Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4ChebyshevApproximation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/src/G4ChebyshevApproximation.cc (Version 11.3.0) and /global/HEPNumerics/src/G4ChebyshevApproximation.cc (Version 9.2.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4ChebyshevApproximation class implementati << 
 27 //                                                 26 //
 28 // Author: V.Grichine, 24.04.97                <<  27 // $Id: G4ChebyshevApproximation.cc,v 1.7 2007/11/13 17:35:06 gcosmo Exp $
 29 // ------------------------------------------- <<  28 // GEANT4 tag $Name: geant4-09-02-patch-04 $
                                                   >>  29 //
 30                                                    30 
 31 #include "G4ChebyshevApproximation.hh"             31 #include "G4ChebyshevApproximation.hh"
 32 #include "G4PhysicalConstants.hh"              << 
 33                                                    32 
 34 // Constructor for initialisation of the class     33 // Constructor for initialisation of the class data members.
 35 // It creates the array fChebyshevCof[0,...,fN     34 // It creates the array fChebyshevCof[0,...,fNumber-1], fNumber = n ;
 36 // which consists of Chebyshev coefficients de     35 // which consists of Chebyshev coefficients describing the function
 37 // pointed by pFunction. The values a and b fi     36 // pointed by pFunction. The values a and b fix the interval of validity
 38 // of the Chebyshev approximation.             <<  37 // of the Chebyshev approximation. 
 39                                                    38 
 40 G4ChebyshevApproximation::G4ChebyshevApproxima <<  39 G4ChebyshevApproximation::G4ChebyshevApproximation( function pFunction,
 41                                                <<  40                                                     G4int n, 
 42   : fFunction(pFunction)                       <<  41                                                     G4double a,
 43   , fNumber(n)                                 <<  42                                                     G4double b       ) 
 44   , fChebyshevCof(new G4double[fNumber])       <<  43    : fFunction(pFunction), fNumber(n),
 45   , fMean(0.5 * (b + a))                       <<  44      fChebyshevCof(new G4double[fNumber]),
 46   , fDiff(0.5 * (b - a))                       <<  45      fMean(0.5*(b+a)), fDiff(0.5*(b-a))
 47 {                                              <<  46 {
 48   G4int i = 0, j = 0;                          <<  47    G4int i=0, j=0 ;
 49   G4double rootSum = 0.0, cofj = 0.0;          <<  48    G4double  rootSum=0.0, cofj=0.0 ;
 50   auto tempFunction = new G4double[fNumber];   <<  49    G4double* tempFunction = new G4double[fNumber] ;
 51   G4double weight        = 2.0 / fNumber;      <<  50    G4double weight = 2.0/fNumber ;
 52   G4double cof           = 0.5 * weight * pi;  <<  51    G4double cof = 0.5*weight*pi ;    // pi/n
 53                                                <<  52    
 54   for(i = 0; i < fNumber; ++i)                 <<  53    for (i=0;i<fNumber;i++)
 55   {                                            <<  54    {
 56     rootSum         = std::cos(cof * (i + 0.5) <<  55       rootSum = std::cos(cof*(i+0.5)) ;
 57     tempFunction[i] = fFunction(rootSum * fDif <<  56       tempFunction[i]= fFunction(rootSum*fDiff+fMean) ;
 58   }                                            <<  57    }
 59   for(j = 0; j < fNumber; ++j)                 <<  58    for (j=0;j<fNumber;j++) 
 60   {                                            <<  59    {
 61     cofj    = cof * j;                         <<  60       cofj = cof*j ;
 62     rootSum = 0.0;                             <<  61       rootSum = 0.0 ;
 63                                                <<  62       
 64     for(i = 0; i < fNumber; ++i)               <<  63       for (i=0;i<fNumber;i++)
 65     {                                          <<  64       {
 66       rootSum += tempFunction[i] * std::cos(co <<  65          rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
 67     }                                          <<  66       }
 68     fChebyshevCof[j] = weight * rootSum;       <<  67       fChebyshevCof[j] = weight*rootSum ;
 69   }                                            <<  68    }
 70   delete[] tempFunction;                       <<  69    delete[] tempFunction ;
 71 }                                                  70 }
 72                                                    71 
 73 // -------------------------------------------     72 // --------------------------------------------------------------------
 74 //                                                 73 //
 75 // Constructor for creation of Chebyshev coeff     74 // Constructor for creation of Chebyshev coefficients for mx-derivative
 76 // from pFunction. The value of mx ! MUST BE !     75 // from pFunction. The value of mx ! MUST BE ! < nx , because the result
 77 // array of fChebyshevCof will be of (nx-mx) s     76 // array of fChebyshevCof will be of (nx-mx) size.  The values a and b
 78 // fix the interval of validity of the Chebysh <<  77 // fix the interval of validity of the Chebyshev approximation. 
