Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussLaguerreQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/src/G4GaussLaguerreQ.cc (Version 11.3.0) and /global/HEPNumerics/src/G4GaussLaguerreQ.cc (Version 10.6.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4GaussLaguerreQ class implementation       << 
 27 //                                                 26 //
 28 // Author: V.Grichine, 13.05.1997              <<  27 //
 29 // ------------------------------------------- << 
 30                                                << 
 31 #include "G4GaussLaguerreQ.hh"                     28 #include "G4GaussLaguerreQ.hh"
 32                                                    29 
                                                   >>  30 
                                                   >>  31 
 33 // -------------------------------------------     32 // ------------------------------------------------------------
 34 //                                                 33 //
 35 // Constructor for Gauss-Laguerre quadrature m     34 // Constructor for Gauss-Laguerre quadrature method: integral from zero to
 36 // infinity of std::pow(x,alpha)*std::exp(-x)*     35 // infinity of std::pow(x,alpha)*std::exp(-x)*f(x).
 37 // The value of nLaguerre sets the accuracy.       36 // The value of nLaguerre sets the accuracy.
 38 // The constructor creates arrays fAbscissa[0, <<  37 // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and 
 39 // fWeight[0,..,nLaguerre-1] .                 <<  38 // fWeight[0,..,nLaguerre-1] . 
 40 //                                                 39 //
 41                                                    40 
 42 G4GaussLaguerreQ::G4GaussLaguerreQ(function pF <<  41 G4GaussLaguerreQ::G4GaussLaguerreQ( function pFunction,
 43                                    G4int nLagu <<  42                                     G4double alpha,
 44   : G4VGaussianQuadrature(pFunction)           <<  43                                     G4int nLaguerre      ) 
                                                   >>  44    : G4VGaussianQuadrature(pFunction)
 45 {                                                  45 {
 46   const G4double tolerance = 1.0e-10;          <<  46    const G4double tolerance = 1.0e-10 ;
 47   const G4int maxNumber    = 12;               <<  47    const G4int maxNumber = 12 ;
 48   G4int i = 1, k = 1;                          <<  48    G4int i=1, k=1 ;
 49   G4double newton0 = 0.0, newton1 = 0.0, temp1 <<  49    G4double newton0=0.0, newton1=0.0,
 50            temp = 0.0, cofi = 0.0;             <<  50             temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0, cofi=0.0 ;
 51                                                <<  51 
 52   fNumber   = nLaguerre;                       <<  52    fNumber = nLaguerre ;
 53   fAbscissa = new G4double[fNumber];           <<  53    fAbscissa = new G4double[fNumber] ;
 54   fWeight   = new G4double[fNumber];           <<  54    fWeight   = new G4double[fNumber] ;
 55                                                <<  55       
 56   for(i = 1; i <= fNumber; ++i)  // Loop over  <<  56    for(i=1;i<=fNumber;i++)      // Loop over the desired roots
 57   {                                            <<  57    {
 58     if(i == 1)                                 <<  58       if(i == 1)
 59     {                                          <<  59       {
 60       newton0 = (1.0 + alpha) * (3.0 + 0.92 *  <<  60          newton0 = (1.0 + alpha)*(3.0 + 0.92*alpha)
 61                 (1.0 + 2.4 * fNumber + 1.8 * a <<  61                  / (1.0 + 2.4*fNumber + 1.8*alpha) ;
 62     }                                          <<  62       }
 63     else if(i == 2)                            <<  63       else if(i == 2)
 64     {                                          <<  64       {
 65       newton0 += (15.0 + 6.25 * alpha) / (1.0  <<  65          newton0 += (15.0 + 6.25*alpha)/(1.0 + 0.9*alpha + 2.5*fNumber) ;
 66     }                                          <<  66       }
 67     else                                       <<  67       else
 68     {                                          <<  68       {
 69       cofi = i - 2;                            <<  69          cofi = i - 2 ;
 70       newton0 += ((1.0 + 2.55 * cofi) / (1.9 * <<  70          newton0 += ((1.0+2.55*cofi)/(1.9*cofi)
 71                   1.26 * cofi * alpha / (1.0 + <<  71                     + 1.26*cofi*alpha/(1.0+3.5*cofi))
 72                  (newton0 - fAbscissa[i - 3])  <<  72                     * (newton0 - fAbscissa[i-3])/(1.0 + 0.3*alpha) ;
 73     }                                          <<  73       }
 74     for(k = 1; k <= maxNumber; ++k)            <<  74       for(k=1;k<=maxNumber;k++)
 75     {                                          << 
 76       temp1 = 1.0;                             << 
 77       temp2 = 0.0;                             << 
 78       for(G4int j = 1; j <= fNumber; ++j)      << 
