Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4SimplexDownhill.icc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4SimplexDownhill.icc (Version 11.3.0) and /global/HEPNumerics/include/G4SimplexDownhill.icc (Version 10.6.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4SimplexDownhill inline methods implementa <<  26 //
 27 //                                                 27 //
 28 // Author: Tatsumi Koi (SLAC/SCCS), 2007           28 // Author: Tatsumi Koi (SLAC/SCCS), 2007
 29 // -------------------------------------------     29 // --------------------------------------------------------------------------
 30                                                    30 
 31 #include <cfloat>                              << 
 32 #include <iostream>                                31 #include <iostream>
 33 #include <numeric>                                 32 #include <numeric>
 34                                                <<  33 #include <cfloat>
 35 template <class T>                             <<  34  
 36 void G4SimplexDownhill<T>::init()              <<  35 template<class T> void G4SimplexDownhill<T>::init()
 37 {                                                  36 {
 38   alpha = 2.0;  // refrection coefficient:  0  <<  37    alpha = 2.0;  // refrection coefficient:  0 < alpha
 39   beta  = 0.5;  // contraction coefficient:    <<  38    beta = 0.5;   // contraction coefficient:   0 < beta < 1 
 40   gamma = 2.0;  // expantion coefficient:  1 < <<  39    gamma = 2.0;  // expantion coefficient:  1 < gamma
 41                                                <<  40 
 42   maximum_no_trial = 10000;                    <<  41    maximum_no_trial = 10000;
 43   max_se           = FLT_MIN;                  <<  42    max_se = FLT_MIN;
 44   // max_ratio = FLT_EPSILON/1;                <<  43    //max_ratio = FLT_EPSILON/1;
 45   max_ratio = DBL_EPSILON / 1;                 <<  44    max_ratio = DBL_EPSILON/1;
 46   minimized = false;                           <<  45    minimized = false;
 47 }                                                  46 }
 48                                                    47 
                                                   >>  48 
 49 /*                                                 49 /*
 50                                                    50 
 51 void G4SimplexDownhill<class T>::                  51 void G4SimplexDownhill<class T>::
 52 SetFunction( G4int n , G4double( *afunc )( std <<  52 SetFunction( G4int n , G4double( *afunc )( std::vector < G4double > ) ) 
 53 {                                                  53 {
 54    numberOfVariable = n;                       <<  54    numberOfVariable = n; 
 55    theFunction = afunc;                            55    theFunction = afunc;
 56    minimized = false;                          <<  56    minimized = false; 
 57 }                                                  57 }
 58                                                    58 
 59 */                                                 59 */
 60                                                    60 
 61 template <class T>                             <<  61 
                                                   >>  62 template<class T> 
 62 G4double G4SimplexDownhill<T>::GetMinimum()        63 G4double G4SimplexDownhill<T>::GetMinimum()
 63 {                                                  64 {
 64   initialize();                                << 
 65                                                    65 
 66   // First Tryal;                              <<  66    initialize();
 67                                                    67 
 68   // G4cout << "Begin First Trials" << G4endl; <<  68 // First Tryal;
 69   doDownhill();                                <<  69   
 70   // G4cout << "End First Trials" << G4endl;   <<  70    //G4cout << "Begin First Trials" << G4endl;
 71                                                <<  71    doDownhill();
 72   auto it_minh = std::min_element(currentHeigh <<  72    //G4cout << "End First Trials" << G4endl;
 73   G4int imin = 0;                              <<  73 
 74   G4int i    = 0;                              <<  74    std::vector< G4double >::iterator it_minh =
 75   for(auto it = currentHeights.cbegin(); it != <<  75       std::min_element( currentHeights.begin() , currentHeights.end() );
 76   {                                            <<  76    G4int imin = 0;
 77     if(it == it_minh)                          <<  77    G4int i = 0;
 78     {                                          <<  78    for ( std::vector< G4double >::iterator it = currentHeights.begin();
 79       imin = i;                                <<  79          it != currentHeights.end(); it++ )
 80     }                                          <<  80    {
 81     ++i;                                       <<  81       if ( it == it_minh )
 82   }                                            <<  82       {
 83   minimumPoint = currentSimplex[imin];         <<  83          imin = i;
                                                   >>  84       }
                                                   >>  85       i++;
                                                   >>  86    }
                                                   >>  87    minimumPoint = currentSimplex[ imin ];
 84                                                    88 
 85   // Second Trial                              <<  89 // Second Trial
 86                                                    90 
 87   // std::vector< G4double > minimumPoint = cu <<  91    //std::vector< G4double > minimumPoint = currentSimplex[ 0 ];
 88   initialize();                                <<  92    initialize();
 89                                                    93 
