Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4PolynomialSolver.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4PolynomialSolver.hh (Version 11.3.0) and /global/HEPNumerics/include/G4PolynomialSolver.hh (Version 3.1)


                                                   >>   1 // This code implementation is the intellectual property of
                                                   >>   2 // the GEANT4 collaboration.
  1 //                                                  3 //
  2 // ******************************************* <<   4 // By copying, distributing or modifying the Program (or any work
  3 // * License and Disclaimer                    <<   5 // based on the Program) you indicate your acceptance of this statement,
  4 // *                                           <<   6 // and all its terms.
  5 // * The  Geant4 software  is  copyright of th <<   7 //
  6 // * the Geant4 Collaboration.  It is provided <<   8 // $Id: G4PolynomialSolver.hh,v 1.2 2001/01/29 09:49:54 gcosmo Exp $
  7 // * conditions of the Geant4 Software License <<   9 // GEANT4 tag $Name: geant4-03-01 $
  8 // * LICENSE and available at  http://cern.ch/ <<  10 // 
  9 // * include a list of copyright holders.      <<  11 // class G4PolynomialSolver
 10 // *                                           << 
 11 // * Neither the authors of this software syst << 
 12 // * institutes,nor the agencies providing fin << 
 13 // * work  make  any representation or  warran << 
 14 // * regarding  this  software system or assum << 
 15 // * use.  Please see the license in the file  << 
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                           << 
 18 // * This  code  implementation is the result  << 
 19 // * technical work of the GEANT4 collaboratio << 
 20 // * By using,  copying,  modifying or  distri << 
 21 // * any work based  on the software)  you  ag << 
 22 // * use  in  resulting  scientific  publicati << 
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // ******************************************* << 
 25 //                                             << 
 26 // G4PolynomialSolver                          << 
 27 //                                                 12 //
 28 // Class description:                              13 // Class description:
 29 //                                                 14 //
 30 //   G4PolynomialSolver allows the user to sol     15 //   G4PolynomialSolver allows the user to solve a polynomial equation
 31 //   with a great precision. This is used by I     16 //   with a great precision. This is used by Implicit Equation solver.
 32 //                                                 17 //
 33 //   The Bezier clipping method is used to sol     18 //   The Bezier clipping method is used to solve the polynomial.
 34 //                                                 19 //
 35 // How to use it:                                  20 // How to use it:
 36 //   Create a class that is the function to be     21 //   Create a class that is the function to be solved.
 37 //   This class could have internal parameters     22 //   This class could have internal parameters to allow to change
 38 //   the equation to be solved without recreat     23 //   the equation to be solved without recreating a new one.
 39 //                                                 24 //
 40 //   Define a Polynomial solver, example:          25 //   Define a Polynomial solver, example:
 41 //   G4PolynomialSolver<MyFunctionClass,G4doub     26 //   G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
 42 //     PolySolver (&MyFunction,                    27 //     PolySolver (&MyFunction,
 43 //                 &MyFunctionClass::Function,     28 //                 &MyFunctionClass::Function,
 44 //                 &MyFunctionClass::Derivativ     29 //                 &MyFunctionClass::Derivative,
 45 //                 precision);                     30 //                 precision);
 46 //                                                 31 //
 47 //   The precision is relative to the function     32 //   The precision is relative to the function to solve.
