Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussLaguerreQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/src/G4GaussLaguerreQ.cc (Version 11.3.0) and /global/HEPNumerics/src/G4GaussLaguerreQ.cc (Version 3.1)


                                                   >>   1 // This code implementation is the intellectual property of
                                                   >>   2 // the GEANT4 collaboration.
  1 //                                                  3 //
  2 // ******************************************* <<   4 // By copying, distributing or modifying the Program (or any work
  3 // * License and Disclaimer                    <<   5 // based on the Program) you indicate your acceptance of this statement,
  4 // *                                           <<   6 // and all its terms.
  5 // * The  Geant4 software  is  copyright of th << 
  6 // * the Geant4 Collaboration.  It is provided << 
  7 // * conditions of the Geant4 Software License << 
  8 // * LICENSE and available at  http://cern.ch/ << 
  9 // * include a list of copyright holders.      << 
 10 // *                                           << 
 11 // * Neither the authors of this software syst << 
 12 // * institutes,nor the agencies providing fin << 
 13 // * work  make  any representation or  warran << 
 14 // * regarding  this  software system or assum << 
 15 // * use.  Please see the license in the file  << 
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                           << 
 18 // * This  code  implementation is the result  << 
 19 // * technical work of the GEANT4 collaboratio << 
 20 // * By using,  copying,  modifying or  distri << 
 21 // * any work based  on the software)  you  ag << 
 22 // * use  in  resulting  scientific  publicati << 
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // ******************************************* << 
 25 //                                                  7 //
 26 // G4GaussLaguerreQ class implementation       <<   8 // $Id: G4GaussLaguerreQ.cc,v 1.3 2000/11/20 17:26:43 gcosmo Exp $
                                                   >>   9 // GEANT4 tag $Name: geant4-03-01 $
 27 //                                                 10 //
 28 // Author: V.Grichine, 13.05.1997              << 
 29 // ------------------------------------------- << 
 30                                                << 
 31 #include "G4GaussLaguerreQ.hh"                     11 #include "G4GaussLaguerreQ.hh"
 32                                                    12 
                                                   >>  13 
                                                   >>  14 
 33 // -------------------------------------------     15 // ------------------------------------------------------------
 34 //                                                 16 //
 35 // Constructor for Gauss-Laguerre quadrature m     17 // Constructor for Gauss-Laguerre quadrature method: integral from zero to
 36 // infinity of std::pow(x,alpha)*std::exp(-x)* <<  18 // infinity of pow(x,alpha)*exp(-x)*f(x). The value of nLaguerre sets the accuracy.
 37 // The value of nLaguerre sets the accuracy.   <<  19 // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and 
 38 // The constructor creates arrays fAbscissa[0, <<  20 // fWeight[0,..,nLaguerre-1] . 
 39 // fWeight[0,..,nLaguerre-1] .                 << 
 40 //                                                 21 //
 41                                                    22 
 42 G4GaussLaguerreQ::G4GaussLaguerreQ(function pF <<  23 G4GaussLaguerreQ::G4GaussLaguerreQ( function pFunction,
 43                                    G4int nLagu <<  24             G4double alpha,
 44   : G4VGaussianQuadrature(pFunction)           <<  25                   G4int nLaguerre      ) 
                                                   >>  26    : G4VGaussianQuadrature(pFunction)
 45 {                                                  27 {
 46   const G4double tolerance = 1.0e-10;          <<  28    const G4double tolerance = 1.0e-10 ;
 47   const G4int maxNumber    = 12;               <<  29    const G4int maxNumber = 12 ;
 48   G4int i = 1, k = 1;                          <<  30    G4int i, j, k ;
 49   G4double newton0 = 0.0, newton1 = 0.0, temp1 <<  31    G4double newton=0.;
 50            temp = 0.0, cofi = 0.0;             <<  32    G4double newton1, temp1, temp2, temp3, temp, cofi ;
 51                                                <<  33 
 52   fNumber   = nLaguerre;                       <<  34    fNumber = nLaguerre ;
 53   fAbscissa = new G4double[fNumber];           <<  35    fAbscissa = new G4double[fNumber] ;
 54   fWeight   = new G4double[fNumber];           <<  36    fWeight   = new G4double[fNumber] ;
 55                                                <<  37       
 56   for(i = 1; i <= fNumber; ++i)  // Loop over  <<  38    for(i=1;i<=fNumber;i++)      // Loop over the desired roots
 57   {                                            <<  39    {
 58     if(i == 1)                                 <<  40       if(i == 1)
 59     {                                          <<  41       {
 60       newton0 = (1.0 + alpha) * (3.0 + 0.92 *  <<  42    newton = (1.0 + alpha)*(3.0 + 0.92*alpha)/(1.0 + 2.4*fNumber + 1.8*alpha) ;
 61                 (1.0 + 2.4 * fNumber + 1.8 * a <<  43       }
 62     }                                          <<  44       else if(i == 2)
 63     else if(i == 2)                            <<  45       {
 64     {                                          <<  46    newton += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ;
