Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4PolynomialSolver.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4PolynomialSolver.hh (Version 11.3.0) and /global/HEPNumerics/include/G4PolynomialSolver.hh (Version 5.1.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // G4PolynomialSolver                          <<  23 //
                                                   >>  24 // $Id: G4PolynomialSolver.hh,v 1.3 2001/07/11 10:00:40 gunter Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-05-01-patch-01 $
                                                   >>  26 // 
                                                   >>  27 // class G4PolynomialSolver
 27 //                                                 28 //
 28 // Class description:                              29 // Class description:
 29 //                                                 30 //
 30 //   G4PolynomialSolver allows the user to sol     31 //   G4PolynomialSolver allows the user to solve a polynomial equation
 31 //   with a great precision. This is used by I     32 //   with a great precision. This is used by Implicit Equation solver.
 32 //                                                 33 //
 33 //   The Bezier clipping method is used to sol     34 //   The Bezier clipping method is used to solve the polynomial.
 34 //                                                 35 //
 35 // How to use it:                                  36 // How to use it:
 36 //   Create a class that is the function to be     37 //   Create a class that is the function to be solved.
 37 //   This class could have internal parameters     38 //   This class could have internal parameters to allow to change
 38 //   the equation to be solved without recreat     39 //   the equation to be solved without recreating a new one.
 39 //                                                 40 //
 40 //   Define a Polynomial solver, example:          41 //   Define a Polynomial solver, example:
 41 //   G4PolynomialSolver<MyFunctionClass,G4doub     42 //   G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
 42 //     PolySolver (&MyFunction,                    43 //     PolySolver (&MyFunction,
 43 //                 &MyFunctionClass::Function,     44 //                 &MyFunctionClass::Function,
 44 //                 &MyFunctionClass::Derivativ     45 //                 &MyFunctionClass::Derivative,
 45 //                 precision);                     46 //                 precision);
 46 //                                                 47 //
 47 //   The precision is relative to the function     48 //   The precision is relative to the function to solve.
 48 //                                                 49 //
 49 //   In MyFunctionClass, provide the function      50 //   In MyFunctionClass, provide the function to solve and its derivative:
 50 //   Example of function to provide :              51 //   Example of function to provide :
 51 //                                                 52 //
 52 //   x,y,z,dx,dy,dz,Rmin,Rmax are internal var     53 //   x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
 53 //                                                 54 //
 54 //   G4double MyFunctionClass::Function(G4doub     55 //   G4double MyFunctionClass::Function(G4double value)
 55 //   {                                             56 //   {
 56 //     G4double Lx,Ly,Lz;                          57 //     G4double Lx,Ly,Lz;
 57 //     G4double result;                        <<  58 //     G4double result;  
 58 //                                             <<  59 //   
 59 //     Lx = x + value*dx;                          60 //     Lx = x + value*dx;
 60 //     Ly = y + value*dy;                          61 //     Ly = y + value*dy;
 61 //     Lz = z + value*dz;                          62 //     Lz = z + value*dz;
 62 //                                             <<  63 //   
 63 //     result = TorusEquation(Lx,Ly,Lz,Rmax,Rm     64 //     result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
 64 //                                             <<  65 //     
 65 //     return result ;                         <<  66 //     return result ;  
 66 //   }                                         <<  67 //   }    
 67 //                                             <<  68 // 
 68 //   G4double MyFunctionClass::Derivative(G4do     69 //   G4double MyFunctionClass::Derivative(G4double value)
 69 //   {                                             70 //   {
 70 //     G4double Lx,Ly,Lz;                          71 //     G4double Lx,Ly,Lz;
 71 //     G4double result;                        <<  72 //     G4double result;  
 72 //                                             <<  73 //     
 73 //     Lx = x + value*dx;                          74 //     Lx = x + value*dx;
 74 //     Ly = y + value*dy;                          75 //     Ly = y + value*dy;
 75 //     Lz = z + value*dz;                          76 //     Lz = z + value*dz;
 76 //                                             <<  77 //      
 77 //     result = dx*TorusDerivativeX(Lx,Ly,Lz,R     78 //     result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
 78 //     result += dy*TorusDerivativeY(Lx,Ly,Lz,     79 //     result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
 79 //     result += dz*TorusDerivativeZ(Lx,Ly,Lz,     80 //     result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
 80 //                                             <<  81 //   
 81 //     return result;                              82 //     return result;
 82 //   }                                             83 //   }
 83 //                                             <<  84 //   
 84 //   Then to have a root inside an interval [I     85 //   Then to have a root inside an interval [IntervalMin,IntervalMax] do the
 85 //   following:                                    86 //   following:
 86 //                                                 87 //
 87 //   MyRoot = PolySolver.solve(IntervalMin,Int     88 //   MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
                                                   >>  89 //
                                                   >>  90 
                                                   >>  91 // History:
                                                   >>  92 //
                                                   >>  93 // - 19.12.00 E.Medernach, First implementation
                                                   >>  94 //
 88                                                    95 
 89 // Author: E.Medernach, 19.12.2000 - First imp << 
 90 // ------------------------------------------- << 
 91 #ifndef G4POL_SOLVER_HH                            96 #ifndef G4POL_SOLVER_HH
 92 #define G4POL_SOLVER_HH 1                      <<  97 #define G4POL_SOLVER_HH
 93                                                    98 
 94 #include "globals.hh"                          <<  99 #include  "globals.hh"
 95                                                   100 
 96 template <class T, class F>                       101 template <class T, class F>
 97 class G4PolynomialSolver                       << 102 class G4PolynomialSolver 
 98 {                                                 103 {
 99  public:                                       << 104 public:  // with description
100   G4PolynomialSolver(T* typeF, F func, F deriv << 105   
                                                   >> 106   G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);  
101   ~G4PolynomialSolver();                          107   ~G4PolynomialSolver();
                                                   >> 108   
102                                                   109 
103   G4double solve(G4double IntervalMin, G4doubl << 110   G4double solve (G4double IntervalMin, G4double IntervalMax);
                                                   >> 111   
                                                   >> 112 private:
104                                                   113 
105  private:                                      << 114   G4double Newton (G4double IntervalMin, G4double IntervalMax);
106   G4double Newton(G4double IntervalMin, G4doub << 115     //General Newton method with Bezier Clipping
107   // General Newton method with Bezier Clippin << 
108                                                   116 
109   // Works for polynomial of order less or equ    117   // Works for polynomial of order less or equal than 4.
110   // But could be changed to work for polynomi    118   // But could be changed to work for polynomial of any order providing
111   // that we find the bezier control points.      119   // that we find the bezier control points.
112                                                   120 
113   G4int BezierClipping(G4double* IntervalMin,  << 121   G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax);
114   // This is just one iteration of Bezier Clip << 122     //   This is just one iteration of Bezier Clipping
115                                                   123 
116   T* FunctionClass;                            << 
117   F Function;                                  << 
118   F Derivative;                                << 
119                                                   124 
                                                   >> 125   T* FunctionClass ;
                                                   >> 126   F Function ;
                                                   >> 127   F Derivative ;
                                                   >> 128   
120   G4double Precision;                             129   G4double Precision;
121 };                                                130 };
122                                                   131 
123 #include "G4PolynomialSolver.icc"                 132 #include "G4PolynomialSolver.icc"
124                                                   133 
125 #endif                                         << 134 #endif 
126                                                   135