 79       {                                            75       {
 80         temp3 = temp2;                         <<  76          temp1 = 1.0 ;
 81         temp2 = temp1;                         <<  77          temp2 = 0.0 ;
 82         temp1 =                                <<  78          for(G4int j=1;j<=fNumber;j++)
 83           ((2 * j - 1 + alpha - newton0) * tem <<  79          {
                                                   >>  80             temp3 = temp2 ;
                                                   >>  81             temp2 = temp1 ;
                                                   >>  82             temp1 = ((2*j - 1 + alpha - newton0)*temp2
                                                   >>  83                      - (j - 1 + alpha)*temp3)/j ;
                                                   >>  84          }
                                                   >>  85          temp = (fNumber*temp1 - (fNumber +alpha)*temp2)/newton0 ;
                                                   >>  86          newton1 = newton0 ;
                                                   >>  87          newton0 = newton1 - temp1/temp ;
                                                   >>  88          if(std::fabs(newton0 - newton1) <= tolerance) 
                                                   >>  89          {
                                                   >>  90             break ;
                                                   >>  91          }
 84       }                                            92       }
 85       temp    = (fNumber * temp1 - (fNumber +  <<  93       if(k > maxNumber)
 86       newton1 = newton0;                       << 
 87       newton0 = newton1 - temp1 / temp;        << 
 88       if(std::fabs(newton0 - newton1) <= toler << 
 89       {                                            94       {
 90         break;                                 <<  95          G4Exception("G4GaussLaguerreQ::G4GaussLaguerreQ()",
                                                   >>  96                      "OutOfRange", FatalException,
                                                   >>  97                      "Too many iterations in Gauss-Laguerre constructor") ;
 91       }                                            98       }
 92     }                                          <<  99          
 93     if(k > maxNumber)                          << 100       fAbscissa[i-1] = newton0 ;
 94     {                                          << 101       fWeight[i-1] = -std::exp(GammaLogarithm(alpha + fNumber)
 95       G4Exception("G4GaussLaguerreQ::G4GaussLa << 102                    - GammaLogarithm((G4double)fNumber))/(temp*fNumber*temp2) ;
 96                   FatalException,              << 103    }
 97                   "Too many iterations in Gaus << 
 98     }                                          << 
 99                                                << 
100     fAbscissa[i - 1] = newton0;                << 
101     fWeight[i - 1]   = -std::exp(GammaLogarith << 
102                                GammaLogarithm( << 
103                      (temp * fNumber * temp2); << 
104   }                                            << 
105 }                                                 104 }
106                                                   105 
107 // -------------------------------------------    106 // -----------------------------------------------------------------
108 //                                                107 //
109 // Gauss-Laguerre method for integration of       108 // Gauss-Laguerre method for integration of
110 // std::pow(x,alpha)*std::exp(-x)*pFunction(x)    109 // std::pow(x,alpha)*std::exp(-x)*pFunction(x)
111 // from zero up to infinity. pFunction is eval    110 // from zero up to infinity. pFunction is evaluated in fNumber points
112 // for which fAbscissa[i] and fWeight[i] array    111 // for which fAbscissa[i] and fWeight[i] arrays were created in
113 // G4VGaussianQuadrature(double,int) construct    112 // G4VGaussianQuadrature(double,int) constructor
114                                                   113 
115 G4double G4GaussLaguerreQ::Integral() const    << 114 G4double 
                                                   >> 115 G4GaussLaguerreQ::Integral() const 
116 {                                                 116 {
117   G4double integral = 0.0;                     << 117    G4double integral = 0.0 ;
118   for(G4int i = 0; i < fNumber; ++i)           << 118    for(G4int i=0;i<fNumber;i++)
119   {                                            << 119    {
120     integral += fWeight[i] * fFunction(fAbscis << 120       integral += fWeight[i]*fFunction(fAbscissa[i]) ;
121   }                                            << 121    }
122   return integral;                             << 122    return integral ;
123 }                                                 123 }
124                                                   124