Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4Integrator.icc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/include/G4Integrator.icc (Version 11.3.0) and /global/HEPNumerics/include/G4Integrator.icc (Version ReleaseNotes)


** Warning: Cannot open xref database.

  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // G4Integrator inline methods implementation     
 27 //                                                
 28 // Author: V.Grichine, 04.09.1999 - First impl    
 29 //         G4SimpleIntegration class with H.P.    
 30 //         E.TCherniaev advises                   
 31 // -------------------------------------------    
 32                                                   
 33 //////////////////////////////////////////////    
 34 //                                                
 35 // Sympson integration method                     
 36 //                                                
 37 //////////////////////////////////////////////    
 38 //                                                
 39 // Integration of class member functions T::f     
 40                                                   
 41 template <class T, class F>                       
 42 G4double G4Integrator<T, F>::Simpson(T& typeT,    
 43                                      G4double     
 44 {                                                 
 45   G4int i;                                        
 46   G4double step  = (xFinal - xInitial) / itera    
 47   G4double x     = xInitial;                      
 48   G4double xPlus = xInitial + 0.5 * step;         
 49   G4double mean  = ((typeT.*f)(xInitial) + (ty    
 50   G4double sum   = (typeT.*f)(xPlus);             
 51                                                   
 52   for(i = 1; i < iterationNumber; ++i)            
 53   {                                               
 54     x += step;                                    
 55     xPlus += step;                                
 56     mean += (typeT.*f)(x);                        
 57     sum += (typeT.*f)(xPlus);                     
 58   }                                               
 59   mean += 2.0 * sum;                              
 60                                                   
 61   return mean * step / 3.0;                       
 62 }                                                 
 63                                                   
 64 //////////////////////////////////////////////    
 65 //                                                
 66 // Integration of class member functions T::f     
 67 // Convenient to use with 'this' pointer          
 68                                                   
 69 template <class T, class F>                       
 70 G4double G4Integrator<T, F>::Simpson(T* ptrT,     
 71                                      G4double     
 72 {                                                 
 73   G4int i;                                        
 74   G4double step  = (xFinal - xInitial) / itera    
 75   G4double x     = xInitial;                      
 76   G4double xPlus = xInitial + 0.5 * step;         
 77   G4double mean  = ((ptrT->*f)(xInitial) + (pt    
 78   G4double sum   = (ptrT->*f)(xPlus);             
 79                                                   
 80   for(i = 1; i < iterationNumber; ++i)            
 81   {                                               
 82     x += step;                                    
 83     xPlus += step;                                
 84     mean += (ptrT->*f)(x);                        
 85     sum += (ptrT->*f)(xPlus);                     
 86   }                                               
 87   mean += 2.0 * sum;                              
 88                                                   
 89   return mean * step / 3.0;                       
 90 }                                                 
 91                                                   
 92 //////////////////////////////////////////////    
 93 //                                                
 94 // Integration of class member functions T::f     
 95 // Convenient to use, when function f is defin    
 96 // program                                        
 97                                                   
 98 template <class T, class F>                       
 99 G4double G4Integrator<T, F>::Simpson(G4double     
100                                      G4double     
101 {                                                 
102   G4int i;                                        
103   G4double step  = (xFinal - xInitial) / itera    
104   G4double x     = xInitial;                      
105   G4double xPlus = xInitial + 0.5 * step;         
106   G4double mean  = ((*f)(xInitial) + (*f)(xFin    
107   G4double sum   = (*f)(xPlus);                   
108                                                   
109   for(i = 1; i < iterationNumber; ++i)            
110   {                                               
111     x += step;                                    
112     xPlus += step;                                
113     mean += (*f)(x);                              
114     sum += (*f)(xPlus);                           
115   }                                               
116   mean += 2.0 * sum;                              
117                                                   
118   return mean * step / 3.0;                       
119 }                                                 
120                                                   
121 //////////////////////////////////////////////    
122 //                                                
123 // Adaptive Gauss method                          
124 //                                                
125 //////////////////////////////////////////////    
126 //                                                
127 //                                                
128                                                   
129 template <class T, class F>                       
130 G4double G4Integrator<T, F>::Gauss(T& typeT, F    
131                                    G4double xF    
132 {                                                 
133   static const G4double root = 1.0 / std::sqrt    
134                                                   
135   G4double xMean = (xInitial + xFinal) / 2.0;     
136   G4double Step  = (xFinal - xInitial) / 2.0;     
137   G4double delta = Step * root;                   
138   G4double sum   = ((typeT.*f)(xMean + delta)     
139                                                   
140   return sum * Step;                              
141 }                                                 
142                                                   
143 //////////////////////////////////////////////    
144 //                                                
145 //                                                
146                                                   
147 template <class T, class F>                       
148 G4double G4Integrator<T, F>::Gauss(T* ptrT, F     
149 {                                                 
150   return Gauss(*ptrT, f, a, b);                   
151 }                                                 
152                                                   
153 //////////////////////////////////////////////    
154 //                                                
155 //                                                
156                                                   
157 template <class T, class F>                       
158 G4double G4Integrator<T, F>::Gauss(G4double (*    
159                                    G4double xF    
160 {                                                 
161   static const G4double root = 1.0 / std::sqrt    
162                                                   
163   G4double xMean = (xInitial + xFinal) / 2.0;     
164   G4double Step  = (xFinal - xInitial) / 2.0;     
165   G4double delta = Step * root;                   
166   G4double sum   = ((*f)(xMean + delta) + (*f)    
167                                                   
168   return sum * Step;                              
169 }                                                 
170                                                   
171 //////////////////////////////////////////////    
172 //                                                
173 //                                                
174                                                   
175 template <class T, class F>                       
176 void G4Integrator<T, F>::AdaptGauss(T& typeT,     
177                                     G4double x    
178                                     G4double&     
179 {                                                 
180   if(depth > 100)                                 
181   {                                               
182     G4cout << "G4Integrator<T,F>::AdaptGauss:     
183     G4cout << "Function varies too rapidly to     
184            << G4endl;                             
185                                                   
186     return;                                       
187   }                                               
188   G4double xMean     = (xInitial + xFinal) / 2    
189   G4double leftHalf  = Gauss(typeT, f, xInitia    
190   G4double rightHalf = Gauss(typeT, f, xMean,     
191   G4double full      = Gauss(typeT, f, xInitia    
192   if(std::fabs(leftHalf + rightHalf - full) <     
193   {                                               
194     sum += full;                                  
195   }                                               
196   else                                            
197   {                                               
198     ++depth;                                      
199     AdaptGauss(typeT, f, xInitial, xMean, fTol    
200     AdaptGauss(typeT, f, xMean, xFinal, fToler    
201   }                                               
202 }                                                 
203                                                   
204 template <class T, class F>                       
205 void G4Integrator<T, F>::AdaptGauss(T* ptrT, F    
206                                     G4double x    
207                                     G4double&     
208 {                                                 