 79                                                    78 
 80 G4ChebyshevApproximation::G4ChebyshevApproxima <<  79 G4ChebyshevApproximation::
 81                                                <<  80 G4ChebyshevApproximation( function pFunction,
 82                                                <<  81                           G4int nx, G4int mx,
 83   : fFunction(pFunction)                       <<  82                           G4double a, G4double b ) 
 84   , fNumber(nx)                                <<  83    : fFunction(pFunction), fNumber(nx),
 85   , fChebyshevCof(new G4double[fNumber])       <<  84      fChebyshevCof(new G4double[fNumber]),
 86   , fMean(0.5 * (b + a))                       <<  85      fMean(0.5*(b+a)), fDiff(0.5*(b-a))
 87   , fDiff(0.5 * (b - a))                       <<  86 {
 88 {                                              <<  87    if(nx <= mx)
 89   if(nx <= mx)                                 <<  88    {
 90   {                                            <<  89       G4Exception("G4ChebyshevApproximation::G4ChebyshevApproximation()",
 91     G4Exception("G4ChebyshevApproximation::G4C <<  90                   "InvalidCall", FatalException, "Invalid arguments !") ;
 92                 "InvalidCall", FatalException, <<  91    }
 93   }                                            <<  92    G4int i=0, j=0 ;
 94   G4int i = 0, j = 0;                          <<  93    G4double  rootSum = 0.0, cofj=0.0;   
 95   G4double rootSum = 0.0, cofj = 0.0;          <<  94    G4double* tempFunction = new G4double[fNumber] ;
 96   auto tempFunction = new G4double[fNumber];   <<  95    G4double weight = 2.0/fNumber ;
 97   G4double weight        = 2.0 / fNumber;      <<  96    G4double cof = 0.5*weight*pi ;    // pi/nx
 98   G4double cof           = 0.5 * weight * pi;  <<  97    
 99                                                <<  98    for (i=0;i<fNumber;i++)
100   for(i = 0; i < fNumber; ++i)                 <<  99    {
101   {                                            << 100       rootSum = std::cos(cof*(i+0.5)) ;
102     rootSum         = std::cos(cof * (i + 0.5) << 101       tempFunction[i] = fFunction(rootSum*fDiff+fMean) ;
103     tempFunction[i] = fFunction(rootSum * fDif << 102    }
104   }                                            << 103    for (j=0;j<fNumber;j++) 
105   for(j = 0; j < fNumber; ++j)                 << 104    {
106   {                                            << 105       cofj = cof*j ;
107     cofj    = cof * j;                         << 106       rootSum = 0.0 ;
108     rootSum = 0.0;                             << 107       
109                                                << 108       for (i=0;i<fNumber;i++)
110     for(i = 0; i < fNumber; ++i)               << 109       {
111     {                                          << 110          rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
112       rootSum += tempFunction[i] * std::cos(co << 111       }
113     }                                          << 112       fChebyshevCof[j] = weight*rootSum ; // corresponds to pFunction
114     fChebyshevCof[j] = weight * rootSum;  // c << 113    }
115   }                                            << 114    // Chebyshev coefficients for (mx)-derivative of pFunction
116   // Chebyshev coefficients for (mx)-derivativ << 115    
117                                                << 116    for(i=1;i<=mx;i++)
118   for(i = 1; i <= mx; ++i)                     << 117    {
119   {                                            << 118       DerivativeChebyshevCof(tempFunction) ;
120     DerivativeChebyshevCof(tempFunction);      << 119       fNumber-- ;
121     fNumber--;                                 << 120       for(j=0;j<fNumber;j++)
122     for(j = 0; j < fNumber; ++j)               << 121       {
123     {                                          << 122         fChebyshevCof[j] = tempFunction[j] ; // corresponds to (i)-derivative
124       fChebyshevCof[j] = tempFunction[j];  //  << 123       }
125     }                                          << 124    }
126   }                                            << 125    delete[] tempFunction ;   // delete of dynamically allocated tempFunction
127   delete[] tempFunction;  // delete of dynamic << 
128 }                                                 126 }
129                                                   127 
130 // -------------------------------------------    128 // ------------------------------------------------------
131 //                                                129 //
132 // Constructor for creation of Chebyshev coeff    130 // Constructor for creation of Chebyshev coefficients for integral
133 // from pFunction.                                131 // from pFunction.
