Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 7 // 6 // * the Geant4 Collaboration. It is provided << 8 // $Id: G4PhysicsVector.hh,v 1.3 1999/11/16 17:40:43 gcosmo Exp $ 7 // * conditions of the Geant4 Software License << 9 // GEANT4 tag $Name: geant4-02-00 $ 8 // * LICENSE and available at http://cern.ch/ << 10 // 9 // * include a list of copyright holders. << 11 // 10 // * << 12 //--------------------------------------------------------------- 11 // * Neither the authors of this software syst << 13 // GEANT 4 class header file 12 // * institutes,nor the agencies providing fin << 14 // 13 // * work make any representation or warran << 15 // G4PhysicsVector.hh 14 // * regarding this software system or assum << 16 // 15 // * use. Please see the license in the file << 17 // Class description: 16 // * for the full disclaimer and the limitatio << 18 // 17 // * << 19 // A physics vector which has values of energy-loss, cross-section, 18 // * This code implementation is the result << 20 // and other physics values of a particle in matter in a given 19 // * technical work of the GEANT4 collaboratio << 21 // range of the energy, momentum, etc. 20 // * By using, copying, modifying or distri << 22 // This class serves as the base class for a vector having various 21 // * any work based on the software) you ag << 23 // energy scale, for example like 'log', 'linear', 'free', etc. 22 // * use in resulting scientific publicati << 24 23 // * acceptance of all terms of the Geant4 Sof << 25 // History: 24 // ******************************************* << 26 // 02 Dec. 1995, G.Cosmo : Structure created based on object model 25 // << 27 // 03 Mar. 1996, K.Amako : Implemented the 1st version 26 // G4PhysicsVector << 28 // 27 Apr. 1996, K.Amako : Cache mechanism added 27 // << 29 // 01 Jul. 1996, K.Amako : Now GetValue not virtual. 28 // Class description: << 30 // 21 Sep. 1996, K.Amako : Added [] and () operators. 29 // << 31 // 30 // A physics vector which has values of energy << 32 //--------------------------------------------------------------- 31 // and other physics values of a particle in m << 33 32 // range of energy, momentum, etc. << 34 #ifndef G4PhysicsVector_h 33 // This class serves as the base class for a v << 35 #define G4PhysicsVector_h 1 34 // energy scale, for example like 'log', 'line << 36 35 << 36 // Authors: << 37 // - 02 Dec. 1995, G.Cosmo: Structure created << 38 // - 03 Mar. 1996, K.Amako: Implemented the 1s << 39 // Revisions: << 40 // - 11 Nov. 2000, H.Kurashige: Use STL vector << 41 // ------------------------------------------- << 42 #ifndef G4PhysicsVector_hh << 43 #define G4PhysicsVector_hh 1 << 44 << 45 #include <fstream> << 46 #include <iostream> << 47 #include <vector> << 48 << 49 #include "G4Log.hh" << 50 #include "G4PhysicsVectorType.hh" << 51 #include "G4ios.hh" << 52 #include "globals.hh" 37 #include "globals.hh" >> 38 #include "G4DataVector.hh" >> 39 #include "g4rw/tpordvec.h" 53 40 54 class G4PhysicsVector << 41 class G4PhysicsVector 55 { 42 { 56 public: << 43 public: 57 // Default constructor - vector will be fill << 44 58 // Free vector may be filled via InsertValue << 45 // Constructor and destructor 59 explicit G4PhysicsVector(G4bool spline = fal << 46 G4PhysicsVector(); 60 << 47 virtual ~G4PhysicsVector(); 61 // Copy constructor and assignment operator << 48 62 G4PhysicsVector(const G4PhysicsVector&) = de << 49 // Public functions 63 G4PhysicsVector& operator=(const G4PhysicsVe << 50 G4double GetValue(G4double theEnergy, G4bool& isOutRange); 64 << 51 // Get the crosssection/energy-loss value corresponding to the 65 // not used operators << 52 // given energy. An appropriate interpolation is used to calculate 66 G4PhysicsVector(const G4PhysicsVector&&) = d << 53 // the value. 67 G4PhysicsVector& operator=(const G4PhysicsVe << 54 // [Note] isOutRange is not used anymore. This argument is kept 68 G4bool operator==(const G4PhysicsVector& rig << 55 // for the compatibility reason. 69 G4bool operator!=(const G4PhysicsVector& rig << 56 // Public operators 70 << 57 G4int operator==(const G4PhysicsVector &right) const ; 71 virtual ~G4PhysicsVector() = default; << 58 G4int operator!=(const G4PhysicsVector &right) const ; 72 << 59 G4double operator[](const size_t binNumber) const ; 73 // Get the cross-section/energy-loss value c << 60 // Returns simply the value in the bin specified by 'binNumber' 74 // given energy. An appropriate interpolatio << 61 // of the dataVector. The boundary check will be Done. If you 75 // the value. Consumer code gets changed ind << 62 // don't want this check, use the operator (). 