209   AdaptGauss(*ptrT, f, xInitial, xFinal, fTole    
210 }                                                 
211                                                   
212 //////////////////////////////////////////////    
213 //                                                
214 //                                                
215 template <class T, class F>                       
216 void G4Integrator<T, F>::AdaptGauss(G4double (    
217                                     G4double x    
218                                     G4double&     
219 {                                                 
220   if(depth > 100)                                 
221   {                                               
222     G4cout << "G4SimpleIntegration::AdaptGauss    
223     G4cout << "Function varies too rapidly to     
224            << G4endl;                             
225                                                   
226     return;                                       
227   }                                               
228   G4double xMean     = (xInitial + xFinal) / 2    
229   G4double leftHalf  = Gauss(f, xInitial, xMea    
230   G4double rightHalf = Gauss(f, xMean, xFinal)    
231   G4double full      = Gauss(f, xInitial, xFin    
232   if(std::fabs(leftHalf + rightHalf - full) <     
233   {                                               
234     sum += full;                                  
235   }                                               
236   else                                            
237   {                                               
238     ++depth;                                      
239     AdaptGauss(f, xInitial, xMean, fTolerance,    
240     AdaptGauss(f, xMean, xFinal, fTolerance, s    
241   }                                               
242 }                                                 
243                                                   
244 //////////////////////////////////////////////    
245 //                                                
246 // Adaptive Gauss integration with accuracy 'e    
247 // Convenient for using with class object type    
248                                                   
249 template <class T, class F>                       
250 G4double G4Integrator<T, F>::AdaptiveGauss(T&     
251                                            G4d    
252 {                                                 
253   G4int depth  = 0;                               
254   G4double sum = 0.0;                             
255   AdaptGauss(typeT, f, xInitial, xFinal, e, su    
256   return sum;                                     
257 }                                                 
258                                                   
259 //////////////////////////////////////////////    
260 //                                                
261 // Adaptive Gauss integration with accuracy 'e    
262 // Convenient for using with 'this' pointer       
263                                                   
264 template <class T, class F>                       
265 G4double G4Integrator<T, F>::AdaptiveGauss(T*     
266                                            G4d    
267 {                                                 
268   return AdaptiveGauss(*ptrT, f, xInitial, xFi    
269 }                                                 
270                                                   
271 //////////////////////////////////////////////    
272 //                                                
273 // Adaptive Gauss integration with accuracy 'e    
274 // Convenient for using with global scope func    
275                                                   
276 template <class T, class F>                       
277 G4double G4Integrator<T, F>::AdaptiveGauss(G4d    
278                                            G4d    
279                                            G4d    
280 {                                                 
281   G4int depth  = 0;                               
282   G4double sum = 0.0;                             
283   AdaptGauss(f, xInitial, xFinal, e, sum, dept    
284   return sum;                                     
285 }                                                 
286                                                   
287 //////////////////////////////////////////////    
288 // Gauss integration methods involving ortogon    
289 //////////////////////////////////////////////    
290 //                                                
291 // Methods involving Legendre polynomials         
292 //                                                
293 //////////////////////////////////////////////    
294 //                                                
295 // The value nLegendre set the accuracy requir    
296 // where the function pFunction will be evalua    
297 // The function creates the arrays for absciss    
298 // in Gauss-Legendre quadrature method.           
299 // The values a and b are the limits of integr    
300 // nLegendre MUST BE EVEN !!!                     
301 // Returns the integral of the function f betw    
302 // Gauss-Legendre integration: the function is    
303 // 2*fNumber times at interior points in the r    
304 // Since the weights and abscissas are, in thi    
305 // the midpoint of the range of integration, t    
306 // fNumber distinct values of each.               
307 // Convenient for using with some class object    
308                                                   
309 template <class T, class F>                       
310 G4double G4Integrator<T, F>::Legendre(T& typeT    
311                                       G4int nL    
312 {                                                 
313   G4double nwt, nwt1, temp1, temp2, temp3, tem    
314   G4double xDiff, xMean, dx, integral;            
315                                                   
316   const G4double tolerance = 1.6e-10;             
317   G4int i, j, k = nLegendre;                      
318   G4int fNumber = (nLegendre + 1) / 2;            
319                                                   
320   if(2 * fNumber != k)                            
321   {                                               
322     G4Exception("G4Integrator<T,F>::Legendre(T    
323                 FatalException, "Invalid (odd)    
324   }                                               
325                                                   
326   G4double* fAbscissa = new G4double[fNumber];    
327   G4double* fWeight   = new G4double[fNumber];    
328                                                   
329   for(i = 1; i <= fNumber; ++i)  // Loop over     
330   {                                               
331     nwt = std::cos(CLHEP::pi * (i - 0.25) /       
332                    (k + 0.5));  // Initial roo    
333                                                   
334     do  // loop of Newton's method                
335     {                                             
336       temp1 = 1.0;                                
337       temp2 = 0.0;                                
338       for(j = 1; j <= k; ++j)                     
339       {                                           
340         temp3 = temp2;                            
341         temp2 = temp1;                            
342         temp1 = ((2.0 * j - 1.0) * nwt * temp2    
343       }                                           
344       temp = k * (nwt * temp1 - temp2) / (nwt     
345       nwt1 = nwt;                                 
346       nwt  = nwt1 - temp1 / temp;  // Newton's    
347     } while(std::fabs(nwt - nwt1) > tolerance)    
348                                                   
349     fAbscissa[fNumber - i] = nwt;                 
350     fWeight[fNumber - i]   = 2.0 / ((1.0 - nwt    
351   }                                               
352                                                   
353   //                                              
354   // Now we ready to get integral                 
355   //                                              
356                                                   
357   xMean    = 0.5 * (a + b);                       
358   xDiff    = 0.5 * (b - a);                       
359   integral = 0.0;                                 
360   for(i = 0; i < fNumber; ++i)                    
361   {                                               
362     dx = xDiff * fAbscissa[i];                    
363     integral += fWeight[i] * ((typeT.*f)(xMean    
364   }                                               
365   delete[] fAbscissa;                             
366   delete[] fWeight;                               
367   return integral *= xDiff;                       
368 }                                                 
369                                                   
370 //////////////////////////////////////////////    
371 //                                                
372 // Convenient for using with the pointer 'this    
373                                                   
374 template <class T, class F>                       
375 G4double G4Integrator<T, F>::Legendre(T* ptrT,    
376                                       G4int nL    
377 {                                                 
378   return Legendre(*ptrT, f, a, b, nLegendre);     
379 }                                                 
380                                                   
381 //////////////////////////////////////////////    
382 //                                                
383 // Convenient for using with global scope func    
384                                                   
385 template <class T, class F>                       
386 G4double G4Integrator<T, F>::Legendre(G4double    
387                                       G4double    
388 {                                                 
389   G4double nwt, nwt1, temp1, temp2, temp3, tem    
390   G4double xDiff, xMean, dx, integral;            
391                                                   
392   const G4double tolerance = 1.6e-10;             
393   G4int i, j, k = nLegendre;                      
394   G4int fNumber = (nLegendre + 1) / 2;            
395                                                   
396   if(2 * fNumber != k)                            