134                                                   132 
135 G4ChebyshevApproximation::G4ChebyshevApproxima << 133 G4ChebyshevApproximation::G4ChebyshevApproximation( function pFunction,
136                                                << 134                                                     G4double a,
137                                                << 135                                                     G4double b, 
138   : fFunction(pFunction)                       << 136                                                     G4int n            ) 
139   , fNumber(n)                                 << 137    : fFunction(pFunction), fNumber(n),
140   , fChebyshevCof(new G4double[fNumber])       << 138      fChebyshevCof(new G4double[fNumber]),
141   , fMean(0.5 * (b + a))                       << 139      fMean(0.5*(b+a)), fDiff(0.5*(b-a))
142   , fDiff(0.5 * (b - a))                       << 140 {
143 {                                              << 141    G4int i=0, j=0;
144   G4int i = 0, j = 0;                          << 142    G4double  rootSum=0.0, cofj=0.0;
145   G4double rootSum = 0.0, cofj = 0.0;          << 143    G4double* tempFunction = new G4double[fNumber] ;
146   auto tempFunction = new G4double[fNumber];   << 144    G4double weight = 2.0/fNumber;
147   G4double weight        = 2.0 / fNumber;      << 145    G4double cof = 0.5*weight*pi ;    // pi/n
148   G4double cof           = 0.5 * weight * pi;  << 146    
149                                                << 147    for (i=0;i<fNumber;i++)
150   for(i = 0; i < fNumber; ++i)                 << 148    {
151   {                                            << 149       rootSum = std::cos(cof*(i+0.5)) ;
152     rootSum         = std::cos(cof * (i + 0.5) << 150       tempFunction[i]= fFunction(rootSum*fDiff+fMean) ;
153     tempFunction[i] = fFunction(rootSum * fDif << 151    }
154   }                                            << 152    for (j=0;j<fNumber;j++) 
155   for(j = 0; j < fNumber; ++j)                 << 153    {
156   {                                            << 154       cofj = cof*j ;
157     cofj    = cof * j;                         << 155       rootSum = 0.0 ;
158     rootSum = 0.0;                             << 156       
159                                                << 157       for (i=0;i<fNumber;i++)
160     for(i = 0; i < fNumber; ++i)               << 158       {
161     {                                          << 159          rootSum += tempFunction[i]*std::cos(cofj*(i+0.5)) ;
162       rootSum += tempFunction[i] * std::cos(co << 160       }
163     }                                          << 161       fChebyshevCof[j] = weight*rootSum ; // corresponds to pFunction
164     fChebyshevCof[j] = weight * rootSum;  // c << 162    }
165   }                                            << 163    // Chebyshev coefficients for integral of pFunction
166   // Chebyshev coefficients for integral of pF << 164    
167                                                << 165    IntegralChebyshevCof(tempFunction) ;
168   IntegralChebyshevCof(tempFunction);          << 166    for(j=0;j<fNumber;j++)
169   for(j = 0; j < fNumber; ++j)                 << 167    {
170   {                                            << 168       fChebyshevCof[j] = tempFunction[j] ; // corresponds to integral
171     fChebyshevCof[j] = tempFunction[j];  // co << 169    }
172   }                                            << 170    delete[] tempFunction ;   // delete of dynamically allocated tempFunction
173   delete[] tempFunction;  // delete of dynamic << 
174 }                                                 171 }
175                                                   172 
                                                   >> 173 
                                                   >> 174 
176 // -------------------------------------------    175 // ---------------------------------------------------------------
177 //                                                176 //
178 // Destructor deletes the array of Chebyshev c    177 // Destructor deletes the array of Chebyshev coefficients
179                                                   178 
