Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4GaussJacobiQ class implementation << 27 // 26 // 28 // Author: V.Grichine, 13.05.1997 << 27 // $Id: G4GaussJacobiQ.cc,v 1.8 2007/11/13 17:35:06 gcosmo Exp $ 29 // ------------------------------------------- << 28 // GEANT4 tag $Name: geant4-09-02 $ 30 << 29 // 31 #include "G4GaussJacobiQ.hh" 30 #include "G4GaussJacobiQ.hh" 32 31 >> 32 33 // ------------------------------------------- 33 // ------------------------------------------------------------- 34 // 34 // 35 // Constructor for Gauss-Jacobi integration me << 35 // Constructor for Gauss-Jacobi integration method. 36 // 36 // 37 37 38 G4GaussJacobiQ::G4GaussJacobiQ(function pFunct << 38 G4GaussJacobiQ::G4GaussJacobiQ( function pFunction, 39 G4double beta, << 39 G4double alpha, 40 : G4VGaussianQuadrature(pFunction) << 40 G4double beta, >> 41 G4int nJacobi ) >> 42 : G4VGaussianQuadrature(pFunction) 41 43 42 { 44 { 43 const G4double tolerance = 1.0e-12; << 45 const G4double tolerance = 1.0e-12 ; 44 const G4double maxNumber = 12; << 46 const G4double maxNumber = 12 ; 45 G4int i = 1, k = 1; << 47 G4int i=1, k=1 ; 46 G4double root = 0.; << 48 G4double root=0.; 47 G4double alphaBeta = 0.0, alphaReduced = 0.0 << 49 G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0, 48 root2 = 0.0, root3 = 0.0; << 50 root1=0.0, root2=0.0, root3=0.0 ; 49 G4double a = 0.0, b = 0.0, c = 0.0, newton1 << 51 G4double a=0.0, b=0.0, c=0.0, 50 newton3 = 0.0, newton0 = 0.0, temp << 52 newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0, 51 << 53 temp=0.0, rootTemp=0.0 ; 52 fNumber = nJacobi; << 54 53 fAbscissa = new G4double[fNumber]; << 55 fNumber = nJacobi ; 54 fWeight = new G4double[fNumber]; << 56 fAbscissa = new G4double[fNumber] ; >> 57 fWeight = new G4double[fNumber] ; 55 58 56 for(i = 1; i <= nJacobi; ++i) << 59 for (i=1;i<=nJacobi;i++) 57 { 60 { 58 if(i == 1) << 61 if (i == 1) 59 { << 62 { 60 alphaReduced = alpha / nJacobi; << 63 alphaReduced = alpha/nJacobi ; 61 betaReduced = beta / nJacobi; << 64 betaReduced = beta/nJacobi ; 62 root1 = (1.0 + alpha) * (2.78002 << 65 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+ 63 0.767999 * alph << 66 0.767999*alphaReduced/nJacobi) ; 64 root2 = 1.0 + 1.48 * alphaReduced << 67 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced 65 0.451998 * alphaReduced * alphaR << 68 + 0.451998*alphaReduced*alphaReduced 66 0.83001 * alphaReduced * betaRed << 69 + 0.83001*alphaReduced*betaReduced ; 67 root = 1.0 - root1 / root2; << 70 root = 1.0-root1/root2 ; 68 } << 71 } 69 else if(i == 2) << 72 else if (i == 2) 70 { << 73 { 71 root1 = (4.1002 + alpha) / ((1.0 + alpha << 74 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ; 72 root2 = 1.0 + 0.06 * (nJacobi - 8.0) * ( << 75 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ; 73 root3 = << 76 root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ; 74 1.0 + 0.012002 * beta * (1.0 + 0.24997 << 77 root -= (1.0-root)*root1*root2*root3 ; 75 root -= (1.0 - root) * root1 * root2 * r << 78 } 76 } << 79 else if (i == 3) 77 else if(i == 3) << 80 { 78 { << 81 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ; 79 root1 = (1.67001 + 0.27998 * alpha) / (1 << 82 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ; 80 root2 = 1.0 + 0.22 * (nJacobi - 8.0) / n << 83 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ; 81 root3 = 1.0 + 8.0 * beta / ((6.28001 + b << 84 root -= (fAbscissa[0]-root)*root1*root2*root3 ; 82 root -= (fAbscissa[0] - root) * root1 * << 85 } 83 } << 86 else if (i == nJacobi-1) 84 else if(i == nJacobi - 1) << 87 { 85 { << 88 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ; 86 root1 = (1.0 + 0.235002 * beta) / (0.766 << 89 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ; 87 root2 = 1.0 / (1.0 + 0.639002 * (nJacobi << 90 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ; 88 (1.0 + 0.71001 * << 91 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ; 89 root3 = 1.0 / (1.0 + 20.0 * alpha / ((7. << 92 } 90 root += (root - fAbscissa[nJacobi - 4]) << 93 else if (i == nJacobi) 91 } << 94 { 92 else if(i == nJacobi) << 95 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ; 93 { << 96 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ; 94 root1 = (1.0 + 0.37002 * beta) / (1.6700 << 97 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ; 95 root2 = 1.0 / (1.0 + 0.22 * (nJacobi - 8 << 98 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ; 96 root3 = << 99 } 97 1.0 / (1.0 + 8.0 * alpha / ((6.28002 + << 100 else 98 root += (root - fAbscissa[nJacobi - 3]) << 101 { 99 } << 102 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ; 100 else << 103 } 101 { << 104 alphaBeta = alpha + beta ; 102 root = 3.0 * fAbscissa[i - 2] - 3.0 * fA << 105 for (k=1;k<=maxNumber;k++) 103 } << 106 { 104 alphaBeta = alpha + beta; << 107 temp = 2.0 + alphaBeta ; 105 for(k = 1; k <= maxNumber; ++k) << 108 newton1 = (alpha-beta+temp*root)/2.0 ; 106 { << 109 newton2 = 1.0 ; 107 temp = 2.0 + alphaBeta; << 110 for (G4int j=2;j<=nJacobi;j++) 108 newton1 = (alpha - beta + temp * root) / << 111 { 109 newton2 = 1.0; << 112 newton3 = newton2 ; 110 for(G4int j = 2; j <= nJacobi; ++j) << 113 newton2 = newton1 ; 111 { << 114 temp = 2*j+alphaBeta ; 112 newton3 = newton2; << 115 a = 2*j*(j+alphaBeta)*(temp-2.0) ; 113 newton2 = newton1; << 116 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ; 114 temp = 2 * j + alphaBeta; << 117 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ; 115 a = 2 * j * (j + alphaBeta) * (t << 118 newton1 = (b*newton2-c*newton3)/a ; 116 b = (temp - 1.0) * << 119 } 117 (alpha * alpha - beta * beta + tem << 120 newton0 = (nJacobi*(alpha - beta - temp*root)*newton1 + 118 c = 2.0 * (j - 1 + alpha) * (j - << 121 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/ 119 newton1 = (b * newton2 - c * newton3) << 122 (temp*(1.0 - root*root)) ; 120 } << 123 rootTemp = root ; 121 newton0 = (nJacobi * (alpha - beta - tem << 124 root = rootTemp - newton1/newton0 ; 122 2.0 * (nJacobi + alpha) * (nJ << 125 if (std::fabs(root-rootTemp) <= tolerance) 123 (temp * (1.0 - root * root)); << 126 { 124 rootTemp = root; << 127 break ; 125 root = rootTemp - newton1 / newton0; << 128 } 126 if(std::fabs(root - rootTemp) <= toleran << 129 } 127 { << 130 if (k > maxNumber) 128 break; << 131 { 129 } << 132 G4Exception("G4GaussJacobiQ::G4GaussJacobiQ()", "OutOfRange", 130 } << 133 FatalException, "Too many iterations in constructor.") ; 131 if(k > maxNumber) << 134 } 132 { << 135 fAbscissa[i-1] = root ; 133 G4Exception("G4GaussJacobiQ::G4GaussJaco << 136 fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) + 134 FatalException, "Too many it << 137 GammaLogarithm((G4double)(beta+nJacobi)) - 135 } << 138 GammaLogarithm((G4double)(nJacobi+1.0)) - 136 fAbscissa[i - 1] = root; << 139 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) 137 fWeight[i - 1] = << 140 *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ; 138 std::exp(GammaLogarithm((G4double)(alpha << 139 GammaLogarithm((G4double)(beta << 140 GammaLogarithm((G4double)(nJaco << 141 GammaLogarithm((G4double)(nJaco << 142 temp * std::pow(2.0, alphaBeta) / (newto << 143 } 141 } 144 } 142 } 145 143 >> 144 146 // ------------------------------------------- 145 // ---------------------------------------------------------- 147 // 146 // 148 // Gauss-Jacobi method for integration of 147 // Gauss-Jacobi method for integration of 149 // ((1-x)^alpha)*((1+x)^beta)*pFunction(x) 148 // ((1-x)^alpha)*((1+x)^beta)*pFunction(x) 150 // from minus unit to plus unit . 149 // from minus unit to plus unit . 151 150 152 G4double G4GaussJacobiQ::Integral() const << 151 >> 152 G4double >> 153 G4GaussJacobiQ::Integral() const 153 { 154 { 154 G4double integral = 0.0; << 155 G4double integral = 0.0 ; 155 for(G4int i = 0; i < fNumber; ++i) << 156 for(G4int i=0;i<fNumber;i++) 156 { << 157 { 157 integral += fWeight[i] * fFunction(fAbscis << 158 integral += fWeight[i]*fFunction(fAbscissa[i]) ; 158 } << 159 } 159 return integral; << 160 return integral ; 160 } 161 } >> 162 161 163