Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4PolynomialSolver << 23 // >> 24 // $Id: G4PolynomialSolver.hh,v 1.3 2001/07/11 10:00:40 gunter Exp $ >> 25 // GEANT4 tag $Name: geant4-05-02-patch-01 $ >> 26 // >> 27 // class G4PolynomialSolver 27 // 28 // 28 // Class description: 29 // Class description: 29 // 30 // 30 // G4PolynomialSolver allows the user to sol 31 // G4PolynomialSolver allows the user to solve a polynomial equation 31 // with a great precision. This is used by I 32 // with a great precision. This is used by Implicit Equation solver. 32 // 33 // 33 // The Bezier clipping method is used to sol 34 // The Bezier clipping method is used to solve the polynomial. 34 // 35 // 35 // How to use it: 36 // How to use it: 36 // Create a class that is the function to be 37 // Create a class that is the function to be solved. 37 // This class could have internal parameters 38 // This class could have internal parameters to allow to change 38 // the equation to be solved without recreat 39 // the equation to be solved without recreating a new one. 39 // 40 // 40 // Define a Polynomial solver, example: 41 // Define a Polynomial solver, example: 41 // G4PolynomialSolver<MyFunctionClass,G4doub 42 // G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)> 42 // PolySolver (&MyFunction, 43 // PolySolver (&MyFunction, 43 // &MyFunctionClass::Function, 44 // &MyFunctionClass::Function, 44 // &MyFunctionClass::Derivativ 45 // &MyFunctionClass::Derivative, 45 // precision); 46 // precision); 46 // 47 // 47 // The precision is relative to the function 48 // The precision is relative to the function to solve. 48 // 49 // 49 // In MyFunctionClass, provide the function 50 // In MyFunctionClass, provide the function to solve and its derivative: 50 // Example of function to provide : 51 // Example of function to provide : 51 // 52 // 52 // x,y,z,dx,dy,dz,Rmin,Rmax are internal var 53 // x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass 53 // 54 // 54 // G4double MyFunctionClass::Function(G4doub 55 // G4double MyFunctionClass::Function(G4double value) 55 // { 56 // { 56 // G4double Lx,Ly,Lz; 57 // G4double Lx,Ly,Lz; 57 // G4double result; << 58 // G4double result; 58 // << 59 // 59 // Lx = x + value*dx; 60 // Lx = x + value*dx; 60 // Ly = y + value*dy; 61 // Ly = y + value*dy; 61 // Lz = z + value*dz; 62 // Lz = z + value*dz; 62 // << 63 // 63 // result = TorusEquation(Lx,Ly,Lz,Rmax,Rm 64 // result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin); 64 // << 65 // 65 // return result ; << 66 // return result ; 66 // } << 67 // } 67 // << 68 // 68 // G4double MyFunctionClass::Derivative(G4do 69 // G4double MyFunctionClass::Derivative(G4double value) 69 // { 70 // { 70 // G4double Lx,Ly,Lz; 71 // G4double Lx,Ly,Lz; 71 // G4double result; << 72 // G4double result; 72 // << 73 // 73 // Lx = x + value*dx; 74 // Lx = x + value*dx; 74 // Ly = y + value*dy; 75 // Ly = y + value*dy; 75 // Lz = z + value*dz; 76 // Lz = z + value*dz; 76 // << 77 // 77 // result = dx*TorusDerivativeX(Lx,Ly,Lz,R 78 // result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin); 78 // result += dy*TorusDerivativeY(Lx,Ly,Lz, 79 // result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin); 79 // result += dz*TorusDerivativeZ(Lx,Ly,Lz, 80 // result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin); 80 // << 81 // 81 // return result; 82 // return result; 82 // } 83 // } 83 // << 84 // 84 // Then to have a root inside an interval [I 85 // Then to have a root inside an interval [IntervalMin,IntervalMax] do the 85 // following: 86 // following: 86 // 87 // 87 // MyRoot = PolySolver.solve(IntervalMin,Int 88 // MyRoot = PolySolver.solve(IntervalMin,IntervalMax); >> 89 // >> 90 >> 91 // History: >> 92 // >> 93 // - 19.12.00 E.Medernach, First implementation >> 94 // 88 95 89 // Author: E.Medernach, 19.12.2000 - First imp << 90 // ------------------------------------------- << 91 #ifndef G4POL_SOLVER_HH 96 #ifndef G4POL_SOLVER_HH 92 #define G4POL_SOLVER_HH 1 << 97 #define G4POL_SOLVER_HH 93 98 94 #include "globals.hh" << 99 #include "globals.hh" 95 100 96 template <class T, class F> 101 template <class T, class F> 97 class G4PolynomialSolver << 102 class G4PolynomialSolver 98 { 103 { 99 public: << 104 public: // with description 100 G4PolynomialSolver(T* typeF, F func, F deriv << 105 >> 106 G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision); 101 ~G4PolynomialSolver(); 107 ~G4PolynomialSolver(); >> 108 102 109 103 G4double solve(G4double IntervalMin, G4doubl << 110 G4double solve (G4double IntervalMin, G4double IntervalMax); >> 111 >> 112 private: 104 113 105 private: << 114 G4double Newton (G4double IntervalMin, G4double IntervalMax); 106 G4double Newton(G4double IntervalMin, G4doub << 115 //General Newton method with Bezier Clipping 107 // General Newton method with Bezier Clippin << 108 116 109 // Works for polynomial of order less or equ 117 // Works for polynomial of order less or equal than 4. 110 // But could be changed to work for polynomi 118 // But could be changed to work for polynomial of any order providing 111 // that we find the bezier control points. 119 // that we find the bezier control points. 112 120 113 G4int BezierClipping(G4double* IntervalMin, << 121 G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax); 114 // This is just one iteration of Bezier Clip << 122 // This is just one iteration of Bezier Clipping 115 123 116 T* FunctionClass; << 117 F Function; << 118 F Derivative; << 119 124 >> 125 T* FunctionClass ; >> 126 F Function ; >> 127 F Derivative ; >> 128 120 G4double Precision; 129 G4double Precision; 121 }; 130 }; 122 131 123 #include "G4PolynomialSolver.icc" 132 #include "G4PolynomialSolver.icc" 124 133 125 #endif << 134 #endif 126 135