 90   currentSimplex[numberOfVariable] = minimumPo <<  94    currentSimplex[ numberOfVariable ] = minimumPoint;
 91                                                    95 
 92   // G4cout << "Begin Second Trials" << G4endl <<  96    //G4cout << "Begin Second Trials" << G4endl;
 93   doDownhill();                                <<  97    doDownhill();
 94   // G4cout << "End Second Trials" << G4endl;  <<  98    //G4cout << "End Second Trials" << G4endl;
                                                   >>  99    
                                                   >> 100    G4double sum = std::accumulate( currentHeights.begin() ,
                                                   >> 101                                    currentHeights.end() , 0.0 );
                                                   >> 102    G4double average = sum/(numberOfVariable+1); 
                                                   >> 103    G4double minimum = average;
 95                                                   104 
 96   G4double sum =                               << 105    minimized = true;
 97     std::accumulate(currentHeights.begin(), cu << 
 98   G4double average = sum / (numberOfVariable + << 
 99   G4double minimum = average;                  << 
100                                                   106 
101   minimized = true;                            << 107    return minimum;
102                                                   108 
103   return minimum;                              << 
104 }                                                 109 }
105                                                   110 
106 template <class T>                             << 111 
                                                   >> 112 
                                                   >> 113 template<class T> 
107 void G4SimplexDownhill<T>::initialize()           114 void G4SimplexDownhill<T>::initialize()
108 {                                                 115 {
109   currentSimplex.resize(numberOfVariable + 1); << 
110   currentHeights.resize(numberOfVariable + 1); << 
111                                                   116 
112   for(G4int i = 0; i < numberOfVariable; ++i)  << 117    currentSimplex.resize( numberOfVariable+1 );
113   {                                            << 118    currentHeights.resize( numberOfVariable+1 );
114     std::vector<G4double> avec(numberOfVariabl << 119 
115     avec[i]           = 1.0;                   << 120    for ( G4int i = 0 ; i < numberOfVariable ; i++ ) 
116     currentSimplex[i] = std::move(avec);       << 121    {
117   }                                            << 122       std::vector< G4double > avec ( numberOfVariable , 0.0 ); 
118                                                << 123       avec[ i ] = 1.0;
119   // std::vector< G4double > avec ( numberOfVa << 124       currentSimplex[ i ] = avec;
120   std::vector<G4double> avec(numberOfVariable, << 125    }
121   currentSimplex[numberOfVariable] = std::move << 126 
                                                   >> 127    //std::vector< G4double > avec ( numberOfVariable , 0.0 ); 
                                                   >> 128    std::vector< G4double > avec ( numberOfVariable , 1 ); 
                                                   >> 129    currentSimplex[ numberOfVariable ] = avec;
                                                   >> 130 
122 }                                                 131 }
123                                                   132 
124 template <class T>                             << 133 
                                                   >> 134 
                                                   >> 135 template<class T> 
125 void G4SimplexDownhill<T>::calHeights()           136 void G4SimplexDownhill<T>::calHeights()
126 {                                                 137 {
127   for(G4int i = 0; i <= numberOfVariable; ++i) << 
128   {                                            << 
129     currentHeights[i] = getValue(currentSimple << 
130   }                                            << 
131 }                                              << 
132                                                << 
133 template <class T>                             << 
134 std::vector<G4double> G4SimplexDownhill<T>::ca << 
135 {                                              << 
136   std::vector<G4double> centroid(numberOfVaria << 
137                                                << 
138   G4int i = 0;                                 << 
139   for(const auto & it : currentSimplex)        << 
140   {                                            << 
141     if(i != ih)                                << 
142     {                                          << 
143       for(G4int j = 0; j < numberOfVariable; + << 
144       {                                        << 
145         centroid[j] += it[j] / numberOfVariabl << 
146       }                                        << 
147     }                                          << 
148     ++i;                                       << 
149   }                                            << 
150                                                   138 
151   return centroid;                             << 139    for ( G4int i = 0 ; i <= numberOfVariable ; i++ ) 
                                                   >> 140    {
                                                   >> 141       currentHeights[i] = getValue ( currentSimplex[i] );
                                                   >> 142    }
                                                   >> 143 
152 }                                                 144 }
153                                                   145 
154 template <class T>                             << 146 
155 std::vector<G4double> G4SimplexDownhill<T>::ge << 147 