180 G4ChebyshevApproximation::~G4ChebyshevApproxim    179 G4ChebyshevApproximation::~G4ChebyshevApproximation()
181 {                                                 180 {
182   delete[] fChebyshevCof;                      << 181    delete[] fChebyshevCof ;
183 }                                                 182 }
184                                                   183 
185 // -------------------------------------------    184 // ---------------------------------------------------------------
186 //                                                185 //
187 // Access function for Chebyshev coefficients     186 // Access function for Chebyshev coefficients
188 //                                                187 //
189                                                   188 
190 G4double G4ChebyshevApproximation::GetChebyshe << 189 
                                                   >> 190 G4double
                                                   >> 191 G4ChebyshevApproximation::GetChebyshevCof(G4int number) const 
191 {                                                 192 {
192   if(number < 0 && number >= fNumber)          << 193    if(number < 0 && number >= fNumber)
193   {                                            << 194    {
194     G4Exception("G4ChebyshevApproximation::Get << 195       G4Exception("G4ChebyshevApproximation::GetChebyshevCof()",
195                 FatalException, "Argument out  << 196                   "InvalidCall", FatalException, "Argument out of range !") ;
196   }                                            << 197    }
197   return fChebyshevCof[number];                << 198    return fChebyshevCof[number] ;
198 }                                                 199 }
199                                                   200 
200 // -------------------------------------------    201 // --------------------------------------------------------------
201 //                                                202 //
202 // Evaluate the value of fFunction at the poin    203 // Evaluate the value of fFunction at the point x via the Chebyshev coefficients
203 // fChebyshevCof[0,...,fNumber-1]                 204 // fChebyshevCof[0,...,fNumber-1]
204                                                   205 
205 G4double G4ChebyshevApproximation::ChebyshevEv << 206 G4double
                                                   >> 207 G4ChebyshevApproximation::ChebyshevEvaluation(G4double x) const 
206 {                                                 208 {
207   G4double evaluate = 0.0, evaluate2 = 0.0, te << 209    G4double evaluate = 0.0, evaluate2 = 0.0, temp = 0.0,
208            xReduced2 = 0.0;                    << 210             xReduced = 0.0, xReduced2 = 0.0 ;
209                                                   211 
210   if((x - fMean + fDiff) * (x - fMean - fDiff) << 212    if ((x-fMean+fDiff)*(x-fMean-fDiff) > 0.0) 
211   {                                            << 213    {
212     G4Exception("G4ChebyshevApproximation::Che << 214       G4Exception("G4ChebyshevApproximation::ChebyshevEvaluation()",
213                 "InvalidCall", FatalException, << 215                   "InvalidCall", FatalException, "Invalid argument !") ;
214   }                                            << 216    }
215   xReduced  = (x - fMean) / fDiff;             << 217    xReduced = (x-fMean)/fDiff ;
216   xReduced2 = 2.0 * xReduced;                  << 218    xReduced2 = 2.0*xReduced ;
217   for(G4int i = fNumber - 1; i >= 1; --i)      << 219    for (G4int i=fNumber-1;i>=1;i--) 
218   {                                            << 220    {
219     temp      = evaluate;                      << 221      temp = evaluate ;
220     evaluate  = xReduced2 * evaluate - evaluat << 222      evaluate  = xReduced2*evaluate - evaluate2 + fChebyshevCof[i] ;
221     evaluate2 = temp;                          << 223      evaluate2 = temp ;
222   }                                            << 224    }
223   return xReduced * evaluate - evaluate2 + 0.5 << 225    return xReduced*evaluate - evaluate2 + 0.5*fChebyshevCof[0] ;
224 }                                                 226 }
225                                                   227 