397   {                                               
398     G4Exception("G4Integrator<T,F>::Legendre(.    
399                 FatalException, "Invalid (odd)    
400   }                                               
401                                                   
402   G4double* fAbscissa = new G4double[fNumber];    
403   G4double* fWeight   = new G4double[fNumber];    
404                                                   
405   for(i = 1; i <= fNumber; i++)  // Loop over     
406   {                                               
407     nwt = std::cos(CLHEP::pi * (i - 0.25) /       
408                    (k + 0.5));  // Initial roo    
409                                                   
410     do  // loop of Newton's method                
411     {                                             
412       temp1 = 1.0;                                
413       temp2 = 0.0;                                
414       for(j = 1; j <= k; ++j)                     
415       {                                           
416         temp3 = temp2;                            
417         temp2 = temp1;                            
418         temp1 = ((2.0 * j - 1.0) * nwt * temp2    
419       }                                           
420       temp = k * (nwt * temp1 - temp2) / (nwt     
421       nwt1 = nwt;                                 
422       nwt  = nwt1 - temp1 / temp;  // Newton's    
423     } while(std::fabs(nwt - nwt1) > tolerance)    
424                                                   
425     fAbscissa[fNumber - i] = nwt;                 
426     fWeight[fNumber - i]   = 2.0 / ((1.0 - nwt    
427   }                                               
428                                                   
429   //                                              
430   // Now we ready to get integral                 
431   //                                              
432                                                   
433   xMean    = 0.5 * (a + b);                       
434   xDiff    = 0.5 * (b - a);                       
435   integral = 0.0;                                 
436   for(i = 0; i < fNumber; ++i)                    
437   {                                               
438     dx = xDiff * fAbscissa[i];                    
439     integral += fWeight[i] * ((*f)(xMean + dx)    
440   }                                               
441   delete[] fAbscissa;                             
442   delete[] fWeight;                               
443                                                   
444   return integral *= xDiff;                       
445 }                                                 
446                                                   
447 //////////////////////////////////////////////    
448 //                                                
449 // Returns the integral of the function to be     
450 // by ten point Gauss-Legendre integration: th    
451 // ten times at interior points in the range o    
452 // and abscissas are, in this case, symmetric     
453 // range of integration, there are actually on    
454 // Convenient for using with class object type    
455                                                   
456 template <class T, class F>                       
457 G4double G4Integrator<T, F>::Legendre10(T& typ    
458 {                                                 
459   G4int i;                                        
460   G4double xDiff, xMean, dx, integral;            
461                                                   
462   // From Abramowitz M., Stegan I.A. 1964 , Ha    
463                                                   
464   static const G4double abscissa[] = { 0.14887    
465                                        0.67940    
466                                        0.97390    
467                                                   
468   static const G4double weight[] = { 0.2955242    
469                                      0.2190863    
470                                      0.0666713    
471   xMean                          = 0.5 * (a +     
472   xDiff                          = 0.5 * (b -     
473   integral                       = 0.0;           
474   for(i = 0; i < 5; ++i)                          
475   {                                               
476     dx = xDiff * abscissa[i];                     
477     integral += weight[i] * ((typeT.*f)(xMean     
478   }                                               
479   return integral *= xDiff;                       
480 }                                                 
481                                                   
482 //////////////////////////////////////////////    
483 //                                                
484 // Convenient for using with the pointer 'this    
485                                                   
486 template <class T, class F>                       
487 G4double G4Integrator<T, F>::Legendre10(T* ptr    
488 {                                                 
489   return Legendre10(*ptrT, f, a, b);              
490 }                                                 
491                                                   
492 //////////////////////////////////////////////    
493 //                                                
494 // Convenient for using with global scope func    
495                                                   
496 template <class T, class F>                       
497 G4double G4Integrator<T, F>::Legendre10(G4doub    
498                                         G4doub    
499 {                                                 
500   G4int i;                                        
501   G4double xDiff, xMean, dx, integral;            
502                                                   
503   // From Abramowitz M., Stegan I.A. 1964 , Ha    
504                                                   
505   static const G4double abscissa[] = { 0.14887    
506                                        0.67940    
507                                        0.97390    
508                                                   
509   static const G4double weight[] = { 0.2955242    
510                                      0.2190863    
511                                      0.0666713    
512   xMean                          = 0.5 * (a +     
513   xDiff                          = 0.5 * (b -     
514   integral                       = 0.0;           
515   for(i = 0; i < 5; ++i)                          
516   {                                               
517     dx = xDiff * abscissa[i];                     
518     integral += weight[i] * ((*f)(xMean + dx)     
519   }                                               
520   return integral *= xDiff;                       
521 }                                                 
522                                                   
523 //////////////////////////////////////////////    
524 //                                                
525 // Returns the integral of the function to be     
526 // by 96 point Gauss-Legendre integration: the    
527 // ten Times at interior points in the range o    
528 // and abscissas are, in this case, symmetric     
529 // range of integration, there are actually on    
530 // Convenient for using with some class object    
531                                                   
532 template <class T, class F>                       
533 G4double G4Integrator<T, F>::Legendre96(T& typ    
534 {                                                 
535   G4int i;                                        
536   G4double xDiff, xMean, dx, integral;            
537                                                   
538   // From Abramowitz M., Stegan I.A. 1964 , Ha    
539                                                   
540   static const G4double abscissa[] = {            
541     0.016276744849602969579, 0.048812985136049    
542     0.081297495464425558994, 0.113695850110665    
543     0.145973714654896941989, 0.178096882367618    
544                                                   
545     0.210031310460567203603, 0.241743156163840    
546     0.273198812591049141487, 0.304364944354496    
547     0.335208522892625422616, 0.365696861472313    
548                                                   
549     0.395797649828908603285, 0.425478988407300    
550     0.454709422167743008636, 0.483457973920596    
551     0.511694177154667673586, 0.539388108324357    
552                                                   
553     0.566510418561397168404, 0.593032364777572    
554     0.618925840125468570386, 0.644163403784967    
555     0.668718310043916153953, 0.692564536642171    
556                                                   
557     0.715676812348967626225, 0.738030643744400    
558     0.759602341176647498703, 0.780369043867433    
559     0.800308744139140817229, 0.819400310737931    
560                                                   
561     0.837623511228187121494, 0.854959033434601    