156   std::vector<G4double> p, std::vector<G4doubl << 148 template<class T> 
                                                   >> 149 std::vector< G4double > G4SimplexDownhill<T>::calCentroid( G4int ih )
157 {                                                 150 {
158   // G4cout << "Reflection" << G4endl;         << 
159                                                   151 
160   std::vector<G4double> reflectionP(numberOfVa << 152     std::vector< G4double > centroid ( numberOfVariable , 0.0 );
161                                                   153 
162   for(G4int i = 0; i < numberOfVariable; ++i)  << 154     G4int i = 0;
163   {                                            << 155     for ( std::vector< std::vector< G4double > >::iterator
164     reflectionP[i] = (1 + alpha) * centroid[i] << 156           it = currentSimplex.begin(); it != currentSimplex.end() ; it++ )
165   }                                            << 157     { 
                                                   >> 158        if ( i != ih ) 
                                                   >> 159        { 
                                                   >> 160           for ( G4int j = 0 ; j < numberOfVariable ; j++ ) 
                                                   >> 161           {
                                                   >> 162              centroid[j] += (*it)[j]/numberOfVariable;
                                                   >> 163           }
                                                   >> 164        }
                                                   >> 165        i++;
                                                   >> 166     }
166                                                   167 
167   return reflectionP;                          << 168     return centroid;
168 }                                                 169 }
169                                                   170 
170 template <class T>                             << 171 
171 std::vector<G4double> G4SimplexDownhill<T>::ge << 172  
172   std::vector<G4double> p, std::vector<G4doubl << 173 template<class T> 
                                                   >> 174 std::vector< G4double > G4SimplexDownhill<T>::
                                                   >> 175 getReflectionPoint( std::vector< G4double > p ,
                                                   >> 176                     std::vector< G4double > centroid )
173 {                                                 177 {
174   // G4cout << "Expantion" << G4endl;          << 178    //G4cout << "Reflection" << G4endl;
                                                   >> 179 
                                                   >> 180    std::vector< G4double > reflectionP ( numberOfVariable , 0.0 );
                                                   >> 181 
                                                   >> 182    for ( G4int i = 0 ; i < numberOfVariable ; i++ )
                                                   >> 183    {
                                                   >> 184       reflectionP[ i ] = ( 1 + alpha ) * centroid[ i ] - alpha * p[ i ];
                                                   >> 185    } 
                                                   >> 186     
                                                   >> 187    return reflectionP;
                                                   >> 188 }
175                                                   189 
176   std::vector<G4double> expansionP(numberOfVar << 
177                                                   190 
178   for(G4int i = 0; i < numberOfVariable; ++i)  << 
179   {                                            << 
180     expansionP[i] = (1 - gamma) * centroid[i]  << 
181   }                                            << 
182                                                   191 
183   return expansionP;                           << 192 template<class T> 
                                                   >> 193 std::vector< G4double > G4SimplexDownhill<T>::
                                                   >> 194 getExpansionPoint( std::vector< G4double > p ,
                                                   >> 195                    std::vector< G4double > centroid )
                                                   >> 196 {
                                                   >> 197    //G4cout << "Expantion" << G4endl;
                                                   >> 198 
                                                   >> 199    std::vector< G4double > expansionP ( numberOfVariable , 0.0 );
                                                   >> 200 
                                                   >> 201    for ( G4int i = 0 ; i < numberOfVariable ; i++ )
                                                   >> 202    {
                                                   >> 203       expansionP[i] = ( 1 - gamma ) * centroid[i] + gamma * p[i];
                                                   >> 204    } 
                                                   >> 205     
                                                   >> 206    return expansionP;
184 }                                                 207 }
185                                                   208 
186 template <class T>                             << 209 template<class T> 
187 std::vector<G4double> G4SimplexDownhill<T>::ge << 210 std::vector< G4double > G4SimplexDownhill<T>::
188   std::vector<G4double> p, std::vector<G4doubl << 211 getContractionPoint( std::vector< G4double > p ,
                                                   >> 212                      std::vector< G4double > centroid )
189 {                                                 213 {
