Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // G4GaussLaguerreQ class implementation 27 // 28 // Author: V.Grichine, 13.05.1997 29 // ------------------------------------------- 30 31 #include "G4GaussLaguerreQ.hh" 32 33 // ------------------------------------------- 34 // 35 // Constructor for Gauss-Laguerre quadrature m 36 // infinity of std::pow(x,alpha)*std::exp(-x)* 37 // The value of nLaguerre sets the accuracy. 38 // The constructor creates arrays fAbscissa[0, 39 // fWeight[0,..,nLaguerre-1] . 40 // 41 42 G4GaussLaguerreQ::G4GaussLaguerreQ(function pF 43 G4int nLagu 44 : G4VGaussianQuadrature(pFunction) 45 { 46 const G4double tolerance = 1.0e-10; 47 const G4int maxNumber = 12; 48 G4int i = 1, k = 1; 49 G4double newton0 = 0.0, newton1 = 0.0, temp1 50 temp = 0.0, cofi = 0.0; 51 52 fNumber = nLaguerre; 53 fAbscissa = new G4double[fNumber]; 54 fWeight = new G4double[fNumber]; 55 56 for(i = 1; i <= fNumber; ++i) // Loop over 57 { 58 if(i == 1) 59 { 60 newton0 = (1.0 + alpha) * (3.0 + 0.92 * 61 (1.0 + 2.4 * fNumber + 1.8 * a 62 } 63 else if(i == 2) 64 { 65 newton0 += (15.0 + 6.25 * alpha) / (1.0 66 } 67 else 68 { 69 cofi = i - 2; 70 newton0 += ((1.0 + 2.55 * cofi) / (1.9 * 71 1.26 * cofi * alpha / (1.0 + 72 (newton0 - fAbscissa[i - 3]) 73 } 74 for(k = 1; k <= maxNumber; ++k) 75 { 76 temp1 = 1.0; 77 temp2 = 0.0; 78 for(G4int j = 1; j <= fNumber; ++j) 79 { 80 temp3 = temp2; 81 temp2 = temp1; 82 temp1 = 83 ((2 * j - 1 + alpha - newton0) * tem 84 } 85 temp = (fNumber * temp1 - (fNumber + 86 newton1 = newton0; 87 newton0 = newton1 - temp1 / temp; 88 if(std::fabs(newton0 - newton1) <= toler 89 { 90 break; 91 } 92 } 93 if(k > maxNumber) 94 { 95 G4Exception("G4GaussLaguerreQ::G4GaussLa 96 FatalException, 97 "Too many iterations in Gaus 98 } 99 100 fAbscissa[i - 1] = newton0; 101 fWeight[i - 1] = -std::exp(GammaLogarith 102 GammaLogarithm( 103 (temp * fNumber * temp2); 104 } 105 } 106 107 // ------------------------------------------- 108 // 109 // Gauss-Laguerre method for integration of 110 // std::pow(x,alpha)*std::exp(-x)*pFunction(x) 111 // from zero up to infinity. pFunction is eval 112 // for which fAbscissa[i] and fWeight[i] array 113 // G4VGaussianQuadrature(double,int) construct 114 115 G4double G4GaussLaguerreQ::Integral() const 116 { 117 G4double integral = 0.0; 118 for(G4int i = 0; i < fNumber; ++i) 119 { 120 integral += fWeight[i] * fFunction(fAbscis 121 } 122 return integral; 123 } 124