Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 7 // 6 // * the Geant4 Collaboration. It is provided << 8 // $Id: G4PolynomialSolver.hh,v 1.2 2001/01/29 09:49:54 gcosmo Exp $ 7 // * conditions of the Geant4 Software License << 9 // GEANT4 tag $Name: geant4-03-01 $ 8 // * LICENSE and available at http://cern.ch/ << 10 // 9 // * include a list of copyright holders. << 11 // class G4PolynomialSolver 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // << 26 // G4PolynomialSolver << 27 // 12 // 28 // Class description: 13 // Class description: 29 // 14 // 30 // G4PolynomialSolver allows the user to sol 15 // G4PolynomialSolver allows the user to solve a polynomial equation 31 // with a great precision. This is used by I 16 // with a great precision. This is used by Implicit Equation solver. 32 // 17 // 33 // The Bezier clipping method is used to sol 18 // The Bezier clipping method is used to solve the polynomial. 34 // 19 // 35 // How to use it: 20 // How to use it: 36 // Create a class that is the function to be 21 // Create a class that is the function to be solved. 37 // This class could have internal parameters 22 // This class could have internal parameters to allow to change 38 // the equation to be solved without recreat 23 // the equation to be solved without recreating a new one. 39 // 24 // 40 // Define a Polynomial solver, example: 25 // Define a Polynomial solver, example: 41 // G4PolynomialSolver<MyFunctionClass,G4doub 26 // G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)> 42 // PolySolver (&MyFunction, 27 // PolySolver (&MyFunction, 43 // &MyFunctionClass::Function, 28 // &MyFunctionClass::Function, 44 // &MyFunctionClass::Derivativ 29 // &MyFunctionClass::Derivative, 45 // precision); 30 // precision); 46 // 31 // 47 // The precision is relative to the function 32 // The precision is relative to the function to solve. 48 // 33 // 49 // In MyFunctionClass, provide the function 34 // In MyFunctionClass, provide the function to solve and its derivative: 50 // Example of function to provide : 35 // Example of function to provide : 51 // 36 // 52 // x,y,z,dx,dy,dz,Rmin,Rmax are internal var 37 // x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass 53 // 38 // 54 // G4double MyFunctionClass::Function(G4doub 39 // G4double MyFunctionClass::Function(G4double value) 55 // { 40 // { 56 // G4double Lx,Ly,Lz; 41 // G4double Lx,Ly,Lz; 57 // G4double result; << 42 // G4double result; 58 // << 43 // 59 // Lx = x + value*dx; 44 // Lx = x + value*dx; 60 // Ly = y + value*dy; 45 // Ly = y + value*dy; 61 // Lz = z + value*dz; 46 // Lz = z + value*dz; 62 // << 47 // 63 // result = TorusEquation(Lx,Ly,Lz,Rmax,Rm 48 // result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin); 64 // << 49 // 65 // return result ; << 50 // return result ; 66 // } << 51 // } 67 // << 52 // 68 // G4double MyFunctionClass::Derivative(G4do 53 // G4double MyFunctionClass::Derivative(G4double value) 69 // { 54 // { 70 // G4double Lx,Ly,Lz; 55 // G4double Lx,Ly,Lz; 71 // G4double result; << 56 // G4double result; 72 // << 57 // 73 // Lx = x + value*dx; 58 // Lx = x + value*dx; 74 // Ly = y + value*dy; 59 // Ly = y + value*dy; 75 // Lz = z + value*dz; 60 // Lz = z + value*dz; 76 // << 61 // 77 // result = dx*TorusDerivativeX(Lx,Ly,Lz,R 62 // result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin); 78 // result += dy*TorusDerivativeY(Lx,Ly,Lz, 63 // result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin); 79 // result += dz*TorusDerivativeZ(Lx,Ly,Lz, 64 // result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin); 80 // << 65 // 81 // return result; 66 // return result; 82 // } 67 // } 83 // << 68 // 84 // Then to have a root inside an interval [I 69 // Then to have a root inside an interval [IntervalMin,IntervalMax] do the 85 // following: 70 // following: 86 // 71 // 87 // MyRoot = PolySolver.solve(IntervalMin,Int 72 // MyRoot = PolySolver.solve(IntervalMin,IntervalMax); >> 73 // >> 74 >> 75 // History: >> 76 // >> 77 // - 19.12.00 E.Medernach, First implementation >> 78 // 88 79 89 // Author: E.Medernach, 19.12.2000 - First imp << 90 // ------------------------------------------- << 91 #ifndef G4POL_SOLVER_HH 80 #ifndef G4POL_SOLVER_HH 92 #define G4POL_SOLVER_HH 1 << 81 #define G4POL_SOLVER_HH 93 82 94 #include "globals.hh" << 83 #include "globals.hh" 95 84 96 template <class T, class F> 85 template <class T, class F> 97 class G4PolynomialSolver << 86 class G4PolynomialSolver 98 { 87 { 99 public: << 88 public: // with description 100 G4PolynomialSolver(T* typeF, F func, F deriv << 89 >> 90 G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision); 101 ~G4PolynomialSolver(); 91 ~G4PolynomialSolver(); >> 92 102 93 103 G4double solve(G4double IntervalMin, G4doubl << 94 G4double solve (G4double IntervalMin, G4double IntervalMax); >> 95 >> 96 private: 104 97 105 private: << 98 G4double Newton (G4double IntervalMin, G4double IntervalMax); 106 G4double Newton(G4double IntervalMin, G4doub << 99 //General Newton method with Bezier Clipping 107 // General Newton method with Bezier Clippin << 108 100 109 // Works for polynomial of order less or equ 101 // Works for polynomial of order less or equal than 4. 110 // But could be changed to work for polynomi 102 // But could be changed to work for polynomial of any order providing 111 // that we find the bezier control points. 103 // that we find the bezier control points. 112 104 113 G4int BezierClipping(G4double* IntervalMin, << 105 G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax); 114 // This is just one iteration of Bezier Clip << 106 // This is just one iteration of Bezier Clipping 115 107 116 T* FunctionClass; << 117 F Function; << 118 F Derivative; << 119 108 >> 109 T* FunctionClass ; >> 110 F Function ; >> 111 F Derivative ; >> 112 120 G4double Precision; 113 G4double Precision; 121 }; 114 }; 122 115 123 #include "G4PolynomialSolver.icc" 116 #include "G4PolynomialSolver.icc" 124 117 125 #endif << 118 #endif 126 119