562     0.871388505909296502874, 0.886894517402420    
563     0.901460635315852341319, 0.915071423120898    
564                                                   
565     0.927712456722308690965, 0.939370339752755    
566     0.950032717784437635756, 0.959688291448742    
567     0.968326828463264212174, 0.975939174585136    
568                                                   
569     0.982517263563014677447, 0.988054126329623    
570     0.992543900323762624572, 0.995981842987209    
571     0.998364375863181677724, 0.999689503883230    
572   };                                              
573                                                   
574   static const G4double weight[] = {              
575     0.032550614492363166242, 0.032516118713868    
576     0.032447163714064269364, 0.032343822568575    
577     0.032206204794030250669, 0.032034456231992    
578                                                   
579     0.031828758894411006535, 0.031589330770727    
580     0.031316425596862355813, 0.031010332586313    
581     0.030671376123669149014, 0.030299915420827    
582                                                   
583     0.029896344136328385984, 0.029461089958167    
584     0.028994614150555236543, 0.028497411065085    
585     0.027970007616848334440, 0.027412962726029    
586                                                   
587     0.026826866725591762198, 0.026212340735672    
588     0.025570036005349361499, 0.024900633222483    
589     0.024204841792364691282, 0.023483399085926    
590                                                   
591     0.022737069658329374001, 0.021966644438744    
592     0.021172939892191298988, 0.020356797154333    
593     0.019519081140145022410, 0.018660679627411    
594                                                   
595     0.017782502316045260838, 0.016885479864245    
596     0.015970562902562291381, 0.015038721026994    
597     0.014090941772314860916, 0.013128229566961    
598                                                   
599     0.012151604671088319635, 0.011162102099838    
600     0.010160770535008415758, 0.009148671230783    
601     0.008126876925698759217, 0.007096470791153    
602                                                   
603     0.006058545504235961683, 0.005014202742927    
604     0.003964554338444686674, 0.002910731817934    
605     0.001853960788946921732, 0.000796792065552    
606   };                                              
607   xMean    = 0.5 * (a + b);                       
608   xDiff    = 0.5 * (b - a);                       
609   integral = 0.0;                                 
610   for(i = 0; i < 48; ++i)                         
611   {                                               
612     dx = xDiff * abscissa[i];                     
613     integral += weight[i] * ((typeT.*f)(xMean     
614   }                                               
615   return integral *= xDiff;                       
616 }                                                 
617                                                   
618 //////////////////////////////////////////////    
619 //                                                
620 // Convenient for using with the pointer 'this    
621                                                   
622 template <class T, class F>                       
623 G4double G4Integrator<T, F>::Legendre96(T* ptr    
624 {                                                 
625   return Legendre96(*ptrT, f, a, b);              
626 }                                                 
627                                                   
628 //////////////////////////////////////////////    
629 //                                                
630 // Convenient for using with global scope func    
631                                                   
632 template <class T, class F>                       
633 G4double G4Integrator<T, F>::Legendre96(G4doub    
634                                         G4doub    
635 {                                                 
636   G4int i;                                        
637   G4double xDiff, xMean, dx, integral;            
638                                                   
639   // From Abramowitz M., Stegan I.A. 1964 , Ha    
640                                                   
641   static const G4double abscissa[] = {            
642     0.016276744849602969579, 0.048812985136049    
643     0.081297495464425558994, 0.113695850110665    
644     0.145973714654896941989, 0.178096882367618    
645                                                   
646     0.210031310460567203603, 0.241743156163840    
647     0.273198812591049141487, 0.304364944354496    
648     0.335208522892625422616, 0.365696861472313    
649                                                   
650     0.395797649828908603285, 0.425478988407300    
651     0.454709422167743008636, 0.483457973920596    
652     0.511694177154667673586, 0.539388108324357    
653                                                   
654     0.566510418561397168404, 0.593032364777572    
655     0.618925840125468570386, 0.644163403784967    
656     0.668718310043916153953, 0.692564536642171    
657                                                   
658     0.715676812348967626225, 0.738030643744400    
659     0.759602341176647498703, 0.780369043867433    
660     0.800308744139140817229, 0.819400310737931    
661                                                   
662     0.837623511228187121494, 0.854959033434601    
663     0.871388505909296502874, 0.886894517402420    
664     0.901460635315852341319, 0.915071423120898    
665                                                   
666     0.927712456722308690965, 0.939370339752755    
667     0.950032717784437635756, 0.959688291448742    
668     0.968326828463264212174, 0.975939174585136    
669                                                   
670     0.982517263563014677447, 0.988054126329623    
671     0.992543900323762624572, 0.995981842987209    
672     0.998364375863181677724, 0.999689503883230    
673   };                                              
674                                                   
675   static const G4double weight[] = {              
676     0.032550614492363166242, 0.032516118713868    
677     0.032447163714064269364, 0.032343822568575    
678     0.032206204794030250669, 0.032034456231992    
679                                                   
680     0.031828758894411006535, 0.031589330770727    
681     0.031316425596862355813, 0.031010332586313    
682     0.030671376123669149014, 0.030299915420827    
683                                                   
684     0.029896344136328385984, 0.029461089958167    
685     0.028994614150555236543, 0.028497411065085    
686     0.027970007616848334440, 0.027412962726029    
687                                                   
688     0.026826866725591762198, 0.026212340735672    
689     0.025570036005349361499, 0.024900633222483    
690     0.024204841792364691282, 0.023483399085926    
691                                                   
692     0.022737069658329374001, 0.021966644438744    
693     0.021172939892191298988, 0.020356797154333    
694     0.019519081140145022410, 0.018660679627411    
695                                                   
696     0.017782502316045260838, 0.016885479864245    
697     0.015970562902562291381, 0.015038721026994    
698     0.014090941772314860916, 0.013128229566961    
699                                                   
700     0.012151604671088319635, 0.011162102099838    
701     0.010160770535008415758, 0.009148671230783    
702     0.008126876925698759217, 0.007096470791153    
703                                                   
704     0.006058545504235961683, 0.005014202742927    
705     0.003964554338444686674, 0.002910731817934    
706     0.001853960788946921732, 0.000796792065552    
707   };                                              
708   xMean    = 0.5 * (a + b);                       
709   xDiff    = 0.5 * (b - a);                       
710   integral = 0.0;                                 
711   for(i = 0; i < 48; ++i)                         
712   {                                               
713     dx = xDiff * abscissa[i];                     
714     integral += weight[i] * ((*f)(xMean + dx)     
715   }                                               
716   return integral *= xDiff;                       
717 }                                                 
718                                                   
719 //////////////////////////////////////////////    
720 //                                                
721 // Methods involving Chebyshev polynomials        
722 //                                                
723 //////////////////////////////////////////////    
724 //                                                
725 // Integrates function pointed by T::f from a     
726 // quadrature method.                             
