Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // G4PolynomialSolver 27 // 28 // Class description: 29 // 30 // G4PolynomialSolver allows the user to sol 31 // with a great precision. This is used by I 32 // 33 // The Bezier clipping method is used to sol 34 // 35 // How to use it: 36 // Create a class that is the function to be 37 // This class could have internal parameters 38 // the equation to be solved without recreat 39 // 40 // Define a Polynomial solver, example: 41 // G4PolynomialSolver<MyFunctionClass,G4doub 42 // PolySolver (&MyFunction, 43 // &MyFunctionClass::Function, 44 // &MyFunctionClass::Derivativ 45 // precision); 46 // 47 // The precision is relative to the function 48 // 49 // In MyFunctionClass, provide the function 50 // Example of function to provide : 51 // 52 // x,y,z,dx,dy,dz,Rmin,Rmax are internal var 53 // 54 // G4double MyFunctionClass::Function(G4doub 55 // { 56 // G4double Lx,Ly,Lz; 57 // G4double result; 58 // 59 // Lx = x + value*dx; 60 // Ly = y + value*dy; 61 // Lz = z + value*dz; 62 // 63 // result = TorusEquation(Lx,Ly,Lz,Rmax,Rm 64 // 65 // return result ; 66 // } 67 // 68 // G4double MyFunctionClass::Derivative(G4do 69 // { 70 // G4double Lx,Ly,Lz; 71 // G4double result; 72 // 73 // Lx = x + value*dx; 74 // Ly = y + value*dy; 75 // Lz = z + value*dz; 76 // 77 // result = dx*TorusDerivativeX(Lx,Ly,Lz,R 78 // result += dy*TorusDerivativeY(Lx,Ly,Lz, 79 // result += dz*TorusDerivativeZ(Lx,Ly,Lz, 80 // 81 // return result; 82 // } 83 // 84 // Then to have a root inside an interval [I 85 // following: 86 // 87 // MyRoot = PolySolver.solve(IntervalMin,Int 88 89 // Author: E.Medernach, 19.12.2000 - First imp 90 // ------------------------------------------- 91 #ifndef G4POL_SOLVER_HH 92 #define G4POL_SOLVER_HH 1 93 94 #include "globals.hh" 95 96 template <class T, class F> 97 class G4PolynomialSolver 98 { 99 public: 100 G4PolynomialSolver(T* typeF, F func, F deriv 101 ~G4PolynomialSolver(); 102 103 G4double solve(G4double IntervalMin, G4doubl 104 105 private: 106 G4double Newton(G4double IntervalMin, G4doub 107 // General Newton method with Bezier Clippin 108 109 // Works for polynomial of order less or equ 110 // But could be changed to work for polynomi 111 // that we find the bezier control points. 112 113 G4int BezierClipping(G4double* IntervalMin, 114 // This is just one iteration of Bezier Clip 115 116 T* FunctionClass; 117 F Function; 118 F Derivative; 119 120 G4double Precision; 121 }; 122 123 #include "G4PolynomialSolver.icc" 124 125 #endif 126