76 // for the next call to save CPU for bin loc << 63 G4double operator()(const size_t binNumber) const ; 77 inline G4double Value(const G4double energy, << 64 // Returns simply the value in the bin specified by 'binNumber' 78 << 65 // of the dataVector. The boundary check will not be Done. If 79 // Get the cross-section/energy-loss value c << 66 // you want this check, use the operator []. 80 // given energy. An appropriate interpolatio << 67 81 // the value. This method should be used if << 68 // Public functions 82 // kept in the user code. << 69 void PutValue(size_t binNumber, G4double theValue); 83 inline G4double Value(const G4double energy) << 70 // Put 'theValue' into the bin specified by 'binNumber'. 84 << 71 // Take note that the 'binNumber' starts from '0'. 85 // Obsolete method to get value, 'isOutRange << 72 // To fill the vector, you have beforehand to Construct a vector 86 // This method is kept for the compatibility << 73 // by the constructor with Emin, Emax, Nbin. 'theValue' should 87 inline G4double GetValue(const G4double ener << 74 // be the crosssection/energyloss value corresponding to the low 88 << 75 // edge energy of the bin specified by 'binNumber'. You can get 89 // Same as the Value() method above but spec << 76 // the low edge energy value of a bin by GetLowEdgeEnergy(). 90 // Note, unlike the general Value() method a << 77 virtual G4double GetLowEdgeEnergy(size_t binNumber) const; 91 // properly only for G4PhysicsLogVector. << 78 // Get the energy value at the low edge of the specified bin. 92 inline G4double LogVectorValue(const G4doubl << 79 // Take note that the 'binNumber' starts from '0'. 93 const G4doubl << 80 // This value is defined when a physics vector is constructed 94 << 81 // by a constructor of a derived class. Use this function 95 // Same as the Value() method above but spec << 82 // when you fill physis vector by PutValue(). 96 // with logarithmic seach of bin number << 83 size_t GetVectorLength() const; 97 inline G4double LogFreeVectorValue(const G4d << 84 // Get the toal length (bin number) of the vector. 98 const G4d << 85 G4bool IsFilledVectorExist() const; 99 << 86 // Is non-empty physics vector already exist? 100 // Returns the value for the specified index << 87 101 // The boundary check will not be done << 88 void LinkPhysicsTable(G4RWTPtrOrderedVector<G4PhysicsVector>& theTable); 102 inline G4double operator[](const std::size_t << 89 // Link the given G4PhysicsTable to the current G4PhyiscsVector. 103 inline G4double operator()(const std::size_t << 90 G4bool IsLinkedTableExist() const; 104 << 91 // Has this physics vector an extended physics table? 105 // Put data into the vector at 'index' posit << 92 const G4RWTPtrOrderedVector<G4PhysicsVector>* GetNextTable() const; 106 // Take note that the 'index' starts from '0 << 93 // Returns the pointer to a physics table created for elements 107 // It is assumed that energies are already f << 94 // or isotopes (when the cross-sesctions or energy-losses 108 inline void PutValue(const std::size_t index << 95 // depend explicitly on them). 109 << 96 110 // Returns the value in the energy specified << 97 void PutComment(const G4String& theComment); 111 // of the energy vector. The boundary check << 98 // Put a comment to the G4PhysicsVector. This may help to check 112 // Use this when compute cross-section, dEdx << 99 // whether your are accessing to the one you want. 113 // before filling the vector by PutValue(). << 100 G4String GetComment() const; 114 inline G4double Energy(const std::size_t ind << 101 // Retrieve the comment of the G4PhysicsVector. 115 inline G4double GetLowEdgeEnergy(const std:: << 102 116 << 103 protected: 117 // Returns the energy of the first and the l << 104 118 inline G4double GetMinEnergy() const; << 105 G4double edgeMin; // Lower edge value of the lowest bin 119 inline G4double GetMaxEnergy() const; << 106 G4double edgeMax; // Lower edge value of the highest bin 120 << 107 size_t numberOfBin; 121 // Returns the data of the first and the las << 108 122 // If the vector is empty returns zeros. << 109 G4double lastEnergy; // Cache the last input value 123 inline G4double GetMinValue() const; << 110 G4double lastValue; // Cache the last output value 124 inline G4double GetMaxValue() const; << 111 size_t lastBin; // Cache