     vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx << 
3283     if (vcheck == 0)                          << 
3284     {                                         << 
3285       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3286       G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3287       G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3288       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3289       SetFacet(++nfac, indices[i1], indices[i << 
3290     }                                         << 
3291     // check (ix + 1) side                    << 
3292     vcheck = (ix == nx - 1) ? 0 : voxels[(ix+ << 
3293     if (vcheck == 0)                          << 
3294     {                                         << 
3295       G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3296       G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3297       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3298       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3299       SetFacet(++nfac, indices[i1], indices[i << 
3300                                               << 
3301     }                                         << 
3302     // check (iy - 1) side                    << 
3303     vcheck = (iy == 0) ? 0 : voxels[ix*kx + ( << 
3304     if (vcheck == 0)                          << 
3305     {                                         << 
3306       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3307       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3308       G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3309       G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3310       SetFacet(++nfac, indices[i1], indices[i << 
3311     }                                         << 
3312     // check (iy + 1) side                    << 
3313     vcheck = (iy == ny - 1) ? 0 : voxels[ix*k << 
3314     if (vcheck == 0)                          << 
3315     {                                         << 
3316       G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3317       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3318       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3319       G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3320       SetFacet(++nfac, indices[i1], indices[i << 
3321     }                                         << 
3322     // check (iz - 1) side                    << 
3323     vcheck = (iz == 0) ? 0 : voxels[ix*kx + i << 
3324     if (vcheck == 0)                          << 
3325     {                                         << 
3326       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3327       G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3328       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3329       G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3330       SetFacet(++nfac, indices[i1], indices[i << 
3331     }                                         << 
3332     // check (iz + 1) side                    << 
3333     vcheck = (iz == nz - 1) ? 0 : voxels[ix*k << 
3334     if (vcheck == 0)                          << 
3335     {                                         << 
3336       G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (i << 
3337       G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (i << 
3338       G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (i << 
3339       G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (i << 
3340       SetFacet(++nfac, indices[i1], indices[i << 
3341     }                                         << 
3342   }                                           << 
3343   SetReferences();                            << 
3344 }                                             << 
3345                                               << 
3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() << 
3347                                                  2248 
3348 G4ThreadLocal                                 << 2249 G4ThreadLocal G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS;
3349 G4int HepPolyhedron::fNumberOfRotationSteps = << 
3350 /********************************************    2250 /***********************************************************************
3351  *                                               2251  *                                                                     *
3352  * Name: HepPolyhedron::fNumberOfRotationStep    2252  * Name: HepPolyhedron::fNumberOfRotationSteps       Date:    24.06.97 *
3353  * Author: J.Allison (Manchester University)     2253  * Author: J.Allison (Manchester University)         Revised:          *
3354  *                                               2254  *                                                                     *
3355  * Function: Number of steps for whole circle    2255  * Function: Number of steps for whole circle                          *
3356  *                                               2256  *                                                                     *
3357  ********************************************    2257  ***********************************************************************/
3358                                                  2258 
3359 #include "BooleanProcessor.src"                  2259 #include "BooleanProcessor.src"
3360                                                  2260 
3361 HepPolyhedron HepPolyhedron::add(const HepPol << 2261 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 
3362 /********************************************    2262 /***********************************************************************
3363  *                                               2263  *                                                                     *
3364  * Name: HepPolyhedron::add                      2264  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3365  * Author: E.Chernyaev                           2265  * Author: E.Chernyaev                               Revised:          *
3366  *                                               2266  *                                                                     *
3367  * Function: Boolean "union" of two polyhedra    2267  * Function: Boolean "union" of two polyhedra                          *
3368  *                                               2268  *                                                                     *
3369  ********************************************    2269  ***********************************************************************/
3370 {                                                2270 {
3371   G4int ierr;                                    2271   G4int ierr;
3372   BooleanProcessor processor;                    2272   BooleanProcessor processor;
3373   return processor.execute(OP_UNION, *this, p    2273   return processor.execute(OP_UNION, *this, p,ierr);
3374 }                                                2274 }
3375                                                  2275 
3376 HepPolyhedron HepPolyhedron::intersect(const  << 2276 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 
3377 /********************************************    2277 /***********************************************************************
3378  *                                               2278  *                                                                     *
3379  * Name: HepPolyhedron::intersect                2279  * Name: HepPolyhedron::intersect                    Date:    19.03.00 *
3380  * Author: E.Chernyaev                           2280  * Author: E.Chernyaev                               Revised:          *
3381  *                                               2281  *                                                                     *
3382  * Function: Boolean "intersection" of two po    2282  * Function: Boolean "intersection" of two polyhedra                   *
3383  *                                               2283  *                                                                     *
3384  ********************************************    2284  ***********************************************************************/
3385 {                                                2285 {
3386   G4int ierr;                                    2286   G4int ierr;
3387   BooleanProcessor processor;                    2287   BooleanProcessor processor;
3388   return processor.execute(OP_INTERSECTION, *    2288   return processor.execute(OP_INTERSECTION, *this, p,ierr);
3389 }                                                2289 }
3390                                                  2290 
3391 HepPolyhedron HepPolyhedron::subtract(const H << 2291 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 
3392 /********************************************    2292 /***********************************************************************
3393  *                                               2293  *                                                                     *
3394  * Name: HepPolyhedron::add                      2294  * Name: HepPolyhedron::add                          Date:    19.03.00 *
3395  * Author: E.Chernyaev                           2295  * Author: E.Chernyaev                               Revised:          *
3396  *                                               2296  *                                                                     *
3397  * Function: Boolean "subtraction" of "p" fro    2297  * Function: Boolean "subtraction" of "p" from "this"                  *
3398  *                                               2298  *                                                                     *
3399  ********************************************    2299  ***********************************************************************/
3400 {                                                2300 {
3401   G4int ierr;                                    2301   G4int ierr;
3402   BooleanProcessor processor;                    2302   BooleanProcessor processor;
3403   return processor.execute(OP_SUBTRACTION, *t    2303   return processor.execute(OP_SUBTRACTION, *this, p,ierr);
3404 }                                                2304 }
3405                                                  2305 
3406 //NOTE : include the code of HepPolyhedronPro    2306 //NOTE : include the code of HepPolyhedronProcessor here
3407 //       since there is no BooleanProcessor.h    2307 //       since there is no BooleanProcessor.h
3408                                                  2308 
3409 #undef INTERSECTION                              2309 #undef INTERSECTION
3410                                                  2310 
3411 #include "HepPolyhedronProcessor.src"            2311 #include "HepPolyhedronProcessor.src"
                                                   >> 2312 
3412                                                  2313