727 // Convenient for using with class object type    
728                                                   
729 template <class T, class F>                       
730 G4double G4Integrator<T, F>::Chebyshev(T& type    
731                                        G4int n    
732 {                                                 
733   G4int i;                                        
734   G4double xDiff, xMean, dx, integral = 0.0;      
735                                                   
736   G4int fNumber       = nChebyshev;  // Try to    
737   G4double cof        = CLHEP::pi / fNumber;      
738   G4double* fAbscissa = new G4double[fNumber];    
739   G4double* fWeight   = new G4double[fNumber];    
740   for(i = 0; i < fNumber; ++i)                    
741   {                                               
742     fAbscissa[i] = std::cos(cof * (i + 0.5));     
743     fWeight[i]   = cof * std::sqrt(1 - fAbscis    
744   }                                               
745                                                   
746   //                                              
747   // Now we ready to estimate the integral        
748   //                                              
749                                                   
750   xMean = 0.5 * (a + b);                          
751   xDiff = 0.5 * (b - a);                          
752   for(i = 0; i < fNumber; ++i)                    
753   {                                               
754     dx = xDiff * fAbscissa[i];                    
755     integral += fWeight[i] * (typeT.*f)(xMean     
756   }                                               
757   delete[] fAbscissa;                             
758   delete[] fWeight;                               
759   return integral *= xDiff;                       
760 }                                                 
761                                                   
762 //////////////////////////////////////////////    
763 //                                                
764 // Convenient for using with 'this' pointer       
765                                                   
766 template <class T, class F>                       
767 G4double G4Integrator<T, F>::Chebyshev(T* ptrT    
768                                        G4int n    
769 {                                                 
770   return Chebyshev(*ptrT, f, a, b, n);            
771 }                                                 
772                                                   
773 //////////////////////////////////////////////    
774 //                                                
775 // For use with global scope functions f          
776                                                   
777 template <class T, class F>                       
778 G4double G4Integrator<T, F>::Chebyshev(G4doubl    
779                                        G4doubl    
780 {                                                 
781   G4int i;                                        
782   G4double xDiff, xMean, dx, integral = 0.0;      
783                                                   
784   G4int fNumber       = nChebyshev;  // Try to    
785   G4double cof        = CLHEP::pi / fNumber;      
786   G4double* fAbscissa = new G4double[fNumber];    
787   G4double* fWeight   = new G4double[fNumber];    
788   for(i = 0; i < fNumber; ++i)                    
789   {                                               
790     fAbscissa[i] = std::cos(cof * (i + 0.5));     
791     fWeight[i]   = cof * std::sqrt(1 - fAbscis    
792   }                                               
793                                                   
794   //                                              
795   // Now we ready to estimate the integral        
796   //                                              
797                                                   
798   xMean = 0.5 * (a + b);                          
799   xDiff = 0.5 * (b - a);                          
800   for(i = 0; i < fNumber; ++i)                    
801   {                                               
802     dx = xDiff * fAbscissa[i];                    
803     integral += fWeight[i] * (*f)(xMean + dx);    
804   }                                               
805   delete[] fAbscissa;                             
806   delete[] fWeight;                               
807   return integral *= xDiff;                       
808 }                                                 
809                                                   
810 //////////////////////////////////////////////    
811 //                                                
812 // Method involving Laguerre polynomials          
813 //                                                
814 //////////////////////////////////////////////    
815 //                                                
816 // Integral from zero to infinity of std::pow(    
817 // The value of nLaguerre sets the accuracy.      
818 // The function creates arrays fAbscissa[0,..,    
819 // fWeight[0,..,nLaguerre-1] .                    
820 // Convenient for using with class object 'typ    
821 // (T::f)                                         
822                                                   
823 template <class T, class F>                       
824 G4double G4Integrator<T, F>::Laguerre(T& typeT    
825                                       G4int nL    
826 {                                                 
827   const G4double tolerance = 1.0e-10;             
828   const G4int maxNumber    = 12;                  
829   G4int i, j, k;                                  
830   G4double nwt      = 0., nwt1, temp1, temp2,     
831   G4double integral = 0.0;                        
832                                                   
833   G4int fNumber       = nLaguerre;                
834   G4double* fAbscissa = new G4double[fNumber];    
835   G4double* fWeight   = new G4double[fNumber];    
836                                                   
837   for(i = 1; i <= fNumber; ++i)  // Loop over     
838   {                                               
839     if(i == 1)                                    
840     {                                             
841       nwt = (1.0 + alpha) * (3.0 + 0.92 * alph    
842             (1.0 + 2.4 * fNumber + 1.8 * alpha    
843     }                                             
844     else if(i == 2)                               
845     {                                             
846       nwt += (15.0 + 6.25 * alpha) / (1.0 + 0.    
847     }                                             
848     else                                          
849     {                                             
850       cofi = i - 2;                               
851       nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof    
852               1.26 * cofi * alpha / (1.0 + 3.5    
853              (nwt - fAbscissa[i - 3]) / (1.0 +    
854     }                                             
855     for(k = 1; k <= maxNumber; ++k)               
856     {                                             
857       temp1 = 1.0;                                
858       temp2 = 0.0;                                
859                                                   
860       for(j = 1; j <= fNumber; ++j)               
861       {                                           
862         temp3 = temp2;                            
863         temp2 = temp1;                            
864         temp1 =                                   
865           ((2 * j - 1 + alpha - nwt) * temp2 -    
866       }                                           
867       temp = (fNumber * temp1 - (fNumber + alp    
868       nwt1 = nwt;                                 
869       nwt  = nwt1 - temp1 / temp;                 
870                                                   
871       if(std::fabs(nwt - nwt1) <= tolerance)      
872       {                                           
873         break;                                    
874       }                                           
875     }                                             
876     if(k > maxNumber)                             
877     {                                             
878       G4Exception("G4Integrator<T,F>::Laguerre    
879                   FatalException, "Too many (>    
880     }                                             
881                                                   
882     fAbscissa[i - 1] = nwt;                       
883     fWeight[i - 1]   = -std::exp(GammaLogarith    
884                                GammaLogarithm(    
885                      (temp * fNumber * temp2);    
886   }                                               
887                                                   
888   //                                              
889   // Integral evaluation                          
890   //                                              
891                                                   
892   for(i = 0; i < fNumber; ++i)                    
893   {                                               
894     integral += fWeight[i] * (typeT.*f)(fAbsci    
895   }                                               
896   delete[] fAbscissa;                             
897   delete[] fWeight;                               
898   return integral;                                
899 }                                                 
900                                                   
901 //////////////////////////////////////////////    
902 //                                                
903 //                                                
904                                                   
905 template <class T, class F>                       
906 G4double G4Integrator<T, F>::Laguerre(T* ptrT,    
907                                       G4int nL    
908 {                                                 
909   return Laguerre(*ptrT, f, alpha, nLaguerre);    
910 }                                                 
911                                                   
912 //////////////////////////////////////////////    
913 //                                                
914 // For use with global scope functions f          
915                                                   
916 template <class T, class F>                       
917 G4double G4Integrator<T, F>::Laguerre(G4double    
918                                       G4int nL    
919 {                                                 
920   const G4double tolerance = 1.0e-10;             
921   const G4int maxNumber    = 12;                  
922   G4int i, j, k;                                  
923   G4double nwt      = 0., nwt1, temp1, temp2,     
924   G4double integral = 0.0;                        
925                                                   
926   G4int fNumber       = nLaguerre;                
927   G4double* fAbscissa = new G4double[fNumber];    
928   G4double* fWeight   = new G4double[fNumber];    
929                                                   
930   for(i = 1; i <= fNumber; ++i)  // Loop over     
931   {                                               
932     if(i == 1)                                    
933     {                                             
934       nwt = (1.0 + alpha) * (3.0 + 0.92 * alph    
935             (1.0 + 2.4 * fNumber + 1.8 * alpha    
936     }                                             
937     else if(i == 2)                               
938     {                                             
939       nwt += (15.0 + 6.25 * alpha) / (1.0 + 0.    
