Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussHermiteQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/src/G4GaussHermiteQ.cc (Version 11.3.0) and /global/HEPNumerics/src/G4GaussHermiteQ.cc (Version 6.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // G4GaussHermiteQ class implementation        << 
 27 //                                                 23 //
 28 // Author: V.Grichine, 13.05.1997 V.Grichine   <<  24 // $Id: G4GaussHermiteQ.cc,v 1.4 2001/07/11 10:00:41 gunter Exp $
 29 // ------------------------------------------- <<  25 // GEANT4 tag $Name: geant4-05-02-patch-01 $
 30                                                <<  26 //
 31 #include "G4GaussHermiteQ.hh"                      27 #include "G4GaussHermiteQ.hh"
 32 #include "G4PhysicalConstants.hh"              << 
 33                                                    28 
 34 #include <limits>                              << 
 35                                                    29 
 36 // -------------------------------------------     30 // ----------------------------------------------------------
 37 //                                                 31 //
 38 // Constructor for Gauss-Hermite                   32 // Constructor for Gauss-Hermite
 39                                                    33 
 40 G4GaussHermiteQ::G4GaussHermiteQ(function pFun <<  34 G4GaussHermiteQ::G4GaussHermiteQ(      function pFunction, 
 41   : G4VGaussianQuadrature(pFunction)           <<  35                G4int nHermite       ) 
                                                   >>  36    : G4VGaussianQuadrature(pFunction)
 42 {                                                  37 {
 43   const G4double tolerance = 1.0e-12;          <<  38    const G4double tolerance = 1.0e-12 ;
 44   const G4int maxNumber    = 12;               <<  39    const G4int maxNumber = 12 ;
 45                                                <<  40    
 46   G4int i = 1, j = 1, k = 1;                   <<  41    G4int i, j, k ;
 47   G4double newton0 = 0.;                       <<  42    G4double newton=0.;
 48   G4double newton1 = 0.0, temp1 = 0.0, temp2 = <<  43    G4double newton1, temp1, temp2, temp3, temp ;
 49   G4double piInMinusQ = std::pow(pi, -0.25);   <<  44    G4double piInMinusQ = pow(pi,-0.25) ;                // 1.0/sqrt(sqrt(pi)) ??
 50                                                <<  45 
 51   fNumber   = (nHermite + 1) / 2;              <<  46    fNumber = (nHermite +1)/2 ;
 52   fAbscissa = new G4double[fNumber];           <<  47    fAbscissa = new G4double[fNumber] ;
 53   fWeight   = new G4double[fNumber];           <<  48    fWeight   = new G4double[fNumber] ;
 54                                                <<  49 
 55   for(i = 1; i <= fNumber; ++i)                <<  50    for(i=1;i<=fNumber;i++)
 56   {                                            <<  51    {
 57     if(i == 1)                                 <<  52       if(i == 1)
 58     {                                          <<  53       {
 59       newton0 =                                <<  54    newton = sqrt((G4double)(2*nHermite + 1)) - 
 60         std::sqrt((G4double)(2 * nHermite + 1) <<  55             1.85575001*pow((G4double)(2*nHermite + 1),-0.16666999) ;
 61         1.85575001 * std::pow((G4double)(2 * n <<  56       }
 62     }                                          <<  57       else if(i == 2)
 63     else if(i == 2)                            <<  58       {
 64     {                                          <<  59    newton -= 1.14001*pow((G4double)nHermite,0.425999)/newton ;
 65       newton0 -= 1.14001 * std::pow((G4double) <<  60       }
 66     }                                          <<  61       else if(i == 3)
 67     else if(i == 3)                            <<  62       {
 68     {                                          <<  63    newton = 1.86002*newton - 0.86002*fAbscissa[0] ;
 69       newton0 = 1.86002 * newton0 - 0.86002 *  <<  64       }
 70     }                                          <<  65       else if(i == 4)
 71     else if(i == 4)                            <<  66       {
 72     {                                          <<  67    newton = 1.91001*newton - 0.91001*fAbscissa[1] ;
 73       newton0 = 1.91001 * newton0 - 0.91001 *  <<  68       }
 74     }                                          <<  69       else 