190   std::vector<G4double> contractionP(numberOfV << 214    //G4cout << "Contraction" << G4endl;
191                                                   215 
192   for(G4int i = 0; i < numberOfVariable; ++i)  << 216    std::vector< G4double > contractionP ( numberOfVariable , 0.0 );
193   {                                            << 
194     contractionP[i] = (1 - beta) * centroid[i] << 
195   }                                            << 
196                                                   217 
197   return contractionP;                         << 218    for ( G4int i = 0 ; i < numberOfVariable ; i++ )
                                                   >> 219    {
                                                   >> 220       contractionP[i] = ( 1 - beta ) * centroid[i] + beta * p[i];
                                                   >> 221    } 
                                                   >> 222     
                                                   >> 223    return contractionP;
198 }                                                 224 }
199                                                   225 
200 template <class T>                             << 226 
                                                   >> 227 
                                                   >> 228 template<class T> 
201 G4bool G4SimplexDownhill<T>::isItGoodEnough()     229 G4bool G4SimplexDownhill<T>::isItGoodEnough()
202 {                                                 230 {
203   G4double sum =                               << 231    G4bool result = false;
204     std::accumulate(currentHeights.begin(), cu << 232 
205   G4double average = sum / (numberOfVariable + << 233    G4double sum = std::accumulate( currentHeights.begin() ,
206                                                << 234                                    currentHeights.end() , 0.0 );
207   G4double delta = 0.0;                        << 235    G4double average = sum/(numberOfVariable+1); 
208   for(G4int i = 0; i <= numberOfVariable; ++i) << 236    //G4cout << "average " << average << G4endl;
209   {                                            << 237 
210     delta += std::abs(currentHeights[i] - aver << 238    G4double delta = 0.0; 
211   }                                            << 239    for ( G4int i = 0 ; i <= numberOfVariable ; i++ )
212                                                << 240    {
213   G4bool result = false;                       << 241       delta += std::abs ( currentHeights[ i ] - average );  
214   if (average > 0.0)                           << 242    }
215   {                                            << 243    //G4cout << "ratio of delta to average is "
216     result = ((delta / (numberOfVariable + 1)  << 244    //       << delta / (numberOfVariable+1) / average << G4endl;
217   }                                            << 245 
218   return result;                               << 246    if ( delta/(numberOfVariable+1)/average < max_ratio )
                                                   >> 247    {
                                                   >> 248       result = true; 
                                                   >> 249    }
                                                   >> 250   
                                                   >> 251 /*
                                                   >> 252    G4double sigma = 0.0; 
                                                   >> 253    G4cout << "average " << average << G4endl;
                                                   >> 254    for ( G4int i = 0 ; i <= numberOfVariable ; i++ )
                                                   >> 255    {
                                                   >> 256       sigma += ( currentHeights[ i ] - average )
                                                   >> 257               *( currentHeights[ i ] - average );  
                                                   >> 258    }
                                                   >> 259 
                                                   >> 260    G4cout << "standard error of hs "
                                                   >> 261           << std::sqrt ( sigma ) / (numberOfVariable+1) << G4endl;
                                                   >> 262    if ( std::sqrt ( sigma ) / (numberOfVariable+1) < max_se )
                                                   >> 263    {
                                                   >> 264       result = true; 
                                                   >> 265    }
                                                   >> 266 */
                                                   >> 267    
                                                   >> 268    return result; 
219 }                                                 269 }
220                                                   270 
221 template <class T>                             << 271 
                                                   >> 272  
                                                   >> 273 template<class T> 
222 void G4SimplexDownhill<T>::doDownhill()           274 void G4SimplexDownhill<T>::doDownhill()
223 {                                                 275 {
224   G4int nth_trial = 0;                         << 
225                                                   276 
226   while(nth_trial < maximum_no_trial)          << 277    G4int nth_trial = 0;
227   {                                            << 
228     calHeights();                              << 
229                                                << 
230     if(isItGoodEnough())                       << 
231     {                                          << 
232       break;                                   << 
233     }                                          << 
234                                                << 