 65       newton0 += (15.0 + 6.25 * alpha) / (1.0  <<  47       }
 66     }                                          <<  48       else
 67     else                                       <<  49       {
 68     {                                          <<  50    cofi = i - 2 ;
 69       cofi = i - 2;                            <<  51    newton += ((1.0+2.55*cofi)/(1.9*cofi) + 1.26*cofi*alpha/(1.0+3.5*cofi))*
 70       newton0 += ((1.0 + 2.55 * cofi) / (1.9 * <<  52              (newton - fAbscissa[i-3])/(1.0 + 0.3*alpha) ;
 71                   1.26 * cofi * alpha / (1.0 + <<  53       }
 72                  (newton0 - fAbscissa[i - 3])  <<  54       for(k=1;k<=maxNumber;k++)
 73     }                                          << 
 74     for(k = 1; k <= maxNumber; ++k)            << 
 75     {                                          << 
 76       temp1 = 1.0;                             << 
 77       temp2 = 0.0;                             << 
 78       for(G4int j = 1; j <= fNumber; ++j)      << 
 79       {                                            55       {
 80         temp3 = temp2;                         <<  56    temp1 = 1.0 ;
 81         temp2 = temp1;                         <<  57    temp2 = 0.0 ;
 82         temp1 =                                <<  58    for(j=1;j<=fNumber;j++)
 83           ((2 * j - 1 + alpha - newton0) * tem <<  59    {
                                                   >>  60       temp3 = temp2 ;
                                                   >>  61       temp2 = temp1 ;
                                                   >>  62       temp1 = ((2*j - 1 + alpha - newton)*temp2 - (j - 1 + alpha)*temp3)/j ;
                                                   >>  63    }
                                                   >>  64    temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton ;
                                                   >>  65    newton1 = newton ;
                                                   >>  66    newton  = newton1 - temp1/temp ;
                                                   >>  67          if(fabs(newton - newton1) <= tolerance) 
                                                   >>  68    {
                                                   >>  69       break ;
                                                   >>  70    }
 84       }                                            71       }
 85       temp    = (fNumber * temp1 - (fNumber +  <<  72       if(k > maxNumber)
 86       newton1 = newton0;                       << 
 87       newton0 = newton1 - temp1 / temp;        << 
 88       if(std::fabs(newton0 - newton1) <= toler << 
 89       {                                            73       {
 90         break;                                 <<  74    G4Exception("Too many iterations in Gauss-Laguerre constructor") ;
 91       }                                            75       }
 92     }                                          <<  76    
 93     if(k > maxNumber)                          <<  77       fAbscissa[i-1] =  newton ;
 94     {                                          <<  78       fWeight[i-1] = -exp(GammaLogarithm(alpha + fNumber) - 
 95       G4Exception("G4GaussLaguerreQ::G4GaussLa <<  79         GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ;
 96                   FatalException,              <<  80    }
 97                   "Too many iterations in Gaus << 
 98     }                                          << 
 99                                                << 
100     fAbscissa[i - 1] = newton0;                << 
101     fWeight[i - 1]   = -std::exp(GammaLogarith << 
102                                GammaLogarithm( << 
103                      (temp * fNumber * temp2); << 
104   }                                            << 
105 }                                                  81 }
106                                                    82 
107 // -------------------------------------------     83 // -----------------------------------------------------------------
108 //                                                 84 //
109 // Gauss-Laguerre method for integration of    <<  85 // Gauss-Laguerre method for integration of pow(x,alpha)*exp(-x)*pFunction(x)
110 // std::pow(x,alpha)*std::exp(-x)*pFunction(x) <<  86 // from zero up to infinity. pFunction is evaluated in fNumber points for which
111 // from zero up to infinity. pFunction is eval <<  87 // fAbscissa[i] and fWeight[i] arrays were created in
112 // for which fAbscissa[i] and fWeight[i] array << 
113 // G4VGaussianQuadrature(double,int) construct     88 // G4VGaussianQuadrature(double,int) constructor
114                                                    89 
115 G4double G4GaussLaguerreQ::Integral() const    <<  90 G4double 
                                                   >>  91 G4GaussLaguerreQ::Integral() const 
116 {                                                  92 {
117   G4double integral = 0.0;                     <<  93    G4int i ;
118   for(G4int i = 0; i < fNumber; ++i)           <<  94    G4double integral = 0.0 ;
119   {                                            <<  95    for(i=0;i<fNumber;i++)
120     integral += fWeight[i] * fFunction(fAbscis <<  96    {
121   }                                            <<  97       integral += fWeight[i]*fFunction(fAbscissa[i]) ;
122   return integral;                             <<  98    }
                                                   >>  99    return integral ;
123 }                                                 100 }
124                                                   101