940     }                                             
941     else                                          
942     {                                             
943       cofi = i - 2;                               
944       nwt += ((1.0 + 2.55 * cofi) / (1.9 * cof    
945               1.26 * cofi * alpha / (1.0 + 3.5    
946              (nwt - fAbscissa[i - 3]) / (1.0 +    
947     }                                             
948     for(k = 1; k <= maxNumber; ++k)               
949     {                                             
950       temp1 = 1.0;                                
951       temp2 = 0.0;                                
952                                                   
953       for(j = 1; j <= fNumber; ++j)               
954       {                                           
955         temp3 = temp2;                            
956         temp2 = temp1;                            
957         temp1 =                                   
958           ((2 * j - 1 + alpha - nwt) * temp2 -    
959       }                                           
960       temp = (fNumber * temp1 - (fNumber + alp    
961       nwt1 = nwt;                                 
962       nwt  = nwt1 - temp1 / temp;                 
963                                                   
964       if(std::fabs(nwt - nwt1) <= tolerance)      
965       {                                           
966         break;                                    
967       }                                           
968     }                                             
969     if(k > maxNumber)                             
970     {                                             
971       G4Exception("G4Integrator<T,F>::Laguerre    
972                   "Too many (>12) iterations."    
973     }                                             
974                                                   
975     fAbscissa[i - 1] = nwt;                       
976     fWeight[i - 1]   = -std::exp(GammaLogarith    
977                                GammaLogarithm(    
978                      (temp * fNumber * temp2);    
979   }                                               
980                                                   
981   //                                              
982   // Integral evaluation                          
983   //                                              
984                                                   
985   for(i = 0; i < fNumber; i++)                    
986   {                                               
987     integral += fWeight[i] * (*f)(fAbscissa[i]    
988   }                                               
989   delete[] fAbscissa;                             
990   delete[] fWeight;                               
991   return integral;                                
992 }                                                 
993                                                   
994 //////////////////////////////////////////////    
995 //                                                
996 // Auxiliary function which returns the value     
997 // Returns the value ln(Gamma(xx) for xx > 0.     
998 // xx > 1. For 0 < xx < 1. the reflection form    
999 // (Adapted from Numerical Recipes in C)          
1000 //                                               
1001                                                  
1002 template <class T, class F>                      
1003 G4double G4Integrator<T, F>::GammaLogarithm(G    
1004 {                                                
1005   static const G4double cof[6] = { 76.1800917    
1006                                    24.0140982    
1007                                    0.12086509    
1008   G4int j;                                       
1009   G4double x   = xx - 1.0;                       
1010   G4double tmp = x + 5.5;                        
1011   tmp -= (x + 0.5) * std::log(tmp);              
1012   G4double ser = 1.000000000190015;              
1013                                                  
1014   for(j = 0; j <= 5; ++j)                        
1015   {                                              
1016     x += 1.0;                                    
1017     ser += cof[j] / x;                           
1018   }                                              
1019   return -tmp + std::log(2.5066282746310005 *    
1020 }                                                
1021                                                  
1022 /////////////////////////////////////////////    
1023 //                                               
1024 // Method involving Hermite polynomials          
1025 //                                               
1026 /////////////////////////////////////////////    
1027 //                                               
1028 //                                               
1029 // Gauss-Hermite method for integration of st    
1030 // from minus infinity to plus infinity .        
1031 //                                               
1032                                                  
1033 template <class T, class F>                      
1034 G4double G4Integrator<T, F>::Hermite(T& typeT    
1035 {                                                
1036   const G4double tolerance = 1.0e-12;            
1037   const G4int maxNumber    = 12;                 
1038                                                  
1039   G4int i, j, k;                                 
1040   G4double integral = 0.0;                       
1041   G4double nwt      = 0., nwt1, temp1, temp2,    
1042                                                  
1043   G4double piInMinusQ =                          
1044     std::pow(CLHEP::pi, -0.25);  // 1.0/std::    
1045                                                  
1046   G4int fNumber       = (nHermite + 1) / 2;      
1047   G4double* fAbscissa = new G4double[fNumber]    
1048   G4double* fWeight   = new G4double[fNumber]    
1049                                                  
1050   for(i = 1; i <= fNumber; ++i)                  
1051   {                                              
1052     if(i == 1)                                   
1053     {                                            
1054       nwt = std::sqrt((G4double)(2 * nHermite    
1055             1.85575001 * std::pow((G4double)(    
1056     }                                            
1057     else if(i == 2)                              
1058     {                                            
1059       nwt -= 1.14001 * std::pow((G4double) nH    
1060     }                                            
1061     else if(i == 3)                              
1062     {                                            
1063       nwt = 1.86002 * nwt - 0.86002 * fAbscis    
1064     }                                            
1065     else if(i == 4)                              
1066     {                                            
1067       nwt = 1.91001 * nwt - 0.91001 * fAbscis    
1068     }                                            
1069     else                                         
1070     {                                            
1071       nwt = 2.0 * nwt - fAbscissa[i - 3];        
1072     }                                            
1073     for(k = 1; k <= maxNumber; ++k)              
1074     {                                            
1075       temp1 = piInMinusQ;                        
1076       temp2 = 0.0;                               
1077                                                  
1078       for(j = 1; j <= nHermite; ++j)             
1079       {                                          
1080         temp3 = temp2;                           
1081         temp2 = temp1;                           
1082         temp1 = nwt * std::sqrt(2.0 / j) * te    
1083                 std::sqrt(((G4double)(j - 1))    
1084       }                                          
1085       temp = std::sqrt((G4double) 2 * nHermit    
1086       nwt1 = nwt;                                
1087       nwt  = nwt1 - temp1 / temp;                
1088                                                  
1089       if(std::fabs(nwt - nwt1) <= tolerance)     
1090       {                                          
1091         break;                                   
1092       }                                          
1093     }                                            
1094     if(k > maxNumber)                            
1095     {                                            
1096       G4Exception("G4Integrator<T,F>::Hermite    
1097                   FatalException, "Too many (    
1098     }                                            
1099     fAbscissa[i - 1] = nwt;                      
1100     fWeight[i - 1]   = 2.0 / (temp * temp);      
1101   }                                              
1102                                                  
1103   //                                             
1104   // Integral calculation                        
1105   //                                             
1106                                                  
1107   for(i = 0; i < fNumber; ++i)                   
1108   {                                              
1109     integral +=                                  
1110       fWeight[i] * ((typeT.*f)(fAbscissa[i])     
1111   }                                              
1112   delete[] fAbscissa;                            
1113   delete[] fWeight;                              
1114   return integral;                               
1115 }                                                
1116                                                  
1117 /////////////////////////////////////////////    
1118 //                                               
1119 // For use with 'this' pointer                   
1120                                                  
1121 template <class T, class F>                      
1122 G4double G4Integrator<T, F>::Hermite(T* ptrT,    
1123 {                                                
1124   return Hermite(*ptrT, f, n);                   
1125 }                                                
1126                                                  
1127 /////////////////////////////////////////////    
1128 //                                               
1129 // For use with global scope f                   
1130                                                  
1131 template <class T, class F>                      
1132 G4double G4Integrator<T, F>::Hermite(G4double    
1133 {                                                
1134   const G4double tolerance = 1.0e-12;            
1135   const G4int maxNumber    = 12;                 
1136                                                  
1137   G4int i, j, k;                                 
1138   G4double integral = 0.0;                       
1139   G4double nwt      = 0., nwt1, temp1, temp2,    
1140                                                  
1141   G4double piInMinusQ =                          
1142     std::pow(CLHEP::pi, -0.25);  // 1.0/std::    
1143                                                  
1144   G4int fNumber       = (nHermite + 1) / 2;      
1145   G4double* fAbscissa = new G4double[fNumber]    
1146   G4double* fWeight   = new G4double[fNumber]    
1147                                                  
1148   for(i = 1; i <= fNumber; ++i)                  
1149   {                                              
1150     if(i == 1)                                   
1151     {                                            
1152       nwt = std::sqrt((G4double)(2 * nHermite    
1153             1.85575001 * std::pow((G4double)(    
1154     }                                            
1155     else if(i == 2)                              
1156     {                                            
1157       nwt -= 1.14001 * std::pow((G4double) nH    
1158     }                                            
1159     else if(i == 3)                              
1160     {                                            
1161       nwt = 1.86002 * nwt - 0.86002 * fAbscis    
1162     }                                            
1163     else if(i == 4)                              
1164     {                                            
1165       nwt = 1.91001 * nwt - 0.91001 * fAbscis    
1166     }                                            
1167     else                                         
1168     {                                            
1169       nwt = 2.0 * nwt - fAbscissa[i - 3];        
1170     }                                            
1171     for(k = 1; k <= maxNumber; ++k)              
1172     {                                            
1173       temp1 = piInMinusQ;                        
1174       temp2 = 0.0;                               
1175                                                  
1176       for(j = 1; j <= nHermite; ++j)             
1177       {                                          
1178         temp3 = temp2;                           
1179         temp2 = temp1;                           
1180         temp1 = nwt * std::sqrt(2.0 / j) * te    
1181                 std::sqrt(((G4double)(j - 1))    
1182       }                                          
1183       temp = std::sqrt((G4double) 2 * nHermit    
1184       nwt1 = nwt;                                
1185       nwt  = nwt1 - temp1 / temp;                
1186                                                  
1187       if(std::fabs(nwt - nwt1) <= tolerance)     
1188       {                                          
1189         break;                                   
1190       }                                          
1191     }                                            
1192     if(k > maxNumber)                            
1193     {                                            
1194       G4Exception("G4Integrator<T,F>::Hermite    
1195                   "Too many (>12) iterations.    