235     auto it_maxh = std::max_element(currentHei << 
236     auto it_minh = std::min_element(currentHei << 
237                                                   278 
238     G4double h_H = *it_maxh;                   << 279    while ( nth_trial < maximum_no_trial )
239     G4double h_L = *it_minh;                   << 280    {
240                                                   281 
241     G4int ih      = 0;                         << 282 /*
242     G4int il      = 0;                         << 283       G4cout << "Begining " << nth_trial << "th trial " << G4endl;
243     G4double h_H2 = 0.0;                       << 284       for ( G4int j = 0 ; j <= numberOfVariable ; j++ )
244     G4int i       = 0;                         << 
245     for(auto it = currentHeights.cbegin(); it  << 
246     {                                          << 
247       if(it == it_maxh)                        << 
248       {                                           285       {
249         ih = i;                                << 286          G4cout << "SimplexPoint " << j << ": "; 
                                                   >> 287          for ( G4int i = 0 ; i < numberOfVariable ; i++ )
                                                   >> 288          {
                                                   >> 289              G4cout << currentSimplex[j][i] 
                                                   >> 290                        << " ";
                                                   >> 291          }
                                                   >> 292          G4cout << G4endl; 
250       }                                           293       }
251       else                                     << 294 */
252       {                                        << 295 
253         h_H2 = std::max(h_H2, *it);            << 296       calHeights();
                                                   >> 297 
                                                   >> 298       if ( isItGoodEnough() ) 
                                                   >> 299       { 
                                                   >> 300          break;
254       }                                           301       }
255                                                   302 
256       if(it == it_minh)                        << 303       std::vector< G4double >::iterator it_maxh =
                                                   >> 304         std::max_element( currentHeights.begin() , currentHeights.end() );
                                                   >> 305       std::vector< G4double >::iterator it_minh =
                                                   >> 306         std::min_element( currentHeights.begin() , currentHeights.end() );;
                                                   >> 307 
                                                   >> 308       G4double h_H = *it_maxh;
                                                   >> 309       G4double h_L = *it_minh;
                                                   >> 310 
                                                   >> 311       G4int ih = 0;;
                                                   >> 312       G4int il = 0;
                                                   >> 313       G4double h_H2 =0.0;
                                                   >> 314       G4int i = 0;
                                                   >> 315       for ( std::vector< G4double >::iterator 
                                                   >> 316             it = currentHeights.begin(); it != currentHeights.end(); it++ )
257       {                                           317       {
258         il = i;                                << 318          if ( it == it_maxh )
                                                   >> 319          {
                                                   >> 320             ih = i;
                                                   >> 321          }
                                                   >> 322          else
                                                   >> 323          {
                                                   >> 324             h_H2 = std::max( h_H2 , *it );
                                                   >> 325          }
                                                   >> 326 
                                                   >> 327          if ( it == it_minh )
                                                   >> 328          {
                                                   >> 329             il = i;
                                                   >> 330          }
                                                   >> 331          i++;
259       }                                           332       }
260       ++i;                                     << 
261     }                                          << 
262                                                   333 
263     std::vector<G4double> centroidPoint = calC << 334       //G4cout << "max " << h_H << " " << ih << G4endl;
                                                   >> 335       //G4cout << "max-dash " << h_H2 << G4endl;
                                                   >> 336       //G4cout << "min " << h_L << " " << il << G4endl;
264                                                   337 
265     // REFLECTION                              << 338       std::vector< G4double > centroidPoint = calCentroid ( ih );
266     std::vector<G4double> reflectionPoint =    << 
267       getReflectionPoint(currentSimplex[ih], c << 
268                                                   339 
269     G4double h = getValue(reflectionPoint);    << 340       // REFLECTION
                                                   >> 341       std::vector< G4double > reflectionPoint =