226 // -------------------------------------------    228 // ------------------------------------------------------------------
227 //                                                229 //
228 // Returns the array derCof[0,...,fNumber-2],  << 230 // Returns the array derCof[0,...,fNumber-2], the Chebyshev coefficients of the 
229 // derivative of the function whose coefficien    231 // derivative of the function whose coefficients are fChebyshevCof
230                                                   232 
231 void G4ChebyshevApproximation::DerivativeCheby << 233 void
                                                   >> 234 G4ChebyshevApproximation::DerivativeChebyshevCof(G4double derCof[]) const 
232 {                                                 235 {
233   G4double cof        = 1.0 / fDiff;           << 236    G4double cof = 1.0/fDiff ;
234   derCof[fNumber - 1] = 0.0;                   << 237    derCof[fNumber-1] = 0.0 ;
235   derCof[fNumber - 2] = 2 * (fNumber - 1) * fC << 238    derCof[fNumber-2] = 2*(fNumber-1)*fChebyshevCof[fNumber-1] ;
236   for(G4int i = fNumber - 3; i >= 0; --i)      << 239    for(G4int i=fNumber-3;i>=0;i--)
237   {                                            << 240    {
238     derCof[i] = derCof[i + 2] + 2 * (i + 1) *  << 241       derCof[i] = derCof[i+2] + 2*(i+1)*fChebyshevCof[i+1] ;  
239   }                                            << 242    }
240   for(G4int j = 0; j < fNumber; ++j)           << 243    for(G4int j=0;j<fNumber;j++)
241   {                                            << 244    {
242     derCof[j] *= cof;                          << 245       derCof[j] *= cof ;
243   }                                            << 246    }
244 }                                                 247 }
245                                                   248 
246 // -------------------------------------------    249 // ------------------------------------------------------------------------
247 //                                                250 //
248 // This function produces the array integralCo    251 // This function produces the array integralCof[0,...,fNumber-1] , the Chebyshev
249 // coefficients of the integral of the functio << 252 // coefficients of the integral of the function whose coefficients are  
250 // fChebyshevCof[]. The constant of integratio << 253 // fChebyshevCof[]. The constant of integration is set so that the integral 
251 // vanishes at the point (fMean - fDiff), i.e. << 254 // vanishes at the point (fMean - fDiff), i.e. at the begining of the interval of
252 // of validity (we start the integration from  << 255 // validity (we start the integration from this point).
253 //                                             << 256 //
254                                                << 257    
255 void G4ChebyshevApproximation::IntegralChebysh << 258 void 
256   G4double integralCof[]) const                << 259 G4ChebyshevApproximation::IntegralChebyshevCof(G4double integralCof[]) const 
257 {                                              << 260 {
258   G4double cof = 0.5 * fDiff, sum = 0.0, facto << 261    G4double cof = 0.5*fDiff, sum = 0.0, factor = 1.0 ;
259   for(G4int i = 1; i < fNumber - 1; ++i)       << 262    for(G4int i=1;i<fNumber-1;i++)
260   {                                            << 263    {
261     integralCof[i] = cof * (fChebyshevCof[i -  << 264       integralCof[i] = cof*(fChebyshevCof[i-1] - fChebyshevCof[i+1])/i ;
262     sum += factor * integralCof[i];            << 265       sum += factor*integralCof[i] ;
263     factor = -factor;                          << 266       factor = -factor ;
264   }                                            << 267    }
265   integralCof[fNumber - 1] = cof * fChebyshevC << 268    integralCof[fNumber-1] = cof*fChebyshevCof[fNumber-2]/(fNumber-1) ;
266   sum += factor * integralCof[fNumber - 1];    << 269    sum += factor*integralCof[fNumber-1] ;
267   integralCof[0] = 2.0 * sum;  // set the cons << 270    integralCof[0] = 2.0*sum ;                // set the constant of integration
268 }                                              << 271 }                                         
269                                                   272