the last bin location 125 << 112 126 // Get the total length of the vector << 113 G4DataVector dataVector; // Vector to keep the crossection/energyloss 127 inline std::size_t GetVectorLength() const; << 114 G4DataVector binVector; // Vector to keep the low edge value of bin 128 << 115 129 // Computes the lower index the energy bin i << 116 G4RWTPtrOrderedVector<G4PhysicsVector>* ptrNextTable; 130 // in case of vectors with equal bin widths << 117 // Link to the connected physics table 131 // Note, that no check on the boundary is pe << 118 132 inline std::size_t ComputeLogVectorBin(const << 119 G4double LinearInterpolation(G4double theEnergy, size_t theLocBin); 133 << 120 // Linear interpolation function 134 // Get physics vector type. << 121 virtual size_t FindBinLocation(G4double theEnergy) const=0; 135 inline G4PhysicsVectorType GetType() const; << 122 // Find the bin# in which theEnergy belongs - pure virtual function 136 << 137 // True if using spline interpolation. << 138 inline G4bool GetSpline() const; << 139 << 140 // Define verbosity level. << 141 inline void SetVerboseLevel(G4int value); << 142 << 143 // Find energy using linear interpolation fo << 144 // filled by cumulative probability function << 145 // Assuming that vector is already filled. << 146 inline G4double FindLinearEnergy(const G4dou << 147 << 148 // Find low edge index of a bin for given en << 149 // Min value 0, max value idxmax. << 150 std::size_t FindBin(const G4double energy, s << 151 << 152 // Scale all values of the vector by factorV << 153 // AFter this method FillSecondDerivatives(. << 154 // This method may be applied for example af << 155 // from an external file to convert values i << 156 void ScaleVector(const G4double factorE, con << 157 << 158 // This method should be called when the vec << 159 // There are 3 types of second derivative co << 160 // fSplineSimple - 2d derivative cont << 161 // fSplineBase - 3d derivative cont << 162 // fSplineFixedEdges - 3d derivatives con << 163 // derivatives are fi << 164 void FillSecondDerivatives(const G4SplineTyp << 165 const G4double di << 166 const G4double di << 167 << 168 // This method can be applied if both energy << 169 // grow monotonically, for example, if in th << 170 // cumulative probability density function i << 171 G4double GetEnergy(const G4double value) con << 172 << 173 // To store/retrieve persistent data to/from << 174 G4bool Store(std::ofstream& fOut, G4bool asc << 175 G4bool Retrieve(std::ifstream& fIn, G4bool a << 176 << 177 // Print vector << 178 friend std::ostream& operator<<(std::ostream << 179 void DumpValues(G4double unitE = 1.0, G4doub << 180 << 181 protected: << 182 << 183 // The default implements a free vector init << 184 virtual void Initialise(); << 185 << 186 void PrintPutValueError(std::size_t index, G << 187 const G4String& text << 188 << 189 private: << 190 << 191 void ComputeSecDerivative0(); << 192 void ComputeSecDerivative1(); << 193 void ComputeSecDerivative2(const G4double fi << 194 const G4double en << 195 // Internal methods for computing of spline << 196 << 197 // Linear or spline interpolation. << 198 inline G4double Interpolation(const std::siz << 199 const G4double << 200 << 201 // Assuming (edgeMin <= energy <= edgeMax). << 202 inline std::size_t LogBin(const G4double ene << 203 inline std::size_t BinaryBin(const G4double << 204 inline std::size_t GetBin(const G4double ene << 205 << 206 protected: << 207 << 208 G4double edgeMin = 0.0; // Energy of first << 209 G4double edgeMax = 0.0; // Energy of the la << 210 << 211 G4double invdBin = 0.0; // 1/Bin width for << 212 G4double logemin = 0.0; // used only for lo << 213 << 214 G4double iBin1 = 0.0; // 1/Bin width for sc << 215 G4double lmin1 = 0.0; // used for log searc << 216 << 217 G4int verboseLevel = 0; << 218 std::size_t idxmax = 0; << 219 std::size_t imax1 = 0; << 220 std::size_t numberOfNodes = 0; << 221 std::size_t nLogNodes = 0; << 222 << 223 G4PhysicsVectorType type = T_G4PhysicsFreeVe << 224 // The type of PhysicsVector (enumerator) << 225 << 226 std::vector<G4double> binVector; // ene << 227 std::vector<G4double> dataVector; // cro << 228 std::vector<G4double> secDerivative; // sec << 229 std::vector<std::size_t> scale; // log << 230 123 231 private: << 124 private: 232 125 233 G4bool useSpline = false; << 126 G4String comment; 234 }; 127 }; 235 128 236 #include "G4PhysicsVector.icc" 129 #include "G4PhysicsVector.icc" 237 130 238 #endif 131 #endif 239 132