                                                   >> 342         getReflectionPoint( currentSimplex[ ih ] , centroidPoint );
270                                                   343 
271     if(h <= h_L)                               << 344       G4double h = getValue( reflectionPoint );
272     {                                          << 
273       // EXPANSION                             << 
274       std::vector<G4double> expansionPoint =   << 
275         getExpansionPoint(reflectionPoint, std << 
276       G4double hh = getValue(expansionPoint);  << 
277                                                   345 
278       if(hh <= h_L)                            << 346       if ( h <= h_L ) 
279       {                                        << 
280         // Replace                             << 
281         currentSimplex[ih] = std::move(expansi << 
282         // G4cout << "A" << G4endl;            << 
283       }                                        << 
284       else                                     << 
285       {                                        << 
286         // Replace                             << 
287         currentSimplex[ih] = std::move(reflect << 
288         // G4cout << "B1" << G4endl;           << 
289       }                                        << 
290     }                                          << 
291     else                                       << 
292     {                                          << 
293       if(h <= h_H2)                            << 
294       {                                           347       {
295         // Replace                             << 348       // EXPANSION
296         currentSimplex[ih] = std::move(reflect << 349          std::vector< G4double > expansionPoint =
297         // G4cout << "B2" << G4endl;           << 350            getExpansionPoint( reflectionPoint , centroidPoint );
298       }                                        << 351          G4double hh = getValue( expansionPoint );
299       else                                     << 352           
                                                   >> 353          if ( hh <= h_L )
                                                   >> 354          {
                                                   >> 355          // Replace 
                                                   >> 356             currentSimplex[ ih ] = expansionPoint;
                                                   >> 357             //G4cout << "A" << G4endl;
                                                   >> 358          } 
                                                   >> 359          else 
                                                   >> 360          {
                                                   >> 361          // Replace 
                                                   >> 362             currentSimplex[ ih ] = reflectionPoint;
                                                   >> 363             //G4cout << "B1" << G4endl;
                                                   >> 364          }
                                                   >> 365       } 
                                                   >> 366       else 
300       {                                           367       {
301         if(h <= h_H)                           << 368          if ( h <= h_H2 )
302         {                                      << 369          {
303           // Replace                           << 370          // Replace 
304           currentSimplex[ih] = std::move(refle << 371             currentSimplex[ ih ] = reflectionPoint;
305           // G4cout << "BC" << G4endl;         << 372             //G4cout << "B2" << G4endl;
306         }                                      << 373          }
307         // CONTRACTION                         << 374          else
308         std::vector<G4double> contractionPoint << 375          {
309           getContractionPoint(currentSimplex[i << 376             if ( h <= h_H )
310         G4double hh = getValue(contractionPoin << 
311         if(hh <= h_H)                          << 
312         {                                      << 
313           // Replace                           << 
314           currentSimplex[ih] = std::move(contr << 
315           // G4cout << "C" << G4endl;          << 
316         }                                      << 
317         else                                   << 
318         {                                      << 
319           // Replace                           << 
320           for(G4int j = 0; j <= numberOfVariab << 
321           {                                    << 
322             std::vector<G4double> vec(numberOf << 
323             for(G4int k = 0; k < numberOfVaria << 
324             {                                     377             {
325               vec[k] = (currentSimplex[j][k] + << 378             // Replace 
                                                   >> 379               currentSimplex[ ih ] = reflectionPoint;
                                                   >> 380               //G4cout << "BC" << G4endl;
326             }                                     381             }
327             currentSimplex[j] = std::move(vec) << 382             // CONTRACTION
328           }                                    << 383             std::vector< G4double > contractionPoint =
329         }                                      << 384               getContractionPoint( currentSimplex[ ih ] , centroidPoint );
                                                   >> 385             G4double hh = getValue( contractionPoint );
                                                   >> 386             if ( hh <= h_H )