1196     }                                            
1197     fAbscissa[i - 1] = nwt;                      
1198     fWeight[i - 1]   = 2.0 / (temp * temp);      
1199   }                                              
1200                                                  
1201   //                                             
1202   // Integral calculation                        
1203   //                                             
1204                                                  
1205   for(i = 0; i < fNumber; ++i)                   
1206   {                                              
1207     integral += fWeight[i] * ((*f)(fAbscissa[    
1208   }                                              
1209   delete[] fAbscissa;                            
1210   delete[] fWeight;                              
1211   return integral;                               
1212 }                                                
1213                                                  
1214 /////////////////////////////////////////////    
1215 //                                               
1216 // Method involving Jacobi polynomials           
1217 //                                               
1218 /////////////////////////////////////////////    
1219 //                                               
1220 // Gauss-Jacobi method for integration of ((1    
1221 // from minus unit to plus unit .                
1222 //                                               
1223                                                  
1224 template <class T, class F>                      
1225 G4double G4Integrator<T, F>::Jacobi(T& typeT,    
1226                                     G4double     
1227 {                                                
1228   const G4double tolerance = 1.0e-12;            
1229   const G4double maxNumber = 12;                 
1230   G4int i, k, j;                                 
1231   G4double alphaBeta, alphaReduced, betaReduc    
1232                                                  
1233   G4double a, b, c, nwt1, nwt2, nwt3, nwt, te    
1234                                                  
1235   G4int fNumber       = nJacobi;                 
1236   G4double* fAbscissa = new G4double[fNumber]    
1237   G4double* fWeight   = new G4double[fNumber]    
1238                                                  
1239   for(i = 1; i <= nJacobi; ++i)                  
1240   {                                              
1241     if(i == 1)                                   
1242     {                                            
1243       alphaReduced = alpha / nJacobi;            
1244       betaReduced  = beta / nJacobi;             
1245       root1        = (1.0 + alpha) * (2.78002    
1246                                0.767999 * alp    
1247       root2        = 1.0 + 1.48 * alphaReduce    
1248               0.451998 * alphaReduced * alpha    
1249               0.83001 * alphaReduced * betaRe    
1250       root = 1.0 - root1 / root2;                
1251     }                                            
1252     else if(i == 2)                              
1253     {                                            
1254       root1 = (4.1002 + alpha) / ((1.0 + alph    
1255       root2 = 1.0 + 0.06 * (nJacobi - 8.0) *     
1256       root3 =                                    
1257         1.0 + 0.012002 * beta * (1.0 + 0.2499    
1258       root -= (1.0 - root) * root1 * root2 *     
1259     }                                            
1260     else if(i == 3)                              
1261     {                                            
1262       root1 = (1.67001 + 0.27998 * alpha) / (    
1263       root2 = 1.0 + 0.22 * (nJacobi - 8.0) /     
1264       root3 = 1.0 + 8.0 * beta / ((6.28001 +     
1265       root -= (fAbscissa[0] - root) * root1 *    
1266     }                                            
1267     else if(i == nJacobi - 1)                    
1268     {                                            
1269       root1 = (1.0 + 0.235002 * beta) / (0.76    
1270       root2 = 1.0 / (1.0 + 0.639002 * (nJacob    
1271                              (1.0 + 0.71001 *    
1272       root3 = 1.0 / (1.0 + 20.0 * alpha / ((7    
1273       root += (root - fAbscissa[nJacobi - 4])    
1274     }                                            
1275     else if(i == nJacobi)                        
1276     {                                            
1277       root1 = (1.0 + 0.37002 * beta) / (1.670    
1278       root2 = 1.0 / (1.0 + 0.22 * (nJacobi -     
1279       root3 =                                    
1280         1.0 / (1.0 + 8.0 * alpha / ((6.28002     
1281       root += (root - fAbscissa[nJacobi - 3])    
1282     }                                            
1283     else                                         
1284     {                                            
1285       root = 3.0 * fAbscissa[i - 2] - 3.0 * f    
1286     }                                            
1287     alphaBeta = alpha + beta;                    
1288     for(k = 1; k <= maxNumber; ++k)              
1289     {                                            
1290       temp = 2.0 + alphaBeta;                    
1291       nwt1 = (alpha - beta + temp * root) / 2    
1292       nwt2 = 1.0;                                
1293       for(j = 2; j <= nJacobi; ++j)              
1294       {                                          
1295         nwt3 = nwt2;                             
1296         nwt2 = nwt1;                             
1297         temp = 2 * j + alphaBeta;                
1298         a    = 2 * j * (j + alphaBeta) * (tem    
1299         b    = (temp - 1.0) *                    
1300             (alpha * alpha - beta * beta + te    
1301         c    = 2.0 * (j - 1 + alpha) * (j - 1    
1302         nwt1 = (b * nwt2 - c * nwt3) / a;        
1303       }                                          
1304       nwt = (nJacobi * (alpha - beta - temp *    
1305              2.0 * (nJacobi + alpha) * (nJaco    
1306             (temp * (1.0 - root * root));        
1307       rootTemp = root;                           
1308       root     = rootTemp - nwt1 / nwt;          
1309       if(std::fabs(root - rootTemp) <= tolera    
1310       {                                          
1311         break;                                   
1312       }                                          
1313     }                                            
1314     if(k > maxNumber)                            
1315     {                                            
1316       G4Exception("G4Integrator<T,F>::Jacobi(    
1317                   FatalException, "Too many (    
1318     }                                            
1319     fAbscissa[i - 1] = root;                     
1320     fWeight[i - 1] =                             
1321       std::exp(GammaLogarithm((G4double)(alph    
1322                GammaLogarithm((G4double)(beta    
1323                GammaLogarithm((G4double)(nJac    
1324                GammaLogarithm((G4double)(nJac    
1325       temp * std::pow(2.0, alphaBeta) / (nwt     
1326   }                                              
1327                                                  
1328   //                                             
1329   // Calculation of the integral                 
1330   //                                             
1331                                                  
1332   G4double integral = 0.0;                       
1333   for(i = 0; i < fNumber; ++i)                   
1334   {                                              
1335     integral += fWeight[i] * (typeT.*f)(fAbsc    
1336   }                                              