 48 //                                                 33 //
 49 //   In MyFunctionClass, provide the function      34 //   In MyFunctionClass, provide the function to solve and its derivative:
 50 //   Example of function to provide :              35 //   Example of function to provide :
 51 //                                                 36 //
 52 //   x,y,z,dx,dy,dz,Rmin,Rmax are internal var     37 //   x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
 53 //                                                 38 //
 54 //   G4double MyFunctionClass::Function(G4doub     39 //   G4double MyFunctionClass::Function(G4double value)
 55 //   {                                             40 //   {
 56 //     G4double Lx,Ly,Lz;                          41 //     G4double Lx,Ly,Lz;
 57 //     G4double result;                        <<  42 //     G4double result;  
 58 //                                             <<  43 //   
 59 //     Lx = x + value*dx;                          44 //     Lx = x + value*dx;
 60 //     Ly = y + value*dy;                          45 //     Ly = y + value*dy;
 61 //     Lz = z + value*dz;                          46 //     Lz = z + value*dz;
 62 //                                             <<  47 //   
 63 //     result = TorusEquation(Lx,Ly,Lz,Rmax,Rm     48 //     result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
 64 //                                             <<  49 //     
 65 //     return result ;                         <<  50 //     return result ;  
 66 //   }                                         <<  51 //   }    
 67 //                                             <<  52 // 
 68 //   G4double MyFunctionClass::Derivative(G4do     53 //   G4double MyFunctionClass::Derivative(G4double value)
 69 //   {                                             54 //   {
 70 //     G4double Lx,Ly,Lz;                          55 //     G4double Lx,Ly,Lz;
 71 //     G4double result;                        <<  56 //     G4double result;  
 72 //                                             <<  57 //     
 73 //     Lx = x + value*dx;                          58 //     Lx = x + value*dx;
 74 //     Ly = y + value*dy;                          59 //     Ly = y + value*dy;
 75 //     Lz = z + value*dz;                          60 //     Lz = z + value*dz;
 76 //                                             <<  61 //      
 77 //     result = dx*TorusDerivativeX(Lx,Ly,Lz,R     62 //     result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
 78 //     result += dy*TorusDerivativeY(Lx,Ly,Lz,     63 //     result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
 79 //     result += dz*TorusDerivativeZ(Lx,Ly,Lz,     64 //     result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
 80 //                                             <<  65 //   
 81 //     return result;                              66 //     return result;
 82 //   }                                             67 //   }
 83 //                                             <<  68 //   
 84 //   Then to have a root inside an interval [I     69 //   Then to have a root inside an interval [IntervalMin,IntervalMax] do the
 85 //   following:                                    70 //   following:
 86 //                                                 71 //
 87 //   MyRoot = PolySolver.solve(IntervalMin,Int     72 //   MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
                                                   >>  73 //
                                                   >>  74 
                                                   >>  75 // History:
                                                   >>  76 //
                                                   >>  77 // - 19.12.00 E.Medernach, First implementation
                                                   >>  78 //
 88                                                    79 
 89 // Author: E.Medernach, 19.12.2000 - First imp << 
 90 // ------------------------------------------- << 
 91 #ifndef G4POL_SOLVER_HH                            80 #ifndef G4POL_SOLVER_HH
 92 #define G4POL_SOLVER_HH 1                      <<  81 #define G4POL_SOLVER_HH
 93                                                    82 
 94 #include "globals.hh"                          <<  83 #include  "globals.hh"
 95                                                    84 
 96 template <class T, class F>                        85 template <class T, class F>
 97 class G4PolynomialSolver                       <<  86 class G4PolynomialSolver 
 98 {                                                  87 {
 99  public:                                       <<  88 public:  // with description
100   G4PolynomialSolver(T* typeF, F func, F deriv <<  89   
                                                   >>  90   G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);  
101   ~G4PolynomialSolver();                           91   ~G4PolynomialSolver();
                                                   >>  92   
102                                                    93 
103   G4double solve(G4double IntervalMin, G4doubl <<  94   G4double solve (G4double IntervalMin, G4double IntervalMax);
                                                   >>  95   
                                                   >>  96 private:
104                                                    97 
105  private:                                      <<  98   G4double Newton (G4double IntervalMin, G4double IntervalMax);
106   G4double Newton(G4double IntervalMin, G4doub <<  99     //General Newton method with Bezier Clipping
107   // General Newton method with Bezier Clippin << 
108                                                   100 
109   // Works for polynomial of order less or equ    101   // Works for polynomial of order less or equal than 4.
110   // But could be changed to work for polynomi    102   // But could be changed to work for polynomial of any order providing
111   // that we find the bezier control points.      103   // that we find the bezier control points.
112                                                   104 
113   G4int BezierClipping(G4double* IntervalMin,  << 105   G4int BezierClipping(G4double *IntervalMin, G4double *IntervalMax);
114   // This is just one iteration of Bezier Clip << 106     //   This is just one iteration of Bezier Clipping
115                                                   107 
116   T* FunctionClass;                            << 
117   F Function;                                  << 
118   F Derivative;                                << 
119                                                   108 
                                                   >> 109   T* FunctionClass ;
                                                   >> 110   F Function ;
                                                   >> 111   F Derivative ;
                                                   >> 112   
120   G4double Precision;                             113   G4double Precision;
121 };                                                114 };
122                                                   115 
123 #include "G4PolynomialSolver.icc"                 116 #include "G4PolynomialSolver.icc"
124                                                   117 
125 #endif                                         << 118 #endif 
126                                                   119