                                                   >> 387             {
                                                   >> 388             // Replace 
                                                   >> 389                currentSimplex[ ih ] = contractionPoint;
                                                   >> 390                //G4cout << "C" << G4endl;
                                                   >> 391             }
                                                   >> 392             else
                                                   >> 393             {
                                                   >> 394             // Replace
                                                   >> 395                for ( G4int j = 0 ; j <= numberOfVariable ; j++ ) 
                                                   >> 396                {
                                                   >> 397                   std::vector< G4double > vec ( numberOfVariable , 0.0 );
                                                   >> 398                   for ( G4int k = 0 ; k < numberOfVariable ; k++ ) 
                                                   >> 399                   {
                                                   >> 400                      vec[ k ] = ( currentSimplex[ j ][ k ]
                                                   >> 401                                 + currentSimplex[ il ][ k ] ) / 2.0;
                                                   >> 402                   }
                                                   >> 403                   currentSimplex[ j ] = vec;
                                                   >> 404                }                
                                                   >> 405                //G4cout << "D" << G4endl;
                                                   >> 406             }
                                                   >> 407          } 
                                                   >> 408 
330       }                                           409       }
331     }                                          << 
332                                                   410 
333     ++nth_trial;                               << 411       nth_trial++;
334   }                                            << 412    }
335 }                                                 413 }
336                                                   414 
337 template <class T>                             << 
338 std::vector<G4double> G4SimplexDownhill<T>::Ge << 
339 {                                              << 
340   if(!minimized)                               << 
341   {                                            << 
342     GetMinimum();                              << 
343   }                                            << 
344                                                << 
345   auto it_minh = std::min_element(currentHeigh << 
346                                                << 
347   G4int imin = 0;                              << 
348   G4int i    = 0;                              << 
349   for(auto it = currentHeights.cbegin(); it != << 
350   {                                            << 
351     if(it == it_minh)                          << 
352     {                                          << 
353       imin = i;                                << 
354     }                                          << 
355     ++i;                                       << 
356   }                                            << 
357   minimumPoint = currentSimplex[imin];         << 
358                                                   415 
359   return minimumPoint;                         << 416  
                                                   >> 417 template<class T> 
                                                   >> 418 std::vector< G4double > G4SimplexDownhill<T>::GetMinimumPoint()
                                                   >> 419 {
                                                   >> 420    if ( minimized != true )
                                                   >> 421    {
                                                   >> 422       GetMinimum();
                                                   >> 423    }
                                                   >> 424 
                                                   >> 425    std::vector< G4double >::iterator it_minh =
                                                   >> 426      std::min_element( currentHeights.begin() , currentHeights.end() );;
                                                   >> 427    G4int imin = 0;
                                                   >> 428    G4int i = 0;
                                                   >> 429    for ( std::vector< G4double >::iterator 
                                                   >> 430          it = currentHeights.begin(); it != currentHeights.end(); it++ )
                                                   >> 431    {
                                                   >> 432       if ( it == it_minh )
                                                   >> 433       {
                                                   >> 434          imin = i;
                                                   >> 435       }
                                                   >> 436       i++;
                                                   >> 437    }
                                                   >> 438    minimumPoint = currentSimplex[ imin ];
                                                   >> 439 
                                                   >> 440    return minimumPoint; 
360 }                                                 441 }
361                                                   442