 75     else                                       <<  70       {
 76     {                                          <<  71    newton = 2.0*newton - fAbscissa[i - 3] ;
 77       newton0 = 2.0 * newton0 - fAbscissa[i -  <<  72       }
 78     }                                          <<  73       for(k=1;k<=maxNumber;k++)
 79     for(k = 1; k <= maxNumber; ++k)            <<  74       {
 80     {                                          <<  75    temp1 = piInMinusQ ;
 81       temp1 = piInMinusQ;                      <<  76    temp2 = 0.0 ;
 82       temp2 = 0.0;                             <<  77    for(j=1;j<=nHermite;j++)
 83       for(j = 1; j <= nHermite; ++j)           <<  78    {
 84       {                                        <<  79       temp3 = temp2 ;
 85         temp3 = temp2;                         <<  80       temp2 = temp1 ;
 86         temp2 = temp1;                         <<  81       temp1 = newton*sqrt(2.0/j)*temp2 - sqrt(((G4double)(j - 1))/j)*temp3 ;
 87         temp1 = newton0 * std::sqrt(2.0 / j) * <<  82    }
 88                 std::sqrt(((G4double)(j - 1))  <<  83    temp = sqrt((G4double)2*nHermite)*temp2 ;
 89       }                                        <<  84    newton1 = newton ;
 90       temp    = std::sqrt((G4double) 2 * nHerm <<  85    newton = newton1 - temp1/temp ;
 91       newton1 = newton0;                       <<  86          if(fabs(newton - newton1) <= tolerance) 
 92       G4double ratio = std::numeric_limits<G4d <<  87    {
 93       if(temp > 0.0)                           <<  88       break ;
 94       {                                        <<  89    }
 95         ratio = temp1 / temp;                  <<  90       }
 96       }                                        <<  91       if(k > maxNumber)
 97       newton0 = newton1 - ratio;               <<  92       {
 98       if(std::fabs(newton0 - newton1) <= toler <<  93    G4Exception("Too many iterations in Gauss-Hermite constructor") ;
 99       {                                        <<  94       }
100         break;                                 <<  95       fAbscissa[i-1] =  newton ;
101       }                                        <<  96       fWeight[i-1] = 2.0/(temp*temp) ;
102     }                                          <<  97    }
103     if(k > maxNumber)                          << 
104     {                                          << 
105       G4Exception("G4GaussHermiteQ::G4GaussHer << 
106                   FatalException,              << 
107                   "Too many iterations in Gaus << 
108     }                                          << 
109     fAbscissa[i - 1] = newton0;                << 
110     fWeight[i - 1]   = 2.0 / (temp * temp);    << 
111   }                                            << 
112 }                                                  98 }
113                                                    99 
                                                   >> 100 
114 // -------------------------------------------    101 // ----------------------------------------------------------
115 //                                                102 //
116 // Gauss-Hermite method for integration of std << 103 // Gauss-Hermite method for integration of exp(-x*x)*nFunction(x) from minus infinity
117 // from minus infinity to plus infinity .      << 104 // to plus infinity . 
118                                                   105 
119 G4double G4GaussHermiteQ::Integral() const     << 106 G4double 
                                                   >> 107    G4GaussHermiteQ::Integral() const 
120 {                                                 108 {
121   G4double integral = 0.0;                     << 109    G4int i ;
122   for(G4int i = 0; i < fNumber; ++i)           << 110    G4double integral = 0.0 ;
123   {                                            << 111    for(i=0;i<fNumber;i++)
124     integral +=                                << 112    {
125       fWeight[i] * (fFunction(fAbscissa[i]) +  << 113       integral += fWeight[i]*(fFunction(fAbscissa[i]) + fFunction(-fAbscissa[i])) ;
126   }                                            << 114    }
127   return integral;                             << 115    return integral ;
128 }                                                 116 }
129                                                   117