1337   delete[] fAbscissa;                            
1338   delete[] fWeight;                              
1339   return integral;                               
1340 }                                                
1341                                                  
1342 /////////////////////////////////////////////    
1343 //                                               
1344 // For use with 'this' pointer                   
1345                                                  
1346 template <class T, class F>                      
1347 G4double G4Integrator<T, F>::Jacobi(T* ptrT,     
1348                                     G4int n)     
1349 {                                                
1350   return Jacobi(*ptrT, f, alpha, beta, n);       
1351 }                                                
1352                                                  
1353 /////////////////////////////////////////////    
1354 //                                               
1355 // For use with global scope f                   
1356                                                  
1357 template <class T, class F>                      
1358 G4double G4Integrator<T, F>::Jacobi(G4double     
1359                                     G4double     
1360 {                                                
1361   const G4double tolerance = 1.0e-12;            
1362   const G4double maxNumber = 12;                 
1363   G4int i, k, j;                                 
1364   G4double alphaBeta, alphaReduced, betaReduc    
1365                                                  
1366   G4double a, b, c, nwt1, nwt2, nwt3, nwt, te    
1367                                                  
1368   G4int fNumber       = nJacobi;                 
1369   G4double* fAbscissa = new G4double[fNumber]    
1370   G4double* fWeight   = new G4double[fNumber]    
1371                                                  
1372   for(i = 1; i <= nJacobi; ++i)                  
1373   {                                              
1374     if(i == 1)                                   
1375     {                                            
1376       alphaReduced = alpha / nJacobi;            
1377       betaReduced  = beta / nJacobi;             
1378       root1        = (1.0 + alpha) * (2.78002    
1379                                0.767999 * alp    
1380       root2        = 1.0 + 1.48 * alphaReduce    
1381               0.451998 * alphaReduced * alpha    
1382               0.83001 * alphaReduced * betaRe    
1383       root = 1.0 - root1 / root2;                
1384     }                                            
1385     else if(i == 2)                              
1386     {                                            
1387       root1 = (4.1002 + alpha) / ((1.0 + alph    
1388       root2 = 1.0 + 0.06 * (nJacobi - 8.0) *     
1389       root3 =                                    
1390         1.0 + 0.012002 * beta * (1.0 + 0.2499    
1391       root -= (1.0 - root) * root1 * root2 *     
1392     }                                            
1393     else if(i == 3)                              
1394     {                                            
1395       root1 = (1.67001 + 0.27998 * alpha) / (    
1396       root2 = 1.0 + 0.22 * (nJacobi - 8.0) /     
1397       root3 = 1.0 + 8.0 * beta / ((6.28001 +     
1398       root -= (fAbscissa[0] - root) * root1 *    
1399     }                                            
1400     else if(i == nJacobi - 1)                    
1401     {                                            
1402       root1 = (1.0 + 0.235002 * beta) / (0.76    
1403       root2 = 1.0 / (1.0 + 0.639002 * (nJacob    
1404                              (1.0 + 0.71001 *    
1405       root3 = 1.0 / (1.0 + 20.0 * alpha / ((7    
1406       root += (root - fAbscissa[nJacobi - 4])    
1407     }                                            
1408     else if(i == nJacobi)                        
1409     {                                            
1410       root1 = (1.0 + 0.37002 * beta) / (1.670    
1411       root2 = 1.0 / (1.0 + 0.22 * (nJacobi -     
1412       root3 =                                    
1413         1.0 / (1.0 + 8.0 * alpha / ((6.28002     
1414       root += (root - fAbscissa[nJacobi - 3])    
1415     }                                            
1416     else                                         
1417     {                                            
1418       root = 3.0 * fAbscissa[i - 2] - 3.0 * f    
1419     }                                            
1420     alphaBeta = alpha + beta;                    
1421     for(k = 1; k <= maxNumber; ++k)              
1422     {                                            
1423       temp = 2.0 + alphaBeta;                    
1424       nwt1 = (alpha - beta + temp * root) / 2    
1425       nwt2 = 1.0;                                
1426       for(j = 2; j <= nJacobi; ++j)              
1427       {                                          
1428         nwt3 = nwt2;                             
1429         nwt2 = nwt1;                             
1430         temp = 2 * j + alphaBeta;                
1431         a    = 2 * j * (j + alphaBeta) * (tem    
1432         b    = (temp - 1.0) *                    
1433             (alpha * alpha - beta * beta + te    
1434         c    = 2.0 * (j - 1 + alpha) * (j - 1    
1435         nwt1 = (b * nwt2 - c * nwt3) / a;        
1436       }                                          
1437       nwt = (nJacobi * (alpha - beta - temp *    
1438              2.0 * (nJacobi + alpha) * (nJaco    
1439             (temp * (1.0 - root * root));        
1440       rootTemp = root;                           
1441       root     = rootTemp - nwt1 / nwt;          
1442       if(std::fabs(root - rootTemp) <= tolera    
1443       {                                          
1444         break;                                   
1445       }                                          
1446     }                                            
1447     if(k > maxNumber)                            
1448     {                                            
1449       G4Exception("G4Integrator<T,F>::Jacobi(    
1450                   "Too many (>12) iterations.    
1451     }                                            
1452     fAbscissa[i - 1] = root;                     
1453     fWeight[i - 1] =                             
1454       std::exp(GammaLogarithm((G4double)(alph    
1455                GammaLogarithm((G4double)(beta    
1456                GammaLogarithm((G4double)(nJac    
1457                GammaLogarithm((G4double)(nJac    
1458       temp * std::pow(2.0, alphaBeta) / (nwt     
1459   }                                              
1460                                                  
1461   //                                             
1462   // Calculation of the integral                 
1463   //                                             
1464                                                  
1465   G4double integral = 0.0;                       
1466   for(i = 0; i < fNumber; ++i)                   
1467   {                                              
1468     integral += fWeight[i] * (*f)(fAbscissa[i    
1469   }                                              
1470   delete[] fAbscissa;                            
1471   delete[] fWeight;                              
1472   return integral;                               
1473 }                                                
1474                                                  
1475 //                                               
1476 //                                               
1477 /////////////////////////////////////////////    
1478