Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussLaguerreQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/src/G4GaussLaguerreQ.cc (Version 11.3.0) and /global/HEPNumerics/src/G4GaussLaguerreQ.cc (Version 11.0.p3,)


** Warning: Cannot open xref database.

  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // G4GaussLaguerreQ class implementation          
 27 //                                                
 28 // Author: V.Grichine, 13.05.1997                 
 29 // -------------------------------------------    
 30                                                   
 31 #include "G4GaussLaguerreQ.hh"                    
 32                                                   
 33 // -------------------------------------------    
 34 //                                                
 35 // Constructor for Gauss-Laguerre quadrature m    
 36 // infinity of std::pow(x,alpha)*std::exp(-x)*    
 37 // The value of nLaguerre sets the accuracy.      
 38 // The constructor creates arrays fAbscissa[0,    
 39 // fWeight[0,..,nLaguerre-1] .                    
 40 //                                                
 41                                                   
 42 G4GaussLaguerreQ::G4GaussLaguerreQ(function pF    
 43                                    G4int nLagu    
 44   : G4VGaussianQuadrature(pFunction)              
 45 {                                                 
 46   const G4double tolerance = 1.0e-10;             
 47   const G4int maxNumber    = 12;                  
 48   G4int i = 1, k = 1;                             
 49   G4double newton0 = 0.0, newton1 = 0.0, temp1    
 50            temp = 0.0, cofi = 0.0;                
 51                                                   
 52   fNumber   = nLaguerre;                          
 53   fAbscissa = new G4double[fNumber];              
 54   fWeight   = new G4double[fNumber];              
 55                                                   
 56   for(i = 1; i <= fNumber; ++i)  // Loop over     
 57   {                                               
 58     if(i == 1)                                    
 59     {                                             
 60       newton0 = (1.0 + alpha) * (3.0 + 0.92 *     
 61                 (1.0 + 2.4 * fNumber + 1.8 * a    
 62     }                                             
 63     else if(i == 2)                               
 64     {                                             
 65       newton0 += (15.0 + 6.25 * alpha) / (1.0     
 66     }                                             
 67     else                                          
 68     {                                             
 69       cofi = i - 2;                               
 70       newton0 += ((1.0 + 2.55 * cofi) / (1.9 *    
 71                   1.26 * cofi * alpha / (1.0 +    
 72                  (newton0 - fAbscissa[i - 3])     
 73     }                                             
 74     for(k = 1; k <= maxNumber; ++k)               
 75     {                                             
 76       temp1 = 1.0;                                
 77       temp2 = 0.0;                                
 78       for(G4int j = 1; j <= fNumber; ++j)         
 79       {                                           
 80         temp3 = temp2;                            
 81         temp2 = temp1;                            
 82         temp1 =                                   
 83           ((2 * j - 1 + alpha - newton0) * tem    
 84       }                                           
 85       temp    = (fNumber * temp1 - (fNumber +     
 86       newton1 = newton0;                          
 87       newton0 = newton1 - temp1 / temp;           
 88       if(std::fabs(newton0 - newton1) <= toler    
 89       {                                           
 90         break;                                    
 91       }                                           
 92     }                                             
 93     if(k > maxNumber)                             
 94     {                                             
 95       G4Exception("G4GaussLaguerreQ::G4GaussLa    
 96                   FatalException,                 
 97                   "Too many iterations in Gaus    
 98     }                                             
 99                                                   
100     fAbscissa[i - 1] = newton0;                   
101     fWeight[i - 1]   = -std::exp(GammaLogarith    
102                                GammaLogarithm(    
103                      (temp * fNumber * temp2);    
104   }                                               
105 }                                                 
106                                                   
107 // -------------------------------------------    
108 //                                                
109 // Gauss-Laguerre method for integration of       
110 // std::pow(x,alpha)*std::exp(-x)*pFunction(x)    
111 // from zero up to infinity. pFunction is eval    
112 // for which fAbscissa[i] and fWeight[i] array    
113 // G4VGaussianQuadrature(double,int) construct    
114                                                   
115 G4double G4GaussLaguerreQ::Integral() const       
116 {                                                 
117   G4double integral = 0.0;                        
118   for(G4int i = 0; i < fNumber; ++i)              
119   {                                               
120     integral += fWeight[i] * fFunction(fAbscis    
121   }                                               
122   return integral;                                
123 }                                                 
124