Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4PolynomialSolver.icc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4PolynomialSolver.icc (Version 11.3.0) and /global/HEPNumerics/include/G4PolynomialSolver.icc (Version 2.0)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // G4PolynomialSolver inline methods implement    
 27 //                                                
 28 // Author: E.Medernach, 19.12.2000 - First imp    
 29 // -------------------------------------------    
 30                                                   
 31 #define POLEPSILON 1e-12                          
 32 #define POLINFINITY 9.0E99                        
 33 #define ITERATION 12  // 20 But 8 is really en    
 34                                                   
 35 template <class T, class F>                       
 36 G4PolynomialSolver<T, F>::G4PolynomialSolver(T    
 37                                              G    
 38 {                                                 
 39   Precision     = precision;                      
 40   FunctionClass = typeF;                          
 41   Function      = func;                           
 42   Derivative    = deriv;                          
 43 }                                                 
 44                                                   
 45 template <class T, class F>                       
 46 G4PolynomialSolver<T, F>::~G4PolynomialSolver(    
 47 {}                                                
 48                                                   
 49 template <class T, class F>                       
 50 G4double G4PolynomialSolver<T, F>::solve(G4dou    
 51                                          G4dou    
 52 {                                                 
 53   return Newton(IntervalMin, IntervalMax);        
 54 }                                                 
 55                                                   
 56 /* If we want to be general this could work fo    
 57    polynomial of order more that 4 if we find     
 58    control points                                 
 59 */                                                
 60 #define NBBEZIER 5                                
 61                                                   
 62 template <class T, class F>                       
 63 G4int G4PolynomialSolver<T, F>::BezierClipping    
 64                                                   
 65                                                   
 66 {                                                 
 67   /** BezierClipping is a clipping interval Ne    
 68   /** It works by clipping the area where the     
 69                                                   
 70   G4double P[NBBEZIER][2], D[2];                  
 71   G4double NewMin, NewMax;                        
 72                                                   
 73   G4int IntervalIsVoid = 1;                       
 74                                                   
 75   /*** Calculating Control Points  ***/           
 76   /* We see the polynomial as a Bezier curve f    
 77                                                   
 78   /*                                              
 79     For 5 control points (polynomial of degree    
 80                                                   
 81     0     p0 = F((*IntervalMin))                  
 82     1/4   p1 = F((*IntervalMin)) + ((*Interval    
 83                  * F'((*IntervalMin))             
 84     2/4   p2 = 1/6 * (16*F(((*IntervalMax) + (    
 85                       - (p0 + 4*p1 + 4*p3 + p4    
 86     3/4   p3 = F((*IntervalMax)) - ((*Interval    
 87                  * F'((*IntervalMax))             
 88     1     p4 = F((*IntervalMax))                  
 89   */                                              
 90                                                   
 91   /* x,y,z,dx,dy,dz are constant during search    
 92                                                   
 93   D[0] = (FunctionClass->*Derivative)(*Interva    
 94                                                   
 95   P[0][0] = (*IntervalMin);                       
 96   P[0][1] = (FunctionClass->*Function)(*Interv    
 97                                                   
 98   if(std::fabs(P[0][1]) < Precision)              
 99   {                                               
100     return 1;                                     
101   }                                               
102                                                   
103   if(((*IntervalMax) - (*IntervalMin)) < POLEP    
104   {                                               
105     return 1;                                     
106   }                                               
107                                                   
108   P[1][0] = (*IntervalMin) + ((*IntervalMax) -    
109   P[1][1] = P[0][1] + (((*IntervalMax) - (*Int    
110                                                   
111   D[1] = (FunctionClass->*Derivative)(*Interva    
112                                                   
113   P[4][0] = (*IntervalMax);                       
114   P[4][1] = (FunctionClass->*Function)(*Interv    
115                                                   
116   P[3][0] = (*IntervalMax) - ((*IntervalMax) -    
117   P[3][1] = P[4][1] - ((*IntervalMax) - (*Inte    
118                                                   
119   P[2][0] = ((*IntervalMax) + (*IntervalMin))     
120   P[2][1] =                                       
121     (16 * (FunctionClass->*Function)(((*Interv    
122      (P[0][1] + 4 * P[1][1] + 4 * P[3][1] + P[    
123     6;                                            
124                                                   
125   {                                               
126     G4double Intersection;                        
127     G4int i, j;                                   
128                                                   
129     NewMin = (*IntervalMax);                      
130     NewMax = (*IntervalMin);                      
131                                                   
132     for(i = 0; i < 5; ++i)                        
133       for(j = i + 1; j < 5; ++j)                  
134       {                                           
135         /* there is an intersection only if ea    
136         if(((P[j][1] > -Precision) && (P[i][1]    
137            ((P[j][1] < Precision) && (P[i][1]     
138         {                                         
139           IntervalIsVoid = 0;                     
140           Intersection =                          
141             P[j][0] - P[j][1] * ((P[i][0] - P[    
142           if(Intersection < NewMin)               
143           {                                       
144             NewMin = Intersection;                
145           }                                       
146           if(Intersection > NewMax)               
147           {                                       
148             NewMax = Intersection;                
149           }                                       
150         }                                         
151       }                                           
152                                                   
153     if(IntervalIsVoid != 1)                       
154     {                                             
155       (*IntervalMax) = NewMax;                    
156       (*IntervalMin) = NewMin;                    
157     }                                             
158   }                                               
159                                                   
160   if(IntervalIsVoid == 1)                         
161   {                                               
162     return -1;                                    
163   }                                               
164                                                   
165   return 0;                                       
166 }                                                 
167                                                   
168 template <class T, class F>                       
169 G4double G4PolynomialSolver<T, F>::Newton(G4do    
170                                           G4do    
171 {                                                 
172   /* So now we have a good guess and an interv    
173      if there are an intersection the root mus    
174                                                   
175   G4double Value    = 0;                          
176   G4double Gradient = 0;                          
177   G4double Lambda;                                
178                                                   
179   G4int i = 0;                                    
180   G4int j = 0;                                    
181                                                   
182   /* Reduce interval before applying Newton Me    
183   {                                               
184     G4int NewtonIsSafe;                           
185                                                   
186     while((NewtonIsSafe = BezierClipping(&Inte    
187       ;                                           
188                                                   
189     if(NewtonIsSafe == -1)                        
190     {                                             
191       return POLINFINITY;                         
192     }                                             
193   }                                               
194                                                   
195   Lambda = IntervalMin;                           
196   Value  = (FunctionClass->*Function)(Lambda);    
197                                                   
198   //  while ((std::fabs(Value) > Precision)) {    
199   while(j != -1)                                  
200   {                                               
201     Value = (FunctionClass->*Function)(Lambda)    
202                                                   
203     Gradient = (FunctionClass->*Derivative)(La    
204                                                   
205     Lambda = Lambda - Value / Gradient;           
206                                                   
207     if(std::fabs(Value) <= Precision)             
208     {                                             
209       ++j;                                        
210       if(j == 2)                                  
211       {                                           
212         j = -1;                                   
213       }                                           
214     }                                             
215     else                                          
216     {                                             
217       ++i;                                        
218                                                   
219       if(i > ITERATION)                           
220         return POLINFINITY;                       
221     }                                             
222   }                                               
223   return Lambda;                                  
224 }                                                 
225